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HEAVY-TRAFFIC LIMIT FOR THE INITIAL CONTENT
PROCESS

By A. Korhan Aras∗ and Yunan Liu∗ and Ward Whitt†

To understand the performance of a queueing system, it can be
useful to focus on the evolution of the content that is initially in
service at some time. That necessarily will be the case in service sys-
tems that provide service during normal working hours each day, with
the system shutting down at some time, except that all customers al-
ready in service at the termination time are allowed to complete their
service. Also, for infinite-server queues, it is often fruitful to parti-
tion the content into the initial content and the new input, because
these can be analyzed separately. With i.i.d service times having a
non-exponential distribution, the state of the initial content can be
described by specifying the elapsed service times of the remaining ini-
tial customers. That initial content process is then a Markov process.
This paper establishes a many-server heavy-traffic (MSHT) function-
al central limit theorem (FCLT) for the initial content process in the
space DD, assuming a FCLT for the initial age process, with the num-
ber of customers initially in service growing in the limit. The proof
applies a symmetrization lemma from the literature on empirical pro-
cesses to address a technical challenge: For each time, including time
0, the conditional remaining service times, given the ages, are mutu-
ally independent but in general not identically distributed.

1. Introduction. Heavy-traffic (HT) functional central limit theorems
(FCLT’s) for the standard G/G/s queueing model, with unlimited waiting
space and service in order of arrival, expose the impact of the stochastic vari-
ability in the arrival and service processes on the transient and steady-state
performance. This is important because the general G/G/s model is far less
tractable than its Markovian M/M/s counterpart, even for the special case
in which the interarrival times and service times come from independent se-
quences of i.i.d. random variables. From [11, 38], we know that conventional
heavy-traffic theory tells a simple story: With conventional heavy-traffic,
where the arrival rate increases to the maximum possible service rate with a
fixed number of servers, the arrival and service processes contribute via their
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joint FCLT. Thus, with appropriate time and space scaling, we obtain the
same reflected Brownian motion (RBM) limiting diffusion process for the
G/G/s model as for the M/M/s model (and thus also for the M/M/1 mod-
el) except for a modification of the constant diffusion coefficient to account
for the different variability. (For a discussion of interesting and importan-
t variability effects, see §9.6 of [38].) Moreover, assuming a deterministic
limit for the scaled initial number in system, the initial conditions are not
influenced by the variability at all, and only affect the initial state of the
RBM.

Many-server heavy-traffic (MSHT) FCLT’s tell a different story: With a
MSHT FCLT, where both the arrival rate and number of servers increase
without bound, and there is no extra time scaling, the variability in the
service process and the initial conditions contribute in a more complicated
way. Thus, the early MSHT FCLT in [10] was only for the GI/M/s model,
having i.i.d. exponential service times. With that condition, in Theorem
3 of [10] it was only necessary to assume that the properly scaled initial
conditions converges to a nondegenerate limit. From §7.3 of [26], we know
that MSHT limits for the G/M/s model and the G/M/s + M counterpart
with customer abandonment from queue also depend on their general arrival
processes only via its FCLT behavior, but non-M service processes influence
the performance at all times through the service times that are in progress
at those times.

Thus, in order to obtain a MSHT FCLT with a Markov limit process
for models without i.i.d. exponential service times, except for very special
cases [39], it is necessary to keep track of the elapsed service times and
is convenient to greatly simplify the assumption for the initial conditions.
For i.i.d. phase-type service-time distributions, we can keep track of the
elapsed service times by keeping track of the number of phases of each type
in service at each time, as in §4 of [10], Theorem 3 of [37], [30] and other
papers. More generally, to obtain a Markov limit process, it is necessary to
use two-parameter processes or measure-valued processes that keeps track
of all the service times in process at each time as in [4, 14–17, 28, 32].

However, even these new general results make strong simplifying assump-
tions about the initial conditions. That is so even in the infinite-server (IS)
setting, where (under regularity conditions) the old content can be analyzed
separately from the new content. For example, Pang and Whitt [4, 28] as-
sumed that the system starts empty or with i.i.d. remaining service times.

Of course, if we are considering a stationary model, then we are usually
interested in the steady-state distribution. Clearly, the steady-state distribu-
tion should be independent of the initial conditions under general regularity
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conditions. Thus, when we are interested in the steady-state distribution of
a stationary model, there is little interest in the initial conditions; then it is
of only minor technical interest to show that the steady-state distribution is
independent of the initial conditions, in both pre-limit and limit processes.

In contrast, here we are motivated by the desire to develop asymptotic
approximations for the time-varying behavior of nonstationary models, hav-
ing time-varying arrival rates. However, even then, we may be unconcerned
about initial conditions. Under regularity conditions, we anticipate that the
time-varying behavior of a nonstationary models, having a time-varying ar-
rival rate, will be independent of the initial conditions after a reasonable
amount of time has passed. Concrete results in that direction are provided
for the Gt/Mt/st + GIt fluid model in [19]. In particular, the existence of
periodic limits and a more general asymptotic lack-of-memory property are
established.

However, here we are primarily motivated by the desire to develop asymp-
totic approximations that apply to time-varying behavior of nonstationary
models over shorter time intervals, where both the initial conditions and the
new input may contribute significantly to system performance. We are also
interested in describing system performance after an arrival process has been
turned off. To the best of our knowledge, this is the first paper to address
these problems.

In particular, in this paper we establish a MSHT FCLT for the initial
content process (ICP) of a large-scale queueing system. The ICP specifies
the number of customers that were initially in service at time 0 and are still
in service later at time t and the elapsed service times since their arrival
times before time 0. Assuming that the service times come from a sequence
of independent and identically distributed (i.i.d.) random variables, indepen-
dent of the arrival process and system history, the ICP is a Markov process,
and thus provides a useful description of the system state at each time. The
key assumption is a FCLT for the initial age process, which requires that
the number of customers initially in service grows. The technical challenge
is treating non-identically distributed remaining service times.

Since MSHT FCLT’s for IS models can be fruitfully applied to establish
associated MSHT FCLT’s for finite-server models [21, 29, 31], our results
here have broader implications. In particular, we intend to apply the results
here to establish a MSHT FCLT for the Gt/GI/st + GI model with time-
varying arrival rate and staffing, customer abandonment (the +GI) and
alternating overloaded (OL) and underloaded (UL) intervals, extending the
FCLT for the Gt/M/st + GI model in [21]. The present results apply in
three ways. First, the theory here applies directly to UL intervals, which can
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directly be regarded as IS models, starting off with customers in service with
elapsed service times, determined from the previous OL interval. Second, the
theory here also directly applies to the initial content in service during an OL
interval, determined from the previous UL interval (because the dynamics of
the ICP is not affected by the finite service capacity). Third, the theory will
once again apply to treat the number of waiting customers in an OL interval,
because then we can regard the abandonment times as service times; see [21].
There is much more to the total proof, but the present paper provides a key
component.

To demonstrate that our assumptions directly cover meaningful cases for
IS models, we establish our main MSHT FCLT for the ICP in a more general
context. In particular, we consider an IS model in which all arrivals before
time 0 have i.i.d. service times with one service-time cdf, while all arrivals
after time 0 have i.i.d. service times with another service-time cdf. We refer
to the model as Gt/GI

o, GIν/∞ (using the superscript o for old and ν for
new). This model represents switching from one kind if service to another
in an IS model at time 0.

As usual for FCLT’s, we consider a sequence of models indexed by n.
For each n, there are infinitely many servers, so that each customer enters
service immediately upon arrival. In system n, there is a general arrival
process with a time-varying arrival rate function λn(t) = nλ(t) (the Gt),
so that the arrival rate is scaled by n, the usual many-server heavy-traffic
scaling. We will specify the arrival process only by the requirement that it
satisfy an FCLT; see Assumption 1 below.

We assume that the system operated in the past (prior to time 0) as a
conventional Gt/GI/∞, model with i.i.d. service times that are independen-
t of the arrival process, distributed according to a cumulative distribution
function (cdf) G. We assume that new input in the system operates after
time 0 according to a Gt/GI/∞ IS model with i.i.d. service times that are
independent of the arrival process, with service times distributed according
to the cdf Gν . As in the usual many-server heavy-traffic scaling, the two
service-time cdf’s G and Gν are not scaled by n. Our approach is designed
especially to treat the case in which these cdf’s are different and not ex-
ponential. An important nontrivial case covered by this Gt/GI

o, GIν/∞ IS
model is an IS system starting empty at time t0 < 0. The ICP then describes
the state of old content after time 0.

The system performance after time 0 can be characterized by the pair of
two-parameter stochastic processes (Xe,o

n (t, y), Xe,ν
n (t, y)) with t ≥ 0 and y ≥

0. The variable Xe,o(t, y) counts the number of customers that were already
in service at time 0 and are still in service at time t and have elapsed service



INITIAL CONTENT PROCESS 5

times that are less than or equal to y (here y > t since they started service
prior to time 0). The variable Xe,ν(t, y) counts the number of customers
that arrived after time 0 and are still in service at time t and have elapsed
service times that are less than or equal to y (here 0 ≤ y ≤ t since they
started service after to time 0). (The superscripts are chosen to help, with
e denoting elapsed, o old and ν new.) Given the assumptions on the service
times, the stochastic process (Xe,o

n , Xe,ν
n ) ≡ {(Xe,o

n (t, ·), Xe,ν
n (t, ·)) : t ≥ 0} is

a Markov process with time domain [0,∞) and state space D2, where D is
the usual function space of right-continuous real-valued functions with left
limits, endowed with the usual Skorohod topology [38].

Our main result, Theorem 3.2, is an FCLT for (Xe,o
n , Xe,ν

n ) jointly with
other processes in the space DD2 of D2-valued functions in D. The use of
DD2 follows [4, 28, 35]. It is an alternative to measure-valued approaches
in [3, 14, 15, 40] and distribution-valued approach in [32]. The alternative
approaches are appealing for simplifying arguments and revealing structure;
e.g., [32] shows that the the heavy-traffic limit for the G/G/∞ model can
be regarded as a tempered-distribution-valued Ornstein-Uhlenbeck diffusion
process, generalizing the diffusion process limit for the M/GI/∞ model in
[3]. On the other hand, the DD framework here evidently admits more contin-
uous functions, and so has more immediate applications via the continuous
mapping theorem. Explicit connections between the two approaches for the
fluid limits are made in [13].

We contribute here by treating the ICP Xe,o
n ; the limit for Xe,ν

n comes
from [4]. As in [4], and in Louchard [23] and Krichagina and Puhalskii [17]
before, we work with the empirical process of the service times. As can be
seen from §2.2 of [38], §14 of [1] and especially Shorack and Wellner [33],
empirical processes and associated statistical tests have been a major focus
of FCLT’s, ever since [4], so that there are many useful tools for queueing
theory.

In particular, to address the technical challenge of non-identically dis-
tributed remaining service times, we draw on Chapter 25 of [33], which in
turn uses a symmetrization argument from [24], which can be traced back
to [36]. Substantial new arguments are required as can be seen from the
tightness proof in §4.2.3. Evidently, this is the first use of symmetrization
technique to analyze a queueing model with non-identically distributed ser-
vice times.

We emphasize engineering relevance, e.g., by providing an explicit char-
acterization of the limit process, exposing key structure (see Remark 3.3)
and providing explicit formulas for time-varying means, variances and covari-
ances that lead to an effective algorithm for computing relevant performance
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measures, as confirmed by simulation experiments, which mostly appear in
an appendix, at the end of a longer online version on the authors’ web pages.

2. The Model. We start by considering the model after time 0; we
show that the results can be applied to the Gt/GI

o, GIν/∞ model starting
with the initial conditions here at some time before time 0 in §5. Even though
we consider time with t ≥ 0, we are especially interested in those customers
who arrived before time 0. Their history will be captured by the initial age
process, which coincides with the ICP at t = 0.

We are primarily interested in the ICP Xe,o
n (t, y), but we also consider the

associated process for the new input Xe,ν
n (t, y)). In addition to the pair of

two-parameter stochastic processes (Xe,o
n (t, y), Xe,ν

n (t, y)), counting the old
and new customers in the system at time t with elapsed service times at
most y, we also define the closely related pair of two-parameter stochastic
processes (Xr,o

n (t, y), Xr,ν
n (t, y)), counting the old and new customers in the

system at time t with remaining service times at least y. Of course, these
remaining-time processes are usually not directly observable, but they do
usefully represent the future demand. However, they are tightly linked with
the other processes. In particular, they are linked via the simple relations
Xr
n(t, y) = Xn(t + y) − Xe

n(t + y, y) and Xe
n(t, y) = Xn(t) − Xr

n(t − y, y),
where Xn(t) is the total number of customers in system n at time t; i.e.,
Xn(t) = Xe

n(t,∞) = Xr
n(t, 0).

As indicated in §1, it is important to treat the old and new customers
separately. Let Xe

n(t, y) ≡ Xe,ν
n (t, y) +Xe,o

n (t, y) and Xr
n(t, y) ≡ Xr,ν

n (t, y) +
Xr,o
n (t, y). As in [4], for the new arrivals we have

Xe,ν
n (t, y) =

Nn(t)∑
i=Nn((t−y)+)

1(A
(n)
i + Si > t), t ≥ 0, y ≥ 0,(2.1)

Xr,ν
n (t, y) =

Nn(t)∑
i=1

1(A
(n)
i + Si > t+ y), t ≥ 0, y ≥ 0(2.2)

where A
(n)
i is the arrival time of the ith customer and Si is the associated

service time in system n. The service times Si has not been scaled by n,
hence no superscript.

Now we turn to the processes associated with initial customers already
in the system at time 0. Let τn,i denote the length of time the ith customer
has been in service (age in service) at time 0 in system n. Without loss of
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generality we assume the ages are ordered 0 ≤ τn,1 ≤ τn,2 ≤ . . .. Then

Xe,o
n (t, y) =

Xe
n(0,(y−t)+)∑

i=1

1(ηi(τn,i) > t), t ≥ 0, y ≥ 0,(2.3)

Xr,o
n (t, y) =

Xn(0)∑
i=1

1(ηi(τn,i) > t+ y), t ≥ 0, y ≥ 0,(2.4)

where Xe
n(0, (y − t)+) is the total number of customers at time 0 that have

been in service for time (y − t)+ ≡ max {y − t, 0}.
The key property we will exploit is the conditional independence property:

Conditional on the sequence of service age random variables {τn,i : i ≥ 1},
the sequence {ηi(τn,i) : i ≥ 1} is a sequence of mutually independent random
variables with conditional tail probabilities

(2.5) P (ηi(x) > t|τn,i = x) ≡ Hc
x(t) ≡ 1−Hx(t) ≡ Gc(t+ x)

Gc(x)
,

for x ≥ 0, t ≥ 0, where Gc(x) ≡ 1−G(x) is the complementary cdf (ccdf) for
the service distribution of old customers. The primary difficulty in the proof
stems from the fact that, conditional on the sequence of service age random
variables {τn,i : i ≥ 1}, the random variables ηi(τn,i) are not identically
distributed.

Given the processes (2.1)-(2.4) and the equalities Xn(t) = Xe
n(t,∞) =

Xr
n(t, 0), we can define the departure process associated with initial and

new customers from the nth queue. Let Do
n(t) (Dν

n(t)) be the total number
of initial (new) customers who have departed by time t. Then necessarily
Do
n(t) = Xn(0)−Xo

n(t) and Dν
n(t) = Nn(t)−Xν

n(t). Hence Dn(t) ≡ Do
n(t) +

Dν
n(t) = Xn(0) + Nn(t) − Xn(t) represents the total number of departures

by time t.
Associated scaled processes. Let the associated LLN-scaled processes

be

N̄n(t) ≡ Nn(t)/n, X̄e
n(t, y) ≡ Xe

n(t, y)/n,

D̄n(t) ≡ Dn(t)/n, X̄r
n(t, y) ≡ Xr

n(t, y)/n.(2.6)

Let the associated CLT-scaled processes be

N̂n(t) ≡ Nn(t)− nΛ(t)√
n

, X̂e
n(t, y) ≡ Xe

n(t, y)− nXe(t, y)√
n

,

D̂n(t) ≡ Dn(t)− nD(t)√
n

, X̂r
n(t, y) ≡ Xr

n(t, y)− nXr(t, y)√
n

,(2.7)
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where the centering terms Λ(t), Xe(t, y), Xr(t, y), D(t) are deterministic
functions (fluid limits) to be specified below in Assumption 1 and Theorem
3.1.

The spaces D and DD. The limits are established in the function space
D ≡ D([0,∞),R) of right continuous functions with left limits equipped
with the Skorohod J1 topology and the associated metric dJ1 [5, 12, 34, 38].
Products of that space are equipped with the product topology. Since all
limits will almost surely have continuous sample paths, convergence in J1

topology is equivalent to uniform convergence over compact sets (time inter-
vals). For the two-parameter processes, the processes are random elements
of the space DD ≡ D([0,∞),D([0,∞),R)) of D-valued functions. Since the
space (D, J1) is a complete separable metric space, this space of D-valued
functions falls within Skorohod’s [34] original framework; see [4, 35] for more
details. We prove convergence in these spaces by using the compactness ap-
proach, i.e., by proving convergence of the finite dimensional distribution
(fidis) and tightness of the processes; see [1, 5, 12, 38] for tightness criteri-
a in D and Theorem 6.2 of [4] for tightness criteria in DD. We review the
tightness criteria in DD in §B.1.

Assumptions. Our key assumption is a joint FCLT for the arrival pro-
cess of new customers after time 0 and for the initial ages. We discuss the
appropriateness of this assumption in Remarks 2.3 and 2.4 below and in §5.

Assumption 1. (Joint FCLT for the arrival process and initial ages)
The CLT-scaled ICP and external arrival processes defined in (2.7) jointly
satisfy the FCLT

(2.8)
(
X̂e
n(0, ·), N̂n

)
⇒
(
X̂e(0, ·), N̂

)
in D2 as n→∞,

where X̂e
n(0, ·) and N̂ are two independent zero-mean continuous Gaussian

processes. We assume that the deterministic centering terms in (2.7), which
come from the associated functional weak law of large numbers (FWLLN)
stated below in (2.10), can be represented as

(2.9) Xe(0, x) =

∫ x

0
a(u) du, x ≥ 0, and Λ(t) =

∫ t

0
λ(u) du, t ≥ 0,

where the fluid initial age density a(x) and arrival rate function λ(t) in (2.9)
are nonnegative real-valued functions that are integrable over all bounded
intervals.

Remark 2.1. (FWLLN for the arrival process and initial content in
service) As an immediate consequence of Assumption 1, we have a FWLLN
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for N̄n and X̄e
n(0, ·), i.e., as n→∞,

(2.10)
(
X̄e
n(0, ·), N̄n, X̄n(0)

)
⇒ (Xe(0, ·),Λ, X(0)) in D2 × R.

Remark 2.2. (The zero-mean Gaussian assumption) The zero-mean
Gaussian requirement of Assumption 1 is not required for the convergence,
but it is required for drawing the useful conclusion that the limit process
also has this structure, as in (3.4) below. Nevertheless, the assumption is
natural. Extensions are possible, as illustrated by §10 of [21].

Remark 2.3. (joint convergence and independence of the limits) If the
arrival process is a nonhomogeneous Poisson process, so that the IS model
becomes Mt/GI

o, GIν/∞, then the new input after time 0 is independent
of the initial content, so that the independence of the two limit processes
follows directly from the two separate limits in Assumption 1. But, more
generally, the number of customers in service at time 0 and the ages of the
service times of those customers typically will not be independent of the
arrivals after time 0. Thus, Assumption 1 may not be easy to verify. Never-
theless, Assumption 1 is very reasonable. It is what we expect to be true in
great generality. For example, consider a Gt/GI/∞ system starting empty
in the finite past. Even though the arrival process may not have indepen-
dent increments, from [4] we know that it is common for the limit of the
arrival process to be a time-transformed Brownian motion (BM), which has
independent increments. In particular, that occurs if we assume that the
arrival process is a deterministic time transformation of any arrival process
that satisfies an FCLT with a BM limit. For such limits, it is natural to
start with a stationary process, such as an equilibrium renewal process, but
it suffices to have the FCLT with a BM limit, as discussed in §7 of [25].
With either an ordinary or equilibrium renewal process, the limit process
will be N̂(t) = cλBa(Λ(t)), where Ba is a standard BM, Λ(t) is the determin-
istic time transformation, corresponding to the limiting cumulative arrival
rate function and c2

λ is the squared coefficient of variation (SCV, variance
divided by the square of the mean) of an interarrival time in the ordinary
renewal process. For all these representations, the arrival FCLT and the
independence of the limit is satisfied, as assumed in Assumption 1. In addi-
tion to [25], see [7, 8, 18, 22] for uses of this representation of nonstationary
non-Poisson arrival processes.

Remark 2.4. (Performance forecasting using limits in Assumption 1)
For engineering purposes, the limits in Assumption 1 can be understood as
estimators (approximations) for future demand posed by new input and ini-
tial content. The goal here is to develop performance forecasting formulas
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as functions of the limits in Assumption 1. It will be clear from the for-
mulas and examples that the general initial conditions (represented by the
initial fluid age function Xe(0, ·) and the associated stochastic limit process
X̂e(0, ·)) can be a significant part of the performance functions.

We also impose additional regularity assumptions, which evidently are
not too restrictive for engineering applications. We first impose conditions
on the two service-time cdf’s. Even though not restrictive, both assumptions
are used critically in the analysis; see Remark 3.2 and Lemma 4.4.

Assumption 2. (Regularity conditions for service-time cdf’s)
The two service-time cdf’s G and Gν are assumed to be continuous. In
addition, the cdf G has a probability density function (pdf) g satisfying
0 < g(x) ≤ g↑ ≡ supx≥0 g(x) <∞ for all x ≥ 0.

We also impose a regularity condition on the initial content. It is used in
the proof of tightness in DD in §4.2.3.

Assumption 3. (Regularity conditions for the initial content) We as-
sume that there exists y↑ > 0 such that Xn(0)−Xn(0, y↑) = 0 for all n ≥ 1
w.p.1..

3. Main Results. In this section, we present the new FWLLN and F-
CLT for the Gt/GI

o, GIν/∞ model. They extend the corresponding results
for the Gt/GI/∞ model in §3 and §5 of [4] by treating more general initial
conditions. In particular, the results for the new arrivals come from [4], but
unlike §5 of [4], Assumption 1 here makes the remaining service times at
time 0 be conditionally independent, given the ages, but not identically dis-
tributed random variables. We state the FWLLN first, but give no separate
proof, because it is a consequence of the FCLT.

Theorem 3.1. (FWLLN) Consider the sequence of Gt/GI
o, GIν/∞ queues

satisfying all assumptions in §2. As n→∞,
(3.1)(
N̄n, X̄

e
n(0, ·), X̄r

n(0, ·), X̄e
n, X̄

r
n, X̄n, D̄n

)
⇒ (Λ, Xe(0, ·), Xr(0, ·), Xe, Xr, X,D)

in D3×D2
D×D2, where the limit is continuous and deterministic with X(t) =

Xe(t,∞) = Xr(t, 0), and
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Xe(t, y) ≡ Xe,o(t, y) +Xe,ν(t, y), Xr(t, y) ≡ Xr,o(t, y) +Xr,ν(t, y),

Xe,o(t, y) =

∫ (y−t)+

0
a(x)Hc

x(t)dx, Xe,ν(t, y) ≡
∫ t

(t−y)+

Gcν(t− s)λ(s) ds,

Xr,o(t, y) =

∫ ∞
0

a(x)Hc
x(t+ y)dx, Xr,ν(t, y) ≡

∫ t

0
Gcν(t+ y − s)λ(s) ds,

D(t) = Λ(t)−X(t) =

∫ ∞
0

a(x)Hx(t) dx+

∫ t

0
Gν(t− s)λ(s) ds

(3.2)

and a(x) being the initial fluid limit age density and λ(s) being the arrival
rate function specified in Assumption 1.

For real numbers a and b, let a ∨ b ≡ max {a, b} and a ∧ b ≡ min {a, b}.

Theorem 3.2. (FCLT) Consider the sequence of Gt/GI
o, GIν/∞ IS

models satisfying all assumptions in §2. As n→∞,
(3.3)(
N̂n, X̂

e
n(0, ·), X̂r

n(0, ·), X̂e
n, X̂

r
n, X̂n, D̂n

)
⇒
(
N̂ , X̂e(0, ·), X̂r(0, ·), X̂e, X̂r, X̂, D̂

)
in D3 × D2

D × D2, where the stochastic limit process for the two-parameter
ICP, the scaled number of customers in service at t with age at most y, is

(3.4) X̂e(t, y) = X̂e,ν
1 (t, y) + X̂e,ν

2 (t, y) + X̂e,o
1 (t, y) + X̂e,o

2 (t, y),

where X̂e,ν
1 , X̂e,ν

2 , X̂e,o
1 and X̂e,o

2 are independent zero-mean Gaussian pro-
cesses with continuous sample paths,

X̂e,ν
1 (t, y) ≡

∫ t

(t−y)+

Gcν(t− s) dN̂(s),(3.5)

X̂e,ν
2 (t, y) ≡

∫ t

(t−y)+

∫ ∞
0

1(x > t− s) dK̂ν(Λ(s), x),(3.6)

where N̂ is the limit process in the assumed FCLT for the arrival process
specified in Assumption 1, and K̂ν(t, x) ≡ Û(t, G(x)), with Û being a stan-
dard Kiefer process, capturing the variability of the new service times, and
independent of N̂ ; X̂e,o

1 is a zero-mean Gaussian process with the covariance
function

Ce,o1 ((t1, y1), (t2, y2)) ≡ Cov
(
X̂e,o

1 (t1, y1), X̂e,o
1 (t2, y2)

)
(3.7)

=

∫ (y1−t1)+∧(y2−t2)+

0
Hu(t1 ∧ t2)Hc

u(t1 ∨ t2) dXe(0, u),
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and X̂e,o
2 has the representation

X̂e,o
2 (t, y) ≡

∫ (y−t)+

0
Hc
x(t) dX̂e(0, x)(3.8)

≡ Hc
(y−t)+(t)X̂e(0, (y − t)+)−

∫ (y−t)+

0
X̂e(0, u−)dHc

u(t),

where (Xe(0, ·), X̂e(0, ·)) is the limit of the initial age process in Assumption
1 and (2.10). The joint limit (3.3) follows from the displayed limit. The other
limit processes X̂, D̂ and X̂r are specified in the corollaries below.

Remark 3.1. (Correction in [4]) The limits for the new input follow
from [4], so the formulas in (3.5) and (3.6) should be consistent with [4].
However, here we make a correction, noting that the upper limit of the
inner integrals in (2.10), (2.15) and for Xc,e

2 (t, y) in (3.16) of [4] all should
be ∞ instead of t. Similarly the upper limit of the second integral in the
expression for σ2

q,e(t, y) in Theorem 4.2 of [4] also should be ∞ instead of
t. After this correction, the formulas in (3.6) and elsewhere are consistent
with [4].

We next characterize all the other limit processes using the limit in (3.4).

Let
d
=t denote equal in distribution for each t. Let Bs(·) be an independent

BM (associated with service times of new customers).

Corollary 3.1. (Limits for the one-parameter queue length process)
Under the assumptions of Theorem 3.2, the limit for the total number in
service at t is

(3.9) X̂(t) ≡ X̂e(t,∞) ≡ X̂ν
1 (t) + X̂ν

2 (t) + X̂o
1(t) + X̂o

2(t),

where X̂ν
1 , X̂ν

2 , X̂o
1 and X̂o

2 are independent zero-mean Gaussian processes
with continuous sample paths and

X̂ν
1 (t) ≡ X̂e,ν

1 (t,∞) ≡
∫ t

0
Gcν(t− s) dN̂(s), ,(3.10)

X̂ν
2 (t) ≡ X̂e,ν

2 (t,∞) ≡
∫ t

0

∫ ∞
0

1(x > t− s) dK̂ν(Λ(s), x)(3.11)

d
=t −

∫ t

0

√
Gν(t− s)Gcν(t− s)dBs(Λ(s)),



INITIAL CONTENT PROCESS 13

X̂o
1(t) ≡ X̂e,o

1 (t,∞) is a zero-mean Gaussian process with the covariance
function

Co1(t, t′) ≡ Cov
(
X̂o

1(t), X̂o
1(t′)

)(3.12)

= Ce,o1 ((t1,∞), (t2,∞)) =

∫ ∞
0
Hu(t ∧ t′)Hc

u(t ∨ t′) dXe(0, u),

and

(3.13) X̂o
2(t) ≡ X̂e,o

2 (t,∞) ≡
∫ ∞

0
Hc
x(t) dX̂e(0, x).

Corollary 3.2. (Limits for the one-parameter departure process) Un-
der the assumptions of Theorem 3.2, The limit for the number of departures
by t is

(3.14) D̂(t) = D̂ν
1(t) + D̂ν

2(t) + D̂o
1(t) + D̂o

2(t),

where D̂ν
1 , D̂ν

2 , D̂o
1 and D̂o

2 are independent zero-mean Gaussian processes,
with

D̂ν
1(t) ≡

∫ t

0
Gν(t− s) dN̂(s),(3.15)

D̂ν
2(t) ≡

∫ t

0

∫ ∞
0

1(x ≤ t− s) dK̂ν(Λ(s), x)(3.16)

d
=t

∫ t

0

√
Gν(t− s)Gcν(t− s)dBs(Λ(s)),

D̂o
1(t) = −X̂o

1(t) being a zero-mean Gaussian process with covariance func-
tion
(3.17)

Cov
(
D̂o

1(t), D̂o
1(t′)

)
= Co1(t, t′) and D̂o

2(t) ≡ X̂(0)−X̂o
2(t) =

∫ ∞
0

Hx(t) dX̂e(0, x).

Corollary 3.3. (Limits for the remaining-service-time process) Under
the assumptions of Theorem 3.2, the limit X̂r(0, x) = X̂o(x) = X̂e,o

1 (x,∞)+
X̂e,o

2 (x,∞) for all x ≥ 0 and

(3.18) X̂r(t, x) = X̂r,ν
1 (t, x) + X̂r,ν

2 (t, x) + X̂r,o
1 (t, x) + X̂r,o

2 (t, x),
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with X̂r,ν
1 , X̂r,ν

2 , X̂r,o
1 and X̂r,o

2 being independent zero-mean Gaussian pro-
cesses and

X̂r,ν
1 (t, x) ≡

∫ t

0
Gcν(t+ x− s) dN̂(s),(3.19)

X̂r,ν
2 (t, x) ≡

∫ t

0

∫ ∞
0

1(u+ s > t+ x) dK̂ν(Λ(s), u),(3.20)

X̂r,o
1 (t, x) ≡ X̂o

1(t+ x) = X̂e,o
1 (t+ x,∞) and

X̂r,o
2 (t, x) ≡ X̂o

2(t+ x) = X̂e,o
2 (t+ x,∞).

Remark 3.2. (The stochastic integrals) The integrals in Theorem 3.2
should be interpreted just as in [4], as explained in Remark 3.2 there. In
particular, the deterministic integrals in (3.7) and (3.12) are all Stieltjes inte-
grals, while the integrals in (3.6), (3.11), (3.16) and (3.20) are two-parameter
stochastic integrals, just as in [4, 20, 21]. As in Theorem 3.2 and Remark
3.3 of [4], the continuity assumption on the cdf Gν in Assumption 2 is used
to get the representation in terms of the Kiefer process.

Of special note are the stochastic integrals with respect to N̂ in (3.5),
(3.10), (3.15) and (3.19), and with respect to X̂e(0, ·) in (3.8), (3.13) and
(3.17). As explained in Remark 3.2 of [4], these all should be interpreted
as the form after the representation of integration by parts, as given on p.
336 of [2]. That is justified because the pre-limit processes of the integrator
process have sample paths of bounded variation. For example, the alterna-
tive representation for (3.8) is given there; see §4.3. Finally, the stochastic
integral with respect to K̂ν should be understood in the mean-square sense,
as in §6.3 of [17].

Remark 3.3. (Four independent stochastic effects) The expression for
the limit process X̂e in (3.4) as the sum of the four independent processes
X̂e,ν

1 , X̂e,ν
2 , X̂e,o

1 and X̂e,o
2 shows that the four sources of variability in the

model contribute to the total variability independently. The process X̂e,ν
1

captures the variability in the arrival process after time 0; the process X̂e,ν
2

captures the variability in the service times after time 0; the process X̂e,o
1

captures the variability in the remaining service times at time 0 given that
the initial age process is around nXe(0, ·); and the process X̂e,o

2 captures the
variability of the ages of initial customers at time 0. It is easy to see that
this separation of variability effects is not baked in, because this separation
does not apply to the pre-limit processes. In the limits for these terms,
the impact from other model components become deterministic. We remark
that this kind of separation of variability has been observed in the past.
For instance, in [21], the FCLT limit of the waiting time process solves a
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stochastic differential equation driven by three independent BMs that are
associated with the arrival process, abandonment times and service process.

If we make an additional assumption for N̂ , we can exhibit covariance
and variance formulas.

Corollary 3.4. (Variance and covariance formulas for the ICP) If
N̂(t) = caBa(Λ(t)) and Σe,o

2 (t) ≡ V ar(X̂e(0, t)), then the covariances of
X̂e the covariances are

Ce((t1, y1), (t2, y2)) ≡ Cov(X̂e(t1, y1), X̂e(t2, y2))

= Ce,ν((t1, y1), (t2, y2)) + Ce,o((t1, y1), (t2, y2)),

where

Ce,ν((t1, y1), (t2, y2))

≡
∫ t1∧t2

(t1−y1)+∨(t2−y2)+

[
(c2
a − 1)Gcν(t1 − s)Gcν(t2 − s) +Gcν((t1 ∨ t2)− s)

]
λ(s)ds,

Ce,o((t1, y1), (t2, y2)) ≡
∫ (y1−t1)+∧(y2−t2)+

0
Hu(t1 ∧ t2)Hc

u(t1 ∨ t2) dXe(0, u)

+

∫ (y1−t1)+∧(y2−t2)+

0
Hc
u(t1)Hc

u(t2) dΣe,o
2 (u).

so that the variances are

σ2
e(t, y) ≡ Var(X̂e(t, y)) = σ2

e,ν(t, y) + σ2
e,o(t, y),

where σ2
e,ν(t, y) = σ2

ν(((t− y)+, t),

σ2
ν(u, v) ≡

∫ v

u

[
(c2
a − 1)Gcν(v − s)2 +Gcν(v − s)

]
λ(s)ds

and σ2
e,o(t, y) =

∫ (y−t)+

0
Hu(t)Hc

u(t) dXe
0(u) +

∫ (y−t)+

0
Hc
x(t)2 dΣe,o

2 (x).

Corollary 3.5. (Variance for X̂(t) and D̂(t)) Under the assumptions
of Corollary 3.4, the variances of the one-parameter processes X̂(t) and D̂(t)
are

σ2
X̂

(t) ≡ Var(X̂(t)) = σ2
X̂,ν

(t) + σ2
X̂,o

(t),(3.21)
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where

σ2
X̂,ν

(t) ≡ σ2
e,ν(t,∞) = σ2

ν(0, t) =

∫ t

0

[
(c2
a − 1)Gcν(t− s)2 +Gcν(t− s)

]
λ(s)ds

(3.22)

and σ2
X̂,o

(t) = σ2
e,o(t,∞) =

∫ ∞
0

Hu(t)Hc
u(t) dXe

0(u) +

∫ ∞
0

Hc
x(t)2 dΣe,o

2 (x),

(3.23)

σ2
D̂

(t) ≡ Var(D̂(t)) = σ2
D̂,ν

(t) + σ2
D̂,o

(t),(3.24)

where

σ2
D̂,ν

(t) =

∫ t

0

[
(c2
a − 1)G2

ν(t− s) +Gν(t− s)
]
λ(s)ds

and σ2
D̂,o

(t) =

∫ ∞
0

Hu(t)Hc
u(t) dXe

0(u) +

∫ ∞
0

Hx(t)2 dΣe,o
2 (x),

Remark 3.4. (Additivity of the variance formulas) The first term of the
variance formula of X̂(t) (D̂(t)) σ2

X̂,ν
(t) (σ2

D̂,ν
(t)) provides the variance when

the system is initially empty (which coincides with the variance formula in
[4]). The second term σ2

X̂,o
(t) (σ2

D̂,o
(t)) represents the variance of the content

that has been in the system since time 0.

4. Proof of Theorem 3.2. We start with the FCLT for all processes
related to new arrivals from [4], obtaining

(N̂n, N̄n, K̂n, K̄n, R̂n, X̂
e,ν
n , X̂r,ν

n , D̂ν
n)⇒ (N̂ , N̄ , K̂, K̄, R̂, X̂e,ν , X̂r,ν , D̂ν),

(4.1)

in D3 × D5
D. By Assumption 1, it remains to show the convergence

(X̂n(0, ·), X̄n(0, ·), X̂e,o
n , X̂r,o

n , D̂o
n)⇒ (X̂(0, ·), X̄(0, ·), X̂e,o, X̂r,o, D̂o).(4.2)

in D3 × D2
D. We will then have the joint convergence of (4.1) and (4.2) in

D7 × D8
D. (The joint convergence of X̂n and D̂n follows from continuous

mapping theorem for addition at continuous limits.) In §4.1 we show that
the main two-parameter process X̂e,o

n can be decomposed into two other two-
parameter processes X̂e,o

n,1(t, y) and X̂e,o
n,2(t, y), that can be treated separately

by conditioning on the ages at time 0. We establish convergence for those two
processes in §§4.2–4.3; In §4.4 we prove the convergence of other processes.
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4.1. Decomposition of X̂e,o
n . To prove (4.2), we use a convenient repre-

sentation of X̂e,o
n (t, y). Let η̂n,i(t) ≡ 1{ηi(τn,i) > t} − Hc

τn,i
(t). From (2.3),

(2.7) and (3.2), we can write

X̂e,o
n (t, y) =

√
n

 1

n

Xe
n(0,(y−t)+)∑

i=1

1{ηi(τn,i) > t} −
∫ (y−t)+

0
a(x)Hc

x(t)dx


=

1√
n

Xe
n(0,(y−t)+)∑

i=1

(
1{ηi(τn,i) > t} −Hc

τni
(t)
)

+
√
n

(∫ (y−t)+

0
Hc
x(t)dX̄e

n(0, x)−
∫ (y−t)+

0
a(x)Hc

x(t)dx

)

=
1√
n

Xe
n(0,(y−t)+)∑

i=1

η̂n,i(t) +

∫ (y−t)+

0
Hc
x(t)dX̂e

n(0, x)

≡ X̂e,o
n,1(t, y) + X̂e,o

n,2(t, y),(4.3)

where the second equality holds by adding and subtracting Hτn,i(t) in the
sum.

To prove the convergence of (4.3), we will show the joint convergence of
the two terms on the right-hand side of (4.3) and apply the continuous map-
ping theorem with addition. We know that joint convergence of two random
elements is equivalent to the individual convergence of both terms if they
are independent. Even though X̂e,o

n,1 and X̂e,o
n,2 in (4.3) are not independent,

because they both involve the age sequence {τn,j : j ≥ 1} or equivalently the
counting process Xe

n(0, ·), they are conditionally independent given X̄e
n(0, ·).

Hence, in order to treat the two terms separately we condition upon the age
sequence and then uncondition. In doing so, we apply the assumed conver-
gence in Assumption 1 together with the following lemma, which expresses
the argument used in the proof of Theorem 7.6 of [26], which follows §5 of
[39]. In particular, a variant of the following lemma is uses in §7.3 of [26] to
extend FCLT’s for M/M/n/mn queues to G/M/n/mn queues, allowing a
general arrival process that satisfies a FCLT. The spaces are different here,
but the argument is the same.

Lemma 4.1. Let {Yn : n ≥ 1} and Y be processes with sample paths in
DD, and let {Zn : n ≥ 1} and Z be processes with sample paths in D. Let
Y Zn
n (Y Z) denote Yn (Y ) conditioned on Zn (Z). If Zn ⇒ Z in D and

(4.4)
Y Zn
n ⇒ Y Z in DD whenever Zn → Z in D as n→∞ w.p.1,
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then Yn ⇒ Y in DD as n→∞.

We apply Lemma 4.1 with the initial age process X̂e
n(0, ·) playing the role

of Zn. The required convergence in distribution holds by Assumption 1. We
will then condition on the ages and assume that

(4.5) X̂e
n(0, ·)→ X̂e(0, ·) in D w.p.1.

In (4.5) we use the Skorohod representation theorem to replace convergence
in distribution by convergence w.p.1. It remains to establish the limit (4.4),
assuming (4.5).

Given that we condition with respect to the ages and then uncondition,

in order to establish the joint convergence
(
X̂e,o
n,1, X̂

e,o
n,2, X̂

e
n(0, ·), X̄e

n(0, ·)
)
⇒(

X̂e,o
1 , X̂e,o

2 , X̂e
0 , X

e
0

)
in D2

D × D2, it suffices to prove
(
X̂e,o
n,1, X̄

e
n(0, ·)

)
⇒(

X̂e,o
1 , Xe

0

)
in DD × D and

(
X̂e,o
n,2, X̂

e
n(0, ·), X̄e

n(0, ·)
)
⇒
(
X̂e,o

2 , X̂e
0 , X

e
0

)
in

DD × D2; i.e., it suffices to treat the two terms separately. Aside from the
conditioning, we would be using Theorems 11.4.4 and 11.4.5 in [38], which
justify joint convergence. We next separately prove the convergence of two
terms in (4.3).

4.2. Convergence of the First Term in (4.3). In addition to the condi-
tioning discussed above, we use the compactness approach to prove (4.4) in
order to establish convergence of the first term in (4.3); i.e., we prove con-
vergence of the fidis in DD in two steps and then we prove tightness in the
third step. In Step 1 (§4.2.1), we establish convergence of the four-parameter
covariance functions of X̂e,o

n,1, referred to as Kn(t, y, t′, y′), to those of X̂e,o
1 ,

defined as K(t, y, t′, y′) in (3.7) in Theorem 3.2. In Step 2 (§4.2.2), using
the convergence of the covariance functions, we establish the convergence
of the fidis of X̂e,o

n,1 in DD, which is equivalent to the joint convergence of(
X̂e,o
n,1(t1, ·), . . . , X̂e,o

n,1(tk, ·)
)

in Dk, for all k ≥ 1 and 0 < t1 < · · · < tk.

We do this in two sub-steps: First, we show the convergence of the fidis of

the vector
(
X̂e,o
n,1(t1, ·), . . . , X̂e,o

n,1(tk, ·)
)

in the second argument, namely, the

joint convergence of the bigger vector
(
X̂e,o
n,1(ti, yj), 1 ≤ i ≤ k, 1 ≤ j ≤ m

)
in Rk×m, for all m ≥ 1 and 0 < y1 < · · · < ym. Second, we establish the

tightness of
(
X̂e,o
n,1(t1, ·), . . . , X̂e,o

n,1(tk, ·)
)

in Dk. In Step 3 (§4.2.3) we prove

that X̂e,o
n,1 is tight in DD.
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4.2.1. Step 1: Convergence of covariance functions. As indicated above,
we start by conditioning on the ages. Let Eτ denote the conditional expec-
tation operator, conditional on the ages or upon the process X̄e

n(0, ·). Upon
conditioning, the first term in (4.3) is a non-random sum of the independent
mean-zero random variables η̂n,i(t) defined at the beginning of §4.1. Hence,

Eτ
[
X̂e,o
n,1(t, y)X̂e,o

n,1(t′, y′)
]

=
1

n

Xe
n(0,(y−t)+∧(y′−t′)+)∑

i=1

Eτ
[
η̂n,i(t)η̂n,i(t

′)
]

=
1

n

Xe
n(0,(y−t)+∧(y′−t′)+)∑

i=1

Hτn,i(t)H
c
τn,i

(t′) =

∫ (y−t)+∧(y′−t′)+

0
Hu(t)Hc

u(t′) dX̄e
n(0, u).

(4.6)

Assuming (4.5), which corresponds to convergence of finite measures, from
(4.6) we have

Eτ
[
X̂e,o
n,1(t, y)X̂e,o

n,1(t′, y′)
]

→
∫ (y−t)+∧(y′−t′)+

0
Hu(t)Hc

u(t′) dX0(u) ≡ K(ti, yj , ti′ , yj′),(4.7)

because the integrand is a continuous and bounded real-valued function (see
(2.1) of §3.2 in [38]).

That completes this part of the proof, but we also continue to directly
show convergence of the covariance functions. Since the random variables in
(4.7) are bounded by X̄n(0) ≤ X↑ < ∞ (applying Assumption 3), we also
have convergence of the means associated with the convergence in (4.7),
yielding convergence of the covariance functions after unconditioning, i.e.,

Kn(t, y, t′, y′) ≡ E
[
Eτ
[
X̂e,o
n,1(t, y)X̂e,o

n,1(t′, y′)
]]

= E

[∫ (y−t)+∧(y′−t′)+

0
Hu(t)Hc

u(t′) dX̄e
n(0, u)

]

→
∫ (y−t)+∧(y′−t′)+

0
Hu(t)Hc

u(t′) dX0(u) ≡ K(t, y, t′, y′).(4.8)

As an immediate consequence of (4.8), we have an expression for the
variance functions and their convergence,

σ2
n(t, y) ≡ Kn(t, y, t, y) = E

[∫ (y−t)+

0
Hu(t)Hc

u(t) dX̄e
n(0, u)

]
(4.9)

→
∫ (y−t)+

0
Hu(t)Hc

u(t) dX0(u) ≡ σ2(t, y).
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4.2.2. Step 2: Convergence of the fidis in DD. We again apply Lemma
4.1 and start assuming (4.5). Hence, for each n, we condition upon the ages.

Step 2a: Joint convergence in Rk×m. Fix m ≥ 1 and 0 < y1 < · · · <
ym. The convergence of the fidis of the vector

(
X̂e,o
n,1(t1, ·), . . . , X̂e,o

n,1(tk, ·)
)

in the second argument is equivalent to the joint convergence of the bigger

vector
(
X̂e,o
n,1(ti, yj), 1 ≤ i ≤ k, 1 ≤ j ≤ m

)
in Rk×m. By the Cramér-Wold

device (see Theorem 4.3.3 of [38]), this is equivalent to showing that, for all
{ai,j} ∈ R, i = 1, . . . , k and j = 1, . . . ,m, as n→∞,

(4.10)

k∑
i=1

m∑
j=1

ai,jX̂
e,o
n,1(ti, yj)⇒

k∑
i=1

m∑
j=1

ai,jX̂
e,o
1 (ti, yj)

d
= N (0,Σ) in R,

where the variance of the limit is

(4.11) Σ ≡
k∑
i=1

m∑
j=1

k∑
i′=1

m∑
j′=1

ai,jai′,j′K(ti, yj , ti′ , yj′).

To establish (4.10), we define the random variables

X̃n,l,i ≡
1√
n
η̂n,l(ti) and Ỹn,l ≡

k∑
i=1

m∑
j=1

ai,jX̃n,l,i 1(l ≤ Xn(0, (yj − ti)+)).

Since Ỹn,j , j ≥ 1, are independent random variables, conditioned on Xe
n(0, ·),

we can rewrite the left-hand side of (4.10) as

S̃n ≡
k∑
i=1

m∑
j=1

ai,jX̂
e,o
n,1(ti, yj) =

k∑
i=1

m∑
j=1

ai,j

Xe
n(0,(yj−ti)+)∑

l=1

X̃n,l,i =

Xe
n(0,M)∑
l=1

Ỹn,l,

where M ≡ max{(yj − ti)+ : 1 ≤ i ≤ k, 1 ≤ j ≤ m}. By the final expression
above, S̃n is a sum of independent r.v.’s. Of course, the summands Ỹn,l
and the index Xe

n(0,M) both depend on n, but they do so in a regular
way because, to apply Lemma 4.1, we are assuming that (4.5) holds. For
example, this means that n−1Xe

n(0,M)→ Xe(0,M) ≤ X↑ <∞.
Hence, we can now apply the Lindeberg-Feller CLT for a double sequence

(triangular array) of non-identically distributed independent random vari-
ables, e.g., Theorem 7.2.4 of [9]. The variance of S̃n is

s̃2
n ≡ Var(S̃n)) =

k∑
i=1

m∑
j=1

k∑
i′=1

m∑
j′=1

ai,jai′,j′Kn(ti, yj , ti′ , yj′)

→
k∑
i=1

m∑
j=1

k∑
i′=1

m∑
j′=1

ai,jai′,j′K(ti, yj , ti′ , yj′) ≡ Σ,(4.12)
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as n → ∞ where Σ is defined in (4.11) and the convergence follows from
(4.8). It remains to verify the Lindeberg conditions (see (2.1)-(2.2) on p.330
of [9]) or the Lyapounov condition (see (2.20) on p.339 of [9]). However,
since {X̃n,l,i} take values in the interval [−1/

√
n, 1/

√
n] and the variance

s̃n converges to Σ in (4.12) as n→∞, the Lindeberg condition is satisfied.
Therefore, by Theorem 7.2.4 of [9], if (4.5) holds, then

(4.13) S̃n/s̃n ⇒ N (0, 1) as n→∞,

which together with (4.12), imply the desired convergence in (4.10) under
the condition (4.5). Lemma 4.1 then provides the unconditional convergence.

Step 2b: Tightness in Dk. We now establish the tightness of the vector
(X̂e,o

n,1(t1, ·), . . . , X̂e,o
n,1(tk, ·)) in Dk, again assuming (4.5). This tightness is

equivalent to the tightness of each component X̂e,o
n,1(ti, ·) in D, for all 1 ≤ i ≤

k, by Theorem 11.6.7. of [38].
We prove tightness of the components by proving a stronger result. Par-

alleling §7 of [20], we show that, for each fixed t, as n→∞,

(4.14) X̂e,o
n,1(t, y) ≡ 1√

n

nX̄e
n(0,y−t)∑
i=1

η̂n,i(t)⇒ B(σ2
t (y)) in D,

where B is a standard BM. To prove this, we observe that, under the con-
ditioning on the ages, the process {X̂e,o

n,1(t, y) : y ≥ 0} with fixed t is a
martingale with respect to its natural filtration augmented by the age se-
quence {τn,i} since the function y 7→ X̄e

n(0, y − t) is strictly increasing for
each n ≥ 1. Then we can apply the martingale FCLT in Theorem 7.1.4 of
[5], exploiting the fact that the summands are independent [−1, 1]-valued
zero-mean random variables. The first variance function in (4.9) with t fixed
is the quadratic variation of {X̂e,o

n,1(t, y) : y ≥ 0} and converges to the second

variance formula in (4.9). Hence the function σ2
t (y) in (4.14) for each fixed t.

Note that the weak convergence of the components implies their tightness.

4.2.3. Step 3: Proof of C-tightness of {X̂e,o
n,1} in DD. To complete the

proof of the convergence of the first term of (4.3) under condition (4.5), we
next show that the sequence {X̂e,o

n,1} is C-tight in DD. To do so, we verify
the usual two conditions: (i) stochastic boundedness and (ii) asymptotically
negligible oscillations, as in Theorem 6.2 of [4]. The specific conditions we
establish are (4.15) and (4.26) below.

Verifying condition (i): Stochastic Boundedness. Let Pτ and Eτ be
the conditional probability and expectation given the ages {τn,i}. It suffices
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to show, under condition (4.5), that for all ε > 0, there exists c > 0 such
that

(4.15) Pτ (‖X̂e,o
n,1‖T,y↑ > c) ≤ ε for all n ≥ 1,

where ‖X̂e,o
n,1‖T,y↑ = sup(t,y)∈[0,T ]×[0,y↑] |X̂

e,o
n,1(t, y)|.

To bound the probability in (4.15), we apply Chernoff’s inequality (e.g.,
see Lemma 3.1.1. of [9]), obtaining, for r > 0,

Pτ (‖X̂e,o
n,1‖T,y↑ > c) ≤ e−rc Eτ

[
e
r‖X̂e,o

n,1‖T,y↑
]
,(4.16)

To bound the right side of (4.16), we follow the symmetrization argumen-
t used in the proof of inequality 3 on p.820 of [33] (which in turn follows
Lemma 1.1 of [24]). Let the sequence {η∗i (τn,i)} be an independent copy of
{ηi(τn,i)} conditional on {τn,i} and let ξi be i.i.d. random variables, inde-
pendent of {ηi(τn,i)}, with P (ξi = 1) = P (ξi = −1) = 1/2. Also let X̂∗,e,on,1 be

X̂e,o
n,1 with {ηi(τn,i)} replaced by {η∗i (τn,i)}. Let EτηEτη∗Eτξ denote the expec-

tation with respect to {ξi} conditioned on {τn,i}, {ηi} and {η∗i }; let EτηEτη∗
denote the expectation with respect to {η∗n,i} conditioned on {τn,i} and {ηi};
and so on.

The next two lemmas will be used in the proof.

Lemma 4.2. Let X and X∗ be two i.i.d. elements in space DD. Suppose
a function φ is convex and nondecreasing with domain [0,∞). Then

(4.17) E
[
φ(‖X − E[X]‖T,y↑)

]
≤ E

[
φ(‖X −X∗‖T,y↑)

]
.

We omit the proof because it is similar to that of Lemma (A.14.15) in
[33], but we do give the proof in the appendix of the longer online version.

Lemma 4.3. Let ζi and wi be real-valued numbers with wi ≥ 0 for 1 ≤
i ≤ N and let {w(i), 1 ≤ i ≤ N} be the order statistics of {wi, 1 ≤ i ≤ N}
with w(i) ≤ w(i+1) for 1 ≤ i ≤ N − 1. For T > 0,∣∣∣∣∣

N∑
i=1

ζi1(w(N−i+1) > t)

∣∣∣∣∣ ≤ max
1≤j≤N

∣∣∣∣∣
j∑
i=1

ζi

∣∣∣∣∣ , 0 ≤ t ≤ T.(4.18)

Proof. We partition the interval [0, T ] into disjoint intervals with end
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points 0 ≡ w(0) ≤ w(1) ∧ T ≤ · · · ≤ w(N) ∧ T ≤ w(N+1) ≡ T . We have∣∣∣∣∣
N∑
i=1

ζi 1(w(N−i+1) > t)

∣∣∣∣∣ =

∣∣∣∣∣∣
N∑
j=1

(
j∑
i=1

ζi

)
1(w(N−j) ∧ T ≤ t < w(N−j+1) ∧ T )

∣∣∣∣∣∣
≤

N∑
j=1

∣∣∣∣∣
j∑
i=1

ζi

∣∣∣∣∣1(w(N−j) ∧ T ≤ t < w(N−j+1) ∧ T )

≤ max
1≤j≤N

∣∣∣∣∣
j∑
i=1

ζi

∣∣∣∣∣ .
We now continue to bound the right side of (4.16). For that purpose,

define

Γn,i(t, y) ≡ 1√
n

Xe
n(0,(y−t)+)∑

i=1

ξi · 1(ηi(τn,i) > t) and(4.19)

Γ∗n,i(t, y) ≡ 1√
n

Xe
n(0,(y−t)+)∑

i=1

ξi · 1(η∗i (τn,i) > t).

Let N∗n(y, t) ≡ Xe
n(0, (y − t)+) and {η̄n,(i), 1 ≤ i ≤ N∗n(y, t)} be the order

statistics of {ηi(τn,i), 1 ≤ i ≤ N∗n(y, t)} so that η̄n,(N∗n(y,t)−i+1) is the ith

largest one.
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With that preparation, we can write (explanation given afterwards)

Eτ
[
exp

(
r ‖X̂e,o

n,1‖T,y↑
)]
≤ Eτ

[
exp

(
r ‖X̂e,o

n,1 − X̂
∗,e,o
n,1 ‖T,y↑

)]
= Eτ

exp

r
∥∥∥∥∥∥n−1/2

N∗n(y,t)∑
i=1

(1(ηi(τn,i) > t)− 1(η∗i (τn,i) > t))

∥∥∥∥∥∥
T,y↑


= Eτ

exp

r
∥∥∥∥∥∥n−1/2

N∗n(y,t)∑
i=1

ξi · (1(ηi(τn,i) > t)− 1(η∗i (τn,i) > t))

∥∥∥∥∥∥
T,y↑


≤ Eτ

[
exp

(
r ‖Γn,i(t, y)‖T,y↑ + r

∥∥Γ∗n,i(t, y)
∥∥
T,y↑

)]
= EτηEτη∗Eτξ

[
exp

(
r ‖Γn,i(t, y)‖T,y↑ + r

∥∥Γ∗n,i(t, y)
∥∥
T,y↑

)]
≤ Eτη

[
Eτξ exp

(
2r ‖Γn,i(t, y)‖T,y↑

)]1/2
· Eτη∗

[
Eτξ exp

(
2r
∥∥Γ∗n,i(t, y)

∥∥
T,y↑

)]1/2

= EτηEτξ
[
exp

(
2r ‖Γn,i(t, y)‖T,y↑

)]
= EτηEτξ

exp

2r

∥∥∥∥∥∥n−1/2

N∗n(y,t)∑
i=1

ξi · 1(η̄n,(N∗n(y,t)−i+1) > t)

∥∥∥∥∥∥
T,y↑


≤ Eτξ

[
exp

(
2r sup

(t,y)∈[0,T ]×[0,y↑]

{
max

1≤j≤N∗n(y,t)

∣∣∣∣∣n−1/2
j∑
i=1

ξi

∣∣∣∣∣
})]

≤ Eτξ

[
exp

(
2r max

1≤j≤Xn(0)

∣∣∣∣∣n−1/2
j∑
i=1

ξi

∣∣∣∣∣
)]

,

(4.20)

where the first inequality holds by Lemma 4.2; the first equality holds be-
cause the centering terms cancel out; the second equality holds because

ξi · (1(ηi(τn,i) > t)− 1(η∗i (τn,i) > t))
d
= 1(ηi(τn,i) > t) − 1(η∗i (τn,i) > t);

the second inequality follows by (4.19) and the triangle inequality; the third
equality holds by conditioning on the η and η∗; the third inequality hold-
s by applying the Cauchy-Schwarz inequality on the expectation Eτξ ; the
fourth equality holds because {ηi(τn,i)} and {η∗i (τn,i)} are two i.i.d. copies;
the fifth equality holds because the two sequences {ξi} and {ηi(τn,i)} are in-
dependent; the fourth inequality holds by Lemma 4.3; and the last inequality
holds because t and y appear only in the upper limit of the inner maximum
N∗n(y, t), which itself is bounded above by Xn(0).

To bound (4.20), we apply integration by parts as on p. 150 of [6] to write
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the moment generating function of a non-negative random variable Y as

(4.21) E
[
eθY
]

= 1 +

∫ ∞
0

θeθxP (Y ≥ x) dx.

Therefore we next provide an upper bound on the tail probability using
Lévy’s inequality .(e.g., Theorem 3.7.1 on p.138 of [9] (also Theorem C.1 in
the appendix of the longer online version); in particular

Pτ
(

max
1≤j≤Xn(0)

∣∣∣∣∣ 1√
n

j∑
i=1

ξi

∣∣∣∣∣ ≥ x
)
≤ 2Pτ

∣∣∣∣∣∣ 1√
n

Xn(0)∑
i=1

ξi

∣∣∣∣∣∣ ≥ x
 ≤ 4e

− x2

2X̄n(0) ,

(4.22)

where the second inequality follows from Hoeffding’s inequality (e.g., Theo-
rem 3.1.3 on p.120 of [9]; also Theorem C.2 in the appendix).

Combining (4.20)–(4.22) with θ = 2r and Y ≡ max
1≤j≤Xn(0)

∣∣∣1/√n∑j
i=1 ξi

∣∣∣
yields that

Eτ
[
exp

(
r‖X̂e,o

n,1‖T,y↑
)]
≤ 1 + 4

∫ ∞
0

2re2rxe
− x2

2X̄n(0) dx

= 1 + 8r
√

2πX̄n(0)e2r2X̄n(0)

∫ ∞
0

(
2πX̄n(0)

)−1/2
e
− (x−2rX̄n(0))2

2X̄n(0) dx

= 1 + 8r
√

2πX̄n(0)e2r2X̄n(0)Φ

(
2r
√
X̄n(0)

)
≤ 1 + 8r

√
2πX̄n(0)e2r2X̄n(0),

(4.23)

where Φ is the cdf of the standard normal distribution. Here we assume with-
out loss of generality that X̄n(0) > 0 because (4.20) becomes 0 if X̄n(0) = 0.

Now recall that we are assuming (4.5), so that we have X̄n(0) → X(0)
w.p.1 as n → ∞. Moreover, this convergence implies that there exists a
constant K such that

(4.24) X̄n(0) ≤ 2X(0) +K ≡ X↑ for all n ≥ 1,

where X↑ depends on the particular age sequence associated with our con-
ditioning.

Letting r = 1/
√
X̄n(0) in (4.23) and applying (4.16), we have

Pτ (‖X̂e,o
n,1‖T,y↑ > c) ≤

(
1 + 8

√
2πe2

)
Eτ
[

exp

(
− c√

X̄n(0)

)]

≤
(

1 + 8
√

2πe2
)

exp

(
− c√

X↑

)
,



26 A. K. ARAS, Y. LIU AND W. WHITT

which converges to 0 as c→∞.
Verifying condition (ii): asymptotically negligible oscillations.

We show that the oscillations are asymptotically negligible, again assuming
(4.5). For that purpose, consider an arbitrary sequence of uniformly bounded
stopping times {κn} with respect to the natural filtration Fn ≡ {Fn(t), t ∈
[0,∞)} ∨ N where

Fn(t, y) ≡ σ{1(ηi(τn,i) > x) : 1 ≤ i ≤ Xe
n(0, y), x ≥ t, 0 ≤ s ≤ y}

∨ σ{Xe
n(0, (y − x)+), x ≥ t, 0 ≤ s ≤ y},

Fn(t) ≡
∨
y≥0

Fn(t, y),(4.25)

and N being all the null sets. We will show that, for any δ > 0 and ε > 0,
and for any such sequence of stopping times {κn},

(4.26) lim
δ↓0

lim sup
n→∞

sup
κn

Eτ
(sup

y≥0

∣∣∣X̂e,o
n,1(κn + δ, y)− X̂e,o

n,1(κn, y)
∣∣∣)2
 = 0,

which is a sufficient condition for condition (ii) in Theorem 6.2 of [4].
To establish (4.26), we condition on the sequence {κn} as well as the se-

quence {τn,i}. As in Step 2b, conditional on the sequences {κn} and {τn,i},
the process {X̂e

n,1(t, y) : y ≥ 0} with t fixed is an adapted martingale with re-

spect to F̃t
n ≡

∨
y≥0F tn(y)∨{κn}∨{τn,i}, where F tn(y) denotes the σ-algebra

Fn(t, y) in (4.25) with t being fixed. Consequently, with the conditioning,
the process (X̂e,o

n,1(κn + δ, y)− X̂e,o
n,1(κn, y), y ≥ 0) is an F̃κn+δ

n -adapted mar-
tingale. Let Eτ,κ denote that the expectation is computed by conditioning
on {τn,i} and {κn}, let Varτ,κ be the conditional variance. Then, by Doob’s
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maximal inequality,

Eτ,κ
(

sup
y≥0

∣∣∣X̂e,o
n,1(κn + δ, y)− X̂e,o

n,1(κn, y)
∣∣∣)2

≤ 4 sup
y≥0

Eτ,κ
(
X̂e,o
n,1(κn + δ, y)− X̂e,o

n,1(κn, y)
)2

=
4

n
sup
y≥0

Varτ,κ

Xe
n(0,(y−κn−δ)+)∑

i=1

1(ηi(τn,i) > κn + δ)−
Xe

n(0,(y−κn)+)∑
i=1

1(ηi(τn,i) > κn)


≤ 4

n
sup
y≥0

Varτ,κ

Xe
n(0,(y−κn)+)∑

i=1

1(κn < ηi(τn,i) ≤ κn + δ)


=

4

n
sup
y≥0

Xe
n(0,(y−κn)+)∑

i=1

Hδ
τn,i

(κn)(1−Hδ
τn,i

(κn))

= 4

∫ ∞
0

Hδ
u(κn)(1−Hδ

u(κn)) dX̄e
n(0, u)

≤ 4

∫ ∞
0

Hδ
u(M) dX̄e

n(0, u) ≤
∫ ∞

0

4g↑0δ

Gc(T + y↑)
dX̄e

n(0, u)

=
4g↑0δ

Gc(T + y↑)
X̄n(0) ≤ 4g↑0δ

Gc(T + y↑)
X↑ → 0,

(4.27)

as δ → 0. Therefore, the condition in (4.26) is satisified. In the steps above,
Hδ
u(t) ≡ Hu(t+ δ)−Hu(t), M = supn≥1 |κn| and X↑ is the bound in (4.24).

The first equality holds since the sums are zero-mean random variables con-
ditioned on {τn,i}, {κn} for all t ≥ 0, y ≥ 0, whereas the second equality
holds due to (conditional) independence. Starting from the third equality,
{τn,i} and {κn} are necessarily treated as deterministic sequences. Assump-
tion 2 implies that we are not dividing by 0 in the final step.

4.3. Convergence of the Second Term in (4.3). In this section, we es-
tablish convergence of the second term in (4.3), i.e., X̂e,o

n,2 ⇒ X̂e,o
2 , again

conditioning on the ages and assuming that (4.5) holds, so that we can
apply Lemma 4.1. Since X̂e

n(0, ·) is of bounded variation, the second term
in (4.3) can be expressed as a Stieltjes integral. Therefore, we can use the
integration by parts formula given on p.336 of [2] to obtain an equivalent
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representation

X̂e,o
n,2(t, y) ≡ −

∫ (y−t)+

0
Hc
u(t)dX̂e

n(0, u)(4.28)

= Hc
(y−t)+(t)X̂e

n(0, (y − t)+)−
∫ (y−t)+

0
X̂e
n(0, u−)dHc

u(t).

Since we are conditioning on the ages, everything in (4.28) is deterministic.
Hence, we will show that the convergence follows by continuity (convergence
preservation of mappings). The mapping is a measurable mapping that is
continuous almost surely with respect to continuous limits. Measurability in
this setting holds because the Borel σ-field induced by the usual topology on
DD coincides with the usual Kolmogorov σ-field generated by the coordinate
projections; see §11.5.3 of [38] and references cited there. (Hence standard
measurability arguments can be used.) If we uncondition, then we would be
applying the continuous mapping theorem in Theorem 3.4.3 of [38].

The next two lemmas allow us to establish the desired convergence. We
first show that the function Hc

x(t) has finite variation in x over a bounded
interval, by virtue of the Assumption 2 on the service-time cdf G.

Lemma 4.4. (Finite total variation in x for Hc
x(t) in bounded intervals)

In an interval [0, T ∗],
∫ T ∗

0 |dHc
x(t)| <∞, for t ≥ 0.

Proof. Taking the derivative of Hc
x(t) with respect to x yields∫ T ∗

0
|dHc

x(t)| =

∫ T ∗

0

|g(t+ x)Gc(x)− g(x)Gc(t+ x)|
(Gc(x))2 dx

<

(
g↑

Gc(T ∗)
+

g↑

(Gc(T ∗))2

)
T ∗ ≡ K(T ∗) <∞,(4.29)

where we have used Assumption 2.
We next establish continuity in the uniform metric over compact subsets

of the domain. Let du(x1, x2) ≡ supt∈[0,T ] |x1(t)− x2(t)| for x1, x2 ∈ D and

du(y1, y2) ≡ sup
(t,u)∈[0,T ]×[0,∞)

|y1(t, u)− y2(t, u)| for y1, y2 ∈ DD.

Lemma 4.5. The mapping φ : (D, du)→ (DD, du) defined by

(4.30) φ(x)(t, y) = H(y−t)+(t)x((y − t)+)−
∫ (y−t)+

0
x(s−)dHs(t)

for 0 ≤ t ≤ y is continuous in DD.
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Proof. Let {xn} be a sequence such that du(xn, x) ≡ ‖xn − x‖y0 → 0 as
n→∞. Then∣∣φ(xn)(t, y)− φ(x)(t, y)

∣∣
≤ Hc

(y−t)+(t)
∣∣xn((y − t)+)− x((y − t)+)

∣∣+

∣∣∣∣∣
∫ (y−t)+

0
(xn(s−)− x(s−)) dHc

s(t)

∣∣∣∣∣
≤ Hc

(y−t)+(t)‖xn − x‖y0 + ‖xn − x‖y0

∫ (y−t)+

0
|dHc

s(t)| ≤ (1 +K(y0))‖xn − x‖y0 ,

where the finite constant K(y0) is defined in (4.29). Therefore, as n→∞,

du(φ(xn), φ(x)) ≡ sup
(t,y)∈[0,T ]×[0,∞)

|φ(xn)(t, y)− φ(x)(t, y)| → 0.(4.31)

Finally, we observe that Lemma 4.5 establishes the desired result, because
(i) it suffices to consider continuous limits x by virtue of the continuity
assumption included in Assumption 1 and (ii) convergence in D reduces
to uniform convergence over bounded intervals when the limit function is
continuous.

4.4. Proof of Convergence of Other Processes. The proof of convergence
of the other processes is elementary. First, we can apply flow conservation
and continuous mapping theorem to treat the departure process. In partic-
ular, as n→∞,

D̂n(t) = N̂n(t) + X̂n(0)− X̂n(t)⇒ N̂(t) + X̂(0)− X̂(t),

which coincides with (3.14).
To treat the remaining-service-time processes X̂r

n(0, x) and X̂r
n(t, x), note

that Xr
n(0, x) = Xo

n(x) = Xo
n(x,∞) which is the number of initially existing

customers that are still in service at time x. Hence, as n → ∞, X̂r
n(0, x) =

X̂o
n(x)⇒ X̂o(x) in D, which is proved earlier in this section. Next, just as for

the ICP X̂e
n(t, x), we split X̂r

n(t, x) into two independent terms associated
with new content and old content,

X̂r
n(t, x) = X̂r,ν

n (t, x) + X̂r,o
n (t, x),

where the convergence of X̂r,ν
n (t, x) is proved in [4] and the convergence of

the second term holds because

X̂r,o
n (t, x) = X̂r

n(0, t+ x) = X̂o
n(t+ x)⇒ X̂o(t+ x), as n→∞, in D.
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4.5. Proof of Alternative Representations in (3.11) and (3.16). We only
prove (3.11) because (3.16) is similar. We obtain the right-hand representa-
tion in (3.11) using the fact that {Û(t, y0)/

√
y0(1− y0); t ≥ 0} is a standard

BM motion for a fixed 0 < y0 < 1 (§A of the appendix of [4]). We have∫ t

0

∫ ∞
0

1(x > t− s) dK̂ν(Λ(s), x)

=

∫ t

0

∫ ∞
0

1(x > t− s) dÛ(Λ(s), Gν(x))

d
=t

∫ t

0

∫ ∞
0

1(x > t− s) d
(
B̃s(Λ(s))

√
Gν(x)(1−Gν(x))

)
=

∫ t

0

(√
Gν(∞)Gcν(∞)−

√
Gν(t− s)Gcν(t− s)

)
dB̃s(Λ(s)),

which coincides with the right-hand expression in (3.11). To show that the
two expressions in (3.11) are indeed equal in distribution for each t, it suf-
fices to show that they have the same variances because both processes are
zero-mean Gaussian processes. Because the Kiefer process Û(Λ(s), Gν(x)) =
Ŵ (Λ(s), Gν(x))−Gν(x)Ŵ (Λ(s), 1) where Ŵ is a standard Brownian sheet
[4], the variance of the first expression in (3.11) is

E

[(∫ t

0

∫ ∞
0

1(x > t− s) d
(
Ŵ (Λ(s), Gν(x))−Gν(x)Ŵ (Λ(s), 1)

))2
]

= E

[(∫ t

0

∫ ∞
0

1(x > t− s) dŴ (Λ(s), Gν(x))−
∫ t

0
Gcν(t− s) dŴ (Λ(s), 1)

)2
]

=

∫ t

0

∫ ∞
0

1(x > t− s) dΛ(s)dGν(x) +

∫ t

0
Gcν(t− s)2 dΛ(s)

− 2

∫ t

0

∫ ∞
0

Gcν(t− s)1(x > t− s) dΛ(s)dGν(x)

=

∫ t

0
Gcν(t− s)Gν(t− s) dΛ(s),

which simply coincides with the variance of the second expression in (3.11).

5. The Gt/GIo, GIν/∞ Model Starting in the Past. We now
show that Theorem 3.2 applies to the Gt/GI

o, GIν/∞ model starting at
some time in the past, provided we impose an extra condition. We assume
that the system starts at time −t0 < 0, satisfying the assumptions in §2
with service-time cdf G. We let the service-time cdf change to Gν after time
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0. It suffices to show that Assumption 1 holds at time 0, which requires
an additional independent-increments assumption on the arrival process to
obtain the assumed independence of the processes. In particular, we assume
that the limit process in the assumed FCLT for the arrival process is a
time-transformed BM.

Corollary 5.1. (FCLT for the Gt/GI
o, GIν/∞ model starting in the

past) Consider the sequence of Gt/GI
o, GIν/∞ models starting at time −t0 <

0 with all the assumptions in §2 at time −t0. Let the service-time cdf change
from G to Gν at time 0. If in addition N̂(t) = caBa(Λ(t)), where Λ(t) ≡∫ t
−t0 λ(s) ds, t > −t0, then Assumption 1 also holds at time 0, so that The-

orem 3.2 holds for t ≥ 0, with

Xe(0, y) =

∫ y

0
Gc(s)λ(−s) ds · 1(0 ≤ y ≤ t0)(5.1)

+

∫ y−t0

0
Hc
x(t0 + y) dXe(−t0, x) · 1(y > t0),

X̂e(0, y) = X̂e
a(0, y) · 1(0 ≤ y ≤ t0)(5.2)

+
(
X̂e
b,1(0, y) + X̂e

b,2(0, y)
)
· 1(y > t0),

where, with Ba, Bs and B denoting three independent standard BM’s, K̂o(Λ(s), x) ≡
Ûo(Λ(s), G(x)) and Ûo denoting a Kiefer process that is independent with Ba,

X̂e
a(0, y) = cλ

∫ 0

−y
Gc(−s) dBa(Λ(s)) +

∫ 0

−y

∫ ∞
0

1(x > −s) dK̂o(Λ(s), x)

d
=y cλ

∫ 0

−y
Gc(−s) dBa(Λ(s))−

∫ 0

−y

√
G(−s)Gc(−s) dBs(Λ(s))

d
=y

∫ 0

−y

√
(c2
λ − 1)Gc(−s2) +Gc(−s)λ(s) dB(s), for 0 ≤ y ≤ t0,(5.3)

X̂e
b,1(0, y) is a zero-mean Gaussian process with covariance

Cov
(
X̂e
b,1(0, y1), X̂e

b,1(0, y2)
)

=

∫ y1∧y2−t0

0
Hu(t0)Hc

u(t0) dXe(−t0, u), for y1, y2 > t0,

and X̂e
b,2(0, y) =

∫ y−t0

0
Hc
x(t0) dX̂e(−t0, u), for y > t0.
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If the system starts empty at time −t0, then the variance formula for the
FCLT limit of the number in service X̂(t) for t ≥ −t0 is

σ2
X̂

(t) =

∫ 0

−t0

[
(c2
λ − 1)Gc(t− s)2 +Gc(t− s)

]
λ(s) ds

+

∫ t

0

[
(c2
λ − 1)Gcν(t− s)2 +Gcν(t− s)

]
λ(s) ds.

If in addition G = Gν , we have

σ2
X̂

(t) = σ2
ν(−t0, t) =

∫ t

−t0

[
(c2
λ − 1)Gcν(t− s)2 +Gcν(t− s)

]
λ(s) ds.(5.4)

Remark 5.1. (Verifying consistency with [4]) Corollary 5.1 provides an
important consistency check by allowing us to compare with the previous
results in [4]. In particular, we see that we get strong verification through
(5.4).

We illustrate Corollary 5.1 with the following example.

Example 5.1. (Simulation comparison) We consider anMt/LN(1, 4)/∞
model over the time interval [−t0, T ] = [−5, 20], having a nonhomogeneous
Poisson arrival process (Mt) with the sinusoidal arrival rate function

λn(t) = n (a+ b sin(ct+ φ)) , t0 ≤ t ≤ T,(5.5)

with a = c = 1, b = 0.6 and φ = 0. This example has a lognormal (LN)
service distribution with mean 1/µ = 1 and c2

s = 4. We set n = 100.
We let the system start empty at time −t0 and use the arrivals in the

negative time interval [−t0, 0] to generate the initial number of customer-
s in service and the age process at time 0. We expect our FWLLN and
FCLT limits to provide effective engineering approximations for the mean
and variance of the performance functions. For instance, Theorems 3.1 and
3.2 imply that Xn(t) ≈ nX(t) +

√
nX̂(t) when n is large. Therefore, we

expect E[Xn(t)] ≈ nX(t) and Var(Xn(t)) ≈ nVar(X̂(t)). We next provide
simulation comparison results. Each simulation experiment in this paper is
based on performing 2000 independent replications of the system.

Figure 1 shows close approximations of the fluid and variance formulas
provided by Theorem 3.1 and Corollaries 3.5 and 5.1. In particular, the
arrival rate after time 0 is shown in the top plot. Then the expected number
in system of the old customers and the new customers are shown together
with the total expected number in the second plot; while the variances of the
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Fig 1. Example 1: Simulation comparisons of the mean and variance for the number of
customers in service in an Mt/LN(1, 4)/∞ model starting empty at a finite negative time
−t0 = −5, with the sinusoidal arrival rate (5.5) having parameters a = c = 1, b = 0.6,
φ = 0 and n = 100.

number in system of the old customers and the new customers are shown
together with the total variances in the third plot. In both cases, we see
the additivity. As expected, the old content dissipates by about time t = 6.
The bottom plot shows the variance of the initial age process at time 0,
with age 0 ≤ y ≤ t0 = 5 (because no customer has an age greater than t0).
As expected the right endpoint in the bottom plot coincides with the left
endpoint in the third plot.
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