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ABSTRACT

We develop and evaluate SCIATA, a simplified combined inversion-and-thinning algorithm for simulating
a nonstationary non-Poisson process (NNPP) over a finite time horizon, with the target arrival process
having a given “rate” function and associated mean-value function together with a given variance-to-mean
(dispersion) ratio. Designed for routine use when the dispersion ratio is at most two, SCIATA encompasses
the following steps: (i) computing a piecewise-constant majorizing rate function that closely approximates
the given rate function; (ii) computing the associated piecewise-linear majorizing mean-value function;
(iii) generating an equilibrium renewal process (ERP) whose noninitial interrenewal times are Weibull
distributed with mean one and variance equal to the given dispersion ratio; (iv) inverting the majorizing
mean-value function at the ERP’s renewal epochs to generate the associated majorizing NNPP; and (v)
thinning the resulting arrival epochs to obtain an NNPP with the given rate function and dispersion ratio.
Numerical examples illustrate the effectiveness of SCIATA in practice.

1 INTRODUCTION

Simulation modeling and analysis of a complex system often requires generation of an arrival process with
the following characteristics:

• a given time-dependent instantaneous rate function over a given finite time horizon, where the rate
function may have been estimated from data collected on the target arrival process;

• the associated mean-value function describing the buildup of the expected number of arrivals over
the time horizon; and

• a given variance-to-mean (dispersion) ratio for the number of arrivals at each noninitial point in
the time horizon, where the dispersion ratio also may have been estimated from data collected on
the target arrival process.

For example, Figure 1 depicts the estimated mean-value function, the corresponding estimated variance
function, and the estimated dispersion ratio that were observed for arrivals to an endocrinology outpatient
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clinic of a major teaching hospital in South Korea (Kim et al. 2015). Figure 1 clearly shows that in each
morning and afternoon period when the clinic is open, the buildup of patient arrivals exhibits time-dependent
behavior as well as a variance-to-mean ratio close to 0.5. On the other hand, similar plots for arrivals to
the emergency department of an Israeli hospital over a twenty-four period exhibit pronounced time-of-day
and day-of-the-week effects as well as a dispersion ratio that was estimated to be about 1.5 after the
day-of-the-week effects were properly taken into account (Whitt and Zhang 2015).

9 10 11 12
0

10

20

30

40

50

time of day

M
ea

n 
an

d 
V

ar
ia

nc
e

 

 
Var[N(t)]
E[N(t))]

13 14 15 16
0

10

20

30

40

50

time of day

M
ea

n 
an

d 
V

ar
ia

nc
e

 

 
Var[N(t)]
E[N(t))]

9 10 11 12
0

0.5

1

1.5

time of day

ID
C

 (
V

ar
ia

nc
e−

to
−

M
ea

n)

 

 

13 14 15 16
0

0.5

1

1.5

time of day

ID
C

 (
V

ar
ia

nc
e−

to
−

M
ea

n)

 

 
Var[N(t)]/E[N(t))] Var[N(t)]/E[N(t))]

Figure 1: Estimated mean, variance, and variance-to-mean (dispersion) ratio for the number of arrivals to
a Korean endocrinology outpatient clinic.

We examine the implications of these observations in some detail. For a nonstationary arrival process
{N(t) : t ∈ [0,S]} that is defined on a finite time horizon [0,S], we let N(t) denote the number of arrivals
in the interval [0, t] for 0≤ t ≤ S; and we define the mean-value function,

E[N(t)]≡ µ(t)≡
∫ t

0
λ (u)du for t ∈ [0,S], (1)

as the expected number of arrivals in [0, t], where the instantaneous “rate” function λ (u) is nonnegative,
bounded, and integrable over the given time horizon. We define the dispersion (variance-to-mean) ratio

C(t)≡ Var[N(t)]
E[N(t)]

for t ∈ (0,S] . (2)
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If {N(t) : t ∈ [0,S]} is a nonhomogeneous Poisson process (NHPP) whose rate function is positive on (0,S),
then C(t) = 1 for all t ∈ (0,S] (Çinlar 1975). NHPPs have been used by researchers and practitioners to
represent time-dependent arrival processes exhibiting a wide variety of behaviors, including cyclic effects
and long term trends—for example, see Lewis and Shedler (1976), Lee, Wilson, and Crawford (1991),
Harper et al. (2000), Kuhl and Wilson (2001), Leemis (2004), and Kuhl, Deo, and Wilson (2008). Although
NHPPs have been shown to model a large class of arrival processes effectively, there are systems such as
the above-mentioned Korean endocrinology clinic and the Israeli emergency department for which NHPPs
are not adequate, and alternative modeling approaches are needed.

If a time-dependent arrival process has a constant dispersion ratio so that C(t) = C for all t ∈ (0,S]
but C 6= 1, then the resulting process is an example of a nonhomogeneous non-Poisson Process (NNPP).
Liu et al. (2015) develop CIATA, a combined inversion-and-thinning algorithm for efficiently generating
realizations of an NNPP {N(t) : t ∈ [0,S]} with a given rate function λ (t) for t ∈ [0,S] and with a dispersion
ratio C(t) for t ∈ (0,S] that rapidly approaches a given value C as the time t increases. In this paper we
develop SCIATA, a simplified version of CIATA (Liu et al. 2015) for generating such NNPPs more easily
when C ∈ (0,2], a situation that in our experience is common in many practical applications. The slides
for the oral presentation of this article are available online via www.ise.ncsu.edu/jwilson/wsc15sciata.pdf.

2 SUMMARY OF SCIATA: A SIMPLIFIED COMBINED INVERSION-AND-THINNING
ALGORITHM FOR SIMULATING NNPPS WITH A CONSTANT DISPERSION RATIO

The main steps of SCIATA are detailed below.
Step 1. Construct a piecewise-constant majorizing rate function. We construct a piecewise-constant

majorizing rate function λ̃Q(t) that closely bounds the given rate function λ (t) for t ∈ [0,S] based on a
partition of [0,S] into Q subintervals, where Q is taken sufficiently large to ensure that λ (t) is constant or
unimodal in each subinterval. Let

L ≡
L⋃

`=1

(
ζ

†
` ,ζ

‡
`

)
represent the set of nonoverlapping subintervals of [0,S] on which λ (u) is constant with associated
endpoints

{
ζ

†
` ,ζ

‡
` : `= 1, . . . ,L

}
. Let

{
ζ `≡ 1

2

(
ζ

†
` +ζ

‡
`

)
: `= 1, . . . ,L

}
denote the corresponding subinterval

midpoints. For each Q≥ 1, we take

λ̃Q(t)≡

{
ε/Q if t ∈ (ζ †

` ,ζ
‡
` ) and λ (ζ `) = 0

λ (ζ `) if t ∈ (ζ †
` ,ζ

‡
` ) and λ (ζ `)> 0

}
for t ∈L , (3)

where ε is an arbitrarily small positive number. Then, on [0,S]\L , for each of the subintervals
{[

ξ
†
j ,ξ

‡
j

]
:

j = 1, . . . ,M
}

on which λ (t) is nonconstant, we let

M ≡
M⋃

j=1

[
ξ

†
j ,ξ

‡
j

]
= [0,S]\L

denote the subintervals of the time horizon on which the construction of λ̃Q(t) is nontrivial. For j = 1, . . . ,M,
we partition the subinterval

[
ξ

†
j ,ξ

‡
j

]
into equal-length subsubintervals {[zi−1, j,zi, j] : i = 1, . . . ,Q′; j =

1, . . . ,M} of sufficiently small length so that λ̃Q(t) is unimodal on each subsubinterval. Then for each
i = 1, . . . ,Q′ and j = 1, . . . ,M, we seek to construct the majorizing rate function λ̃Q(t) on [zi−1, j,zi, j] by
using the golden section search procedure to find the maximum value λ ∗i, j of the given rate function λ (t)
on that subsubinterval. This construction yields a majorizing rate function defined on M by the relation

λ̃Q(t) =

{
∑

Q′
i=1 ∑

M
j=1 λ ∗i, jI(zi−1, j,zi, j](t) for t ∈M \{ξ †

j : j = 1, . . . ,M} ,
λ ∗1, j if t = ξ

†
j for some j ∈ {1, . . . ,M} ,

(4)

http://www.ise.ncsu.edu/jwilson/wsc15sciata.pdf
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where I(zi−1, j,zi, j](t) is the indicator function for (zi−1, j,zi, j] so that we have I(zi−1, j,zi, j](t)≡ 1 if zi−1, j < t ≤ zi, j

and otherwise I(zi−1, j,zi, j](t) ≡ 0. The formal statement of the process for constructing λ̃Q(t) is given in
Algorithm 1.

Algorithm 1 Constructing the piecewise-constant majorizing rate function (Liu et al. 2015)
1: Initialization: Set δ ← 10−4, ε ← 10−20, and Q∗← 200; then assign Q′ ≥ Q∗.
2: for j = 1, . . . ,M do
3: Partition

[
ξ

†
j ,ξ

‡
j

]
into Q′ equal-length subintervals {[zi−1, j,zi, j] : i = 1, . . . ,Q′}:

Set zi, j← ξ
†
j + i(ξ ‡

j −ξ
†
j )/Q′ for i = 0,1, . . . ,Q′.

4: for i = 1, . . . ,Q′ do
5: Set a← zi−1, j, b← zi, j, x1← a+(2−φ)(b−a), x2← a+(φ −1)(b−a).
6: while (b−a)≥ δ do
7: if λ (x1)< λ (x2) then
8: Set λ ∗i, j← λ (x2), a← x1, x1← x2, x2← a+(φ −1)(b−a);
9: else

10: Set λ ∗i, j← λ (x1), b← x2, x2← x1, x1← a+(2−φ)(b−a).
11: end if
12: end while
13: end for
14: end for
15: Set Q← L+MQ′, and define λ̃Q(·) on L and M by (3) and (4), respectively.

Step 2. Construct a piecewise-linear majorizing mean-value function. Using the majorizing rate
function defined by (3) and (4), the majorizing mean-value function is defined as

µ̃Q(t)≡
∫ t

0
λ̃Q(u)

[
1− IZ (u)

]
du for 0≤ t ≤ S,

where Z ≡ {u ∈ [0,S] : λ (u) = 0} and IZ (u) is the indicator function of Z . Liu et al. (2015) show that
the majorizing mean-value function µ̃Q(t) converges uniformly to the target µ(t) from above as the length
of majorizing subintervals decreases.

Step 3. Generate an equilibrium renewal process (ERP). To obtain an ERP with the desired
dispersion ratio, the noninitial interrenewal times are sampled from an appropriate Weibull distribution.
The ERP

{
N◦(u) : u ∈ [0, µ̃Q(S)]

}
has renewal epochs

{
S◦n : n = 1, . . . ,N◦[µ̃Q(S)]

}
and interrenewal times{

X◦n : n = 1, . . . ,N◦[µ̃Q(S)]
}

satisfying E[X◦n ] = 1 and Var[X◦n ] =C for n≥ 2. Therefore we have the usual
setup for a renewal process,

S◦0 = 0 and S◦n = S◦n−1 +X◦n for n = 1,2, . . . , so that N◦(t) = sup{n : S◦n ≤ t} for t ∈ [0,S].

The probability density function (p.d.f.) and cumulative distribution function (c.d.f.) of the required Weibull
distribution are given by

fWe(x; α,β ) =

{
0 if x < 0,
(α/β )(x/β )α−1 exp

[
− (x/β )α

]
if x≥ 0,

and

FWe(x;α,β ) =

{
0 if x < 0
1− exp

[
− (x/β )α

]
if x≥ 0,
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respectively, where the required value of the shape parameter α is the unique positive root of the equation

α
{

2Γ(2/α)− (1/α)[Γ(1/α)]2
}

[Γ(1/α)]2
=C ; (5)

and the associated scale parameter is given by

β = α/Γ(1/α) . (6)

Next we formulate the initial interrenewal distribution that must be sampled to ensure that the ERP{
N◦(u) : u ∈ [0, µ̃Q(S)]

}
starts out in “steady-state” operation in the sense that the time to the first renewal

X◦1 has the same c.d.f. Ge(x) as the steady-state forward recurrence-time (excess life) of the ERP; moreover
the ERP’s mean-value function is exactly linear at every point in time so that E[N◦(u)] = u/E[X◦2 ] = u for
all u ∈ [0, µ̃Q(S)]. In terms of the auxiliary gamma p.d.f. with shape parameter η and scale parameter 1,

fGa(x;η) =

0, if x≤ 0
1

Γ(η)
xη−1e−x if x > 0,

and the associated gamma c.d.f.,

FGa(x;η) =

0, if x≤ 0∫ x

0
fGa(u;η)du if x > 0 ,

we see that the initial interrenewal time (that is, the time to the first renewal) is sampled as follows:

X◦1 ∼ Ge(x)≡ FGa
[
(x/β )α ;1/α

]
. (7)

Equation (7) is easily seen to be equivalent the following:

Generate Y ∼ FGa(y;1/α) and deliver X◦1 ← β
(
Y 1/α

)
.

All subsequent interrenewal times are generated from

{X◦i : i = 2,3, . . .} i.i.d.∼ G(x)≡ FWe(x;α,β ) , (8)

where α and β are given by Equations (5) and (6), respectively.
Step 4. Generate the arrival epochs for the majorizing NNPP. The arrival epochs for the majorizing

NNPP
{

S̃n : n = 1, . . . , ÑQ(S)
}

, where ÑQ(S) = N◦[µ̃Q(S)], are generated by inverting the majorizing
mean-value function at the renewal epochs of the ERP so that we take S̃n ≡ µ̃

−1
Q (S◦n) for n = 1, . . . , ÑQ(S).

Step 5. Apply thinning to the majorizing NNPP to yield the arrival epochs of the target NNPP. The
method of thinning is applied to the arrival epochs

{
S̃n : n = 1, . . . , ÑQ(S)

}
so that for n = 1, . . . , ÑQ(S),

the nth arrival epoch S̃n of the majorizing NNPP is independently accepted as an arrival epoch of the target
NNPP with probability λ (S̃n)

/
λ̃Q(S̃n); and {S j : j = 1, . . . ,NQ(S)} denotes the resulting sequence of arrival

epochs of the SCIATA-generated NNPP over the time horizon [0,S].
The formal algorithmic statement of SCIATA is given in Algorithm 2.

3 PERFORMANCE EVALUATION OF SCIATA

In this section we evaluate the performance of SCIATA by conducting various simulation experiments.
We first describe the experimental setup in §3.1 and the estimation procedure in §3.2. Next we provide
simulation results for SCIATA in this section.
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Algorithm 2 Using SCIATA to Generate an NNPP (Liu et al. 2015)

1: Construct the majorizing rate function λ̃Q(t) given by (3) and (4) using Algorithm 1.
2: Define the c.d.f.’s Ge(x) and G(x) as in (7) and (8),
3: Set n← 1, j← 0, S◦0 ← 0, S̃0← 0, and S0← 0. Generate X◦n ∼ Ge and set S◦n ← S◦n−1 +X◦n .

Set S̃n← µ̃−1(S◦n) and X̃n← S̃n− S̃n−1.
4: while S̃n ≤ S do
5: Generate Un ∼ Uniform[0,1].
6: if Un ≤ λ (S̃n)

/
λ̃ (S̃n) then

7: Set j← j+1, S j← S̃n. Set the interarrival time X j← S j−S j−1.
8: end if
9: Set n← n+1. Generate X◦n ∼ G. Set S◦n ← S◦n−1 +X◦n , S̃n← µ̃−1(S◦n), and X̃n← S̃n− S̃n−1.

10: end while

3.1 Experimental Setup

For 0 ≤ t ≤ S, we chose rate functions of the type exponential-polynomial-trigonometric with multiple
periodicities (EPTMP), which means they have the form

λ (t) = exp{h(t;m, p,Θ)} with h(t;m, p,Θ) =
m

∑
i=0

αit i +
p

∑
k=1

γk sin(ωkt +φk), (9)

where
Θ = [α0,α1, . . . ,αm,γ1, . . . ,γp,ω1, . . . ,ωp,φ1, . . . ,φp, ]

is the vector of continuous parameters of the designated rate function (Kuhl, Wilson, and Johnson 1997).
The first m+ 1 terms in Equation (9) define a degree-m polynomial representing a possible long-term
evolutionary trend in the arrival rate over time. The next p terms in Equation (9) define the trigonometric
functions representing possible periodic effects exhibited by the arrival process. The use of an exponential
rate function is a convenient means of ensuring that the instantaneous arrival rate is always positive. For
specific applications, we are free to choose the appropriate degree m for the polynomial rate component
together with the appropriate oscillation amplitude (γk), oscillation frequency (ωk), and phase delay (φk)
for each of the cyclic rate components. For more details on EPTMP-type rate functions, see Kuhl, Wilson,
and Johnson (1997).

The parameters for three instances of EPTMP-type rate functions are shown in Table 1. All three cases
contain two nested cyclic effects, with the first effect having a period of 1 time unit and the second effect
having a period 0.5 time units. Case 1 does not contain a general trend over time. Cases 2 and 3 contain
general trends that are represented by polynomials of degree 1 and 2, respectively. We then take S = 8, and
the desired asymptotic variance-to-mean ratio is taken to be C = 0.5,0.75,1.5, and 2 in each of these three
cases. To conserve space, we only present the results for case 1 in this article; but in the above-mentioned
oral presentation of this work, we will provide the complete results for cases 2 and 3 as well as for case 1.

Table 1: Parameters of the NNPPs with EPTMP-type rate functions that are used in
the experimental evaluation of SCIATA

Parameter α0 α1 α2 γ1 φ1 ω1 γ2 φ2 ω2
Case 1 3.6269 – – 1.0592 -0.6193 6.2831 0.5000 0.5000 12.5664
Case 2 3.6269 0.1000 – 1.0592 -0.6193 6.2831 0.5000 0.5000 12.5664
Case 3 3.6269 -0.1000 0.0200 1.0592 -0.6193 6.2831 0.5000 0.5000 12.5664

To evaluate the performance of SCIATA, we performed a metaexperiment consisting of R = 100
independent basic experiments; and in each basic experiment, we performed K = 200 independent replications
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of SCIATA to generate 200 realizations of an NNPP {N(t) : t ∈ [0,S]} for one of the three cases in Table
1 with the dispersion ratio C = 0.5,0.75,1.5, or 2.0. Each basic experiment yielded estimates of the
mean-value function µ(t) = E[NQ(t)] and the dispersion-ratio function CQ(t) ≡ Var[NQ(t)]/E[NQ(t)] for
t ∈ (0,S].

From 100 replications of each basic experiment, we computed 95% confidence interval (CI) estimators
of µ(ti) and CQ(ti) at the times {ti : ti = ψi, for i = 1, . . . ,T}, where ψ is the length of each subinterval
and T= S/ψ . For all the experiments in this section, we set ψ = 0.2. To validate SCIATA, we examined
the following:

• Graphs of the desired rate function λ (ti) and the desired mean-value function µ(ti) respectively
superimposed on the majorizing rate function λ̃Q(ti) and on 95% CI estimators of the mean-value
function µQ(ti) for the SCIATA-generated NNPP at the times {ti : ti = ψi, for i = 1, . . . ,T};

• Graphs of the desired asymptotic dispersion ratios C = 0.5,0.75,1.5, and 2.0 superimposed on
simulation-based point and CI estimators of CQ(ti) for the SCIATA-generated NNPP at the times
{ti : ti = ψi, for i = 1, . . . ,T}; and

• Tabular summaries of the same results depicted in the graphs of items 1 and 2 above.

All our algorithms have been implemented in MATLAB, and all the experiments in this article were
carried out on a 2.66GHz Intel 2 Quad processor with 3.25 GB RAM, running Windows XP Professional.

3.2 Formulation of Performance Estimators

On the kth realization of the SCIATA-generated NNPP in the rth basic experiment, let NQ(t;r,k) denote
the number of accepted arrivals up to time t ∈ [0,S], where r = 1, . . . ,R, and k = 1, . . . ,K. In the rth basic
experiment, the estimators of the mean-value and variance functions are the sample statistics

NQ(t;r) =
1
K

K

∑
k=1

NQ(t;r,k)

V̂ar [NQ(t;r,1)] =
1

K−1

K

∑
k=1

[
NQ(t;r,k)−NQ(t;r)

]2
 for t ∈ (0,S] and r = 1, . . . ,R .

The sample dispersion ratio at time t is

ĈQ(t;r) =
V̂ar [NQ(t;r,1)]

NQ(t;r)
for t ∈ (0,S].

Based on the entire metaexperiment, the overall estimator of the desired mean-value function µ(t) is

µ̂Q(t) =
1

RK

R

∑
r=1

K

∑
k=1

NQ(t;r,k) for t ∈ (0,S];

and a pooled estimator of Var[NQ(t)] is

V̂ar[NQ(t)] =
1
R

R

∑
r=1

V̂ar [NQ(t;r,1)] for t ∈ (0,S].

The overall point estimator of CQ(t) is

ĈQ(t) =
1
R

R

∑
r=1

ĈQ(t;r) for t ∈ (0,S] ;
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and the overall estimator of Var[ĈQ(t;1)] is

V̂ar[ĈQ(t;1)] =
1

R−1

R

∑
r=1

[
ĈQ(t;r)−ĈQ(t)

]2 for t ∈ (0,S].

For a fixed time t, an approximate 100(1−α)% CI estimator for CQ(t) is

ĈQ(t)± z1−α/2

√
V̂ar[ĈQ(t;1)]/R for t ∈ (0,S],

where z1−α/2 is the 1−α/2 quantile of the standard normal distribution. Similarly, CIs are obtained for
the mean-value function µ(t) at each fixed time t.

3.3 Performance of SCIATA

Here we report results for Case 1, with the target dispersion ratios C = 0.5, 0.75 1.5, and 2.0. For t ∈ [0,8],
we plot in Figure 2 (i) the given Case-1 rate function λ (t) (dashed red curve) and the corresponding
majorizing step rate function λ̃Q(t) (solid blue step function); (ii) the 95% CI estimators of the mean-value
function µ(t); and (iii) the 95% CI estimators for CQ(t). Here Q = 160 so the majorizing step size is
S/Q = 0.05.

For the dispersion ratios C = 1.5 and 2.0, Figure 3 depicts the CIATA-generated results for the Case-1
arrival-rate function based on the same layout used in Figure 2.

These results show the effectiveness of SCIATA in generating an NNPP with the given mean-value
function µ(t) (or equivalently the given rate function λ (t)) and the given asymptotic dispersion ratio C.
Because it takes less than 0.2 time units for the time-dependent dispersion ratio to converge to C, we
concluded that SCIATA could deliver fast convergence to the given dispersion ratio. We remark that the
convergence time (or warm-up time) becomes relatively longer for large values of the dispersion ratios
(e.g., C = 10).

To provide further validation of SCIATA’s performance, we examine the relative errors of the estimators
µ̂Q(t) and ĈQ(t) (i.e., their respective percentage deviations from the target measures µ(t) and C), which
we call the closeness measures; and we study the sensitivity of these closeness measures to the dispersion
ratio C and to the number of majorizing intervals Q. We define the average percentage discrepancy (APD)
∆T(·) and maximum percentage discrepancy (MPD) ∆∗T(·) as two measures of closeness:

∆T(µ̂Q) =
1
T

T

∑
i=1

Di(µ̂Q), ∆
∗
T(µ̂Q) = max

1≤i≤T

{
Di(µ̂Q)

}
,

∆T(ĈQ) =
1
T

T

∑
i=1

Di(ĈQ), ∆
∗
T(ĈQ) = max

1≤i≤T

{
Di(ĈQ)

}
,

where the percentage discrepancy Di(·) is the percentage difference of the estimators µ̂Q(ti) and ĈQ(ti)
from their respective target values µ(ti) and ĈQ(ti) at each ti:

Di(µ̂Q) =

∣∣∣∣ µ̂Q(ti)−µ(ti)
µ(ti)

∣∣∣∣×100% and Di(ĈQ) =

∣∣∣∣ĈQ(ti)−C
C

∣∣∣∣×100% for i = 1, . . . ,T.

In addition, we compute the approximate 95% CI estimator for the expected value of ∆T(µ̂Q),

∆T(µ̂Q)± z1−α/2
S∆(µ̂Q)√

T
, where S∆(µ̂Q) =

√
1

T−1

T

∑
i=1

[
Di(µ̂Q)−∆T(µ̂Q)

]2
,
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Figure 2: Performance of SCIATA for Case 1 with dispersion ratios C = 0.5,0.75: (i) (top panel) the
majorizing rate function λ̃Q(t); (ii) (middle panel) 95% CIs for the mean-value function µ(t) with C = 0.5
(Left) and C = 0.75 (right); and (iii) (bottom panel) 95% CIs for CQ(t) with C = 0.5 (left) and C = 0.75
(right).

and we took α = 0.05. For the APD estimator ∆T(ĈQ), the standard-deviation estimator S∆(ĈQ), and the
CI estimator of E[∆T(ĈQ)] are defined similarly.

Table 2 contains the closeness measures ∆T(µ̂Q), ∆∗T(µ̂Q), ∆T(ĈQ), and ∆∗T(ĈQ) and the approximate
95% CIs for E[∆T(µ̂Q)] and E[∆T(ĈQ)] for the Case-1 arrival rate with C = 0.5, 0.75, 1.5, and 2. Table
2 shows that the APD and MPD for the mean-value function of the SCIATA-generated NNPP are less
than 1% and 3%; and the APD and MPD for the dispersion ratio of the SCIATA-generated NNPP are less
than 4% and 6%, respectively. We judged these result to provide good evidence of the effectiveness and
efficiency of the CIATA-based estimators of the given rate and mean-value functions as well as the given
dispersion ratio.

We remark that the adequacy of a CIATA-generated NNPP can also be impacted by Q, the number of
subintervals that are used to generate the majorizing rate function λ̃Q(t).
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Figure 3: CIATA performance for Case 1 with dispersion ratio C = 1.5,2.0: (i) (top panel) the majorizing
rate function λ̃Q(t); (ii) (middle panel) 95% CIs for the mean-value function µ(t) with C = 1.5 (left) and
C = 2.0 (right); and (iii) (bottom panel) 95% CIs for CQ(t) with C = 1.5 (left) and C = 2.0 (right).

Table 2: SCIATA-based closeness measures for Case 1.

Scenario ∆T(µ̂Q) ∆∗T(µ̂Q) ∆T(ĈQ) ∆∗T(ĈQ)

C = 0.5 0.885% ± 0.193% 2.206% 7.324%± 0.178% 11.241%

C = 0.75 0.888%±0.194% 2.067% 1.255%±0.136% 3.447%

C = 1.5 0.895% ± 0.179% 2.176% 1.457%± 0.206% 3.397%

C = 2.0 0.863%±0.191% 2.017% 4.206%±0.177% 7.050%

4 CONCLUSIONS AND RECOMMENDATIONS

In this article we formulated and experimentally evaluated two effective procedures for modeling and
simulation of nonstationary non-Poisson processes. More specifically, our contributions are as follows:

• We developed SCIATA for modeling and simulation of an NNPP with given rate and mean-value
functions as well as a given asymptotic dispersion ratio. We provided detailed proofs that our method
overcomes the disadvantages of the inversion and thinning methods of (Gerhardt and Nelson 2009)

jwilson
Rectangle
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while retaining the attractive features of those methods. More specifically, the key advantages of
SCIATA can be summarized as follows:

– SCIATA can be applied to generate a wider range of NNPPs than other methods, especially
for NNPPs whose given rate function λ (t) corresponds to a mean-value function that cannot
be inverted either analytically or numerically with sufficient accuracy and speed for large-scale
simulation applications. SCIATA achieves this capability by constructing a step rate function
λ̃Q(t) that majorizes and closely approximates λ (t).

– SCIATA generates NNPPs whose theoretical mean-value function exactly equals the given
mean-value function µ(t) over the given time horizon [0,S]; and SCIATA’s execution speed
increases linearly with the length S of the time horizon.

– SCIATA generates NNPPs whose time-dependent dispersion ratio CQ(t) converges to the desired
asymptotic dispersion ratio C with bias of the form o[µ(t)]/µ(t), provided the majorizing step
rate function λ̃Q(t) is based on a sufficiently fine subdivision of the time horizon [0,S] into Q
subintervals. Thus if µ(t) grows without bound as t increases, then

CQ(t)≈C for sufficiently large Q and t. (10)

In our numerical experiments, we often found that taking 200 ≤ Q ≤ 300 was sufficient to
ensure the validity of the approximation (10) for values of t ≥ tw, the so-called warm-up time;
in many test processes, we found that tw was between 2.5% and 15% of length S of the time
horizon.

– SCIATA is computationally efficient in generating NNPPs by utilizing a step rate function
which approximates the given rate function closely.

• We conducted several computational experiments with different designated mean-value functions
and asymptotic dispersion ratios. We showed that SCIATA can generate NNPPs with a given
mean-value function and asymptotic dispersion ratio. The performance of SCIATA, expressed by
the speed of its convergence and by the closeness of the estimated values µ̂Q(t) and ĈQ(t) to their
theoretical counterparts µ(t) and C, varies among test processes. The performance of SCIATA
depends on the properties of the rate function λ (t), on the value of asymptotic dispersion ratio
C, and on the value of Q, the number of subintervals that is used to generate the majorizing rate
function λ̃Q(t).

There are several promising directions for future work on modeling and simulation of NNPPs. In
particular we are exploring methods to minimize the “warm-up” period that is required for the C(t) to
stabilize at the target value C. This effort involves identifying alternatives to the Weibull distribution in
Step 3 of SCIATA and to the hyperexponential and Erlang distributions used in Step 3 of CIATA. We are
also exploring extensions of SCIATA and CIATA in which the target dispersion ratio is piecewise constant
over the given time horizon. The latter problem appears to be difficult, and it is unclear that a satisfactory
solution can be readily formulated and implemented.
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