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Abstract Extending Ward Whitt’s pioneering work “Fluid Models for Multi-
server Queues with Abandonments, Operations Research, 54(1) 37–54, 2006 ”,
this paper establishes a many-server heavy-traffic functional central limit theo-
rem for the overloaded G/GI/n+GI queue with stationary arrivals, nonexpo-
nential service times, n identical servers, and nonexponential patience times.
Process-level convergence to non-Markovian Gaussian limits is established as
the number of servers goes to infinity for key performance processes such as
the waiting times, queue length, abandonment and departure processes. Ana-
lytic formulas are developed to characterize the distributions of these Gaussian
limits.

Keywords many-server queues · many-server heavy-traffic limits · nonex-
ponential service times · efficiency-driven regime · customer abandonment ·
Gaussian approximation · functional central limit theorem

1 Introduction

When the third author began his M.S. study at Columbia University in 2006,
Ward Whitt published a paper at Operations Research entitled “Fluid Mod-
els for Multiserver Queues with Abandonments” [36], where he proposed a
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new framework to study many-server queueing models having nonexponential
service times and abandonment times. Specifically, Whitt developed the fluid
model, which is proven to be the many-server heavy-traffic (MSHT) functional
weak law of large numbers (FWLLN) limit, for the G/GI/n + GI queueing
model having stationary arrivals (the G), independent and identically distribut-
ed (i.i.d.) nonexponential service times (theGI), n servers in parallel, customer
abandonment according to i.i.d. patience times following a nonexponential dis-
tribution (the +GI), and a first-come first-served (FCFS) service rule.

Many empirical studies had revealed that service-time and abandonment-
time distributions in service systems (e.g., call centers and health care) are
far from exponentially distributed, and yet researchers prior to 2006 had to
assume Markovian structure (with exponential distributions) in order to gain
mathematical tractability. However, after 2006, Whitt’s pioneering work [36]
opened a new line of research on non-Markovian queues which successfully
brought more practical models within the reach of tractability. His 2006 paper
is regarded as one of his most important works after 2000. This paper also laid
a foundation for the Ph.D. dissertation of the third author.

As his academic descendants: academic grandson (first author), academic
grandson of Peter Glynn who is Whitt’s academic brother (second author), and
former Ph.D. student (third author), we are pleased to be able to contribute
to this special issue in honor of Ward Whitt’s 75th birthday! In this paper we
will extend his 2006 paper [36] by developing an MSHT functional central limit
theorem (FCLT) for the G/GI/n+GI system (same model in [36]) operating
in the efficiency-driven (ED) regime. We will prove that the properly scaled
performance functions, such as the waiting time, number in system, and queue-
length, converge in distribution to Gaussian processes as the number of server
n increases. Our research here also extends Whitt’s joint work with the third
author on FCLT limit of queues with M (exponential) service [25].

MSHT literature on ED models. There is a large body of literature on
MSHT limits for queueing models. We hereby only review the related work
on the ED regime, or equivalently, the overloaded case. A fluid model for the
G/GI/n + GI queue is developed by Whitt [36] using two-parameter perfor-
mance functions keeping track of elapsed service and waiting time of customer-
s; in addition, an FWLLN is established in [36] in a discrete-time framework.
This fluid model has subsequently been extended to incorporate time-varying
arrivals and staffing levels in [22] and network fluid models [21,24]. FWLLN
results for the G/GI/n+GI queue has been obtained in [23,14,37].

We next review FCLT results for queueing systems in the ED regime. Whitt
[35] showed that the queue length process of the Markovian M/M/s+M queue
has an Ornstein-Uhlenbeck (OU) FCLT limit. Mandelbaum et al. [26] devel-
oped the FWLLN and FCLT limits for queueing networks having Markovian
probability structure. Dai et al. [7] established a multidimensional diffusion
FCLT limit for the GI/Ph/n+M queue exponential abandonment times and
phase-type service times (the Ph). A stochastic partial differential equation
(SPDE) limit was established in [16] for general many-server queueing models
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using measure-valued processes. Liu and Whitt [25] studied the time-varying
Gt/M/st + GI system alternating between underloaded and overloaded time
intervals. They have obtained a stochastic differential equation driven by inde-
pendent Brownian motions for the waiting time process; they also established
limits for the number in system, the queue length, the virtual waiting time,
and the number of abandonments. In a recent paper by Huang et al. [13], the
authors developed an FCLT limit for the ED G/M/n + GI model under the
hazard-rate scaling and applied their FCLT results in the context of delay
announcements. It is evident that the FCLT limits for the performance pro-
cesses are bound to become non-Markovian for fully non-Markovian queueing
systems (having especially nonexponential service times), under the standard
FCLT scaling. He [12] considered the G/GI/n+GI model and applied a time
scaling to the waiting time and queue length processes. Specifically, He [12]
scaled time by the mean patience time to obtain a simple one-dimensional OU
process FCLT limit for the queue length process, with the mean patience time
going to infinity. In [12], the customer’s individual behavior disappears in the
limit (e.g., patience time approaches infinity, service time distribution function
beyond its first two moments no longer plays a role). In addition, the approx-
imation formulas based on the new patience-time-scaled FCLT limits in [12]
may become ineffective for systems having small or medium mean patience
times.

In this paper, we develop an FCLT for the G/GI/n+GI queue under the
conventional scaling. Specifically, we only apply spatial scaling (no temporal
scaling); we scale the queue length but we do not scale the waiting times
(nor the distribution functions of service and patience times) so that customer
behavior (characterized by their distribution functions) can be fully preserved
in the limit; the full distribution of service (patience) time plays a role in
the MSHT FCLT limit beyond its first and second moments. Comparing to
[12], our FCLT limits may provide performance formulas for models that are
more customized to the customer behavior and those with a wider range of
model inputs (especially when the mean abandonment time is not too large).
However, the tradeoff here is that our FCLT limits is more complex than those
of [12] (our limits are not Markovian).

Main difficulty of GI service. For models with exponential service times
as in [25,13], the service-completion process can be formulated as a nonho-
mogeneous Poisson process (NHPP) which nicely converges to a time-changed
Brownian motion. This helps develop convenient FCLT limits for other per-
formance functions. For instance, the FCLT limit for the waiting-time process
solves a simple Brownian driven stochastic differential equation (SDE) with a
linear draft:

dŴ (t) = h(t)Ŵ (t)dt+ Iλ(t)dBλ(t) + Ia(t)dBa(t) + Is(t)dBs(t), (1.1)

where Bλ, Ba and Bs are three independent Brownian motions corresponding
to the FCLT limits of the arrivals, abandonments and service completions, and
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h, Iλ, Ia and Is are determinisitic functions of the model inputs. See (4.9) and
(6.64) in [25] for details.

For GI service, the main difficulty is that the service-completion process
is no longer an NHPP so it does not converge to a convenient Brownian limit.
In this paper, we show that the service-completion process converges to a
non-Brownian zero-mean Gaussian process with a known covariance function.
Unlike (1.1), we will obtain an SDE for the waiting-time process, driven by
both Brownian motions and a Gaussian process.

We prove an FCLT for key performance functions of the G/GI/n + GI
queueing model; we identify the FCLT limits and fully describe their distri-
butions. To characterize the limiting processes we construct a stochastic inte-
gral with respect to centered Gaussian processes with almost-surely Hölder-
continuous sample paths where the integrand is a two-parameter determinis-
tic function. We show that such stochastic integrals can be defined pathwisely,
and they satisfy an integration-by-parts formula. Integrals with respect to non-
Brownian Gaussian processes have been studied by [4] (fractional Brownian
motions) and [1,18] (Volterra processes).

Our proofs are based on the careful analysis of the number of customers
entering service from the queue. Unlike [13,25,29], we introduce a new rep-
resentation for the enter-service process, based on which we derive an SDE,
indexed by n, for the prelimit waiting-time process, and we prove its conver-
gence to a limiting SDE. The main steps of our proof technique involves a
martingale FCLT, Gronwall’s inequality, and the continuous mapping theo-
rem. Unlike [13,25], we do not take the commonly used compactness approach
(see, e.g., [34]) to prove weak convergence. An advantage of our new proof is
that we can avoid having to prove tightness which is often quite complicated
(e.g., see [13,25] for the complex treatment of tightness, even for M service).
In particular, using the n-indexed SDE, we prove stochastic boundedness of
the waiting time and then prove the weak convergence by applying Gronwall’s
inequality. We further characterize the FCLT limits by computing the covari-
ance function of the Gaussian solution to the limiting SDE. Convergence of
other processes is established by applying continuous mapping theorem. In
addition, the martingale FCLT in this paper is different from those in [13,8].

Organization of the Paper. In §2 we describe a sequence of the G/GI/n+
GI queueing systems and specify all model assumptions. In §3 we give some
preliminary results that are building blocks of the main results. In §4, we
present our main results: We first give our FCLT limits in §4.1; we next char-
acterize the distributions of the FCLT limits in §4.2 and §4.3. Proofs of the
main results are given in §5. In §6, we consider a more general staffing function,
generalizing the main results in §4. Additional proofs appear in the appendix.

2 A Sequence of Overloaded G/GI/n + GI Queues

We consider a sequence of G/GI/n+GI queueing systems, which is indexed
by the number of servers n, having i.i.d. nonexponential service times with
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cumulative distribution function (cdf) G, complementary cdf (ccdf) Gc = 1−
G, probability density function (pdf) g and mean service time 1/µ < ∞, and
non-exponential patience times (the +GI) with cdf F , ccdf F c = 1−F , pdf f ,
and hazard rate hF = f/F c. All random variables and processes are defined
on a common probability space. We next define relevant system functions and
give assumptions on our model primitives. These assumptions will be enforced
throughout the paper.

Service times and patience times. We impose the following regularity condi-
tions:

(i) The patience-time pdf

0 < f(x) ≤ f↑ ≡ sup
x≥0

f(x) <∞, x ≥ 0.

(ii) The service-time cdf G and pdf g satisfy

lim sup
t↓0

G(t)−G(0)

t
<∞, and g↑ ≡ sup

x≥0
g(x) <∞. (2.1)

Condition (2.1) is necessary for weak convergence results of the service-completion
processes (see [10,33,34]).

Arrival process. Let Nn(t) be the number of customer arrivals in the interval
[0, t]. We assume Nn satisfies an FCLT

N̂n(t) ≡ n−1/2(Nn(t)− nΛ(t))⇒ N̂(t) = cλBλ(Λ(t)) in D as n→∞
(2.2)

where Bλ is a standard Brownian motion (BM), Λ(t) = λt, λ and cλ > 0 mea-
sure the (average) arrival rate and stochastic variability of the arrival process
Nn asymptotically. One way to construct an Nn satisfying (2.2) is to simply
apply a time change with function nΛ(t) to a rate-1 renewal process with inter-
renewal times having variance c2λ (see [11,19] for examples). A benchmark case
is the Poisson arrival with cλ = 1. Here the notation “⇒” denotes weak con-
vergence (i.e., convergence in distribution). We denote by D ≡ D([0, T ];R) the
space of real-valued right-continuous functions with left limits on the interval
[0, T ], and by C ≡ C([0, T ];R) the subset of D consisting of continuous func-
tions. Convergence in D is characterized through the Skorokhod J1-topology;
J1-convergence to a continuous limit implies uniform convergence over all com-
pact sets. See [5,34] for details of weak convergence in D and C.

We remark that our analysis allows the FCLT limit N̂ to be a more general
process having a continuous sample path and independent increments (so N̂ is
not restricted to a Brownian motion). As an immediate corollary of the FCLT
(2.2) is an FWLLN. In particular,

N̄n(t) ≡ n−1Nn(t)⇒ Λ(t) in D as n→∞.

Since our model operates in the ED regime, we assume the traffic intensity
ρ ≡ λ/µ > 1.
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System functions. Let En(t), Dn(t) and An(t) be the total number of cus-
tomers who have entered service, completed service, and abandoned from the
queue in [0, t], respectively. Let the two-parameter process Bn(t, y) (Qn(t, y))
denote the number of customers in service (in queue) at time t for at most y
units of time in the nth system. In addition, let Bn(t) ≡ Bn(t,∞), Qn(t) ≡
Qn(t,∞), and Xn(t) = Bn(t) +Qn(t) be the number of customers in service,
number waiting in the queue, and total number in the system at time t. Let
Wn(t) denote the head-of-line waiting time (HWT), i.e., the elapsed waiting
time of the customer at the head of line at time t, i.e., the waiting time of
the customer who has been waiting the longest (if there is any); Wn(t) = 0 if
there is no customer waiting in the queue. Finally, we let Vn(t) be the potential
waiting time (PWT) at time t, i.e., the waiting time of an arriving customer at
t assuming the customer has infinite patience. When the system is overloaded,
Wn(t) and Vn(t) satisfy the relations

Vn(t−Wn(t)) = Wn(t) +O(1/n) (2.3)

Vn(t) = Wn(t+ Vn(t) +O(1/n)) +O(1/n), (2.4)

where (2.3) suggests that the virtual waiting time at the time of arrival of the
head-of-line customer at time t is the head-of-line customer’s elapsed waiting
time in line at time t plus the additional time until one of the n busy servers
becomes idle. (The additional time is O(1/n) if there are n busy servers.) The
equality in (2.4) is obtained by a change of variable.

Initial content. At time 0, we assume the system is initially critically loaded,
that is, Qn(0) = Wn(0) = 0 and Xn(0) = Bn(0) = n for all n ≥ 1. Let
ν be a generic service time, we assume that customers initially in service at

time 0 have i.i.d. remaining service times ν
(0)
1 , . . . , ν

(0)
n following cdf Ge, the

equilibrium version of G, given by

Ge(x) =

∫ x
0
Ḡ(s) ds

E[ν]
, x ≥ 0. (2.5)

The above assumption has been commonly used in the literature [31,27,12,
10,16]). Because the system is asymptotically overloaded for all t ≥ 0, the
service-completion process associated with each server forms an independent
equilibrium renewal process. The assumption is not too restrictive because we
plan to later focus on characterizing the long-run behavior on which initial
conditions have little impact.

MSHT scalings. For En, Dn, An, Bn, Qn and Xn, we define their correspond-
ing LLN-scaled versions

Ēn ≡
En
n
, D̄n ≡

Dn

n
, Ān ≡

An
n
, B̄n ≡

Bn
n
, Q̄n ≡

Qn
n
, X̄n ≡

Xn

n
(2.6)
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and CLT-scaled versions

Ên ≡
En − nE√

n
, D̂n ≡

Dn − nD√
n

, Ân ≡
An − nA√

n
,

B̂n ≡
Bn − nB√

n
, Q̂n ≡

Qn − nQ√
n

, X̂n ≡
Xn − nX√

n
. (2.7)

For PWT Vn and HWT Wn, we define their CLT-scaled version as

Ŵn ≡
√
n (Wn − w) and V̂n ≡

√
n (Vn − v). (2.8)

The centering terms E, D, A, B, Q, X, w and v are the fluid limits, which
will be given in §4.

3 Preliminaries

We now present some preliminary results which are the building blocks of
our analysis. In §3.1, we first provide convenient representations for prelimit
processes. Next, in §3.2 we define a class of stochastic integrals with respect
to Gaussian processes which will be used to analyze our FCLT limits.

3.1 Prelimit Processes

First define the LLN- and CLT-scaled sequential empirical processes

Ūn(t, x) ≡ 1

n

bntc∑
i=1

1(ξi ≤ x), t ≥ 0, 0 ≤ x ≤ 1,

Ûn(t, x) ≡
√
n
(
Ūn(t, x)− E

[
Ūn(t, x)

])
=

1√
n

bntc∑
i=1

(1(ξi ≤ x)− x) , (3.1)

where ξ1, ξ2, . . . are i.i.d. random variables uniformly distributed on [0, 1]. It

has been showed in [17] that Ûn ⇒ Û in DD ≡ D([0,∞);D([0, 1];R)), as

n → ∞, where the two-parameter process Û is the standard Kiefer process.
See [17], [29] and references therein for more details.

Enter-service process. Based on the sequential empirical process in (3.1),
we give a stochastic integral representation for En, the number of customers
entering service in the interval [0, t]. Let random variables 0 ≤ τn1 ≤ τn2 ≤ · · ·
denote the customers’ arrival times, and γ1, γ2, . . . denote the i.i.d. patience
times with cdf F .

En(t) ≡
Nn(t−Wn(t))∑

i=1

1(γi > Vn(τni −))

= n

∫ t−Wn(t)

0

∫ 1

0

1(y > F (Vn(s−))) dŪn(N̄n(s), y). (3.2)
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Fig. 1 Graphic demonstration of En(t).

Our new representation in (3.2) is more convenient than those in [25]; it
helps simplify the proofs (see §5 for details). To see why Equation (3.2) hold-
s: First, by the definition of Wn(t), all arrivals before time t − Wn(t) have
already entered service provided that they do not abandon; Next, the con-
dition γi > Vn(τni −) guarantees that customer i arriving time τni will not
abandon (because its patience time γi is bigger than its offered waiting time
wni = Vn(τni −). Here En(t) is the random measure counting the number of
points in the topleft shaded area in Figure 1. Following [17,29] we obtain the
equivalent stochastic integral representation in (3.2).

The process En(t) in (3.2) can be decomposed to the sum of three terms,

which can be quickly verified by the definitions of Ūn and Ûn (also see [29]).
Specifically,

En(t) ≡ En,1(t) + En,2(t) + En,3(t), (3.3)

where

En,1(t) ≡
√
n

∫ t−Wn(t)

0

F c(Vn(s−)) dN̂n(s), (3.4)

En,2(t) ≡
√
n

∫ t−Wn(t)

0

∫ 1

0

1(y > F (Vn(s−))) dÛn(N̄n(s), y), (3.5)

En,3(t) ≡ nλ
∫ t−Wn(t)

0

F c(Vn(s−)) ds. t ≥ 0. (3.6)

We remark that the decomposition (3.3) nicely separates the variability of the
nth system: Given the waiting times Vn and Wn, (3.4) captures the variability

in the arrival process through N̂n; (3.5) includes the variability in the aban-

donment times through Ûn; and (3.6) represent the average value of En. In



9

addition, the “−” in Vn(·) will disappear as n→∞, because both the FWLLN

limit v(s) and FCLT limit V̂ (s) are continuous in time s.

Queue-length process. Similar to En, the number of customer waiting in
line at time t can be represented as

Qn(t) =

Nn(t)∑
i=Nn(t−Wn(t))+1

1(γi + τni > t)

= n

∫ t

t−Wn(t)

∫ 1

0

1(y > F (t− s)) dŪn(N̄n(s), y). (3.7)

To wit, a customer i is waiting in queue at t if (i) it arrives after time t−Wn(t)
and its patience time γi > t− τni . See the shaded area on the right in Figure
1. Similarly to (3.2), (3.7) can be represented as the sum of three terms, i.e,

Qn(t) ≡ Qn,1(t) +Qn,2(t) +Qn,3(t), t ≥ 0,

where

Qn,1(t) ≡
√
n

∫ t

t−Wn(t)

F c(t− s) dN̂n(s), (3.8)

Qn,2(t) ≡
√
n

∫ t

t−Wn(t)

∫ 1

0

1(x > F (t− s)) dÛn(N̄n(s), x), (3.9)

Qn,3(t) ≡ nλ
∫ t

t−Wn(t)

F c(t− s) ds, t ≥ 0. (3.10)

3.2 Gaussian Integrals

Definition 3.1 (Hölder continuity) A real-valued function φ defined on
[a, b] is said to be Hölder continuous of order 0 < α < 1 if there is a constant
c such that

|φ(s)− φ(t)| ≤ c|s− t|α for all a < s < t < b.

Let Z(ω, t) be a Gaussian process with Hölder continuous sample paths for al-
most all ω ∈ Ω, zero mean, and covariance function CZ(s, t) ≡ Cov(Z(s), Z(t)).
We next consider the stochastic integral

L(ω, t) ≡
∫ t

0

J(t, u) dZ(ω, u), t ≥ 0, (3.11)

where J(t, u) is a deterministic two-parameter function which is differentiable
with respect to u. To make sure (3.11) is well defined and to be able to charac-
terize its distribution, we define a sequence of discrete version of (3.11), that
is, {L(m) : m ≥ 1}, where

L(m)(t) ≡
m−1∑
i=0

J(t, ui) (Z(ω, ui+1)− Z(ω, ui)) , t ≥ 0, (3.12)
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for a given partition on the interval [0, t], 0 = u0 < u1 < · · · < um = t.

Proposition 3.1 (A Gaussian integral) Suppose (Z(ω, t) : t ≥ 0) is a
centered Gaussian process on the interval [0, T ] with almost-surely Hölder-
continuous sample paths, and for each fixed t, the deterministic integrand
J(t, u) is continuously differentiable with respect to u. Then the stochastic
integral L(ω, t) in (3.11) is well defined and

L(ω, t) =

∫ t

0

J(t, u) dZ(ω, u)

= J(t, t)Z(ω, t)− J(t, 0)Z(ω, 0)−
∫ t

0

Z(ω, u)Ju(t, u) du (3.13)

where Ju(t, u) ≡ ∂J(t, u)/∂u, the equality holds almost surely, and the integral
on the right-hand side is understood as the Riemann-Stieltjes integral.
In addition, L(t) in (3.11) is a centered Gaussian process with the covariance
function

CL(t1, t2)

= J(t1, t1)J(t2, t2)CZ(t1, t2) + J(t1, 0)J(t2, 0)CZ(0, 0)− J(t2, t2)J(t1, 0)CZ(0, t2)

− J(t1, t1)J(t2, 0)CZ(0, t1)−
∫ t1

0

J(t2, t2)Js(t1, s)CZ(s, t2) ds

+

∫ t1

0

J(t2, 0)Js(t1, s)CZ(0, s) ds−
∫ t2

0

J(t1, t1)Js(t2, s)CZ(t1, s) ds

+

∫ t2

0

J(t1, 0)Js(t2, s)CZ(0, s) ds+

∫ t1

0

∫ t2

0

Js(t1, s)Jr(t2, r)CZ(s, r) dsdr

(3.14)

for 0 ≤ t1 < t2.

The proofs of Proposition 3.1 is given in the appendix.

4 Main Results

We present our FCLT results for the overloaded G/GI/n+GI model in §4.1;
we establish the process-level convergence of the CLT-scaled system functions.
In §4.2, we further characterize the distributions of the Gaussian FCLT limits
and give steady-state performance approximation formulas.

4.1 An FCLT for the G/GI/n+GI Queue and Gaussian Limits

We first give an FWLLN for the overloaded G/GI/n + GI model; we show
that the LLN-scaled processes in (2.6) converge to their fluid limits.



11

Theorem 4.1 (FWLLN for the overloaded G/GI/n+GI model) If all
assumptions in §2 hold, then as n→∞,

(W̄n, V̄n, D̄n, Ēn, B̄n, Q̄n, X̄n, N̄n, Ān)⇒ (w, v,D,E,B,Q,X,Λ,A) in D9

(4.1)

where B(t) = 1, Λ(t) = λt, w and v satisfy

w(t) =

∫ t

0

(
1− µ

λF c(w(u))

)
du, (4.2)

v(t) = w(t+ v(t)) and w(t) = v(t− w(t)), (4.3)

and D, E, Q, X and A are given by

D(t) = E(t) = µt, Q(t) = λ

∫ t

t−w(t)

F c(t− s) ds, X(t) = Q(t) + 1, (4.4)

and A(t) = Λ(t)− E(t)−Q(t).

The limiting fluid functions here are special cases of those of the more general
Gt/GI/st+GI model in [22]. We give the proof of Theorem 4.1 in the appendix;
the proof follows from the proofs in [23,25].

Next we establish an FCLT result showing that the CLT-scaled system
functions in (2.7) and (2.8) converge to their corresponding Gaussian FCLT
limits.

Theorem 4.2 (FCLT for the overloaded G/GI/n + GI model) If all
assumptions in §2 hold, as n→∞,

(Ŵn, V̂n, D̂n, Ên, B̂n, Q̂n, X̂n, N̂n, Ân)⇒ (Ŵ , V̂ , Ê, Ê, B̂, Q̂, Q̂, N̂ , Â) in D9

(4.5)

where B̂(t) = 0, and Â(t) = N̂(t)− Q̂(t)− Ê(t).

The FCLT limit for the enter-service process Ê(t) is a centered Gaussian
process with covariance

CE(s, t) ≡ Cov(Ê(s), Ê(t)) = E[S0(s)S0(t)]− µ2s t, s, t ≥ 0, (4.6)

where S0 is an equilibrium renewal process (ERP) with interrenewal cdf G and
the first renewal cdf Ge in (2.5).

The FCLT limit for the HWT Ŵ (t) uniquely solves the SDE

Ŵ (t) = − 1

F c(w(t))

∫ t

0

f(w(s)) Ŵ (s) ds+
1

λF c(w(t))
Ĝ(t), (4.7)

where w is given in (4.2), f is the pdf of F ,

Ĝ(t) ≡
∫ t

0

F c(w(s)) dN̂(s− w(s)) + Ba
(
λ

∫ t

0

F c(v(u))F (v(u)) du

)
− Ê(t)

=

∫ t

0

cλF
c(w(s))dBλ(Λ(s− w(s))) + Ba

(
λ

∫ t

0

F c(v(u))F (v(u)) du

)
− Ê(t),

(4.8)



12

with Ba being the standard Brownian motion independent of the processes N̂
and Ê.

The FCLT limit for the PWT satisfies

V̂ (t) =
Ŵ (t+ v(t))

1− ẇ(t+ v(t))
, t ≥ 0, (4.9)

where ẇ is the derivative of w.

The FCLT limit for the queue-length process is the sum of three terms, i.e.,

Q̂(t) ≡ Q̂1(t) + Q̂2(t) + Q̂3(t),

Q̂1(t) ≡
∫ t

t−w(t)

F c(t− s) dN̂(s) =

∫ t

t−w(t)

cλF
c(t− s) dBλ(Λ(s)),

Q̂2(t) ≡
∫ t

t−w(t)

∫ 1

0

1(x > F (t− s)) dÛ(λs, x)

d
=

∫ t

t−w(t)

√
F c(t− s))F (t− s) dBa (Λ(s))

d
= Ba

(∫ t

t−w(t)

F c(t− s)F (t− s)λ ds

)
,

Q̂3(t) ≡ λF c(w(t))Ŵ (t), (4.10)

where Û is a standard Kiefer process.

Remark 4.1 (Special case of M service) For the G/M/n+GI model having an
exponential service distribution, we remark that the FCLT limit of the enter-
server process is a Brownian motion, i.e., Ê(t) = Bs(µt), where Bs is an
independent standard BM, because S0 becomes a Poisson process with rate µ.
This is consistent with the SDE (1.1) and results in [25].

Remark 4.2 (Separation of variability) The process Ĝ in (4.8) is characterized
by three independent terms. The first term captures the variability of the arrival
process (as a function of N̂); the second term accounts for the randomness of
the patience times of customers waiting in queue; and the third term stems
from the variability of the service process (through Ê). Independence of the
three processes follows from mutual independence of arrivals, service times,
and patience times.

4.2 Characterizing the Distributions of the FCLT Limits

We now further characterize the distributions of the FCLT limits given in
Theorem 4.2. We first give a Gaussian-integral representation for the FCLT
limit for HWT Ŵ which is an integral of Ê. Because the covariance of Ê is
related to the covariance of an ERP (4.6), we first discuss how to compute the
variance and covariance for ERPs.
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Proposition 4.1 (Covariance of an equilibrium renewal process) Sup-
pose N0 is a stationary renewal counting process (having stationary increments
with N0(0) = 0) with interrenewal-time cdf G having pdf g and mean µ−1.
Then, for t < u,

Cov(N0(t), N0(u)) = Var(N0(t)) + Cov(N0(t), N0(u)−N0(t)), (4.11)

where

Var(N0(t)) = 2µ

∫ t

0

(M(s)− µs+ 0.5) ds = 2µ

∫ t

0

M(s) ds− µ2t2 + µt,

(4.12)

Cov(N0(t), N0(u)−N0(t))

= µ

∫ t

0

da

∫ u−t

0

db g(a+ b)[1 +M(t− a)][1 +M(u− t− b)]− µ2t(u− t),

(4.13)

where M(t) is the renewal function of the associated ordinary renewal process,
satisfying the renewal equation

M(t) = G(t) +

∫ t

0

M(t− x)g(x) dx. (4.14)

Proof The proof of (4.12) is given on p.57 of [6]. Also see Theorem 7.2.4 of [34].
(We point out that there is a mistake in the proof of Theorem 7.2.4 of [34] so
the covariance formulas there are incorrect. We give the correct versions here.)
For (4.13), consider the first renewal occurs after t; it falls at t + b with the
stationary-excess pdf ge(b) ≡ µGc(b). Conditional on that renewal being at
t+ b, the last renewal by t occurs at t−a with pdf g(a+ b)/Gc(b). Conditional
on the time of these two renewals at t− a and t+ b, we have

E[N0(t)(N0(u)−N0(t))]

=

∫ t

0

da

∫ u−t

0

dbE
[
N0(t)(N0(u)−N0(t))|SN(t) = t− a, SN(t)+1 = t+ b

]
µf(a+ b)

= µ

∫ t

0

da

∫ u−t

0

db [M(t− a) + 1][M(u− t− b) + 1]g(a+ b).

Because N0 is an ERP, E[N0(t)]E[(N0(u)−N0(t))] = (µt) · (µ(u− t)), which
yields (4.13).

To prove that the Gaussian integral is a well-defined stochastic integral, we
justify that the limit process Ê in (4.6) has almost surely Hölder continuous
sample paths.

Proposition 4.2 The FCLT limit for the enter-service process {Ê(t) : t ≥ 0}
is Hölder continuous for almost all ω ∈ Ω for some θ > 0.
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Proof Let Y (t) be a centered Gaussian process with covariance function φ(s, t) ≡
E[Y (s)Y (t)]. According to Corollary 25.6 of [32], we know that a sufficient con-
dition for Y (t) to be continuous is that φ should be locally Hölder continuous,
that is, for each N ∈ N there exists θ = θ(N) > 0 and C = C(N) such that,
for |s|, |t| ≤ N ,

|φ(s, t)− φ(t, t)| ≤ C|s− t|θ. (4.15)

We next validate the condition (4.15) for Ê(t). Combining (4.11) and (4.13),
we obtain for u > t

|φ(u, t)− φ(t, t)| = |Cov(Ê(t), Ê(u)− Ê(t))|

=

∣∣∣∣µ∫ t

0

da

∫ u−t

0

db g(a+ b)[1 +M(t− a)][1 +M(u− t− b)]− µ2t(u− t)
∣∣∣∣

where µ is the service rate and g is service-time pdf. Then for any 0 ≤ t <
u ≤ N and a ∈ [0, t], b ∈ [0, u− t],

φ(u, t)− φ(t, t) ≤ µ
∫ t

0

da

∫ u−t

0

dbg↑[1 +M(N)]2 + µ2t(u− t)

= µt(u− t)g↑[1 +M(N)]2 + µ2t(u− t)
≤
(
µNg↑[1 +M(N)]2 + µ2N

)
(u− t)

which satisfies the sufficient condition (4.15) after taking the absolute value

of both sides. Hence Ê has a version with continuous sample paths. Then,
by Kolmogorovs continuity theorem, we deduce that the version is Holder
continuous of some order θ > 0.

Having proved that the Gaussian process Ê has the desired sample-path
properties, we next provide a closed-form solution Ŵ to the SDE (4.7).

Corollary 4.1 (Gaussian integrals for Ŵ ) The FCLT limit for the HWT

Ŵ (t) ≡ Ŵ1(t) + Ŵ2(t) + Ŵ3(t)

=

∫ t

0

cλ
F c(w(u))H(t, u)

q(t, w(t))
dBλ(Λ(u− w(u)))

+

∫ t

0

√
λF c(v(u))F (v(u))H(t, u)

q(t, w(t))
dBa(u)−

∫ t

0

H(t, u)

q(t, w(t))
dÊ(u),

(4.16)

where the first term on the right-hand side defined in Lemma 5.1, the third
term is defined in §3.2; q(t, w(t)) = λF c(w(t)), and

H(t, u) ≡ e
∫ t
u
h(r) dr with h(r) ≡ −λf(w(r))

q(t, w(t))
= − f(w(r))

F c(w(t))
, 0 ≤ r ≤ t.

(4.17)
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Proof To verify (4.16) is indeed the unique strong solution to (4.7), we apply
Itô’s rule. Note that the non-Brownian integrals are Riemann-Stieltjes integrals
with deterministic integrands for almost all ω ∈ Ω. Moreover, the integrators
Bλ, Ba and Ê are all independent. Let q(t, w(t)) = λF c(w(t)), we rewrite (4.7)
as

Ŵ (t) = −
∫ t

0

λf(w(u))

q(u,w(u))
Ŵ (u) du+

∫ t

0

√
λF c(v(u))F (v(u))

(u,w(u))
dB(u)

−
∫ t

0

1

q(u,w(u))
dÊ(u) +

∫ t

0

cλ
F c(w(u))

q(u,w(u))
dBλ(Λ(u− w(u))), (4.18)

where the time-changed Brownian term in (4.7) is replaced with an equivalent
Itô integral. The uniqueness and existence of a solution to (4.18) immediately

follows from Itô theory because the last two terms of (4.18) do not involve Ŵ (t)
and are independent of the Brownian motion in the second term. Furthermore,
the last two integrals are Riemann-Stieltjes integrals for almost all ω ∈ Ω.
Consequently, we can use Itô’s formula to solve (4.18). In particular, using the
differential form, we have

dŴ (t) = h(t)Ŵ (t) dt+K1(t)dBa(t) +K2(t)dÊ(t) +K3(t) dBλ(t− w(t)),

which implies

d
(
e−

∫ t
0
h(r) drŴ (t)

)
= K̃1(t)dBa(t) + K̃2(t)dÊ(t) + K̃3(t) dBλ(t− w(t))

where H(t, 0) ≡ e−
∫ t
0
h(r) dr, K̃i(t) ≡ H(t, 0)Ki(t), i = 1, 2, 3,

K1(t) ≡
√
λF c(v(u))F (v(u))

(u,w(u))
, K2(t) ≡ − 1

q(u,w(u))
, K3(t) ≡ cλ

F c(w(u))

q(u,w(u))
,

Integrating both sides and multiplying through by H(t, 0) yields (4.16).

Covariance Formulas for the Gaussian Limits. Since all the FCLT lim-
its are Gaussian processes, it suffices to compute their means and covariances.
We next give closed-form covariance formulas for the FCLT limits Q̂, Ŵ and
X̂. Our covariance formulas are explicit functions of the covariance of Ê. The
proof of the next theorem is given in the appendix.

Theorem 4.3 (Further characterization of the FCLT limits) The

FCLT limits Ŵ , V̂ and Q̂ are all centered Gaussian processes with the covari-
ance functions

Cov(Ŵ (t), Ŵ (t′)) ≡ C
Ŵ

(t, t′) = C
Ŵ1

(t, t′) + C
Ŵ2

(t, t′) + C
Ŵ3

(t, t′)

Cov(V̂ (t), V̂ (t′)) ≡ CV̂ (t, t′) =
C
Ŵ

(t, t′)

(1− ẇ(t))(1− ẇ(t′))
,

Cov(Q̂(t), Q̂(t′)) ≡ CQ̂(t, t′) = CQ̂1
(t, t′) + CQ̂2

(t, t′) + CQ̂3
(t, t′),
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for t, t′ ≥ 0 where

C
Ŵ1

(t, t′) = λc2λ

∫ t∧t′

0

F c(w(u))2H(t, u)2

q(u,w(u))2
(1− ẇ(u)) du,

C
Ŵ2

(t, t′) = λ

∫ t∧t′

0

F c(v(u))F (v(u))H(t, u)2

q(u,w(u))2
du,

C
Ŵ3

(t, t′) = CÊ(t, t′)−
∫ t′

0

Ju(t′, u)CÊ(u, t)du−
∫ t

0

Ju(t, u)CÊ(u, t′)du

+

∫ t

0

∫ t′

0

Ju(t, u)Ju(t′, v)CÊ(u, v)dvdu,

CQ̂1
(t, t′) = λc2λ

∫ t∧t′

(t−w(t))∨(t′−w(t′))

F c(t− s)F c(t′ − s)ds,

CQ̂2
(t, t′) = λ

∫ t∧t′

(t−w(t))∨(t′−w(t′))

F (t ∧ t′ − s)F c(t ∨ t′ − s)ds,

CQ̂3
(t, t′) = λ2 F c(w(t))F c(w(t′))C

Ŵ
(t, t′) (4.19)

with CÊ(u, v) ≡ Cov(Ê(u), Ê(v)) is the covariance function for Ê in (4.6),
J(t, u) ≡ H(t, u)/q(u,w(u)), H(t, u) and q(u,w(u)) are as in (4.17), and

Ju(t, u) ≡ ∂J(t, u)

∂u
= −h(u)H(t, u)

q(u,w(u))
− q(u,w(u))H(t, u)

q(u,w(u))2

=
(1− ẇ(u))hF (w(u))e−

∫ t
u
(1−ẇ(s))hF (w(s)) ds

λF c(w(u))

+
f(w(u))e−

∫ t
u
(1−ẇ(s))hF (w(s)) ds

λF c(w(u))2
. (4.20)

4.3 Steady-State Distributions of the FCLT Limits

We now characterize the steady-state distributions of the FCLT limits as
t → ∞. In particular, we show that the steady state of the FCLT limits
are centered Gaussian random variables and we compute their variances to
fully characterize their distributions. Consequently, we obtain approximations
for the long-run performance of the nth queueing system, i.e.,

Qn(∞) ≈ nQ(∞) +
√
nQ̂(∞), Wn(∞) ≈ w(∞) +

1√
n
Ŵ (∞), (4.21)

where Q(∞) and w(∞) are the steady states of the fluid functions in Theorem

4.1, Q̂(∞) and Ŵ (∞) are the steady states of Q̂(t) and Ŵ (t). A more rigorous
argument to support (4.21) involves the validation of the interchange of the
two limits “n →∞” and “t →∞”. However, this is beyond the scope of this
paper.
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Fig. 2 Extension of Ê on (−∞, 0].

First, Theorem 3.1 of [36] and Theorem 4.1 of [22] show that the overloaded
fluid queueing system has the following steady state functions:

w ≡ w(∞) = F−1
(

1− 1

ρ

)
, v ≡ v(∞) = w, q(t, w(t)) = λF c(w) and

Q ≡ Q(∞) = λ

∫ w

0

F c(x)dx. (4.22)

Next, we characterize the steady state of the FCLT limits in Theorem 4.2
by letting t → ∞. We first obtain the variance for Ŵ (∞) which is necessary

for V̂ (∞) and Q̂(∞).

The convergence, as t→∞, of the variance function of Ŵi(t) in Theorem

4.3 is straightforward for i = 1, 2. However, the treatment of Ŵ3(t) is not

straightforward because the covariance formula for Ŵ3(t) in (4.19) involves
several integrals; the negative term in (4.19) goes to −∞ and the positive

term goes to ∞ as t→∞ (because Var(Ê(t)) = CÊ(t, t)→∞ as t→∞).
To derive convenient steady-state formulas, we propose a technique which

extends the Gaussian limit Ê given in Theorem 4.2 to the interval (−∞, 0].

Specifically, we define another Gaussian process Ẽ in Lemma 4.1 that can be
understood as a two-sided extension of Ê to the negative half line to resolve
this issue (see Figure 2). We imagine the stationary FCLT limit is associated
with a queueing system starting from the infinity past (which is in steady state
at time 0).

The proof of Lemma 4.1 is given in the appendix.

Lemma 4.1 (Extending Ê to the negative half line) There exists a Gaussian

process {Ẽ(t) : −∞ < t ≤ 0} such that (i) Ẽ(0) = 0; (ii) E[Ẽ(t)] = 0 for all
−∞ < t ≤ 0; and (iii) the covariance function

Cov
(
Ẽ(−x), Ẽ(−y)

)
= C̃(−x,−y) ≡ CÊ(x ∨ y, x ∨ y)− CÊ(x ∨ y, |x− y|)

(4.23)

for x ≥ 0, y ≥ 0, with CÊ being the covariance function in (4.6). In addition,

Ẽ has the same stationary increment distribution as Ê. In particular, for any
t > 0,

{Ẽ(s− t)− Ẽ(−t) : 0 ≤ s ≤ t} d
= {Ê(s) : 0 ≤ s ≤ t}. (4.24)

Using the extended version Ẽ, we next obtain a more convenient expression
for Var(Ŵ3(t)) in Theorem 4.4. The proof of Theorem 4.4 is in the appendix.
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Theorem 4.4 (Steady state of the FCLT limits) The steady-state ver-

sions Ŵ (∞), V̂ (∞) and Q̂(∞) for the FCLT limits of Ŵ (t), V̂ (t) and Q̂(t)
are Gaussian random variables with means 0 and variances

σ2
W ≡ Var(Ŵ (∞)) = Var(V̂ (∞))

≡ c2λ
2hF (w)λ

+
F (w)

2λf(w)
+ 2

hF (w)2

λ2F c(w)2

∫ ∞
0

∫ x

0

e−hF (w)(x+y)C̃(−x,−y) dydx

(4.25)

σ2
Q ≡ Var(Q̂(∞)) ≡ λc2λ

∫ w

0

F c(u)2du+ λ

∫ w

0

F (u)F c(u) du+ λ2F c(w)2σ2
W ,

(4.26)

where C̃(−x,−y) is as in (4.23), and w is the steady-state fluid HOL waiting
time given in (4.22).

We next show that our formulas degenerate to special cases of M service.
The proof of Corollary 4.2 is in the appendix.

Corollary 4.2 (The M service special cases)

(i) For the G/M/n+GI queue having exponential service times, steady-state

variances of Ŵ and Q̂ reduce to

σ2
W =

(c2λ − 1) + 2ρ

2λhF (w)
and

σ2
Q = λ

∫ w

0

(
(c2λ − 1)F c(u) + 1

)
F c(u)du+ λ2F c(w)2

(c2λ − 1) + 2ρ

2λhF (w)
.

(4.27)

(ii) For the fully Markovian M/M/n + M queue, the steady-state variance of

Ŵ and Q̂ reduce to

σ2
W =

1

µθ
and σ2

Q =
λ

θ
, (4.28)

where θ > 0 is the abandonment rate (1/θ is the mean abandonment time).

5 Proofs

The proof of Theorem 4.1 is similar to [25] and is given in §B.1. We hereby
prove Theorem 4.2. All other results are given in the appendix. To prove
Theorem 4.2, we first prove the FCLT for Ŵn (§5.1). Given the FCLT for Ŵn,
we establish FCLTs for the other processes in §5.2.

Remark 5.1 (Extending to nonstationary arrivals) Although both Theorem
4.1 and Theorem 4.2 are stated under the assumption of stationary arrivals
with Λ(t) = λt, our proof can be easily generalized to the case of nonstationary
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arrivals with a time-varying arrival rate λ(t), as long as the system is asymp-
totically overloaded. Because real service systems (such as health care) are
often overloaded with time-varying arrivals, the more general FCLT result-
s with time-varying arrivals may stimulate future research (e.g., conducting
transient analysis and controls).

5.1 FCLT for HWT

It might be possible to prove the FCLT for Ŵn using the standard com-
pactness approach: (i) tightness (which implies that every subsequence has
a further convergent subsubsequence); and (ii) uniqueness of the limit of ev-
ery convergent subsequence [13,12,25,29]. But that approach would involve a
complicated treatment of tightness. For example, see [25,29] for details (the
tightness proofs for the CLT-scaled processes there are somewhat tricky and
lengthy). We hereby adopt a new approach: (i) we show that the prelimit Ŵn

satisfies an SDE indexed by n; (ii) using the prelimit SDE, we establish the

full convergence Ŵn ⇒ Ŵ using the continuous mapping theorem, martingale
convergence theorem and Gronwall’s inequality. We show that the limit pro-
cess Ŵ uniquely solves the SDE in (4.7), which generalizes the SDE given in
(6.64) of [25]. The extension from M service to GI service replaces the Brown-
ian motion Bs therein by a centered Gaussian process. Our new approach has
two advantages: First, it is simpler (because it nicely avoids having to prove
the tightness in space D); Second, this method may be used to treat other
processes and models in future research.

5.1.1 Overview of the proof.

The FCLT of Ŵn draws heavily on the careful analysis of Ên and its conver-
gence as n → ∞. To wit, the HWT Wn ought to increase (decrease) if the
flow-into-service En is big (small); and the variability of HWT (represented

by Ŵn) largely depends on the variability of En (i.e., Ên). On the one hand,

we will prove that Ên converges to a Gaussian process Ê by taking advantage
of the structure of the superposition of many ERPs.

On the other hand, according to the decomposition of En(t) given in (3.3)-
(3.6), we write

Ên(t) =
1√
n
En,1(t) +

1√
n
En,2(t) +

1√
n

(En,3(t)− nE3(t))

≡ Ên,1(t) + Ên,2(t) + Ên,3(t). (5.1)

We establish the convergence of Ên,1 and Ên,2 separately; and we express the

third term Ên,3 as a function of the desired Ŵn. This will result in an SDE

for Ŵn (This is our key step). To establish the convergence of the right-hand
side of (5.1), we will show their joint convergence and apply the continu-
ous mapping theorem with addition. We know that joint convergence of two
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random elements is equivalent to the individual convergence of both terms if
they are independent. Even though Ên,1, Ên,2 and Ên,3 are not independent,
because they all involve the arrival-time sequence τni , HWT Wn and PWT
Vn, or equivalently Nn, Wn and Vn, they are conditionally independent given(
N̄n,Wn, Vn

)
. Hence, in order to treat the three terms separately we can con-

dition upon (N̄n,Wn, Vn) (which converges according to the FWLLN result)
and then uncondition. See Lemma 4.1 of [2] for a reference, which is a variant
of Theorem 7.6 of [30].

Lemma 5.1 (Convergence of the first and second terms in (5.1)) As
n→∞,

Ên,1(t)⇒ Ê1(t) ≡
∫ t−w(t)

0

cλF
c(v(u)) dBλ(Λ(u))

=

∫ t

0

cλF
c(w(s)) dBλ(Λ(s− w(s))), (5.2)

Ên,2(t)⇒ Ê2(t) ≡
∫ t−w(t)

0

∫ 1

0

1(y > F (v(s))) dÛ(Λ(s), y)

d
=

∫ t−w(t)

0

√
F c(v(u))F (v(u)) dBa (Λ(u))

d
= Ba

(∫ t−w(t)

0

F c(v(u))F (v(u))λ du

)

= Ba
(∫ t

0

F c(w(s))F (w(s)) (1− ẇ(s))λ ds

)
. (5.3)

The first convergence result (5.2) is established using the continuous mapping
approach; the second (5.3) is proved using the martingale convergence theorem.
The detailed proofs are given in §C of the appendix.

5.1.2 Treating the third term in (5.1).

According to the FWLLN results, we have Ēn,i(t) ≡ (1/n)En,i(t) ⇒ 0 for
i = 1, 2, and

Ēn,3(t) ≡ 1

n
En,3(t)⇒ E(t) = E3(t) ≡

∫ t−w(t)

0

F c(v(s)) dΛ(s) as n→∞.

(5.4)
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Following (3.6) and (5.4), we have

En,3(t)− nE3(t)

= n

∫ t−Wn(t)

0

F c(Vn(s−)) dΛ(s)− n
∫ t−w(t)

0

F c(Vn(s−)) dΛ(s)

+ n

∫ t−w(t)

0

[F c(Vn(s−))− F c(v(s−))] dΛ(s)

= n

∫ t−Wn(t)

t−w(t)

F c(Vn(s−)) dΛ(s) + n

∫ t−w(t)

0

[F c(Vn(s−))− F c(v(s−))] dΛ(s)

= −
√
nF c(θ1,n(t))λŴn(t)−

√
n

∫ t−w(t)

0

f(θ2,n(s))V̂n(s−) dΛ(s) + o(
√
n)

= −
√
nF c(θ1,n(t))λŴn(t)−

√
n

∫ t−w(t)

0

f(θ2,n(s))V̂n(s) dΛ(s) + o(
√
n)

(5.5)

where f is the PDF of F , the last equality holds because v(s−) = v(s) and
|Vn(s)− Vn(s−)| = O(1/n) (note there are n busy servers), θ1,n(t) and θ2,n(t)
satisfy

Vn(t−Wn(t)) ∧ Vn(t− w(t)) ≤ θ1,n(t) ≤ Vn(t−Wn(t)) ∨ Vn(t− w(t)),
(5.6)

Vn(t) ∧ v(t) ≤ θ2,n(t) ≤ Vn(t) ∨ v(t). (5.7)

From Lemma 5.1 and (5.5), we have

En(t) =
√
nÊn,1(t) +

√
nÊn,2(t) + (En,3(t)− nE3(t)) + nE3(t)

=
√
n

∫ t

0

cλF
c(w(s)) dBλ(Λ(s− w(s)))

+
√
nBa

(∫ t

0

F c(v(u))F (v(u)) dΛ(u)

)
−
√
nF c(θ1,n(t))λŴn(t)

−
√
n

∫ t−w(t)

0

f(θ2,n(s))V̂n(s) dΛ(s) + nE3(t) + o(
√
n). (5.8)

Deriving an SDE for Ŵn. We observe that the desired Ŵn now appears in
(5.8). To derive an SDE for Ŵn, it remains to relate the PWT V̂n in (5.7) to

Ŵn. Let ∆Vn(t) ≡ Vn(t) − v(t) and ∆Wn(t) ≡ Wn(t) − w(t) where w(t) and
v(t) are as the fluid limits given in Theorem 4.1. Using (2.4) we write

∆Vn(t) = ∆Wn(t+ Vn(t) +O(1/n)) + w(t+ Vn(t))− w(t+ v(t)) +O(1/n)

= ∆Wn(t+ Vn(t) +O(1/n)) + ẇ(t+ v(t))∆Vn(t) +O(1/n),

where the last equality holds because

w(t+ Vn(t)) = w(t+ v(t)) + ẇ(t+ v(t))∆Vn(t) +
1

2
ẅ(t+ v(t))∆V 2

n (t) + o(∆V 2
n (t)),
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and ẅ(t) ≡ d2w(t)/dt2 which exists by (4.2) and the smoothness of F . As
∆Vn(t) = O(1/

√
n), we have w(t+Vn(t))−w(t+ v(t)) = ẇ(t+ v(t))∆Vn(t) +

O(1/n). This implies

∆Vn(t) =
∆Wn(t+ Vn(t) +O(1/n))

1− ẇ(t+ v(t))
+ o(∆Vn(t)) +O(1/n),

which implies that

sup
0≤t≤T

∣∣∣∣∣V̂n(t)− Ŵn(t+ v(t))

1− ẇ(t+ v(t))

∣∣∣∣∣ =
√
n o(1/n) = o(1/

√
n), (5.9)

Note that o(∆Vn(t)) = o(1/n) since ∆Vn(t) is of O(1/n). This provides a

formula to switch between the two waiting times V̂n(t) and Ŵn(t).
Applying the change-of-variable formula (5.9), the last integral in (5.8)

becomes

√
n

∫ t−w(t)

0

f(θ2,n(s))V̂n(s) dΛ(s)

=
√
n

∫ t−w(t)

0

f(θ2,n(s))

(
Ŵn(s+ v(s))

1− ẇ(s+ v(s))

)
dΛ(s) + o(1)

=
√
n

∫ t

0

f(θ3,n(u))

(
Ŵn(u)

1− ẇ(u)

)
(1− ẇ(u))λ du+ o(1)

=
√
n

∫ t

0

f(θ3,n(u)) Ŵn(u)λ du+ o(1), (5.10)

where the second equality holds by applying the second formula in (4.3) and
a change of variable u ≡ s + v(s). To wit, first, the second equality in (4.3)
implies that t−w(t)+v(t−w(t)) = t−w(t)+w(t) = t; second, the first equality
in (4.3) implies that w(u) = w(s+v(s)) = v(s), so that s = u−v(s) = u−w(u)
and ds = (1− ẇ(u))du. Here θ3,n(t) satisfies

Vn(t− w(t)) ∧ v(t− w(t)) ≤ θ3,n(t) ≤ Vn(t− w(t)) ∨ v(t− w(t)). (5.11)

FCLT limits for Ên. Label all servers from 1 to n. Let Dj(t) count the num-
ber of service completions at server j by time t, 1 ≤ j ≤ n. Because the system
operates in the ED regime with ρ > 1, all servers will be busy at all times
with probability 1 as n→∞. Hence, the total number of service completions
in [0, t] is given by Dn(t) =

∑n
j=1Dj(t) for t ≥ 0, where D1(t), D2(t), . . . are

I.I.D. ERPs. (That is, Dn is asymptotically equivalent to the superposition of

n ERPs.) By Theorem 2 of [33], we have (Ên, D̂n)⇒ (Ê, Ê) as n→∞, where

the limiting Gaussian process Ê is given by (4.6). Hence, we can write

En(t) = nE(t) +
√
nÊ(t) + o(

√
n). (5.12)
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Combining (5.10), (5.8) and (5.12) yields an SDE

Ŵn(t) = − 1

F c(θ1,n(t))

∫ t

0

f(θ3,n(s)) Ŵn(s) ds+
1

F c(θ1,n(t))λ
Ĝ(t) + o(1)

(5.13)

where

Ĝ(t) ≡
∫ t

0

cλF
c(w(s)) dBλ(Λ(s− w(s))) + Ba

(∫ t

0

F c(v(u))F (v(u)) dΛ(u)

)
− Ê(t).

To complete the proof of the FCLT for Ŵn, we first revise (5.13) to obtain a

much neater SDE for Ŵn. To do so, we apply Gronwall’s inequality below.

Lemma 5.2 (Gronwall’s Inequality) Consider measurable functions f, h ≥
0 : [0, T ]→ [0,∞) and a locally-finite nonnegative measure µ on [0, T ]. If

f(t) ≤ h(t) +

∫ t

0

f(u)µ(u)du with

∫ T

0

h(u)µ(u)du <∞,

then

f(t) ≤ h(t) +

∫ t

0

h(u)e(
∫ t
u
µ(r) dr)µ(u)du. (5.14)

See [26] for a reference.We first apply Gronwall’s inequality to show that Ŵn

is stochastically bounded. The SDE (5.13) implies that∣∣∣Ŵn(t)
∣∣∣ ≤ 1

F c(θ1,n(t))

∫ t

0

f(θ3,n(s)) |Ŵn(s)| ds+
1

F c(θ1,n(t))λ
|Ĝ(t)|+ o(1)

(5.15)

Applying Gronwall’s inequality (5.14) to (5.15) with

f(t) =
∣∣∣Ŵn(t)

∣∣∣ , h(t) =
|Ĝ(t)|

λF c(θ1,n(t))
+ o(1), µ(u) =

f(θ3,n(u))

F c(θ1,n(t))

leads to∣∣∣Ŵn(t)
∣∣∣ ≤ |Ĝ(t)|

λF c(θ1,n(t))
+

∫ t

0

|Ĝ(u)|
λF c(θ1,n(u))

e
∫ t
u

f(θ3,n(r))

Fc(θ1,n(u))
dr f(θ3,n(u))

F c(θ1,n(t))
du+ o(1)

≤ |Ĝ(t)|
λF c(θ1,n(t))

+
e

t
Fc(θ1,n(t))

F c(θ1,n(t))

∫ t

0

|Ĝ(u)|f(θ3,n(u))

λF c(θ1,n(u))
du+ o(1).

Hence, the stochastic boundedness of Ŵn follows from the stochastic bound-
edness of Ĝn.

Inequalities (5.7) and (5.11) imply that

θ1,n(t) = v(t− w(t)) + o(1) = w(t) + o(1) and

θ3,n(t) = v(t− w(t)) + o(1) = w(t) + o(1), (5.16)
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where the second and last equality follows from (4.3). Replacing θ1,n(t) and
θ3,n(t) by w(t) in the SDE (5.13) yields much cleaner SDE

Ŵn(t) = − 1

F c(w(t))

∫ t

0

f(w(s)) Ŵn(s) ds+
1

F c(w(t))λ
Ĝ(t) + o(1). (5.17)

Note that the stochastic boundedness of Ŵn plays a key role here because it
keeps the errors caused by the approximations in (5.16) under control.

Remark 5.2 (Formulas for time-varying arrival rate λ(t)) If the arrival rate
λ(t) is a time-varying function, then the SDEs (5.13) and (5.17) generalize to

Ŵn(t) = − 1

g̃n(t)

∫ t

0

f(θ3,n(s)) Ŵn(s)λ(s− w(s)) ds+
1

g̃n(t)
Ĝ(t) + o(1)

= − 1

F c(w(t))λ(t− w(t))

∫ t

0

f(w(s)) Ŵn(s)λ(s− w(s)) ds

+
1

F c(w(t))λ(t− w(t))
Ĝ(t) + o(1).

where g̃n(t) ≡ F c(θ1,n(t))λ(t− w(t)).

Finishing the proof of the FCLT of Ŵn. In order to show that Ŵn ⇒ Ŵ
where Ŵ satisfies the SDE (4.7), we match both sides of the two SDEs (5.17)
and (4.7):∣∣∣Ŵn(t)− Ŵ (t)

∣∣∣ ≤ 1

F c(w(t))

∫ t

0

f(w(s)) |Ŵn(s)− Ŵ (s)| ds+ o(1)

≡
∫ t

0

|Ŵn(s)− Ŵ (s)| µ̃(s) ds+ o(1),

with µ̃(s) = f(w(s))/F c(w(t)). Applying Gronwall’s inequality (5.14) once
again with

f(t) =
∣∣∣Ŵn(t)− Ŵ (t)

∣∣∣ and h(t) = o(1),

yields that∣∣∣Ŵn(t)− Ŵ (t)
∣∣∣ ≤ e ∫ t

0 f(w(s))ds

Fc(w(t))

∫ t

0

o(1)
f(w(u))

F c(w(t))
du+ o(1),

which implies that
∥∥∥Ŵn − Ŵ

∥∥∥
T
⇒ 0 as n→∞.

Remark 5.3 (If we were to take the compactness approach) The key step in our
new approach is the development of the convenient SDEs (5.13) and (5.17).
We remark that our new SDE representation will provide a simple proof even
if we were to take the conventional compactness approach. The first step of
the compactness approach requires tightness of Ŵn, which can be shown by
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establishing (i) that Ŵn is stochastically bounded (already shown here) and

(ii) that Ŵn has controlled modulus of continuity (see [34] for the necessary
and sufficient condition for tightness in D). However, our new SDE (5.17)
provides a simple proof for step (ii). Indeed, with the integral representation

(5.17) for Ŵn, the stochastic boundedness can be used to control the modulus
of continuity, that is, we can show that

∣∣∣Ŵn(t+ δ)− Ŵn(t)
∣∣∣ ≤ C(t)

∫ t+δ

t

f(w(s))
∣∣∣Ŵ (s)

∣∣∣ ds+ o(1),

for some finite C(t). The stochastic boundedness of Ŵn implies that∣∣∣Ŵn(t+ δ)− Ŵn(t)
∣∣∣ is asymptotically bounded by C̃δ for some C̃ <∞ for all

0 ≤ t ≤ T , which concludes the C-tightness for Ŵ .

Next, given tightness for Ŵn, we assume that there exists a convergent
subsequence Ŵnk . We can easily use SDE (5.17) to show that the subsequence

Ŵnk converges to some Ŵ ∗ which solves the SDE (4.7).

5.2 FCLT for Other Processes

Then (N̂n, D̂n, Ên, Ŵn) ⇒ (N̂ , Ê, Ê, Ŵ ) follows from convergence-together
theorem (see Theorem 11.4.7. of [34]) and the continuous mapping theorem.

Having established Ŵn ⇒ Ŵ , we immediately have V̂n ⇒ V̂ with

V̂ (t) =
Ŵ (t+ v(t))

1− ẇ(t+ v(t))
,

following (5.9).

We next prove the FCLT for the queue-length process Q̂n based on the
FCLT for Ŵn and the continuous mapping theorem. First, FWLLN implies
that

Q1(t) = Q2(t) = 0, Q3(t) =

∫ t−w(t)

0

F c(t− s)λ ds.
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Following (3.8)-(3.10), as n→∞,

Q̂n,1(t) ≡ 1√
n
Qn,1(t)⇒ Q̂1(t) ≡

∫ t

t−w(t)

cλF
c(t− s) dBλ(Λ(s)), (5.18)

Q̂n,2(t) ≡ 1√
n
Qn,2(t)

⇒ Q̂2(t) ≡
∫ t

t−w(t)

∫ 1

0

1(x > F (t− s)) dÛ(Λ(s), x)

d
=

∫ t

t−w(t)

√
F c(t− s))F (t− s) dBa (Λ(s))

d
= Ba

(∫ t

t−w(t)

F c(t− s)F (t− s)λ ds

)
= Ba

(∫ w(t)

0

F c(u)F (u)λ du

)
,

(5.19)

Q̂n,3(t) ≡ 1√
n

(Qn,3(t)− nQ3(t)) =
√
n

∫ t−w(t)

t−Wn(t)

F c(t− s)λ ds

= Ŵn(t)F c(w(t))λ+ o(1)⇒ Q̂3(t) ≡ Ŵ (t)F c(w(t))λ. (5.20)

Here the proofs for convergence in (5.18) and (5.19) are similar to the proofs of

Lemma 5.1. Note that Q̂3 in (5.20) involves Ŵ given in (4.16), which involves

stochastic integrals with respect to Bλ and Ê, and the Kiefer integral of Û
(or Brownian motion Ba). A careful analysis reveals that the Kiefer integral

of Ê2 in Lemma 5.1 involves Û in the time interval [0, t − w(t)] while Q̂2 in

(5.19) involves Û in [t−w(t), t]. So Q̂2 and Q̂3 are independent because a Kiefer
process has independent increments with respect to the first (time) component.

Similarly, because Ê1 in Lemma 1 involves Bλ in [0, t−w(t)] while Q̂1 in (5.18)

involves Bλ in [t−w(t), t], Q̂1 and Q̂3 are independent. In summary, all three

terms Q̂1, Q̂2 and Q̂3 are independent.

The above analysis enables us to obtain an alternative representation for
Q̂ by regrouping the integrals, writing Q̂ as a sum of three new independent
integrals:

Q̂(t) =

∫ t

0

Kλ(t, u) dBλ(Λ(u)) +

∫ t

0

Ka(t, u) dBa(u) +

∫ t

0

Ks(t, u) dÊ(u),

where the integrands Kλ(t, u), Ka(t, u) and Ks(t, u) are analytic functions,
with Kλ(t, u) and Ka(t, u) being piecewise functions (having different forms
for 0 ≤ u ≤ t − w(t) and t − w(t) ≤ u ≤ t). This alternative formula nicely
separates the variabilities in the arrival process (through Bλ), abandonment

times (through Ba or Û) and service times (through Ê).
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6 Refined Staffing Levels

In this section, we consider a refined staffing function given by

sn ≡ dns1 +
√
ns2e where s1, s2 > 0. (6.1)

The refined staffing function in (6.1) is closely related to the staffing functions
introduced in [28]. The general form of (6.1) enables us to recover two of
the staffing functions considered in [28] that respectively lead to the ED and
ED+QED operating regimes. More specifically, the two staffing functions in
[28] are given by

nED = d(1− γ)Rne, (6.2)

nED+QED = d(1− γ)Rn + δ
√
Rne (6.3)

where 0 < γ < 1 and Rn is the offered load defined as Rn = nλ/µ. Letting
s1 = (1− γ)λ/µ and s2 = 0 yields (6.2) whereas letting s1 = (1− γ)λ/µ and
s2 = δ

√
λ/µ yields (6.3). Also see [20] and §10 in [25] for time-varying versions

of the refined staffing (6.1).
We next briefly discuss the changes resulting from considering the staffing

function sn instead of n. In the previous sections, the staffing function happens
to coincide with our scaling factor n, i.e., sn = n. In this section, we let n
and

√
n be the scaling factors for FWLLN and FCLT, respectively, and let

the staffing function have a more general form sn = dns1 +
√
ns2e where

s1, s2 > 0. To indicate the processes associated with the new staffing function,
we use superscript r, whereas, to indicate the processes associated the case
where sn = n, we use notations without a superscript. Because the arrival
process is independent of the staffing level, it holds that N̂r

n(t) = N̂n(t) for

all n ≥ 1 and t ≥ 0, and hence, N̂r(t) = N̂(t). The FWLLN limit and the
FCLT limit for the service-completion process, on the other hand, becomes
Dr(t) = s1D(t), and D̂r(t) =

√
s1D̂(t) + s2D(t), respectively, where D̂(t)

is a centered Gaussian process with covariance function CE in Theorem 4.2,
and D(t) = µt as in (4.4). Hence D̂r(t) is a Gaussian process with covariance
function Cr(·, ·) = s1CE(·, ·) and mean s2µt. Consequently, the enter-service

process satisfies Êr(t) =
√
s1D̂(t) + s2µt.

The following theorem is an analogue of Theorems 4.1 and 4.2 for the
G/GI/n + GI model having the refined staffing function sn in (6.1). The
proof is given in the appendix.

Theorem 6.1 (FWLLN and FCLT with refined staffing) Consider the
G/GI/n+GI with staffing level sn given by (6.1) and ρr = λ/µs1 > 1.

(i) Under the conditions of Theorem 4.1, an analogue of joint convergence
in (4.1) holds as n→∞ where Λr(t) = λt,

Dr(t) = Er(t) = s1µt, wr(t) =

∫ t

0

(
1− s1µ

λF c(wr(u))

)
du,

vr(t) = wr(t+ vr(t)). (6.4)
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The limits Qr(t), Xr(t) and Ar(t) have the same mathematical form as their
counterparts in Theorem 4.1 with modified components.

(ii) Under the conditions of Theorem 4.1, an analogue of joint convergence
in (4.5) holds as n→∞ where

Ŵ r(t) =

∫ t

0

F c(wr(u))Hr(t, u)

q(t, wr(t))
cλ dBλ(Λ(u− wr(u)))

+

∫ t

0

√
λF c(vr(u))F (vr(u))Hr(t, u)

q(t, wr(t))
dBa(u)

−
√
s1

∫ t

0

Hr(t, u)

q(t, wr(t))
dÊ(u)− s2µ

∫ t

0

Hr(t, u)

q(t, wr(t))
du, (6.5)

wr(t) and vr(t) are as in (6.4), Hr(·, ·) and q(·, wr(·)) as in (4.17) with w(t)

replaced by wr(t). The virtual waiting time V̂ r(t) and the queue-length process

Q̂r(t) have the same mathematical forms as in (4.9) and (4.10), respectively,

with w(t), v(t) and Ŵ (t) replaced by their counterparts wr(t), vr(t) and Ŵ r(t).

The FCLT limit for the abandonment process is Âr(t) = N̂(t)− Q̂r(t)− Êr(t).

Note that (6.5) is different than (4.16) in that the third term on the right-hand
side is scaled by

√
s1 and that there is an additional deterministic term. This

implies that both the variance and mean of HWT change and so do those
of the PWT and queue length. The corresponding steady-state formulas are
given in the following corollary.

Corollary 6.1 (Steady state of limits with refined staffing) Under the
assumptions of Theorem 4.4 the steady-state random variables Ŵ r(∞), V̂ r(∞)
and Q̂r(∞) have Gaussian distributions with means

µW r ≡ E
[
Ŵ r(∞)

]
= E

[
V̂ r(∞)

]
= − s2µ

λf(wr)
,

E
[
Q̂r(∞)

]
= λF c(wr)E

[
Ŵ r(∞)

]
= − s2µ

hF (wr)
,

and variances

Var(Ŵ r(∞)) = Var(V̂ r(∞)) ≡ σ2
W r ≡

c2λ
2hF (wr)λ

+
F (wr)

2λf(wr)
+ s1σ

2
W r

3
,

where

σ2
W r

3
≡ 2

hF (wr)2

λ2F c(wr)2

∫ ∞
0

∫ x

0

e−hF (wr)(x+y)C̃(−x,−y) dydx,

the covariance function C̃(−x,−y) is as in (4.23), and wr = F−1(1 − 1/ρr).

The variance of the steady-state queue length Q̂(∞) has the same mathematical

form with w and Ŵ replaced by wr and Ŵ r.
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Remark 6.1 (Optimal staffing problems) Heavy-traffic FWLLN and FCLT lim-
its have been proven useful in solving optimal staffing problems with respect to
service-level constraints in large scale service systems [3,28]. A general frame-
work of this type of approaches has two steps: First, a corresponding optimal
staffing problem is formulated and solved using analytic FWLLN or FCLT
limits (which are often more convenient than their corresponding stochastic
versions); Next, an asymptotic optimality result is established by showing that
the FWLLN- or FCLT-based optimal staffing problem is asymptotically equiv-
alent to its desired stochastic version as the scale n → ∞. We advocate that
our new FCLT limit with refined staffing functions provides a basis for solving
optimal staffing problems in the G/GI/n + GI queueing systems (note that
two control factors s1 and s2 for the staffing function are preserved in the lim-
it). For example, in the FCLT-based optimal staffing problem, we may choose
the optimal s∗1 and s∗2 in order to minimize certain performance functions,
e.g., the mean waiting time, queue length, or abandonment probability, see
the formulation in [3]. We leave this to future research.
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APPENDIX

This appendix provides additional proofs for results in the main paper.

A Proof of Proposition 3.1

Suppose ω ∈ Ω is such that (Z(ω, t) : t ≥ 0) has Hölder continuous sample paths. For
simplicity, we suppress ω hereafter. For m > 0, consider the partition 0 = u0 < u1 < · · · <
um = t and

L(m)(t) =

m−1∑
i=0

J(t, ui) (Z(ui+1)− Z(ui)) =

m∑
i=1

J(t, ui−1)Z(ui)−
m−1∑
i=0

J(t, ui)Z(ui)

= J(t, um−1)Z(um)− J(t, 0)Z(0)−
m−1∑
i=1

[ J(t, ui)− J(t, ui−1) ]Z(ui). (A.1)

Because Z(t) is continuous the summation converges to the Riemann-Stieltjes integral as
partition mesh goes to 0 if J(t, u) is monotone in the second component for each t. Moreover,
if J(t, u) is differentiable for each t, we can replace the integrator dJ(t, u) of the Riemann-
Stieltjes integral with Ju(t, u)du where the subscript denotes derivative with respect to the
second component. The Riemann-Stieltjes integral is well-defined if the derivative as a func-
tion of u for fixed t is continuous (in general, finitely-many jumps are allowed). Therefore,∫ t

0
J(t, u) dZ(u) ≡ lim

m→∞
L(m)(t)

a.s.
= J(t, t)Z(ω, t)− J(t, 0)Z(ω, 0)−

∫ t

0
Z(ω, u) dJ(t, u).

Moreover, with ∆ ≡ max{ui − ui−1 : 1 ≤ i ≤ m}, we have

m−1∑
i=1

[ J(t, ui)− J(t, ui−1) ]Z(ui)−
∫ t

0
Ju(t, u)Z(u) du

=

m−1∑
i=1

∫ ui

ui−1

[
J(t, ui)− J(t, ui−1)

ui − ui−1
− Ju(t, u)

]
(Z(u)− Z(ui)) du

≤
1

∆
· c1∆ · c2∆α → 0

as ∆ → 0, where the inequality holds because Ẑ has Hölder continuous sample paths and
J(t, u) is differentiable with respect to the second component.

We prove Proposition 3.1 in two steps. First, we show in Lemma A.1 that if the sequence
of covariance functions associated with the processes {L(m) : m ≥ 1} converges to some limit
function, then the sequence {L(m) : m ≥ 1} converges in distribution to a Gaussian process.
Moreover, the covariance function of the limit Gaussian process coincides with the limit of
the covariance function associated with {L(m) : m ≥ 1}. Then, in the second step, we show
that the covariance functions associated with {L(m) : m ≥ 1} indeed converges.

Lemma A.1 Let X(m) ≡
(
X

(m)
1 , . . . , X

(m)
l

)
be a sequence of centered Gaussian random

vector in Rl and let Σ(m) be the covariance matrix of X(m). If Σ(m) → Σ as m → ∞,
then X(m) ⇒ X where the limit X is Gaussian with mean zero and covariance Σ.

Proof Consider the characteristic function φm(θ) ≡ E
[
eiθ

TX(m)
]

of the vector X(m). The

convergence Σ(m) → Σ implies the convergence of characteristic functions

φm(θ) = e−
1
2
θTΣ(m)θ → φ(θ) ≡ e−

1
2
θTΣθ

due to continuity of φm. Then the result follows from Lévy’s continuity theorem.
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We next show that the covariance function associated with the sequence {L(m) : m ≥ 1}
in (3.12) converge. We consider a partition of the interval [0, t2] such that there are a total of
m2 intervals partitioning [0, t2] and m1 intervals partitioning [0, t1]. We use the form in (A.1)
to compute the covariance of L(m)(t). Let CZ(·, ·) be the covariance function associated with
the process Z. Then, for 0 ≤ t1 < t2 and the partition 0 = s0 < s1 < · · · < sm1−1 < sm1 =
t1 < sm1+1 < · · · < sm2−1 < sm2 = t2,

E[L(m)(t1)L(m)(t2)]

= E

[(
J(t1, sm1−1)Z(t1)− J(t1, 0)Z(0)−

m1−1∑
i=1

(J(t1, si)− J(t1, si−1))Z(si)

)

×
(
J(t2, sm2−1)Z(t2)− J(t2, 0)Z(0)−

m2−1∑
i=1

(J(t2, si)− J(t2, si−1))Z(si)

)]
= J(t1, sm1−1)J(t2, sm2−1)CZ(t1, t2) + J(t1, 0)J(t2, 0)CZ(0, 0)

− J(t2, sm2−1)J(t1, 0)CZ(0, t2)− J(t1, sm1−1)J(t2, 0)CZ(0, t1)

−
m1−1∑
i=1

J(t2, sm2−1)(J(t1, si)− J(t1, si−1))CZ(si, t2)

+

m1−1∑
i=1

J(t2, 0)(J(t1, si)− J(t1, si−1))CZ(0, si)

−
m2−1∑
i=1

J(t1, sm1−1)(J(t2, si)− J(t2, si−1))CZ(t1, si)

+

m2−1∑
i=1

J(t1, 0)(J(t2, si)− J(t2, si−1))CZ(0, si)

+

m1−1∑
i=1

m2−1∑
j=1

(J(t1, si)− J(t1, si−1))(J(t2, sj)− J(t2, sj−1))CZ(si, sj).

Convergence of the first four terms follows from continuity of u 7→ J(t, u) for each fixed t as
sm1−1 → t1 and sm2−1 → t2 as m→∞. Convergence of the last four summations follows
from the fact that CZ is bounded over compact intervals and J(t, u) is differentiable and,
therefore, bounded for each t over compact intervals. Hence the limits of these terms are
the Riemann-Stieltjes integrals given in (3.14). Finally, the last summation term converges
to the two-dimensional Riemann-Stieltjes integral in (3.14) due to similar reasoning. ut

B Proof of Results in §4

B.1 Proof of Theorem 4.1

We first establish a FWLLN for Wn following the compactness approach, i.e., (i) the se-
quence Wn is C-tight, which implies that every subsequence has a convergent subsequence
with a limit in C; and (ii) every convergent subsequence converges to the same limit, which
in our case uniquely solves the ODE in (4.2). Finally, we establish convergence for the oth-
er processes and characterize their limits. We remark that the tightness for Wn is quite

straightforward, but the tightness for the CLT-scaled processes (e.g., Ŵn) is complicated
(which is why we adopt a new approach to prove the FCLT).

The proof closely follows the arguments in [23] and §6.6 of [25]. We, hereby, redo the steps
therein for the new representation of the enter-service process En; we use the decomposition
in (3.3)-(3.6) that is different than the expressions for En in [25].
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Tightness of {Wn}. To prove tightness, first we show that Wn is stochastically bounded
and then show that Wn has controlled modulus of continuity, that is, for each T > 0 and
ε > 0,

lim
δ↓0

lim sup
n→∞

P(w(Wn, δ, T ) > ε) = 0 (B.1)

where w(Wn, δ, T ) is the modulus of continuity of Wn, i.e., sup{w(Wn, [t1, t2]) : 0 ≤ t1 <
t2 ≤ (t1 + δ) ∧ T} with w(Wn, A) ≡ sup{Wn(s1)−Wn(s2) : s1, s2 ∈ A}.

The stochastic boundedness is obvious, because in any finite interval [0, T ], we immedi-
ately see that HOL satisfies 0 ≤Wn(t) ≤ T for all n ≥ 1, t ∈ [0, T ].

To treat the modulus of continuity, we first see that Wn(t + δ) −Wn(t) ≤ δ for δ > 0
and 0 ≤ t ≤ T , because the HWT can increase at most at rate 1. Therefore, it remains to
find a bound on Wn(t)−Wn(t+ δ). To this end, define

Ēn,3(t, δ) ≡ Ēn,3(t+ δ)− Ēn,3(t) =

∫ t+δ−Wn(t+δ)

t−Wn(t)
F c(Vn(s))λ ds. (B.2)

Because the ccdf F c(x) > 0 for all x ≥ 0, let c ≡ infx∈[0,T ]{F c(x)} > 0. Hence, the integrand

in (B.2) is bounded below by a constant cλ > 0, which yields a lower bound on Ēn,3(t, δ):

Wn(t)−Wn(t+ δ) + δ ≤
Ēn,3(t, δ)

cλ
, t ≥ 0.

From the FCLT in Theorem 2 of [33], we know that D̄n(t)⇒ D(t) = µt so that Ēn,3(t)→
E3(t) = D(t) = µt. Therefore, we have lim supn→∞{Wn(t)−Wn(t+ δ)} ≤ µδ/cλ so that

lim sup
n→∞

|Wn(t+ δ)−Wn(t)| ≤ c∗δ, c∗ ≡ max (µ/cλ, 1) . (B.3)

Hence, Wn is tight. In addition (B.3) also implies that the limit of every convergent subse-
quence of Wn is in C and is Lipschitz continuous.

Limit of Convergent Subsequence of {Wn}. The C-tightness implies that every sub-
sequence of Wn has a convergent subsequence. Let Wnk be a convergent subsequence with
the limit w∗, i.e., Wnk ⇒ w∗. From (2.3) and (2.4), we deduce that the PWT on the
subsequence also converges, that is, Vnk ⇒ v∗, with the limit v∗ satisfying

v∗(t) = w∗(t+ v∗(t)) and v∗(t− w∗(t)) = w∗(t), t ≥ 0. (B.4)

We now show that w∗ solves the ODE (4.2). On the one hand, the FCLT in Theorem
2 of [33] implies that (Ēn, D̄n)⇒ (D,D) with D(t) = µt. On the other hand, (3.3) implies
that Ēn along the subsequence associated with Wnk and Vnk converges to a limit E∗.
Specifically,

Ēnk (t) ⇒ E∗(t) = E∗3 (t) ≡
∫ t−w∗(t)

0
F c(v∗(s))λ ds = D(t) = µt. (B.5)

Because the prelimit process is C-tight, we know the derivative ẇ∗(t) exists. Taking
derivative in (B.5) yields

µ = (1− ẇ∗(t))F c(v∗(t− w∗(t)))λ = (1− ẇ∗(t))F c(w∗(t))λ, (B.6)

which coincides with the ODE (4.2).
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FWLLN for the other processes. To prove full convergence of Vn, we write

|Vn(t−Wn(t))− v(t− w(t))| ≤ |Vn(t−Wn(t))− Vn(t− w(t))|+ |Vn(t− w(t))− v(t− w(t))|
= |Wn(t)− w(t) +O(1/n)|+ |w(t) +O(1/n)− w(t)|
≤ |Wn(t)− w(t)|+O(1/n) (B.7)

Applying the change of variable to (B.7) with un ≡ t−Wn(t) and u ≡ t− w(t) to obtain

‖Vn − v‖ ≤
‖Wn − w‖

γ
+O(1/n) = O(1/n) (B.8)

for a constant γ > 0, where the equality holds because un = u+ o(1).
The limit of the sequences of processes (3.8)-(3.10) can be obtained the same way it is

done in [25] which makes use of Theorem 3.1. of [29] and then applies continuous mapping
theorem given Wn ⇒ w. From (6.17) of [25], we immediately write

Q̄n,i ⇒ 0 for i = 1, 2; Q̄n,3 ⇒ Q3(t) ≡
∫ t

t−w(t)
F c(t− s)λ ds, as n→∞. (B.9)

B.2 Proof of Theorem 4.3

The expressions for C
Ŵ1

(t, t′) and C
Ŵ2

(t, t′) are obtained by applying rules of Ito integral.

Derivation of these functions follows from standard arguments and therefore the details are
omitted.

To compute C
Ŵ3

(t, t′) we make use of (3.14) with J(t, u) ≡ H(t, u)/q(u,w(u)) where

H(t, u) and q(u,w(u)) are as in (4.17). In particular, for 0 ≤ t < t′,

C
Ŵ3

(t, t′) = J(t, t)J(t′, t′)CE(t, t′)−
∫ t′

0
J(t, t)Ju(t′, u)CE(t, u)du

−
∫ t

0
J(t′, t′)Ju(t, u)CE(t′, u)du+

∫ t

0

∫ t′

0
Ju(t, u)Jv(t′, v)CE(u, v)dvdu

=
1

λ2F c(w(t))F c(w(t′))
CE(t, t′)−

1

λF c(w(t))

∫ t′

0
Ju(t′, u)CE(t, u)du

−
1

λF c(w(t))

∫ t

0
Ju(t, u)CE(t′, u)du+

∫ t

0

∫ t′

0
Ju(t, u)Jv(t′, v)CE(u, v)dvdu

where Ju(t, u) is as in (4.20).
We next derive the covariance function for the limit queue-length process. First, C

Q̂1
(t, t′)

can be obtained from isometry property of Itô integral. The function C
Q̂2

(t, t′) can be ob-

tained by Û(λs, y) = W(λs, y) − yW(λs, 1) where W(·.·) is a two-dimensional Brownian
motion. We refer interested readers to the long version of [29] and the references therein
for a definition of Kiefer process and of stochastic integrals with respect to two-parameter
martingales. The last term easily follows by definition. ut

B.3 Proof of Lemma 4.1

First, we prove the existence of Ẽ(t). It suffices to show that for any n ≥ 1 and −t1 <

−t2 < ... < −tn ≤ 0, the matrix M = (C̃(−ti,−tj))ni,j=1 is non-negative definite. Let

r1 = t1 and rj = tj−1 − tj for j = 2, ..., n and define N = (CE(ri, rj))
n
i,j=1. For any z =
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(z1, z2, ..., zn)T ∈ Rn, define y = (y1, y2, .., yn)T such that y1 =
∑n
i=1 zi and yj = −

∑n
i=j zi

for j = 2, ..., n. Given that C̃(t, s) = CE(−t,−t)− CE(−t, s− t) , we can compute

zTMz =
n∑
i=1

C̃(−ti,−ti)z2i + 2
∑

1≤i<j≤n
C̃(−ti,−tj)zizj = yTNy.

We shall explain how to derive the above equation for n = 2.

z21C̃(−t1,−t1) + 2z1z2C̃(−t1,−t2) + z22C̃(−t2,−t2)

= z21CE(r1, r1) + 2z1z2(CE(r1, r1)− CE(r1, r2)) + z22CE(r1 − r2, r1 − r2)

= z21CE(r1, r1) + 2z1z2(CE(r1, r1)− CE(r1, r2)) + z22(CE(r1, r1)− 2CE(r1, r2) + CE(r2, r2))

= (z1 + z2)2CE(r1, r1)− 2z2(z1 + z2)CE(r1, r2) + z22CE(r2, r2) = yTNy.

Since CE is the covariance function of a Gaussian process, the matrix N is non-negative
definite and hence yTNy ≥ 0. As the vector z is any vector in Rn, we can conclude that
M is also non-negative definite and the existence of Ẽ follows. The argument is similar for
n ≥ 3, therefore, the details are omitted.

Next we show that (4.24) holds. Since a Gaussian process is fully characterized by its
covariance function, it suffices to show that for any fixed t > 0 and 0 ≤ r < s ≤ t,

Cov(Ẽ(−t+ r)− Ẽ(−t), Ẽ(−t+ s)− Ẽ(−t)) = CE(r, s).

By our definition of C̃(t, s), we can compute

Cov(Ẽ(−t+ r)− Ẽ(−t), Ẽ(−t+ s)− Ẽ(−t))
= CE(t− r, t− r)− CE(t− r, s− r) + CE(t, s) + CE(t, r)− CE(t, t). (B.10)

By the stationary increments of Ê, we have

CE(t− r, t− r) = Var(Ê(t− r)) = Var(Ê(t)− Ê(r)) = CE(t, t)− 2CE(t, r) + CE(r, r),

CE(t− r, s− r) = Cov(Ê(t− r), Ê(s− r)) = Cov(Ê(t)− Ê(r), Ê(s)− Ê(r))

= CE(t, s)− CE(t, r)− CE(r, s) + CE(r, r),

which along with (B.10) implies that

Cov(Ẽ(−t+ r)− Ẽ(−t), Ẽ(−t+ s)− Ẽ(−t)) = CE(r, s).

This completes the proof. ut

B.4 Proof of Theorem 4.4

Steady state of Ŵ . Let N (0, σ2) denote the normal distribution with mean 0 and

variance σ2. First, we treat Ŵ1(t) in (4.16) by applying a change of variable with u = s+v(s).
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Let κ(t) be the inverse of the function β(t) = t+ v(t). We write

Ŵ1(t) =

∫ κ(t)

κ(0)

F c(w(s+ v(s)))H(t, s+ v(s))

λF c(w(t))
cλ dBλ(Λ(s+ v(s)− w(s+ v(s))))

=

∫ κ(t)

0

F c(v(s))H(t, s+ v(s))

λF c(w(t))
cλ dBλ(Λ(s))

d
=

∫ κ(t)

0

cλ√
λ
e−hF (w)(t−s−v(s))dBλ(s)

d
= B̃λ

(
c2λ
λ

∫ κ(t)

0
e−2hF (w)(t−s−v(s)) ds

)
d
= B̃λ

(
c2λ
λ

∫ t

0
e−2hF (w)(t−s) dκ(s)

)
d
= B̃λ

(
c2λ

2hF (w)λ

(
1− e−2t hF (w)

))

⇒ Ŵ1(∞)
d
= N

(
0,

c2λ
2hF (w)λ

)
, as t→∞,

where the second equality follows from (4.3). Similarly, an application of Theorem 3.4.6 of
[15] yields

Ŵ2(t) =

∫ t

0

√
F (w)√
λF c(w)

e−hF (w)(t−u)dBa(u) + o(1)
d
= B̃a

(
F (w)

2λf(w)

(
1− e−2t hF (w)

))
⇒ Ŵ2(∞)

d
= N

(
0,

F (w)

2λf(w)

)
, as t→∞.

Next, (4.22) and (4.16) imply that

Var(Ŵ3(t)) =
1

λ2F c(w)2
Var

(∫ t

0
e−hF (w)(t−u) dÊ(u)

)
=

1

λ2F c(w)2
Var

(
−e−hF (w)tẼ(−t)−

∫ t

0
hF (w)e−hF (w)sẼ(−s)ds

)
=

1

λ2F c(w)2

[
e−2hF (w)tC̃(−t,−t) + 2hF (w)e−hF (w)t

∫ t

0
e−hF (w)sC̃(−s,−t)ds

+2hF (w)2
∫ t

0

∫ x

0
e−hF (w)(x+y)C̃(−x,−y)dydx

]
(B.11)

where the second equality follows from (4.24). Note that C̃(−t,−s) = Cov(Ẽ(−s), Ẽ(−t)) ≤√
Var(Ẽ(t))Var(Ẽ(s)) =

√
Var(Ê(t))Var(Ê(s)). As Var(Ê(t)) = O(t2) as t → ∞, we can

conclude that C̃(−t,−s) = O(st) as s, t → ∞. As a result, the first term in (B.11) is
O(e−2hF (w)tt2) → 0 and the second term is O(e−hF (w)tt2) → 0 as t → ∞. Hence we
conclude that

Ŵ3(t)⇒ Ŵ3(∞)
d
= N (0, σ2

W3
) as t→∞

where

σ2
W3
≡ 2

hF (w)2

λ2F c(w)2

∫ ∞
0

∫ x

0
e−hF (w)(x+y)C̃(−x,−y)dydx, (B.12)

and C̃(·, ·) is as defined in Lemma 4.1.
Finally, by independence, we conclude that

Ŵ (t)⇒ Ŵ (∞) ≡ Ŵ1(∞) + Ŵ2(∞) + Ŵ3(∞)
d
= N

(
0, σ2

W

)
, as t→∞,

where σ2
W ≡

c2λ
2hF (w)λ

+
F (w)

2λf(w)
+ σ2

W3
.
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Steady-state of Q̂. We next characterize the steady state for the queue-length process.

Q̂1(t) = cλ

∫ t

t−w
F c(t− s)dBλ(Λ(s))

d
= cλ

√
λ

∫ w

0
F c(w − s)dBλ(t− w + s)

d
= cλ

√
λ

∫ w

0
F c(w − s)dBλ(s)⇒ Q̂1(∞)

d
= N (0, σ2

Q1
) as t→∞,

where σ2
Q1
≡ λ c2λ

∫ w

0
F c(u)2du. (B.13)

Next, the expression in (5.19) implies that, as t→∞,

Q̂2(t)
d
= Ba

(∫ w(t)

0
F c(u)F (u)λ du

)
⇒ Q̂2(∞)

d
= N (0, σ2

Q2
),

where σ2
Q2
≡ λ

∫ w
0 F (u)F c(u) du. Finally, (4.10) yields that

Q̂3(t) = λF c(w) Ŵ (t)⇒ Q̂3(∞) ≡ λF c(w) Ŵ (∞)
d
= N

(
0, σ2

Q3

)
, as t→∞,

where σ2
Q3
≡ λ2F c(w)2σ2

W .

The independence of Q̂1,Q̂2 and Q̂3 yields

Q̂(t)⇒ Q̂(∞)
d
= N

(
0, σ2

Q

)
as t→∞, where σ2

Q ≡ σ
2
Q1

+ σ2
Q2

+ σ2
Q3
.

B.5 Proof of Corollary 4.2

Remaining service times are exponentially distributed due to lack of memory if the service-
time distribution is exponential. Consequently, service completions at each server is a Poisson
process with constant rate µ > 0 which implies by [33] that the sequence Ên converges to
a centered Gaussian process with covariance function CE(s, t) = µ(s ∧ t) for s, t ≥ 0. Then

(4.23) becomes C̃(−x,−y) = µ(x ∨ y) − µ|x − y| for x ≥ 0, y ≥ 0. Consequently, (B.12)
becomes

σ2
W3

= 2
hF (w)2

λ2F c(w)2

∫ ∞
0

∫ x

0
e−hF (w)(x+y)µy dydx

= 2
hF (w)2

λ2F c(w)2

∫ ∞
0

µe−hF (w)x

∫ x

0
ye−hF (w)y dydx

= 2
hF (w)2

λ2F c(w)2

∫ ∞
0

µe−hF (w)x

(
−
x

h
e−hF (w)x +

1

h2

(
1− e−hF (w)x

))
dx

= 2
hF (w)2

λ2F c(w)2

(
−µ

hF (w)

∫ ∞
0

xe−2hF (w)xdx+
µ

hF (w)2

∫ ∞
0

e−hF (w)x
(

1− e−hF (w)x
)
dx

)
= 2

hF (w)2

λ2F c(w)2

(
−µ

2hF (w)2
1

2hF (w)
+

µ

hF (w)3
−

µ

2hF (w)3

)
=

1

2λf(w)
.

Summing up σ2
W3

with σ2
Wi

(∞) for i = 1, 2 yields (4.27).

The variance σ2
W3

for the M/M/n + M queue can be immediately obtained by letting

c2λ = 1 and hF (w) = θ in (4.27). Finally we obtain σ2
Q in (4.28) as follows:

σ2
Q(∞) = λ

∫ w

0
F c(u)2 du+ λ

∫ w

0
F (u)F c(u)2 du+ λ2F c(w)2σ2

W

= λ

∫ w

0
F c(u) du+ λ2F c(w)2σ2

W =
λ

θ
(1− e−θw) +

λ

θ
·

1

ρ
=
λ

θ
,

where the last equality holds because w = F−1 (1− 1/ρ) so that 1−1/ρ = F (w) = 1−e−θw.
ut
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C Proofs of Lemma 5.1

C.1 Proof of the Convergence in (5.2)

We consider the modified processes Ê
′
n,1(t) given below. We first prove convergence for the

sequence Ê
′
n,1 and then show that the difference between the modified sequences Ê

′
n,1 and

the desired sequence Ên,1 is asymptotically negligible (see (C.3)) which proves the desired
convergence in (5.2).

Now define for t ≥ 0,

Ê
′
n,1(t) ≡

1
√
n
E
′
n,1(t) =

∫ t−w(t)

0
F c(v(s)) dN̂n(s)

= F c(v(t− w(t)))N̂n(t− w(t))− F c(v(0))N̂n(0)−
∫ t−w(t)

0
N̂n(s−) dF c(v(s))

= F c(w(t))N̂n(t− w(t))− N̂n(0)−
∫ t

0
N̂n(s− w(s)) dF c(w(s)). (C.1)

The second equality holds by integration by parts. The last equality follows from (4.3). Next
we define a mapping ψ : D → D such that for z ∈ D,

ψ(z)(t) ≡ F c(w(t))z(t)− z(0)−
∫ t

0
z(s) dF c(w(s)), 0 ≤ t ≤ T.

We now prove that the mapping ψ is continuous in D. Let {xn} be a sequence in D such
that ‖xn − x‖T → 0. Then

|ψ(xn)(t)− ψ(x)(t)|

=

∣∣∣∣F c(w(t))xn(t)− xn(0)−
∫ t

0
xn(s) dF c(w(s))− F c(w(t))x(t) + x(0) +

∫ t

0
x(s) dF c(w(s))

∣∣∣∣
≤ F c(w(t))|xn(t)− x(t)|+ |xn(0)− x(0)|+ ‖xn − x‖T

∣∣∣∣ ∫ t

0
dF c(w(s))

∣∣∣∣ ≤ 4 ‖xn − x‖.

Hence the mapping ψ is continuous. In general, proving convergence with respect to the
uniform topology does not necessarily imply J1 convergence because there may be measur-
ability issues (see e.g. [34,5]). However, we will be interested in the case where the limit x
is continuous, i.e., x ∈ C. Therefore, we will not have any measurability issues and obtain
the desired convergence in D with respect to Skorokhod’s J1 metric.

Convergence of the modified process in (C.1) follows by continuous mapping theorem

with composition. In particular, let Zn(t) ≡ N̂n(t − Wn(t)). Then Zn : [0, T ] → R and

Zn ⇒ Z where Z(t) ≡ N̂(t− w(t)). Convergence of {Zn} follows from continuous mapping

theorem with composition. Then we have n−1/2Ẽn,1(t) = ψ(Zn)(t)⇒ ψ(Z)(t) in D with

ψ(Z) ≡
∫ t

0
F c(w(s)) dN̂(s− w(s)) ≡ F c(w(t))N̂(t− w(t))− N̂(0)−

∫ t

0
N̂(s− w(s)) dF c(w(s))

= F c(w(t))cλBλ(Λ(t− w(t)))− cλBλ(0)−
∫ t

0
cλBλ(Λ(s− w(s))) dF c(w(s)).
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Finally, to establish (5.2), we show that the difference between the processes n−1/2En,1(t)

and n−1/2E
′
n,1(t) is asymptotically negligible. In particular,∣∣∣Ên,1(t)− Ê
′
n,1(t)

∣∣∣ (C.2)

=
1
√
n

∣∣∣∣∣
∫ t−Wn(t)

0
F c(Vn(s−)) dN̂n(s)−

∫ t−w(t)

0
F c(v(s)) dN̂n(s)

∣∣∣∣∣
≤

1
√
n

∣∣∣∣∣
∫ t−Wn(t)

t−w(t)
F c(Vn(s−)) dN̂n(s)

∣∣∣∣∣+
1
√
n

∫ t−w(t)

0
|F c(Vn(s−))− F c(v(s))| dN̂n(s)

≤
1
√
n

∣∣∣N̂n(t−Wn(t))− N̂n(t− w(t))
∣∣∣+

1
√
n

∣∣∣N̂n(t− w(t))− N̂n(0)
∣∣∣⇒ 0. (C.3)

C.2 Proof of the Convergence in (5.3)

To prove convergence in (5.3), we apply the martingale FCLT in [30] (Also see [8,13] for
applications of the martingale FCLT). First we define a sequence of discrete-time processes
(see (C.4)) and argue that it is a sequence of martingales adapted to a specific filtration
H n
k as defined below. Next, we define continuous-time martingales using the discrete-time

martingales in (C.4). Then we invoke Theorem 7.1.4. on p.339 in [9] to establish convergence
and characterize the limit.

Consider the discrete-time processes

Ĥn
k ≡

1
√
n

k∑
i=1

(1(γni > wni )− F c(wni )) for k = 1, 2, . . . (C.4)

Also, consider the filtration H n
k ≡ σ{τ

n
i+1, ν

n
i , γ

n
i : 1 ≤ i ≤ k}. Then E[|Ĥn

k |] ≤ k/
√
n and

E[Hn
k −H

n
k−1|H

n
k−1] =

1
√
n

(
E[1(γnk > wnk )|H n

k−1]− F c(wnk )
)

= 0,

which implies that the process {(Ĥn
k ,H

n
k ) : k ≥ 1} is a discrete-time martingale for each

n ≥ 1.
Our next step is to replace k with bntc for t ≥ 0 to obtain a continuous-time martingale.

By a direct application of Lemma 4.2 of [8], we deduce that the continuous-time process

(Ĥn(t),H n(t) : t ≥ 0) ≡ (Ĥn
bntc,H

n
bntc : t ≥ 0) is a martingale with quadratic variation

〈Ĥn〉(t) =
1

n

bntc∑
i=1

(1(γni > wni )− F c(wni ))2 . (C.5)

We next show that the sequence of martingales (Ĥn(t),H n(t) : t ≥ 0) satisfies the condi-
tions of Theorem 7.1.4. of [9]. In particular, it is required that (i) jumps of the processes

Ĥn(y) are asymptotically negligible and (ii) quadratic variation of the processes converges
in probability to a limit characterized in Theorem 7.1.1. of [9].

(i) Negligibility of jumps. We now show that condition (a) of Theorem 7.1.4. holds. Let

Ĥn(t−) ≡ lims↑t Ĥ
n(s). Then, for each T > 0, we have sup0≤t≤T |Ĥn(t)−Ĥn(t−)| ≤ 1/

√
n

and hence

lim
n→∞

E

[
sup

0≤t≤T
|Ĥn(t)− Ĥn(t−)|

]
= 0,

which is the desired condition.



39

(ii) Convergence of quadratic variations. We now prove that the quadratic variation
processes given in (C.5) converges in L2 sense as n→∞. In particular,

E

 1

n

bntc∑
i=1

(1(γni > wni )− F c(wni ))2 −
∫ Λ−1(t)

0
F c(v(u))F c(v(u)) dΛ(u)

2
≤ 2E

 1

n

bntc∑
i=1

[
(1(γni > wni )− F c(wni ))2 − F c(wni )F (wni )

]2
+ 4E

 1

n

bntc∑
i=1

[F c(wni )F (wni )− F c(v(τni −))F (v(τni −))]

2
+ 4E

 1

n

bntc∑
i=1

F c(v(τni −))F (v(τni −))−
∫ Λ−1(t)

0
F c(v(u−))F (v(u−)) dΛ(u)

2
≤

2

n2

bntc∑
i=1

E
[
(1(γni > wni )− F c(wni ))2

(
F (wni )− F c(wni )

)2]
+

2

n2
E
∑
i 6=j

[
(1(γni > wni )− F c(wni ))

(
1(γnj > wnj )− F c(wnj )

)
×

(
F (wni )− F c(wni )

)(
F (wnj )− F c(wnj )

)]
+ 4E

 1

n

bntc∑
i=1

[F c(wni )F (wni )− F c(v(τni −))F (v(τni −))]

2 (C.6)

+ 4E

 1

n

bntc∑
i=1

F c(v(τni −))F (v(τni −))−
∫ Λ−1(t)

0
F c(v(u)−)F (v(u)−) dΛ(u)

2
(C.7)

The first sum vanishes as n→∞ because the summands are bounded by 1 and, therefore,
the first term is bounded by 2bntc/n2 → 0 as n → ∞. The summands of the second term
are independent. Therefore, the second term is equal to 0.

To prove convergence of (C.6), we first rewrite the summands of (C.6) as

F c(wni )F (wni )− F c(v(τni −))F (v(τni −)) = F c(wni )− F c(v(τni −))−
(
F c(wni )2 − F c(v(τni −))2

)
(C.8)

Next we make use of the FWLLN for PWT Vn(t), i.e., Vn ⇒ v in D, and continuity of the
function F to show that (C.6) converges to 0. In particular, for all i ≥ 1,

F c(wni ) = F c(Vn(τni −)) = F c(v(τni −) + o(1)).

Combining with (C.8), this implies that the summands in (C.6) can be bounded above by

|F c(v(τni −) + o(1))− F c(v(τni −))|+ |F c(v(τni −) + o(1))2 − F c(v(τni −))2| ≤ |o(1)|

where the inequality holds by continuity of cdf F . This implies that the squared sum inside
the expectation in (C.6) is bounded above by (|o(1)|bntc/n)2 ≤ t2|o(1)| = o(1) for all t ≥ 0.
Convergence of (C.6) to 0 then follows from dominated convergence theorem.

The summation in (C.7) can be alternatively represented as

1

n

bntc∑
i=1

F c(v(τni −))F (v(τni −)) =

∫ Λ−1
n (t)

0
F c(v(u−))F (v(u−)) dN̄n(u)

⇒
∫ Λ−1(t)

0
F c(v(u−))F (v(u−)) dΛ(u), (C.9)
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where the convergence (C.9) follows from the continuous mapping theorem. Having estab-
lished the convergence in (C.9), convergence in mean square is obtained by first applying
continuous mapping theorem with the function f(x) = x2 and then applying dominated
convergence theorem by using the fact that both the summation and the limit integral in
(C.9) are bounded by t. Hence (C.7) converges to 0. That completes the proof of convergence
of the quadratic variation (C.5).

Having proved conditions (i) and (ii) are indeed satisfied, by Theorem 7.1.4 of [9], we

deduce that Ĥn ⇒ Ĥ in D where Ĥ is a Gaussian process with independent increments and
continuous sample paths. Moreover, as implied by the proof of Theorem 7.1.1. of [9], the

limit Ĥ is indeed a time-changed Brownian motion where time-change is the limit of the
quadratic variation, i.e.,

Ĥ(t) = Ba(〈Ĥ〉(t)) = Ba

(∫ Λ−1(t)

0
F c(v(u−))F (v(u−)) dΛ(u)

)
,

where Ba is the standard Brownian motion.
Finally, to complete the proof, we note that Ên,2(t) = Ĥn(N̄n(t−Wn(t))). Then, by the

convergence together theorem, we have Ĥn(N̄n)⇒ Ĥ(Λ) in D. Consequently, as n→∞,

1
√
n

Nn(t−Wn(t))∑
i=1

(1(γni > wni )− F c(wni ))⇒ Ba

(∫ t−w(t)

0
F c(v(u−))F (v(u−)) dΛ(u)

)
.

(C.10)

We next verify the other two expressions in (5.3). The last expression is obtained by a change
of variable with u = s − w(s). (Note that according to (4.3) we have v(s − w(s)) = w(s).)
The Kiefer integral expression holds because it is a Gaussian process with zero mean and
the same covariance function as the Brownian expression. Specifically, for t, t′ > 0, the first
Brownian expression has the covariance∫ (t−w(t))∧(t′−w(t′))

0
F c(v(u))F (v(u)) dΛ(u). (C.11)

On the other hand, the Kiefer integral in (5.3) has the covariance

E

[∫ t−w(t)

0

∫ 1

0
1(y > F (v(s)))dÛ(s, y)×

∫ t′−w(t′)

0

∫ 1

0
1(y > F (v(s)))dÛ(s, y)

]

= E

[∫ t−w(t)

0

∫ ∞
0

1(x > v(s))dÛ(s, F (x))×
∫ t′−w(t′)

0

∫ ∞
0

1(x > v(s))dÛ(s, F (x))

]

=

∫ (t−w(t))∧(t′−w(t′))

0

∫ ∞
0

1(x > v(s))dF (x)dΛ(s) +

∫ (t−w(t))∧(t′−w(t′))

0
F c(v(s))F c(v(s))dΛ(s)

− 2

∫ (t−w(t))∧(t′−w(t′))

0

∫ ∞
0

1(x > v(s))F c(v(s))dF (x)dΛ(s)

=

∫ (t−w(t))∧(t′−w(t′))

0
F c(v(s))dΛ(s) +

∫ (t−w(t))∧(t′−w(t′))

0
(F c(v(s)))2 dΛ(s)

− 2

∫ (t−w(t))∧(t′−w(t′))

0
F c(v(s))F c(v(s))dΛ(s)

=

∫ (t−w(t))∧(t′−w(t′))

0
F c(v(s))dΛ(s)−

∫ (t−w(t))∧(t′−w(t′))

0
(F c(v(s)))2 dΛ(s)

=

∫ (t−w(t))∧(t′−w(t′))

0
F c(v(s)) (1− F c(v(s))) dΛ(s),

which coincides with (C.11).
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D Proofs of Results in §6

In this section we provide proofs of Theorem 6.1 and Corollary 6.1. The proof of both results
closely follow the arguments in the proofs of Theorem 4.1, Theorem 4.2, Corollary 4.1 and
Theorem 4.4. Therefore, we mostly refer to proofs of those results in below proofs and argue
in what way the new staffing function sn = dns1 +

√
ns2e make changes in arguments.

We skip lengthy details. Throughout the section, the processes with superscript r corre-
spond to those associated with staffing level sn whereas the processes without superscript
r correspond to those associated with staffing level n.

Proof of Theorem 6.1. The LLN- and CLT-scaled departure process

D̄rn(t) ≡
∑sn
j=1Dj(t)

n
=
sn

n
·
∑sn
j=1Dj(t)

sn
⇒ Dr(t) ≡ s1D(t) = s1µt (D.1)

D̂rn(t) ≡
∑sn
j=1Dj(t)− nD

r(t)
√
n

=

√
sn√
n
·
∑sn
j=1Dj(t)− snµt√

sn
+
snµt− nDr(t)√

n

=

√
s1 +

s2√
n
·
∑sn
j=1Dj(t)− snµt√

sn
+ s2µt+O(1/

√
n)⇒ D̂r(t) ≡

√
s1D̂(t)− s2µt

(D.2)

where O(1/
√
n) in the second equality accounts for the error caused by dropping d·e in sn,

and D̂(t) is the Gaussian process in Theorem 4.2. Hence we deduce from (D.2) that D̂r(t) is
a Gaussian process negative drift −s2µt and covariance function Cr(·, ·) = s1CE(·, ·) with
CE being the covariance function in Theorem 4.2.

Having obtained the modified fluid limits in (D.1) and established the joint convergence,
we deduce that the proof in §B.1 continues to hold with minor modifications. But the limit in
(B.5) changes because the fluid limit of the departure process is now given by Dr(t) = s1µt.
Consequently, the ODE in Theorem 4.1 has s1µt in the numerator instead of µt.

Similarly, given the joint convergence (N̂r
n, D̂

r
n, Ê

r
n) ⇒ (N̂r, D̂r, Êr), we can prove the

FCLT with slightly modified proof. The arguments in §5 continue to hold for modified fluid
limits and cause only minor changes in the final expressions. In particular, (5.4)-(5.7) has
the same mathematical form with fluid limits and prelimit stochastic process replaced with
their counterparts with superscript r. Hence the steps of proof in §5.1.2 can be replicated
with counterpart processes. Only step that requires careful treatment is that the limit of the
enter-service process is now Êr(t) ≡ √s1Ê(t) − s2µt. Since the the additional term −s2µt
is deterministic and

√
s1Ê(t) is a centered Gaussian process, we can use similar arguments

in proof of Corollary 4.1 to deduce that (6.5) is indeed the desired solution.

Proof of Corollary 6.1. We first derive the mean of Ŵ (∞) from (6.5). Since the first

three terms in (6.5) have mean equal to zero, E[Ŵ (∞)] is the limit of the last term in (6.5)
as t→∞. In particular,

E[Ŵ r(∞)] = lim
t→∞

−s2µ
∫ t

0

Hr(t, u)

q(t, wr(t))
du = lim

t→∞
−s2µ

∫ t

0

e−hF (wr)(t−u)

λF c(wr)
du

= lim
t→∞

−s2µ
λf(wr)

(
1− e−hF (wr)t

)

Having established the mean of Ŵ (∞), it is easy to establish the mean for V̂ (∞) and Q̂(∞)
by letting t→∞ in

V̂ r(t) =
Ŵ r(t)

1− ẇr(t+ vr(t))
and Q̂r(t) = λF c(wr(t))Ŵ r(t).

Computation of variance is standard and as given in §B.3.
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