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INTRODUCTION

Lévy processes, now widely used to construct
and analyze financial models, were named
in honor of the French mathematician Paul
Lévy (1886–1971). As one of the founders of
modern probability theory, Lévy made major
contributions to the study of Gaussian pro-
cesses, stable laws, infinitely divisible distri-
butions, and processes with independent and
stationary increments, which is now known
as Lévy processes.

Lévy processes provide ingredients for
building a rich class of continuous-time
stochastic processes, such as Poisson pro-
cesses and Brownian motions, which are two
fundamental examples. For more details, see
[1] and Chapter 5 of [2]. The applications
of Lévy processes have immensely been
emerging in many areas, for instance,
queuing theory and financial engineering.

In this review article, we intend to give
an introductory lecture and provide funda-
mental results on Lévy processes. In the
section titled ‘‘Preliminary,’’ we state prelim-
inaries on probability theory and stochastic
processes; in the section titled ‘‘Lévy Pro-
cesses,’’ we formally introduce Lévy processes
and their distributional properties; in the
section titled ‘‘Examples of Lévy Processes,’’
we illustrate five important examples of
Lévy processes; in the section titled ‘‘Poisson
Random Measures,’’ we present Poisson ran-
dom measures (PRMs), the building blocks of
the pure-jump part of Lévy processes; in the
sections titled ‘‘Lévy–Itô Decomposition’’ and
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‘‘Lévy–Khintchine Formula,’’ we introduce
the two most important theorems: Lévy–Itô
decomposition and Lévy–Khintchine for-
mula; and finally in the section titled ‘‘Path
Properties,’’ we introduce four kinds of Lévy
processes distinguished by different path
properties.

PRELIMINARY

Probability Space and Random Variables

Let the triplet (�,F, P) denote a probability
space, where F is the σ -field (-algebra) of
the underlying sample space �, and P :
F → [0, 1] is the probability measure asso-
ciated. A random variable is a real-valued
F-measurable function X:� → R, where
F-measurability means that for any set B
in the Borel σ -field B, we have X−1(B) ∈ F.
Note that the random variable X induces
a probability measure μX on R, defined by
μX (B) ≡ P(X−1(B)) ≡ P({ω ∈ � : X(ω) ∈ B})
for any Borel set B in B.

Let FX (·) ≡ P(X ≤ ·) and Fc
X ≡ 1 − FX be

the cumulative distribution function (CDF)
and complement cumulative distribution
function (CCDF) of a random variable X.
Two random variables X and Y are said to
be equal in distribution, denoted by X D=Y,
if FX = FY . Two random variables X and
Y are said to be independent, denoted by
X ⊥ Y, if P(X ≤ x, Y ≤ y) = P(X ≤ x)P(Y ≤ y)
for all x, y ∈ R. Given the independence,
the distribution (induced measure)
of X + Y is given by convolution of
measures, that is, μX+Y = μX ∗ μY
μX ∗ μY (A) ≡ ∫

R
μX (A − y)μY (dy), A ∈ B and

μY (dy) ≡ P({ω ∈ � : y < Y(ω) < y + dy}).
Let E[X] ≡ ∫

�
X dP = ∫

R
x μX (dx) =∫

R
x dF(x) be the expectation of X, pro-

vided that
∫

R
|x| dF(x) < ∞. Note that, if two

random variables X and Y are independent,
we have E[XY] = E[X]E[Y].

Characteristic Functions

The characteristic function (CF) of a random
variable X is defined by �X (θ ) ≡ E[eiθX ], with
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θ ∈ R and i ≡ √−1. It has the following prop-
erties: (i)

∣∣�X (θ )
∣∣ ≤ 1; (ii) �X (θ ) is real-valued

if and only if X is symmetric; (iii) �X (θ ) is
Hermitian, that is, �X (−θ ) = �X (θ ); and (iv)
E

[
Xn

] = i−n dn

dθn �X (θ )
∣∣∣
θ=0

. Note that the CF
uniquely determines the distribution of a ran-
dom variable.

The independence among the random
variables can be understood through
their CFs. Namely, the random variables
X1, . . . , Xn are independent if and only if

E

[
ei

∑n
k=1 θkXk

]
=

∏n

k=1
�Xk (θk). (1)

Counting Processes and Counting Measures

A stochastic process {X(t), t ≥ 0} defined on
a probability space (�,F, P) is a parameter-
ized collection of random variables {X(t)}t≥0,
assuming values in R, that is, X : [0, ∞) ×
� → R. For each fixed ω ∈ �, {X(t, ω), t > = 0}
a sample path of the process, is a deter-
ministic function and, for each fixed t ≥ 0,
X(t, ·) is a random variable. A counting pro-
cess {N(t), t ≥ 0} is a stochastic process that
counts the total number of events occurred,
and thus must be (i) nonnegative; (ii) integer-
valued; and (iii) nondecreasing. Note that to
understand (iii), we interpret N(t) − N(s) as
the total number of events occurred within
time interval (s, t].

A counting measure can be viewed as an
induced measure by the associated count-
ing process. Let 0 ≤ T1 ≤ T2 ≤ . . . be the
sequence of the occurrence times of events.
For a measurable set A ⊂ [0, ∞), define the
measure M(ω, A) ≡ #{i ≥ 1, Ti(ω) ∈ A}. Note
that the measure M(ω, ·) depends on ω ∈ �;
it is thus a random measure. More details on
random measures will be discussed in the
section titled ‘‘Poisson Random Measures.’’

LÉVY PROCESSES

A random walk, sum of independent
and identically distributed (IID) random
variables, provides the simplest example
of discrete-time stochastic processes. We
hereby introduce the definition of Lévy
processes, the continuous-time analogs of
random walks.

Definition 1. [Lévy Processes]. A
continuous-time process {X(t), t ≥ 0} is called
a Lévy process if

(i) X(0) = 0;
(ii) it has independent increments, that is,

X(t4) − X(t3) ⊥ X(t2) − X(t1) for all 0 <

t1 < t2 < t3 < t4;
(iii) it has stationary increments, that is,

X(t2) − X(t1) D= X(t2 − t1) for all 0 < t1 <

t2;
(iv) its path is stochastically continuous,

that is, lims→t P(|X(t) − X(s)| >ε) = 0,
for ε > 0.

Note that the stochastic continuity con-
dition in property (iv) does not imply that
sample paths of Lévy processes are continu-
ous. For instance, Poisson processes, special
cases of Lévy processes, are pure-jump pro-
cesses. Property (iv) serves to rule out the
processes with discontinuities at determinis-
tic times (known as the ‘‘calender effect’’).

Infinite Divisibility

A distribution F of a random variable X is
called infinitely divisible if there exists n IID
random variables Yn,1, . . . , Yn,n such that the
sum

∑n
i=1 Yn,i follows distribution F for all

n ≥ 2.
Famous examples of infinitely divisible

distributions are Poisson, Gaussian, and
Gamma. A random variable X following the
above distributions can be expressed by a
sum of n IID random variables following
the same distribution but with modified
parameter (dependent on n). For instance,
a Gaussian random variable X ∼ N(μ, σ 2)
is equal in distribution to

∑n
i=1 Yi, where

Y1, . . . , Yn are IID following N(μ/n, σ 2/n).
Other examples are Pareto, lognormal,
Cauchy, stable, and student distributions.

Distributional Properties of Lévy Processes

Lévy processes possess the infinitely divisible
property. Consider a fixed time t > 0, we have

X(t) =
n∑

k=1

Y (t)
k , where

Y (t)
k ≡ X

(
k t
n

)
− X

(
(k − 1)t

n

)
,
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denotes the increment of the process in the
interval ((k − 1)t/n, kt/n], 1 ≤ k ≤ n. The infi-
nite divisibility of X(t) easily follows by prop-
erties (ii) and (iii) of the definition of Lévy
processes.

Following Equation (1) and the definition
of infinite divisibility, the CF of X(t) with
t = n can be written as

�X(n)(θ ) =
n∏

k=1

�
Y(n)

k
(θ ) = (�X(1)(θ ))n,

where the last equality holds as Y (n)
k

D= Y (n)
1 =

X(n/n) = X(1). We can then easily extend the
above argument from integer-valued t to all
t > 0. Therefore, for all t > 0, we can write the
CF

�X(t)(θ ) = (�X(1)(θ ))t ≡ e−t ψ(θ ),

where the function ψ is called the charac-
teristic exponent (CE) of the Lévy process
{X(t), t ≥ 0}. As �X(1)(θ ) = eψ(θ ), the distribu-
tion (law) of the whole process is determined
solely by the CE ψ , or equivalently by the dis-
tribution of the random variable X(1). It is not
hard to prove that for a distribution F that
is infinitely divisible, there exists a Lévy pro-
cess {X(t), t ≥ 0} such that the X(1) follows F.

EXAMPLES OF LÉVY PROCESSES

We next introduce some concrete examples
of Lévy processes. Some of these examples
are fundamental building blocks to construct
general Lévy processes.

Poisson Processes

A Lévy process {N(t), t ≥ 0} is a Poisson pro-
cess with rate λ > 0 if, for a fixed t, the
random variable N(t) follows Poisson dis-
tribution with mean λt, that is, the prob-
ability mass function (PMF) P(N(t) = k) =
e−λt(λt)k/k!, for k = 0, 1, 2 . . ..

Poisson processes are pure-jump pro-
cesses with positive unit jumps and are
thus counting processes. The intertransition
times between these jumps T1, T2, . . . form
a sequence of IID exponential distribution
with rate λ, having a probability density

function (PDF) fT1 (x) = λe−λ t1{t≥0}. The CE
of a Poisson process with rate λ is given by

ψ(θ ) = λ(1 − ei θ ). (2)

Besides Lévy processes, Poisson processes
are special cases of several other classical
processes, such as renewal processes and
continuous-time Markov chains.

Compound Poisson Processes

Given a Poisson process {N(t), t ≥ 0} and a
sequence of IID random variables {ξi : i ≥ 1}
that are independent with N, then the pro-
cess {Y(t), t ≥ 0} with Y(t) ≡ ∑N(t)

i=1 ξi is called
a compound Poisson process. Compound Pois-
son processes generalize Poisson processes
from unit jump sizes to general and random
jump sizes. In general, compound Poisson
processes are no longer counting processes
because there may be negative jumps. Let G
be the CDF of ξ1, which describes the sizes of
the jumps.

The fact that compound Poisson processes
have stationary and independent increments
simply follows from those properties of Pois-
son processes. The CE is given by

ψ(θ ) = λ

∫
R

(1 − eiθy)dG(y). (3)

Note that Equation (3) reduces to
Equation (2) when the measure induced by
ξ1 degenerates to δ1(·), the dirac measure at
point 1.

Brownian Motions

A Lévy process with continuous sample path
(with probability 1)

{
W(t), t ≥ 0

}
is called a

standard Brownian motion when, for a fixed
t, the random variable W(t) ∼ N(0, t), that
is, W(t) follows a Gaussian distribution with
mean 0 and variance t. Let

X(t) ≡ a W(t) + b t. (4)

Then {X(t), t ≥ 0} is called a Brownian motion
with drift. It is obvious that X(t) ∼ N(bt, a2t)
with PDF

fX(t)(x) = 1√
2πa2t

e
− (x−bt)2

2a2t .
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The CE of X is given by

ψ(θ ) = a2θ2/2 − iθ b. (5)

Inverse Gaussian Processes

Regarding a standard Brownian motion with
drift {X(t), t ≥ 0} defined in Equation (4) with
a = 1 and b > 0, define the first passage time

τ (t) ≡ inf{s > 0 : X(s) > t}, (6)

that is, the first time a Brownian motion
crosses above the level t ≥ 0. Then the pro-
cess {τ (t), t ≥ 0} is called an inverse Gaussian
process.

We use the so-called strong Markov
property of Brownian motions to show that
{τ (t), t ≥ 0} indeed is a Lévy process. Define
X∗(t) ≡ X(τ (s) + t) − s, then the new process
{X∗(t), t ≥ 0}, describing the evolution of
the Brown motion after hitting level s, is
equal in distribution to {X(t), t ≥ 0}. The
dynamics of X∗ is also independent of X(u)
for 0 ≤ u ≤ τ (s). For 0 ≤ s < t let τ ∗(t − s)
be the first passage time (in the form of
Equation (6)) of X∗ at level t − s. We thus
have that the remaining time to level t (given
hitting s)

τ (t) − τ (s) = τ ∗(t − s) D= τ (t − s)

and τ (t) − τ (s) ⊥ τ (s),

which prove that the inverse Gaussian pro-
cess has stationary and independent incre-
ments.

The PDF of τ (t) is given by

fτ (t)(x) = t√
2πx3

etbe− 1
2 (t2x−1+b2x),

and the CE takes the form

ψ(θ ) =
√

−2iθ + b2 − b.

Furthermore, the inverse Gaussian pro-
cess is an example of a subordinator, a sub-
class of Lévy processes having nondecreasing
paths (see section titled ‘‘Path Properties’’).

Stable Processes

A random variable Y is said to follow a stable
distribution if, for all n ≥ 1,

n1/αY + bn
D=

n∑
i=1

Yi, (7)

where Y1, . . . , Yn are IID copies of Y, α ∈
(0, 2] and bn ∈ R. We say the distribution
is strictly stable if bn = 0. By subtracting
bn/n from each term of the right-hand side
of Equation (7) and divide both sides by
n1/α , one can easily verify that stable dis-
tributions are infinitely divisible. Stable pro-
cesses thus form one class of Lévy processes
whose CEs correspond to those of stable
distributions.

We point out that the case α = 2 cor-
responds to zero mean Gaussian random
variables. For α ∈ (0, 2), CE has the form

ψ(θ ) ≡ c|θ |α�(θ , α, β) + iθη, where

�(θ , α, β) ≡
{

1 − iβ tan( πα
2 )sgn(θ ), if α = 1,

1 + iβ 2
π

sgn(θ ) log |θ |, if α = 1,

where −1 ≤ β ≤ 1, c > 0, η ∈ R and the sign
function sgn(x) ≡ 1{x > 0} − 1{x<0}.

POISSON RANDOM MEASURES

Because Poisson and compound Poisson pro-
cesses play important roles in the construc-
tion of Lévy processes, we next introduce the
concept PRM that is exploited to study the
jump structure of Lévy processes.

Definition 2. [Poisson Random Mea-
sure]. Consider a probability space (�,F, P)
and E ⊂ R

d. Given a Radon measure μ

(i.e., μ(A) < ∞ for any compact set A). A
PRM on E with intensity measure μ is an
integer-valued random measure such that

(i) for ω ∈ �, M(ω, ·) is an integer-valued
Radon measure on E;

(ii) for each measurable set A ⊂ E, M(A) ≡
M(·, A) is a Poisson random variable
with mean μ(A);
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(iii) for disjoint measurable sets A1, . . . , An,
M(A1), . . . , M(An) are independent Pois-
son random variables.

We can construct a PRM with any given μ.
Assume μ(E) < ∞ without loss of generality,
we (i) first generate IID random variables
X1, X2, . . . with P(Xi ∈ A) = μ(A)

μ(E) ; (ii) second
generate an independent Poisson random
variable M(E) on (�,F, P) with mean μ(E);
(iii) and finally let M(A) ≡ ∑M(E)

i=1 1{Xi∈A}.

Constructing Jump Processes Using PRM

PRMs can be employed to construct jump pro-
cesses. Consider E = [0, T] × R\{0}, we can
write

M =
∑
n≥1

δ(Tn,ξn), or M(E) =
∑
n≥1

1{(Tn,ξn)∈E},

where (Tn)n≥1 is an increasing sequence.
Each point [Tn(ω), ξn(ω)] ∈ [0, T] × R\{0}
corresponds to jump with size ξn(ω) at time
Tn(ω). The second expression counts the total
number of jumps in [0, T]. We hereby exclude
0 so that every jump has a nonzero size.

By integrating a measurable function f
with respect to the PRM M, we can construct
a jump process

X(t) =
t∫

0

∫
R\{0}

f (s, y)M(ds × dy)

=
∑

Tn∈[0,t]

f (Tn, ξn),

The above jump process becomes the
compound Poisson process introduced in the
section titled ‘‘Examples of Lévy Processes’’
when f (s, y) = y and μ(ds × dy) = λ μξ1 (dy)ds,
where μξ1 is the measure induced by ξ1. It
becomes a Poisson process when μξ1 = δ1, see
section titled ‘‘Examples of Lévy Processes.’’

LÉVY–ITÔ DECOMPOSITION

We are now ready to present the most funda-
mental result of Lévy processes, the Lévy–Itô

decomposition. The Lévy–Itô decomposition
enables us to understand the path structures
of a general Lévy process by decomposing the
Lévy process into three independent auxil-
iary Lévy processes.

Consider a Lévy process {X(t), t ≥ 0}. We
let �X(t) ≡ X(t+) − X(t−) be the size of a
jump, if any, at time t and let A be a measur-
able set in R. A jump measure is defined by

MX (B) ≡ #{[t, �X(t)] ∈ B}, (8)

for a measurable set B ⊂ [0, ∞) × R. Note
that MX ([t1, t2] × A) counts the number of
jumps of the Lévy process X in [t1, t2] with
jump sizes in A. The Lévy measure associated
with X is defined as

νX (A) ≡ E

⎡⎣ ∑
0≤t≤1

1{�X(t) =0,�X(t)∈A}

⎤⎦ , (9)

which describes the expected number of
jumps with sizes in A, per unit time.
Obviously, we have

νX (A) = E[MX ([0, 1] × A)]. (10)

Lévy–Itô Decomposition

A Lévy process {X(t), t ≥ 0} can be written as

X(t) = Xc(t) + Xl(t) + Xs(t), (11)

where Xc(t), Xl(t), and Xs(t) are three inde-
pendent processes; Xc(t) ≡ bt + a W(t) is a
Brownian motion with drift as defined in
Equation (4); the two terms Xl(t) and Xs(t)
are defined by

Xl(t) ≡
∫ t

0

∫
|x|≥1

x MX (du × dx) (12)

and

Xs(t) ≡ lim
ε→0

∫ t

0

∫
ε≤|x|<1

xM̃X (du × dx), (13)

with M̃X (du × dx) ≡ MX (du × dx) − νX (dx)du
being the centered (compensated) version
of the jump measure MX , as defined in
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Equation (8); the Lévy measure νX , as
defined in Equation (9), is a Radon measure
on R\{0} such that∫ (

|y|2 ∧ 1)νX (dy) < ∞; (14)

and a, b ∈ R are constants.
To better understand this important

result, we remark on the meanings of the
three terms of the right-hand side in
Equation (11). First, the Brownian motion
with drift Xc(t), described by the drift b
and volatility term a, characterizes the
continuous part of the path of a Lévy process.

The second term in Equation (11), as elab-
orated in Equation (12), is a compound Pois-
son process with a finite number of jumps
with size >1. Note that the finiteness here
is guaranteed by condition Eq. (14). Here the
threshold separating big jumps and small
jumps is set to be 1 as a convention. Changing
the threshold from 1 to an arbitrary constant
c > 0 results in a refinement of the drift term
b. See [3] for alternative representations with
a general c.

Finally, as the measure νX may have a
singularity at 0, there can be infinitely many
small jumps whose sum does not necessar-
ily converge. This prevents us from letting ε

go to 0 directly for a compound Poisson pro-
cess with amplitude between ε and 1. The
third term in Equation (11), as elaborated in
Equation (13), thus has to be centered by the
measure νX (dx)du to obtain convergence.

In summary, the Lévy–Itô decomposition
implies that an arbitrary Lévy process
can be decomposed into the sum of three
independent components: (i) a Brownian
motion with drift, (ii) a compound Poisson
process with finite and big jumps, and (iii)
a discontinuous process with an infinite
number of small jumps. The distribution of
a Lévy process is thus characterized by three
parameters a, b, and νX .

LÉVY–KHINTCHINE FORMULA

Using the Lévy–Itô decomposition, we can
quickly obtain the second fundamental
result: the Lévy–Khinchine formula.

Lévy–Khinchine Formula

Consider a Lévy process {X(t), t ≥ 0} with
parameter (a, b, νX ), its CE has the form

ψ(θ ) =
(

1
2

a2θ2 − i bθ

)
+

∫
|x|≥1

(1 − ei θx)νX (dx)

+
∫

|x|<1
(1 − ei θx + i θx)νX (dx). (15)

This result can be quickly proved using the
Lévy–Itô decomposition and Equation (1). It
can be easily seen from Equations (5) and (3)
that the first two terms of the right-hand side
of Equation (15) are the CE’s of a Brownian
motion with drift and a compound Poisson
process with jump amplitudes greater than
1, corresponding to the first two terms of the
right-hand side in Equation (11). In addition,
the third term in Equation (15) is the CE of
Equation (13).

PATH PROPERTIES

In the section titled ‘‘Lévy–Itô Decompo-
sition,’’ the distribution of a Lévy process
{X(t), t ≥ 0} is characterized by its parame-
ters a, b, and νX . We now introduce four
typical kinds of Lévy processes distinguished
by different path properties, reflected by dif-
ferent parameters.

Continuous Paths

As both Xl and Xs in Equation (11) repre-
sent jumps, a Lévy process having a con-
tinuous sample path must be a Brownian
motion with drift. As a result, we must have
only the first term in Equation (11) with
νX = 0 and Equation (15) thus degenerates
to Equation (5).

Piecewise Constant Paths

On the contrary, as Xc in Equation (11) rep-
resents the continuous part, a pure-jump
Lévy process (thus having piecewise constant
paths) must be a compound Poisson pro-
cess. Hence, the Lévy process involves only
the second two terms in Equation (11) with
a = b = 0 and νX (R) < ∞), see Ref. 4 for more
details. Consequently, Equation (15) thus
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degenerates to Equation (3) with νX (dx) =
λ dG(x).

Finite Variation

Consider an interval [0, T], a function f is
said to be of finite variation if, for each
partition 0 = t0 < t1 < · · · < tn−1 < tn = T,
the total variation thereof is finite, that is,

TV(f , [0, T]) ≡ sup
{tk}nk=1

n∑
i=1

|f (ti) − f (ti−1) < ∞.

As Brownian motions have infinite vari-
ation over any finite interval [5], a Lévy
process with finite variation must not involve
the Brownian term W, that is, we have a = 0
in Equation (15). In addition, as compound
Poisson processes [denoted by Xl in Equation
(12)] always have finite variation, we impose
extra conditions such that Xs has finite vari-
ation. We require

∫
|x|≤1 |x| vX (dx) < ∞. In this

case, Equation (11) simplifies to

X(t) = b̃ t +
t∫

0

∫
x∈R

x MX (du × dx),

where b̃ ≡ b −
∫

|x|<1

x νX (dx).

Subordinators

A Lévy process having nondecreasing paths
over time is called a subordinator. In
this case, the Brownian term is again not
involved because the path of a Brownian
motion is not monotone. Hence, a = 0. In
addition, we require the Lévy process to have
merely positive jumps of finite variation
and positive drift, that is, vX ((−∞, 0]) = 0,∫

(x ∧ 1)νX (dx) < ∞ and b ≥ 0. See Ref. 3 for
more discussion on subordinators.

FURTHER READING

More detailed contents on Lévy processes
can be referred to the following books [3,4,
6–8]. Readers who are interested in infinite
divisibility properties are referred to [9].
Regarding applications of Lévy processes
in queuing theory, we refer to the book
[10] and a recent survey on Lévy-driven
queues [11].
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