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Abstract

Many-Server Queues with Time-Varying Arrivals, Customéafadonment and
Non-Exponential Distributions

Yunan Liu

This thesis develops deterministic heavy-traffic fluid @ppmnations for many-server
stochastic queueing models. The queueing models, with mampgenous servers work-
ing independently in parallel, are intended to model Iasgale service systems such as call
centers and health care systems. Such models also haverhptyed to study commu-
nication, computing and manufacturing systems. The héafiie approximations yield
relatively simple formulas for quantities describing gystperformance, such as the ex-
pected number of customers waiting in the queue.

The new performance approximations are valuable becauskeigenerality consid-
ered, these complex systems are not amenable to exact nait&nanalysis. Since the
approximate performance measures can be computed quiiddyrdbpey usefully comple-
ment more cumbersome computer simulation. Thus these Hesffig approximations can
be used to improve capacity planning and operational cbntro

More specifically, the heavy-traffic approximations herefar large-scale service sys-
tems, having many servers and a high arrival rate. The maiasfés on systems that
have time-varying arrival rates and staffing functions. $f&tem is considered under the
assumption that there are alternating periods of ovenhggaind underloading, which com-
monly occurs when service providers are unable to adjusttiéng frequently enough to
economically meet demand at all times.

The models also allow the realistic features of customendtament and non-exponential
probability distributions for the service times and thedsrcustomers are willing to wait

before abandoning. These features make the overall stochasdel non-Markovian and



thus very difficult to analyze directly. This thesis prowsdsfective algorithms to compute
approximate performance descriptions for these complstesys. These algorithms are
based on ordinary differential equations and fixed poinaéigus associated with contrac-
tion operators. Simulation experiments are conductedribbat the approximations are

effective.

This thesis consists of four pieces of work, each presemtaxhé chapter. The first
chapter (Chapter 2) develops the basic fluid approximatwrafnon-Markovian many-
server queue with time-varying arrival rate and staffinge Becond chapter (Chapter 3)
extends the fluid approximation to systems with complex netwtructure and Markovian
routing to other queues of customers after completing serfvom each queue. The exten-
sion to open networks of queues has important applicatiémsone example, in hospitals,
patients usually move among different units such as emeygeroms, operating rooms,
and intensive care units. For another example, in manufagtsystems, individual prod-
ucts visit different work stations one or more times. Theropetwork fluid model has
multiple queues each of which has a time-varying arriva eatd staffing function.

The third chapter (Chapter 4) studies the large-time asgtigpdynamics of a single
fluid queue. When the model parameters are constant, can@do the steady state
as time evolves is established. When the arrival rates aredie functions, such as in
service systems with daily or seasonal cycles, the existeha periodic steady state and
the convergence to that periodic steady state as time evaheeestablished. Conditions
are provided under which this convergence is exponenfiadity

The fourth chapter (Chapter 5) uses a fluid approximatioraia msight into nearly
periodic behavior seen in overloaded stationary manyesajueues with customer aban-
donment and nearly deterministic service times. Detestimservice times are of applied
interest because computer-generated service times, suhi@nated messages, may well

be deterministic, and computer-generated service is begomore prevalent. With de-



terministic service times, if all the servers remain busyddong interval of time, then
the times customers enter service assumes a periodic beliaoughout that interval. In
overloaded large-scale systems, these intervals tendrsespéor a long time, producing
nearly periodic behavior.

To gain insight, a heavy-traffic limit theorem is establidlsbowing that the fluid model
arises as the many-server heavy-traffic limit of a sequehe@ropriately scaled queue-
ing models, all having these deterministic service timamuation experiments confirm
that the transient behavior of the limiting fluid model pie$ a useful description of the
transient performance of the queueing system. Howeveikautthe asymptotic loss of
memory results in the previous chapter for service timeb dénsities, the stationary fluid
model with deterministic service times does not approaeadst state as time evolves in-
dependent of the initial conditions. Since the queueing ehadth deterministic service
times approaches a proper steady state as time evolvesydhisl with deterministic ser-
vice times provides an example where the limit interchatigat(ng steady state as time

evolves and heavy traffic as scale increases) is not valid.
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Chapter 1

Introduction

This research is motivated by the need for tools to improegrformance of large-scale
service systems, such as telephone call centers, heatsystems, judicial and penal sys-
tems, and both front-office and back-office operations infass systems; e.g., see [1,79]
and references therein for discussion of possible apmitaito customer contact centers
and healthcare. Large-scale service systems tend to leeaquitplicated because they tend
to have the following five features: (i) time varying arrivates and staffing, (ii) abandon-
ment from queue of impatient waiting customers, (iii) noikbvian probability structures
(stemming from non-exponential probability distributsn(iv) large scale (many servers
and high arrival rates), and (v) complex network structural{iple queues with flows from
one to the other). This thesis proposes new mathematicatimadd tools to help analyze
(and thus manage) the congestion in large-scale servitensgsThe models are determin-
istic fluid models. These fluid models serve as approximationcorresponding stochastic

gueueing models with all the complicating features above.



1.1 Time-Varying Model Data

It is important that our model assumptions capture realfisatures of real service systems.
One of them is the time variability of the model data, i.eg #rrival rate, the service and
abandonment distributions, the number of servers and titengoprobabilities. Among all
these model elements, the most important is the arrival fidie time-varying arrival rate
in turn causes the staffing (the number of servers) to be tangng as well. We elaborate
on these two forms of time variability below. However, otineodel parameters may be
time varying as well. For instance, surgeons intend to sdleeldnger operations in the
morning and shorter ones in the afternoon, which can reswhiincreasing service rate

over the course of a day.

1.1.1 Time-Varying Arrival Rates

Unlike most textbook queueing models, real service systgpisally have time-varying
arrival rates, usually with significant variation over theyd For instance, the arrival rate
of calls in a financial service call center might vary from Qridg the late night) to 2000
over the course of a day, as shown in Figure 1.1, taken froh B&cause of such time-
varying arrivals, it is difficult to analyze the system penf@nce. It is no longer possible
to apply the steady-state analysis associated with quguendels having constant arrival
rates, commonly found in textbooks.

Consequently, the standard tool for analyzing queues witk-varying arrival rates
is computer simulation. However, in order to rapidly deterenthe performance conse-
guences of different staffing plans, it is very helpful to éanalytical models and meth-
ods for analyzing them. Almost all successful analyticathmds employ approximations;
see [26]. This thesis continues the effort to develop usafialytical approximations for

analyzing queueing models with time-varying arrival rates
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Figure 1.1: The arrival rate of incoming calls of a mediumesfinancial services call
center.

When staffing is adequate and service times are short, as iy metomer contact
centers, it is often possible to apply stationary modelsn@alyee many-server queueing
models with time-varying arrival rates, using some vari@rthe pointwise-stationary ap-
proximation. The pointwise stationary approximation usebfferent stationary model at
each time, acting as if the arrival rate were constant withitistantaneous arrival rate at
that time.

When staffing is occasionally inadequate or service timesl@rger, the pointwise
stationary approximation can perform badly. Then othehod$ may be needed; see [26]
for a review. To determine appropriate staffing levels aralya® performance in a many-
server system with time-varying arrivals, infinite-seraerdels often can be employed, as
in [17,50, 53] and references therein. However, the effeotess of infinite-server models

depends largely on the assumption that ultimately the systél be adequately staffed.



This thesis considers a different situation. This thes@u$es on systems that alternate

between periods of overloading and underloading.

1.1.2 Time-Varying Staffing

In order to cope with the time variability of the arrival patt, appropriate time-varying
staffing functions are needed; see [26] for background. &fbeg, it becomes necessary to
go beyond the scope of models with constant staffing.

It is important to note that complications arise when we @@rsqueueing systems
with time-varying staffing. We need to carefully consideravhappens when the service
capacity is scheduled to decrease when all servers are Dosye require that customers
in service stay in service with the same server until thewise is complete? (The analysis
here applies to the case in which we allow the service in gssjto be handed off to another
available server.) Even with such server-assignment buaigc there are issues: Do we alter
the prescribed staffing function to avoid forcing a customerof service? If we adhere to
the given staffing function, as assumed here, then somermastaare necessarily forced
out of service in the stochastic system. (That can be predanthe idealistic deterministic
fluid model; see Assumption 2.4.) In the stochastic systeimenxcustomers are forced out
of service, which customers are forced out and what happehgin? Are these customers
forced out of the system entirely? If so, is there service @lete or do they retry? If
customers are pushed back into the queue (as implicitlyn@sgun [46]), then where do
they go in the queue, and what is their new abandonment bmf?avi

Under regularity conditions, these realistic featured & asymptotically negligible
as the system scale grows (in a many-server heavy-traffi¢ ltscussed ir§1.3.2), but

these new considerations complicate the proofs of limibtles. For the fluid model, we



directly assume feasibility of the staffing function, but also show how to achieve it if it

is not initially present; seg2.9.

1.1.3 Alternating Periods of Overloading and Underloading

As indicated above, this thesis focuses on systems thahateebetween periods of over-
loading and underloading. In particular, this thesis depgheavy-traffic fluid approxima-
tions to approximate the performance of associated congitehastic queueing models
that experience alternating periods of overloading ancttlodding.

Of course, periods of overloading are not desired, becdwesedause large customer
delays, producing significant customer dissatisfactiont, Blso, periods of underloading
(with many idle servers) are not desired, because they affcient, tending to produce
large staffing costs. Nevertheless, many service systemmoaly experience periods of
overloading and underloading. That is so because, firstrtineal rate varies significantly
over time and, second, system managers are unwilling orl@matlthange the number of
servers dynamically in real time to efficiently meet demairalldimes. For example, there
may be constraints on the shifts. Consequently, servidemsgssuch as hospitals and call
centers often alternate between periods of overloadingiaddrloading. Therefore, there
is an increasing need for better understanding of the peeoce of service systems that
experience alternating intervals of overloading and uiodeing.

By considering alternating overloaded (OL) and underldad#.) intervals, we con-
sider a new many-server heavy-traffic (MSHT) regime (disedsmore ing1.3.1). The
vast majority of the many papers on MSHT approximations $oon systems that are
nearly critically loaded at all times. In other words, thegtis on the so-called quality-and-
efficiency driven (QED) regime. In contrast, this thesisginet consider the QED regime

at all. The OL and UL intervals considered here corresporttigcefficiency-driven (ED)



and quality-driven (QD) many-server heavy-traffic regimesscribed in§1.3.1, as op-
posed to the more commonly studied quality-and-efficiel@i D) regime, also described
in §1.3.1. Thus, this thesis focuses on MSHT approximationsystems that alternate
between ED and QD MSHT regimes.

The structure of alternating OL asnd UL intervals is strgrg#ploited in this thesis.
When the system is underloaded, i.e., when there are eneugdrs serving all customers,
the system is identical to an infinite-server model; whersgstem is overloaded, i.e., there
are customers waiting in the queue and all servers are basgeasompose the system into
two subsystems, the queue and the service facility, anda@ebatreat the customers that

are waiting in queue and those that are in service; see Qiafiedetails.

1.2 Abandonment and non-Exponential Distributions

In addition to time-varying arrival rates and staffing, seevsystems often experience
customer abandonment and have non-exponential distiisjtivhich makes the major
stochastic processes of interest, such as the number @ncet waiting in queue, more

difficult to analyze.

1.2.1 Customer Abandonment

In service systems, customers will often leave if they cahegin service within a reason-
able time after they arrive. For example, in call centersi@mmers abandon by hanging up
if they are put on hold for a long time. In hospitals emergemmyms, patients often leave
the waiting room before being seen by a doctor (i.e., abandecause they have had to
wait a long time; that is known as the “left without being se@WBS) effect; see [79] for

discussion. Moreover, the feature of customer abandonmméniportant to include in the



model, because even a small amount of customer abandonarestgnificantly alter the
system performance; [20]. Thus Customer abandonment isexygnized as an important
feature in service systems, e.g., see [20, 81].

The probability (or percentage) of customer abandonmeonesof the most important
performance criteria in service systems such as call cgnterovides direct feedback to
the system managers on whether or not the offered servicerih ws wait and to what
extend customers are satisfied with the service. There &exr cbmmonly used mea-
sures such as the average waiting times and the probalalitggrcentage) of customer
delay. However the different performance measures areeajplgt connected, for instance,
a nearly linear relationship between the average waitmg tnd the probability of aban-

donment was established in [49].

1.2.2 The Classical Erlang Models

Traditionally, the performance of service systems, sudelasommunication systems, has
been analyzed by applying the classical Erlang models. @leeence model is the Erlang
C' (or delay) model, denoted hy/ /M /s. In this model there is an external Poisson arrival
process (the firsf\/), independent and identically distributed (IID) exponanservice
times (the second/), s servers and an unlimited waiting room. The service times are
assumed to be independent of the arrival process. Whenradirseare busy, new arrivals
join a queue and wait for a free server. Customers are senvexdier of arrival by the first
available server. The Erlang (or loss) model is the variant that has no waiting room at
all; then when all servers are busy, new arrivals are bloeketlost. The Erlang model
was especially appropriate for telephone equipment thdhthb&provision for waiting.

Of special relevance for this thesis is the generalizatich®ErlangC' and B models

to the ErlangA model, denoted bw//M /s + M. Just as in the Erlang’ model, there



is an unlimited waiting room, so that when all servers areybnsw arrivals again join a
gueue and wait. However, the Erladgmodel accounts for customers having only limited
patience for waiting before entering service. The modealmes that each customer has a
length of time (patience time) that the customer is willingvait before beginning service.
If the customer is unable to enter service before that tihex the customer leaves without
receiving service. These patience times are assumed tD legplonential random variables
(the +M1) with rated, independent of the arrival process and service times. Tlam@A
model reduces to the Erlang model whend = 0; the ErlangA model reduces to the
Erlang B model wher¥ = oo. The performance in the Erlang model approaches the
performance in the Erlang’ model as approache®; the performance in the Erlang

model approaches the performance in the ErlBngodel ag) approachesc.

1.2.3 From Markov to Non-Markov Queueing Models

The Erlang models are relatively easy to analyze becauseutiéer of customers in the
system at time is a birth-and-death stochastic process, a relativelylgiggntinuous-time
Markov chain stochastic process. However, to obtain makstee models it is important
to go beyond these Markov models. In particular, statistinalysis shows that customers’
service and patience times are typically not exponentiiliyributed in real service sys-
tems. For example, Brown et al. [7] found that the distribatof the duration of calls
(service times) in call centers is close to the lognormdrithstion, while the the hazard
rate (the density divided by the complementary cdf) is fanfrconstant (implying that the
distribution of customer patience times is far from the exgaial distribution), as can be
seen from Figure 1.2 from [7].

It is thus important to determine to what extent the queueingels with exponential

distributions provide useful performance descriptiondgstems where the exponential as-
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Figure 1.2: (a) A histogram of service times and (b) an esBroéthe hazard rate rate of
patience times in a medium-size call center.
sumptions are not nearly satisfied. Whitt [77] showed forttey-served/ /G /s + GI
model, that the steady-state system performance tendsoiteesensitive to the abandon-
ment distribution beyond its mean, but relatively insawsito the service-time distribution
beyond its mean. However, in Chapter 2, we show that thecetime distribution beyond
the mean can have a great impact to the transient performance

Thus, there is growing interest in developing effective moes for analyzing models
that allow the service-time and patience-time distribugito be 11D random variables with
general distributions (Gl). Thus, there is a need to comdide M/ /GI/n + GI model
instead of theM/ /M /n + M model. Unfortunately, however, the number of customers
in the system at time is no longer a Markov process. Analytic formulas are avédab
although complicated, for the steady-state performanteesaf/ /M /n+ G model, having
a general abandonment distribution but still exponenéalise; see [49, 80, 81]. However,
little in the way of explicit analytical results has been danore generally. Hence, even
forthe M /G1/n + GI model, it is necessary to resort to approximations.

However, this thesis considers even more general modelshibahallengind//G1 /n+

G1 model. In addition to non-exponential service and patiehsgibutions, the queueing
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models here allow non-Poisson arrivals and time-varyingalrate and staffing. The base
stochastic model in this thesis is tli&/G1/s, + GI stochastic model, where the sub-
scriptt denotes time-varying. Th@, arrival process is a general (not necessarily Poisson)
stochastic process with a time-varying arrival rate. Hasvethe non-homogenous Poisson
process, denoted hy/,, is the primary arrival process of interest.

Since theM/ /G 1 /s+ G1I stochastic queueing model is not tractable by current nastho
it is evident that the more gener@}/GI/s; + G1 stochastic model is not tractable either.
Thus we are motivated to look for approximations. Specifyc#his thesis proposes and
analyzes a deterministic fluid approximation for the/G1/s, + GI stochastic model,
which is called the&,/G1 /s, + GI fluid model. In this fluid model, the general time-
varying G, arrival process is characterized simply by the arrival fatection. However,
the general service-time and patience-time cumulativieilbigion functions (cdf’s)z and
F, respectively, play important roles in the fluid model (begoheir mean values).

We obtain Markovian structure in the more complicatédG1 /s, + G1 stochastic
model and its fluid model counterpart by focusing on two-paeter stochastic processes.
In particular, we consider the queue content (number obeosts waiting in the queue) at
timet that has been in queue fodarationat mosty, denoted by (¢, y), and the service
content (number of customers that are in service) at titiat has been in service for a

durationat mosty, denoted by3(¢, y), see (2.3). Her&) and B are functions of both and

Y.

1.3 Many-Server Heavy-Traffic Fluid Approximations

Traditionally, the performance of service systems, suclelEsommunication systems,
have been analyzed by applying the classical Erlang modgish we reviewed above in

§1.2. However, since real service systems typically do neemearly Markovian proba-
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bility structure, the generalization to non-Markovian retsdis important. However, once
the Markovian assumption is relaxed, even for a little biact analysis tends to become
intractable. Therefore, heavy-traffic fluid and diffusigspeoximations become helpful;

see [74] for a review.

Heavy-traffic involve a sequence of queueing systems in lwthe load is allowed
to increase (become heavy). The congestion (e.g., the deegth) tends to grow in the
heavy-traffic limit, but after appropriate scaling (e.gultiplying by an appropriate asymp-
totically negligible quantity), there may be a nondegeteelianit, which can serve as an
approximation for the pre-limit processes.

The fluid models studied here can be regarded as models ofshia their own right.
However, their justification is enhanced by heavy-trafficititheorems, which show that
the fluid models arise as heavy-traffic limits for a sequerfcgueueing models. Thus
we will approximate the expected total number of customeging in queue,E[Q(t)],
by the deterministic number in the corresponding fluid modeheavy-traffic fluid limit
provides theoretical support for the approximation by sihgvthat the approximation is
asymptotically correct as the scale increases. In a refiffedsidn approximation, the
diffusion term can be used to estimate the stochastic erftuciuation around that mean
trajectory.

There are two types of heavy-traffic regimes: twventionalheavy-traffic regime
that focuses on queues with a single server or a fixed numbsergérs, and thenany-
serverheavy-traffic regime that applies to queues with a large ramob servers (where
the number diverges te-oc in the limit). We review these two heavy-traffic regimes in

§61.3.1 and 1.3.2 below. Afterward, we discuss fluid modeKli3.3.
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1.3.1 The Conventional Heavy-Traffic Regime

The conventional heavy-traffic regime involves a sequehge®ueing models with a fixed
finite number of servers in which the associated sequenaaffittintensities is allowed
to increase to the critical value for stability;, see [74] for an extensive account. The
first conventional heavy-traffic limit (and approximatiomds developed for th€7/G1/1
queue by Kingman [38]. Thé&'I/GI/1 queue has a single server, 11D interarrival times
{A;,i > 1} with meanl /) and squared coefficient of variation (SCV, i¥ar(A)/E[AJ]?)

%, and IID service timeg.S;,: > 1} with mean1/; and SCVcZ. (Thus, finite variances
is assumed.) The associated sequenc& bfGG1/1 queues indexed by is constructed
by first lettingA = p© and then by making theth queue have the same arrival process
but modified service time$S§") = puS;, i > 1}, wherep, T 1 asn — oo for p, =
E[S™]/E[A] = \/u", with = denoting "equality by definition.” The quantity, is the
traffic intensity in modeh.

Under those assumptions, Kingman [38] showed that

(1—p)W™ =W  as n— oo, (1.1)

whereV ™ is the steady-state waiting time of th¢h queue in that sequencH; is an
exponential random variable with meé, + ¢%)/2u and=- denotes convergence in dis-

tribution. The limitin (1.1) can then be applied to genetheapproximation

|74
(1 - pn)

[LARES for fixed n, (1.2)

which tends to be increasingly accurate (in a relative 9ease increases.

Borovkov [5] and Iglehart and Whitt [32] later extended tlmaeentional heavy-traffic
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limit for single-server queues to queues with multiple sesv Instead of establishing the
limiting result for the steady-state queue length, Iglelaad Whitt [32] established the
convergence of the entire queue-length process. Simikdinigman [38], they considered
a sequence daf’//G1/s queues (as well as more general multichannel queues) iddgxe
n such that theith queue has IID interarrival timgs4; /s, i >}, whereA; has mean /u
and SCV¢?, and 1D service timegp,,S;,7 > 1}, whereS; has mean /; and SCVc?.
(Again p, is the traffic intensity in modet.) They let the traffic intensity approach 1 in the

way thaty/n(1 — p,,) — 8 asn — oo, where0 < < oo. They showed that

L
NG

1

—=Q0) = Q(0),

(nt) = Q(t) in D as n— oo, Iif
where @ is a reflected Brownian motion with a drift termfSsy and a diffusion term
su(ch + %), D is the space of real-valued functions that are right-comtirs and have

left limits.

1.3.2 Many-Server Heavy-Traffic Regimes

Unfortunately, however, the conventional heavy-trafiicits do not yield good approxima-
tion for large-scale service systems with many agents €sgyvTo develop better approx-
imations for such systems, Halfin and Whitt [28] establisaedany-server heavy-traffic
(MSHT) for theG1/M /s model, including the Erlang @//M /s model. For the Erlang’
model, there is a sequence of queues indexeddiych that thexth queue has a Poisson ar-
rival process with rate,,, IID exponential service times with rate andn servers. Halfin

and Whitt [28] proposed thquality-and-efficiency drive(QED) regime (also known as
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theHalfin-Whitt regimg, which is characterized by

Vn(l —p,) — B3, for 0< 8 < o0, (1.3)

wherep,, = A\, /nu is the traffic intensity of theith queue. Since the number of servers in
thenth queue grows to infinity, this regime is a many-server hdeaffic (MSHT) regime.

Halfin and Whitt [28] showed that, under condition (1.3),

n n

\/ﬁ<%—1):>€2 in D, if ﬁ(Q”(O)—l)ié(O), as n — oo,

whereQ is a diffusion process with a drift term(z) = —u81g,0 — pulz + 8)1iy<n
and a diffusion tern2u. In the QED MSHT regime, the steady-state probability ofaglel
approaches a constant strictly betw@eand1.

The results in Halfin and Whitt [28] were generalized to thedelavith phase-type
service distributions by Puhalskii and Reiman [60] and toggal G/ service-time distri-
butions by Reed [61] and Puhalskii and Reed [59]. Kaspi andd®en [36] proved a fluid
limit for the measure-valued process tracking the ages stbooers in the system.

The MSHT regime has also been generalized by incorporatisgpmer abandonment.
For the special case of the Erlang models, the original testiHalfin and Whitt [28] were
extended from the Erlang C model to the Erlang A model by Gameteal. [20]. With
abandonment, the traffic intensity need not be less than ddir dor a proper steady state
to exist. Indeed, for the Erlang model, a proper steady-state distribution exists for all
traffic intensities.

Garnett et al. [20] introduced the names quality-driven JQduality-and-efficiency-

driven (QED) and efficiency-driven (ED) for the three MSHTGirees. The QED regime
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prevails when

Vn(l —p,) — B, for —oo<f< oo, (1.4)

In contrast, the QD regime arises when the limit in (1.4}i, whereas the ED regime
arises when the limitin (1.4) isocc. Thus, if the traffic intensity remains fixed as— oo,
then the system is in the QD, QED or ED MSHT regime ifand only ik 1, p = 1
andp > 1, respectively. Whem > 1, the probability of delay converges to 1, but the
probability of abandonment converges to a constant stiietween 0 and. Whenp < 1,
both probabilities converge to 0.

Most research has focused on the QED MSHT regime. Howevempbhasized in [75],
with abandonment, the ED regime is also of considerableipedémportance. Indeed, the
ED regime corresponds to the OL case considered here. THerfhuilel is of special inter-
est only when the ED regime prevails at least part of the tiiine. MSHT fluid approxima-
tion for the generals/GI1/s + G1 model with non-exponential service and abandonment
distributions was established by Whitt [77]. In additiordiacrete version of the limiting
convergence theorem was also provided in [77]. Furtherdifior this model have been
obtained by Kang and Ramanan [37].

The paper by Whitt [77] was the original inspiration for tleistire thesis. The initial
goal of this research was to obtain corresponding resuitsh®G,/G1/s, + GI fluid
limiting model with smooth model parameters, thus extegdire discrete time results in
66 of [77] (which allowed time-varying arrival rates). In Gtar 2 we develop a complete
analysis for the%, /G /s, + G1I fluid model, which provides important new results for the

G/G1/s + GI model, thus complementing [77].
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1.3.3 Deterministic Fluid Models

There is a long history of applying deterministic fluid mal&d approximate the perfor-
mance of queueing systems, as can be seen from Newell [54)];sake Hall [29]. They
tend to be especially useful when the congestion is prijmdetermined by differences in
the total arrival rate and the maximum possible service em®ccurs when the system ex-
periences periods of substantial overloading. The fluideteodan be applied directly, but
additional insight can be obtained if they can be shown &eaas the limit of a sequence of
gueueing models. However, this thesis is not primarily eoned with establishing limits
for sequences of scaled queueing processes associateseitnence of queueing models.
Instead, we are directly concerned with the fluid modelfitdels important to recognize
that the fluid model can be considered directly as a legigmabdel in its own right. By
focusing on a continuous divisible quantity, which we céliit,” our fluid model can be
regarded as a storage or dam model, as in [57].

Even though the fluid model we consider can be directly rezrhed a model of interest,
it is helpful to see how the fluid model considered here ariiseslimit of a sequence of
gueueing systems. In this thesis we focus on a fluid modebtinsgs in the MSHT regime,
asin[20,46,55,56]. As a consequence, the MSHT fluid apprations is more appropriate
for large-scale systems, where the number of servai®isr more, but also may be useful
for systems with fewer servers, suchfas 20.

A theoretical basis for the MSHT limits for models with timarying arrival rates and
staffing was established by Mandelbaum, Massey and Reingsige also [47,48]. They
established MSHT limits for the time-varying Markovia# /M, / s, + M, queueing model.
Whitt [77] established a discrete-time generalization tfee more generaly;/G1 /s, +
G1 model considered here. Thus, even though we do not provethmorems here, the

appropriate scaling is evident from these previous papers.
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Our basic queueing model is th& /G1 /s, + GI queue, which has a time-varying ar-
rival rate (theGG,), a non-exponential service distribution (thd), a time-varying staffing
function (thes;), and a non-exponential patience distribution (h&1). We consider a
sequence of systems indexedbin which both the arrival rate and the number of servers
increase linearly im. LetQ,,(t,vy) (B, (t,y)) be the number of customers in queue (in ser-

vice) att that has been in queue (in service) for at mp3t/e expect to see the convergence

(Qn(t,y)7 Bn(t,y)) = (Q(t,y),B(t,y)), as n — oo, (1.5)

n n

where( and B are deterministic fluid functions. As — oo, customers are shrunk down
to atom of fluid, however their individual behavior remaimebanged. Paralleing (1.2), as

a consequence of the limit (1.5), we propose the approxanati

(Qn(t,y), Ba(t,y)) = n(Q(t,y), B(t,y)), forfixed n, (1.6)

where the accuracy of the approximation (again in a relatvese) improves asincreases.
For very large-scale service systems (with many serveradt gueue and high arrival
rates, i.e.n is large) such as large-scale call centers, the deterncifiist] values serve as
good direct approximations for the stochastic queueingtjies, because the stochastic
fluctuations around the mean values tend to be relativelyl $essentially because of the
law of large numbers (LLN)). When is small, e.g.;» = 10 such as in a hospital, this
single sample path approximations become crude sinceagticHluctuations cannot be
simply ignored. However, the fluid content can still be usedgproximate the mean value
of the corresponding stochastic process in the many-sguereing system. See computer

simulation verifications i132.2.
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1.4 Network Structure

In this thesis, we primarily focus on a single fluid queue. ldwear, queueing models with
only one queue are not sufficient to represent all real sersystems. In hospitals, for
instance, patients move between different units, such aermergency rooms, intensive
care units, and operating rooms. In factories, each item maag to visit different work
stations through its production line. In call centers, d#pg customers may want to call
back later to require more service; this feedback proviedsork structure.

Thus we also consider fluid models with a general networlcsire. In particular, we
consider open networks of fluid queues with proportionatingy which we denote as the
(G+/GI/sy + GI)™ /M, fluid model. This model has: fluid queues, each with its own
arrival process, service times and patience times. A ptmpoof the fluid completing
service from each queue is routed to other queues or out afdtweork. Just as for the
single fluid queue, this network of fluid queues is intendeddrre as an approximation
for the corresponding stochastic model. Each queue in tdehastic queuing model is a
Gy/G1 /s, + GI queueing model. In the stochastic queueing model the @igiassumed
to be Markovian, with individual customers going to one a tther queues with specified
probabilities, independent of the system history up totinat. See Chapter 3 for details.

This stochastic queueing network is a generalization ofdpen Jackson queueing
network; see [10] for a review of the Jackson network. Howetlee non-Markovian
structure and the time-varying arrival rates and staffindgamthe stochastic model ex-
tremely difficult to analyze. To find a balancing point betwarodel applicability and
mathematical tractability, we focus on the MSHT determiaiuid approximation of this
(G+/GI/s; + GI)™ /M, stochastic queueing network model. We provide efficienb-alg
rithms to compute the standard performance measures int@ tiime interval, such as a

day or a week.



19
1.5 Transient and Asymptotic Performance

In standard queueing models with constant parameterdiatiea usually focused on the
long-run steady-state behavior. However, when the modenpeters are time-varying,
as in most real service systems, that is not possible. A gteiadle no longer exists. For
systems with time-varying model elements, it is necessapaly attention to the perfor-
mance as a function of time. Therefore, it is important tefidly investigate the system
performance in a relatively short time period, such as a dayweek. We intend to an-
swer questions such as: How many total customers on avecage dxpect at 9am? How
long does an arriving customer at 1pm have to wait beforeriagteservice? To prevent
extensive overloading, how many agents do we need at 3pm?

To analyze the transient dynamics, fluid and diffusion apipnations have been widely
developed, see [46-48, 56, 58]. Consider a performanceifumsuch as the total number
of customers waiting in queue 8tQ(¢). the time-dependent fluid function characterizes
its average (via sample path, not time) behavior as timevegolhile the diffusion term
describes the stochastic fluctuations around that averatie fComplementing [46—48,
56, 58], we provide efficient algorithms to compute perfonge functions for the fluid
approximations in any finite time interval.

In this thesis we also consider the steady-state behavibieahodels when the model
parameters are not time-varying. When the model data aréimetvarying, the long-
run average or steady-state performance is of primaryastef~or example, in revenue-
generating service systems such as call centers which teteroer orders, these steady-
state quantities can be very helpful in evaluating the @eystem costs and revenue,
e.g., see [3]. Thus it is significant that we also charactdtirs steady-state performance
for models without time-varying model elements.

From a theoretical perspective, it is also important to kot the system approaches
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steady state as time evolves. In this thesis, we show thatt#tienary fluid model con-
verges to steady state as time evolves. In addition, howthiastransient system perfor-
mance functions converge to the steady state may also bepbéadpnterest. When that
convergence is rapid, we can more safely ignore any effect the initial state and directly
use the steady state quantities as approximations. We simalgr regularity conditions,
that the convergence to steady state in the fluid queues @erpially fast.

Finally, there is another important case. Even though thgahrate may be time-
varying, the arrival rate may be periodic or nearly periodicdeed, this is common for
service systems that experience daily or weekly cycles.irigtance, call centers reveals
similar arrival patterns on every Monday, which can be gditierent from those on Sun-
day, so one week can be treated as a performance cycle, see [7]

In this periodic case, transient analysis is of course stiportant, but it is natural
to expect that there would be a dynamic periodic steady.statgarticular, we expect
the successive cycles to be distributed the same in the lamgThat is, there would be
systematic time variation within each cycle, but the duttion of the performance over
the successive cycles would tend be the same. In this thesisstablish the existence
of a periodic steady state (PSS) for queues with periodicanpdrameters, and show

convergence to that PSS as time evolves. See Chapters 4étéils.

1.6 Effective Algorithms

For engineering applications, it is essential that theqrernce descriptions can actually
be efficiently computed. Thus it is significant that we depeddficient algorithms for the
fluid models considered here. These algorithms are basediangordinary differential
equations and solving fixed point equations associated euithiraction operators. They

are implemented in MatLab and solved on an ordinary persmraputer.
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Using these algorithms, we can predict, and thus contrelre¢hl-time performance of
service systems. For example, we apply the algorithms &rihéne staffing functions that
stabilize the performance at target levels of congestimman arbitrarily given arrival rate
function; see52.10. We now briefly describe the different algorithms depel in this

thesis.

1.6.1 Algorithm for One Fluid Queue

We first decompose the system into two subsystems: (ijjtieeiewhere fluid is waiting
in line and theservice facilitywhere fluid is in service. When the system is UL, the queue
is empty so that external arrivals flow into the service fgcilirectly; when the system
is OL, external arrivals are buffered in the queue, the dlfles in queue moves into the
service facility according to a first-come-first-serve (BJEiscipline.

We next partition the desired time interval (such as a datg disjoint OL and UL
intervals and provide the OL-UL switching criterion. Givére initial system status, we
recursively compute the performance measures in OL and tdrvials and locate those
OL-UL switching time points, until the end of the time honeis reached.

Comparing with a UL interval, an OL interval is more compt@@d For general non-
exponential service distributions, we have to solve a figeitt equation (FPE) which
admits a unique solution under general conditions; for agptial service distributions, the

FPE simplifies to an easy ordinary differential equation E)5ee Chapter 2 for details.

1.6.2 Algorithms for a Network of Fluid Queues

We next generalize the analysis from single-queue fluid nsadenetworks. The major
difficulty for the network model is that the total arrival ezt each queue of the network is

not part of the model parameters. This rate is the sum of ttexreed arrival rate (which is
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part of the model data) and the rate of feedbacks from otheueg! If we can obtain the
total arrival rates for all queues, each of them can then bé/aed in an identical way as
in Chapter 2 so that the single-queue fluid algorithm can to@lyi applied. Therefore, the
main step of this network generalization is to obtain thaltatrival rates to each queue.
We provide two algorithms for the fluid networks with expohalservice distributions.
In the first algorithm, we show that the vector of the totalvalrrates is a fixed point in
the multi-dimensional functional space. In addition, wewlthat this new FPE has a
unique solution under general conditions so that we thugedol the fixed point through a
recursion-based algorithm. In the second algorithm, werdehe the total arrival rates by
solving a multi-dimensional ODE. The algorithm becomesermmmplicated for networks
with non-exponential distributions because the singleugufluid algorithm can no longer

be applied, see Chapter 3 for detalils.

1.6.3 Algorithm for a Fluid Queue with Deterministic Service Times

The initial algorithm for one fluid queue is based on smootldelaata, and thus does
not apply to deterministic service times. However, when walyze the fluid queue with
deterministic service times in the last chapter, we modig/grevious algorithm, so that it

applies to models with deterministic service times. Seep@ha for details.

1.7 Simulation

In this thesis, computer simulation of the stochastic girgumodels is employed exten-
sively to test the accuracy of the deterministic fluid appr@tions of the corresponding
expected values in the stochastic queueing model. Just Hefaumerical algorithms, the

simulations of the queueing models are run in MatLab on agp@lscomputer.
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For very large-scale models (that have a large arrival radeadarge number of servers),
there is very little variability in the content stochastropesses in the queuieng model; i.e.,
sample paths from independent replications will tend tbdaltop of each other. (The
system can be said to be large when the arrival rate and theeruwh servers are around
1000, with the mean service time being 1.) Thus, it sufficeshtmw that any one of these
sample paths agrees closely with the numerical values ctady the algorithm for the
fluid model. We show that simulation estimates of single darmppths of the performance
measures, such as the time-dependent number of custontenga#ing times, agree with
the fluid approximating functions closely. This is congiste@ith expectations, because of
the MSHT theoretical basis.

However, assuming a large arrival rate and a large numbesreéss is not reasonable
for systems such as hospitals where the number of doctorsases can be 10 or even
smaller. It is therefore important that our fluid approximoatcan be applied for small
service systems. In this case we should not expect the detstim fluid approximation
to work well for each sample path because the stochastiafitions or errors cannot be
simply ignored. However, the mean functions of these ststahprocesses can still be well
approximated by the fluid functions. See Chapters 2 and 3dtailéd examples.

We provide simulation verifications on both single-queuanegles and network exam-
ples. All of these examples show that our fluid approximatiare effective. Effectiveness

increases as scale increases and the extent of overloadnegses.

1.8 Organization of This Thesis

There are four chapters in the rest of this thesis; theseas®edoon four completed papers
[41-44], respectively.

In Chapter 2, we first restrict our attention to the deterstioiz;/G1 /s, + GI fluid
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model that approximates its corresponding many-servargjng model with a single class
of customers handled by a single group of homogeneous sewerking in parallel. We
determine the time-dependent performance functions, ascine fluid in queue and in
service, the waiting time, the abandonment and service t=diop rate, etc. This model
has a time-varying arrival rate and service capacity, atameént from queue, and non-
exponential service and patience distributions. Our keymptions are that (i) the system
alternates between OL and UL intervals, and (ii) the modetfions are suitably smooth.
The results show the impact of the time-varying parametedstae model distributions
on the performance. Simulations confirm that the approxxonaand the algorithm are
effective.

In Chapter 3, we extend our analysis in Chapter 2 to complexork queues, allow-
ing time-dependent proportional routing among the quelreparticular, we consider the
(G+/GI/sy + GI)™ /M, model. There aren queues, each with its own external fluid in-
put, but in addition a proportiof?, ;(¢) of the fluid output from queugat timet is routed
immediately to queug, and a proportiorP; o(t) = 1 — >, P, ;(t) < 1 is routed out of
the network (departs having successfully completed allired service). This framework
permits feedback, not only directly froimto ¢, but also indirectly from to i after one or
more transitions to other queues. We provide efficient a@lgms computing all standard
performance functions in a finite time interval. In additiare characterize the steady-state
behavior of the stationary version of this network fluid miode

In Chapter 4, we complement the analysis in Chapters 2 and iBviegtigating the
large-time asymptotic behavior of tiig /M, /s, + G, fluid model with exponential service
distributions. We establish an asymptotic loss of memony@M) result which says that
the impact of the initial condition dissipates as time eeslvUsing this ALOM property,
we develop the following two convergence results: For@é//s + GI queue, i.e., when

the model parameters are constant, we establish the cemaergo the steady state (in the
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infinite future). When the arrival rates are periodic fuans (such as in service systems
with daily or weakly cycles), we establish the existence geaodic steady state (PSS)
and the convergence to the PSS as time evolves. We also showhéconvergence is

exponentially fast under general regularity conditions.

In Chapter 5 we consider a station&@y /D /s + G queueing model with a stationary
general arrival process (the firSt7), deterministic service times (the), multiple servers
(thes), and general abandonment times (th@7). Under general conditions, the number
of customers in thi§;1/D /s + G many-server queue at timeonverges to a unique sta-
tionary distribution a$ — oc. However, simulations show that the sample paths routinely
exhibit nearly periodic behavior over long time intervalsem the system is overloaded and
s is large, provided that the system does not start in steadg.sStVe provide insights into
the transient behavior by studying the deterministic flundel. The fluid model also has
a unique stationary point, but that stationary point is mgtraached from any other initial
state ag — oo. Instead, the fluid model performance approaches one ohdsuntably
many periodic steady states, depending on the initial ¢immdi.

For this stationary=7//D /s + G queueing model, we also prove a MSHT limit, show-
ing that the performance functions in the fluid mdoel are thit$ of corresponding ap-
propriately scaled performance functions in a sequendeso$tiochastic queueing models.
As a result, we demonstrate the invalidity of the intercleabtwo limits: the steady state
(obtained ag — oc) of the HT limiting process (obtained as— oc) does not coincide
with the HT limit (obtained ass — o0) of the steady state (obtained as+ o) of the

queueing processes.
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Chapter 2

The G¢/G1 /sy + GI; Fluid Queue

We begin with the study of a single-queue fluid model that lmas-varying arrival rate
and staffing functions, general service and patience bligions. We provide an efficient
algorithm for computing all standard performance measukdeey idea of this algorithm

is to treat overloaded intervals and underloaded intesepsirately.

2.1 Introduction

In this chapter, we study th&, /G /s, + GI deterministic fluid model. This model serves
as an approximation for the corresponding many-serverajogumodel, that has a non-
stationary general arrival process (tig), independent and identically distributed (1ID)
service times following a general distribution (the fi€sf), a time-varying staffing func-
tion (thes;), and allows IID patience times following a general diattibn (the+G1).

We have four important goals. First, we want to carefully metheG,/G1/s; + GI

fluid model. Second, we want to characterize its performambé&d, we want to develop
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an effective algorithm for computing all the performancedtions. Finally, we want to
show that the resulting performance descriptions effeltigmpproximate the performance
of the corresponding large scale stochasti¢GI1/s; + GI queueing systems. We do
that by conducting simulation experiments. For very larggems, the fluid performance
will closely match individual sample paths; for smallertgyss, the fluid performance will
closely match the mean values of the stochastic processes.

In order to recover important Markovian structure, in parar we focus on the two-
parameter processe3(t,y) and B(t, y), denoting the number of customers in queue and
in service for at mosy att. These quantities have interesting new features not evidan
the M, /M, /s, + M, fluid model.

By focusing on non-exponential service and patience digions, we also extend [77],
which developed a deterministic fluid model to approximage steady-state performance
of astationaryG /G1/s+ GI queueing model. Comparisons with simulation in Tables 1-3
of [77] show that the approximations can be very useful whengystem is overloaded.
Some degree of overloading is not uncommon, because evealbasnount of abandon-
ment acts to keep the system stable [3,20,76,77]. The agcaffluid models for capacity
planning has been strongly supported by [3].

Here we consider the analogoGs/G1/s; + GI fluid model, now including time-
varying arrival rate and staffing (service capacity). Wealep an algorithm to calculate all
the standard performance functions. In doing so, we alsaiggamportant contributions
even for thestationaryG/G1/s + G1 fluid model introduced in [77]. Here we provide for
the first time a full description of the transient behaviothef stationarys/G1/s+G1 fluid
model. The fundamental evolution equations, here in (Z¥f),the same as in (2.14) and
(2.15) of [77], but the time-dependent performance whersyiséem is overloaded actually
depends on three features introduced for the first time hEnest, for non-exponential

service, the (two-parameter) fluid density in servite ) depends on the rate fluid enters
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serviceb(t, 0), which is characterized as the unique solution to a fixedtgmjoation; see
(4.20) and Theorem A.2. Second, the fluid density in queiter), depends on boundary
waiting time(BWT)

w(t)=inf{y >0:¢q(t,z) =0 forall x>y}, (2.1)

which is characterized here as the solution obatinary differential equatiofODE); see
Theorem 2.3. Third, thpotential waiting timgPWT) v(¢), i.e., the virtual waiting time of
an arrival at time if that arrival would elect never to abandon, is characestias the unique
solution of an equation involving the BWili(¢) or by yet another ODE; see Theorems 2.5
and 2.6. To the best of our knowledge, none of this structasedeen exposed previously.
Even though we have had to complete the story of the dynanited:/G1/s + GI
fluid model in this chapter, the steady-state descriptidii 1 is evidently correct (which
should not be surprising, since it was confirmed by simutefjo For the special case of
the G/M /s + GI fluid model, in Chapter 4 we extend the results here to proaettie
time-dependent performance converges to that steady{s¢aformance as time evolves
for any finite initial condition. Moreover, we provide boudn the rate of convergence. In
Chapter 4, we also establish convergence to a periodicysgtat for periodic models and
we establish asymptotic loss of memory (ALOM) for more gahéme-varying models.
We should also mention that a time-varyi6g/GI/s + G1 fluid model was already
considered irg6 of [77], but that was done by considering an approximatisgréte-time
model, from which the new structure exposed here is not eviden contrast, here we
develop amooth modekee Assumption 2.2. However, [77] provides important tagcal
support because it establishes a MSHT limit for the disetiete model, with the usual
MSHT scaling, consistent with earlier asymptotic resuitf2i0, 46—48]. Thus, we already

know that the fluid model we consider arises as a MSHT limit akeguence of scaled
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gueueing systems. Nevertheless, we intend to provideiaddittheoretical support for
the fluid model with deterministic service distributiongraduced here in Chapter 5 by
showing that the fluid model arises as the MSHT limit of a segaeeof queueing systems,
under suitably regularity conditions. We do so by applyiegent MSHT limits for infinite-
server queues in [56]. The MSHT limit for the model with gealeservice distributions is

in progress, see [45]. The connection to infinite-servemugaeplays a critical role here
as well; se€2.4,§2.5 and§2.7.1. The new limits in Chapter 5 are consistent with recent
results in [36,37,56,62]. By uniquely characterizing thedflimit here, the present chapter
can be used as a step in the proof.

The results have significant relevance for applicationsstF$ervice systems typically
have arrival rates that vary significantly over time, andrgmults dramatically reveal the
consequence, e.g., showing how the peak congestion lagsditble peak arrival rate, as
discussed for thé/, /G /oo stochastic model in [14,15]. Second, service systems often
do have non-exponential service and patience distribsi{fitlpand the results dramatically
reveal the consequence. From [49,76,77,81], we know teatdtience distribution beyond
its mean has a significant impact. However, [76, 77] showttiesteady-state performance
in the stationary=/GI/s+G1 model is relatively insensitive to the service-time cdf ey
its mean. In contrast, here we show that the service disinibbeyond its mean can have a
dramatic impact as well for the transient performance;s@e2. Finally, the results in this
chapter have already been applied in [31] to create newteféaeal-time delay predictors
for arriving customers in a service system with time-vagyamrivals.

The analysis here applies to a system that is either ovextb@dl ) or underloaded (UL)
for an extensive period of time, but an innovation in our aagh is to consider systems
thatalternatebetween OL intervals and UL intervals. With time-varying\al rates, such
alternating behavior commonly occurs when it is difficultigmamically adjust the staffing

level in response to changes in demand. If the staffing cammohanged rapidly enough,
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then system managers must choose fixed or nearly fixed stddfuets that respond to
several levels of demand. Then it may not be cost-effectvaaff at a consistently high
level in order to avoid overloading at any time. Then the flmiddel introduced here may
capture the essential performance.

We contend that the alternating OL and UL regime (correspantb the MSHT ED
and QD regimes [20]) can be very useful, but if staffing candjasdaed dynamically, then
the system may be nearly critically loaded at all times. ki ttase, we anticipate that it
would be better to use analysis techniques suitable foesysthat are critically loaded or
nearly critically loaded at all times (corresponding to M8HT QED regime). However,
it remains to develop a tractable QED approximation for@heG1 /s, + GI1 model. We

think that the present model may even be useful in that gedisrwell, if skillfully applied.

Here is how the rest of this chapter is organized: We start in§2.2 by discussing an
example, showing the results of the algorithm and how theypare to simulations of
queueing systems. Next §2.3 we carefully define thé&',/G1/s, + G1 fluid model and
specify key regularity conditions. I§2.4 we state important scale-proportionality results,
which provide important simplification for UL intervals. §2.5 we characterize perfor-
mance during a UL interval.

In §2.6 we characterize the service content density during am@ival. Subsections
2.6.1and 2.6.2 are devoted to the special casd service and non G service, respec-
tively. An explicit formula is available fod/ service; an iterative algorithm is developed
for other cases. 1§2.7 we characterize the queue performance functions: thgegcontent
densityq(¢, x), the BWTw and the PWT. In §2.8 we summarize the resulting algorithm.

We have indicated i§2.3 that feasibility of the staffing function is an importasgue
when the staffing function can decrease during overloadedvals. We directly assume

feasibility, but in§2.9 we show how to detect the first violation of feasibilityaoétaffing
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function and how to find the minimum feasible staffing funotgreater than or equal to
the initial staffing function if that one is infeasible. $2.10 we show how to construct
a staffing function to stabilize delays at any fixed targetigacontributing to prior work
in[17,35]. In§2.11 we provide three postponed longer proofs, the proofhiebrems 2.3,
2.5 and 2.6. Finally, i2.12 we draw conclusions. Additional supporting matenmdears

in Appendix A.

2.2 An Example

We start with an example. We consider &/ H,/s + E, fluid model with a sinusoidal
arrival rate function:\(t) = 1 + 0.6sin(¢), mean service timé/; = 1, mean patience
1/6 = 1, and fixed service capacity= 1. (We consider other examples in Appendix A.)

In choosing these values, we are not thinking of a singleeseand the corresponding
arrival rate. Instead, we are planning to use the MSHT sgaks discussed in [20, 46,
56, 77], when we connect the fluid model to associated qugueodels. In the queueing
model, we are thinking of the fluid staffing level and the atrate being scaled up by a
factorn (e.g.,n = 20 or n = 100), i.e., these models havg = n s servers, arrival rate
function \,,(t) = n\(t), and the same service and patience distributions. The floidien
will serve as approximations for all such scaled queueirgiesys. Because of MSHT
limits, we anticipate that the fluid model will yield bettgyg@oximations as the scale factor
n increases.

Specifically, we let the service distribution be a two-phiageerexponential/{,) with

probability density function (pdf)

g(x) =p e " + (1 —p) - pee™*, x>0,
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= 2pp and pp
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2(1 — p)u, which produces

squared coefficient of variation (variance divided by theasg of the mean)® = 4. We

let the patience distribution be Erlang-2,() with pdf

f(z) = 40%ze=",

z > 0.

The E, distribution has? = 1/2.
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Figure 2.1: The performance functions of the/ H,/s + E» fluid model with sinusoidal

arrival-rate function: (i) arrival rate(¢);

(i) BWT w(t); (iii) fluid waiting in queueQ(t);

(iv) fluid in serviceB(t); (v) total fluid in systemX (¢); (vi) rate into serviceé(t,0).

Figure 2.1 shows plots of several key performance function® < ¢t < T = 17,

starting out empty, together with the specified arrival veftg: the boundary waiting time

(BWT) w(t), the fluid content in queué(t), the fluid content in servic&(¢), the total
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fluid content in systenX (¢) = Q(t) + B(t), and the rate fluid enters servitg, 0). All
performance functions are continuous except for the rateservice functiorb(t,0). In
underloaded interval$(¢,0) = A(¢); in overloaded intervalgy¢, 0) is the unique solution
of the fixed-point equation (4.20).

It is important that the fluid model provide useful approximoas for stochastic queue-
ing models. We apply simulation to show that the fluid appreation indeed is effec-
tive for that purpose. For very large queueing systems, tthehastic system behaves like
the fluid model, having relatively small stochastic fluctoas. That is illustrated for an

M,/H,/s + E, queueing system witP000 servers in Figure 2.2. In the plot, the queueing
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Figure 2.2: Simulation comparison for tidé,/ H,/s + E fluid model: (i) single sample
paths in the scaled queueing model based en2000 (blue solid lines), (ii) fluid functions
(red dashed lines) and (iii) fluid functions assumivigservice (green dashed lines).

content processes are scaled by dividingiby 2000, so thats remains at.. For the actual
queueing system, the quantitie), Q(t), B(t), X (t) andb(¢,0) should all be multiplied

by n = 2000. See§2.4 for a discussion of scaling.
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Figure 2.2 actually shows three plots. It also shows the #pigioximation for the cor-
respondingM, /M /s + E, model, having exponential service times with the same mean.
For that alternative model, there is a more elementary dlgor because it is not necessary
to solve the fixed point equation foft, 0) in order to calculaté(t, x). Figure 2.2 shows
two things: First, it shows that the simulation sample paihthie M, /H, /s + E, model
agrees closely with the fluid performance. Second, Figi@asl2ows that the service distri-
bution can make a big difference in the time-dependent pedace. The performance of
the fluid model changes significantly when we change the eenistribution fromH, to
M (with the same mean); e.g., look@tt) at timet = 3. (We do not show a simulation
path for theM, /M /s + E, model, but it agrees closely with its fluid model for= 2000.
See Appendix A.)

The impact of the service distribution may be surprisingause a major conclusion
of [76, 77] was that the steady-state performance is relgtimsensitive to the service dis-
tribution beyond its mean. However, there is precedent @ phenomenon: Davis et
al. [13] showed that the performance in the time-varyldg G1/s/0 loss model depends
quite strongly on the service distribution beyond its me&aen though the steady-state dis-
tribution of the stationary//G1/s/0 loss model has the well known insensitivity property,
concluding that the standard steady-state performancsuresado not depend at all on the
service distribution beyond its mean.

Figure 2.2 suggests that the periodic models approach adiesteady state as time
evolves; that is proved for the fluid model wifti service in Chapter 4. (We conjecture
that is also true withG/ service under minimal regularity conditions, but it has yet
been proved.) Figure 2.2 also shows that the impact of thecgecdf G beyond its mean
evidently is far greater at the beginning when the systertarsisg up, and then dissipates
considerably as the system approaches its periodic st¢atgdy $hat is consistent with in-

tuition, because witlt/, service, there will be more very short service times and uallys
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long service times than would be the case of the exponemsi@ililition. Hence, at the be-

ginning starting empty, there are no old customers with leenyice times to compensate
for many new customers with short service times in fthecase. As a consequence, the
initial queue content is much less with, than with M service. However, more supporting

theory is needed.
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Figure 2.3: Simulation comparison for tRé,/ H,/s + FE, fluid model: (i) the averages of
200 sample paths of the scaled queueing model based-e30 (blue solid lines), (i) fluid
functions (red dashed lines) and (iii) fluid functions assygnV/ service (green dashed
lines).

Of course, most service systems have far fewer servers benumbem = 2000
we considered. It is thus important that the fluid approxioratan still be useful with
fewer servers. With fewer servers, the stochastic fluainatin the queueing stochastic
processes play an important role. In that case, the fluid heagtestill be very useful by

providing a good approximation for teean valuesf the queueing stochastic processes.

That is illustrated from the plot of the average of the scaledormance measures 20



36

independent sample paths when there are 8blgervers in Figure 2.3. We also consider
the caser = 15 in Appendix A.

Work is in progress to establish MSHT limits and engineerniefinements that will
yield good approximations for the full distributions at baamet. A rough engineering
approximation forX (¢) is to act as if it is normally distributed with variance eqtmathe
determined mean,; that is consistent with the exact Poisstribdition with theM, /GI /oo

model (and thus the stochastically equivaléhy M /s; + M model withd = ).

2.3 TheG:/GI/s; + GI Fluid Queue

In this section we define the deterministic/ G1/s,+G1 fluid model and specify important
regularity conditions. There is a service facility with fmicapacity (staffing function)
s = {s(t) : t > 0} that is set exogenously and enforced. There also is waifiageswith
unlimited capacity. There is a deterministic arrival pregenith input directly entering the
service facility if there is space available; otherwiseitipt flows into the waiting room.
Fluid may leave the service facility only by completing seev However, fluid may leave
the queue either by entering service or abandoning (lealinegtly from the queue without
receiving service). These flows are deterministic as wdike tal input of fluid over the
interval [0, ¢] is A(t fO w) du, t > 0. We will be working with the time-dependent
arrival-rate functiom = {\(¢) : ¢t > 0}.

There are service-time and abandon-time cdf'and F', respectively, with pdf'g and

f, satisfying
G(m):/x (u)du and F(x / flu x> 0. (2.2)
0

Let G and F’ denote the associated complementary cdf’s (ccdf's), détiye’ (z) = 1 —
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G(r) andF(z) = 1 — F(x). We assume that the the random service and abandon times
are unbounded above, so tlfatz) > 0 andF'(z) > 0 for all z. We assume that the mean
service time is 1; that choice is without loss of generabgcause we can measure time in
units of mean service times. In the fluid model, the cdf’s agiraportions A proportion
G(x) of any quantity of fluid completes service and departs withire = of the time it
starts service; a proportiof(x) of any quantity of fluid abandons and departs without
receiving service within time of the time it arrives, providing that it has remained wagtin
in queue, and has not already been admitted to service.

The key performance descriptors are the two-parametetifunsc3(¢, y) andQ(¢, y):
B(t,y) is the quantity of fluid in service at timethat has been in service for time less than
or equal toy; Q(t,y) is the quantity of fluid waiting in queue at tintethat has been in

gueue for time less than or equahtoThese functions will admit representations

Qt,y) = /qu(t,x) dez and B(t,y) = /Oy b(t,xz)dx, y >0, (2.3)

where the fluid densitigsandg are non-negative integrable functions. LEt) = Q(¢, o)

be the total fluid content in queue at timend letB(t) = B(t, oo) be the total fluid content
in service at time. Let X (¢) = B(t) + Q(t) be the total fluid content in the system at time
t.

To fully specify the model, we also need to specify the ihit@nditions, describing
the system state at tinte The initial conditions are specified by the two functidp&, y)
andQ(0,y), which are defined as above, and also satisfy (2.3) with tes${0, ) and
q(0, ). Thus, theG;/GI/s; + GI fluid model dataconsists of the six-tuple of functions

(A, s, F,G,b(0,-),q(0,-)).

We make several assumptions. The first is on the initial doordi.
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Assumption 2.1 (finite initial contenj B(0) < co and@Q(0) < oc.

We develop a “smooth” model. For that purpose, @t be the set ofpiecewise-
continuousreal-valued functions, by which we mean that the functios baly finitely
many discontinuities in any finite interval, with left andyhi limits at each discontinu-
ity point (within the interval); moreover, we assume tha thinction is right-continuous.

HenceC, C D, whereD is the space of right-continuous functions with left limits

Assumption 2.2 (smoothnesss, A, F, B(0, -), Q(0, -) are differentiable functions with deriva-
tivess’, A, f,6(0,-), ¢(0,-) in C,.

As a consequence of Assumption 2A2¢) < oo for all ¢ > 0. (We use the assumption
that C, C D here; see p. 122 of [4].) Together with Assumption 2.1, thgtlies the

finite-content property in Assumption 2.1 holds forallB(t) < B(0) + A(t) < oo and
Q(t) < Q(0) + A(t) < oo forallt > 0.

WheneverQ(t) > 0, we require there is no free capacity in service, &%) = s(t).

Also, wheneveB(t) < s(t), then the queue is empty. These conditions are summarized in

Assumption 2.3 (fluid dynamics constraints, FDQ'$or all ¢ > 0,

(B(t) — s(1)Q(t) =0 and B(t) < s(t). (2.4)

In general, there is no guarantee that a staffing functiemfeasible; i.e., having the
property that the staffing function is set exogenously artesetl to, without forcing any
fluid that has entered service to leave without completimgise, because we allow to

decrease. (The fluid is assumed to be incompressible.) Wetljiassume that the staffing
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function we consider is feasible, but we also indicate howetect the first violation and
then construct the minimum feasible staffing function gge#ttan or equal to the given

staffing function; se§2.9.

Assumption 2.4 (feasible staffing The staffing function is feasible, allowing all fluid
that enters service to stay in service until service is cetegl; i.e., whers decreases, it

never forces content out of service.

We now consider the service discipline. We let the serviseigdiine in the fluid model
be first-come first-served (FCFS). We remark that there ishnhegs motivation for con-
sidering other service disciplines, such as processairghavith many servers than with
few servers, because a few long service times can only malse tiew (of many) servers

unavailable to other customers.

Assumption 2.5 (FCFS servicgFluid enters service in order of arrival.

As a consequence of Assumption 2.5, at tintikeere will be a boundary of the waiting
time (BWT) as in (2.1). Clearly, firstw(t) > 0 and, secondw(t) > 0 if and only if
Q(t) > 0. (Equation (2.1) is informal, because it is circular, witldepending om, while

q depends om. We will carefully define and characterize the BWiTin §2.7.)
Based on the way the queueing system operates, we assumgeahab satisfy the
following two fundamental evolution equations. Becausé&s$umption 2.5, fluid enters

service from the queue from the right boundary; 0f ).
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Assumption 2.6 (fundamental evolution equationBor ¢ > 0, x > 0 andu > 0,

bt +u,x+u) = b(t,x)%,
qt+u,z+u) = q(t,x)%, 0<z<w(t)—u. (2.5)

The first equation in (2.5) says that the fluid in service tkatat served remains in
service (which requires that the staffing function be fdasias in Assumption 2.4). The
second equation in (2.5) says that the fluid waiting in qubaedoes not abandon and does
not move into service, remains in queue.

Let v(¢) be the potential waiting time (PWT) ati.e., the virtual waiting time at for
an arriving quantum of fluid that has unlimited patience. Vintial waiting time at time
is the actual waiting time if there is positive input at timetherwise it is the waiting time
of hypothetical input if it were to occur at time In order to simplify the analysis of the
two waiting time functionsv andv, we make extra assumptions: These extra assumptions
will be introduced ing2.7.2 ancg2.7.3.

We now turn to the flows. Leti(¢) be the total quantity of fluid to abandon(in ¢]; let
E(t) be the total quantity of fluid to enter service[iht]; and letS(¢) be the total quantity

of fluid to complete service ifo, t|. Clearly we have the basic flow conservation equations

Q) = Q(0) + A(t) — A(t) — E(t) and B(t) = B(0) + E(t) — S(t), t>0. (2.6)

These totals are determined by instantaneous rates. Teedéfise rates, lefig(z) =
g(z)/G(z) = 1 andhp(z) = f(z)/F(z) be the hazard-rate functions of the service and

abandonment time distributions, respectively. Then
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(a) Fluid content in queue
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Figure 2.4: (a) The fluid in queue, (b) The fluid in service.

Alt) = /Ota(u)du, where a(t)z/oooq(t,x)hp(x)dx, t>0.

E(t) = /Ot b(u,0)du, t>0.

S(t) = /Ota(u) du, where o(t) = /000 b(t,x)hg(x)dx, t>0
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(2.7)

(2.8)

(2.9)

We have now completed the definition of the/G1/s; + GI fluid model (with the

exception of(w, ¢, v), for which more is given ir§2.7; Figure 2.4 provides a pictorial

summary. Our goal now is to fully characterize the six-tufe;, w, v, o, «) given the

model parameters\, s, G, F') and the initial conditiong (b(0, z), ¢(0, x)) : > 0}, where
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q(0,z) > 0 only if Q(0) > 0, which in turn, by Assumption 2.3, can hold onlyAf(0) =
s(0).

In doing so, we impose another regularity condition. We alssume that the system
alternates between overloaded intervals and underloadedals, where these intervals
include what is usually regarded as critically loaded. Irtipalar, anoverloaded interval
starts at a time, with (i) Q(t1) > 0 or (i) Q(t1) = 0, B(t1) = s(t1) and A(t;) >

s'(t1) + o(t1), and ends at theverload termination time

Ti(ty)=mnf{u>t:Qu)=0 and Au) < s'(u)+o(u)}. (2.10)

Case (ii) in whichQ(t;) = 0 andB(t;) = s(t,) is often regarded as critically loaded, but
because the arrival raté¢,) exceeds the rate that new service capacity becomes aegilabl
s'(t1) +o(t1), we must have the right limi(¢,+) > 0, so that there exists> 0 such that
Q(u) > 0forallu € (t1,t; + €). Hence, we necessarily haVe > ;.

An underloaded intervaktarts at a time, with (i) Q(t2) < 0 or (i) Q(t2) = 0,

B(ty) = s(ty) andA(t2) < §'(t2) + o(t2), and ends atinderload termination time

To(ty) = inf{u >ty : B(u) = s(u) and A(u) > s'(u) + o(u)}. (2.11)

As before, case (ii) in whicl(¢2) = 0 and B(t,) = s(t1) is often regarded as critically
loaded, but because the arrival rate,;) does not exceed the rate that new service capacity
becomes availabley(t,) + o(t2), we must have the right limi®(¢,+) = 0. The un-
derloaded interval may contain subintervals that are coinweally regarded as critically
loaded; i.e., we may hav@(t) = 0, B(t) = s(t) and\(t) = s'(t) + o(t). For the fluid
models, such critically loaded subintervals can be tretitedame as underloaded subin-

tervals. However, unlike an overloaded interval, we cammooiclude that we necessarily
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haveT; > t, for an underloaded interval. Moreover, evefiif> t, for each underloaded
interval, we could have infinitely many switches in a finitéeival. We directly assume
that those pathological situations do not occur. Retienote the system regime, i.&,=

OL or UL. Let the interval termination time (startingat

Tr(to) = Ti(to)L{r(t0y = OL + Ta(to) L {r(to=uL}-

Assumption 2.7 (finitely many switches between intervals in finite filaach underloaded
interval is of positive length, so that the positive hal&lid, co) can be partitioned into
overloaded and underloaded intervals. Moreover, there @ity finitely many switches

between overloaded and underloaded intervals in each fimieézval.

For engineering applications, Assumption 2.7 is reas@ndioit it is unappealing math-
ematically. We would like to have natural conditions on thedel parameters under which
the conclusion does hold. For the special casg&/ddervice and for the extension to time-
varying Markovian serviceN/;), we provide sufficient conditions for Assumption 2.7 to be
satisfied in§3.3 of Chapter 3. From a practical perspective, Assumpti@mpBovides no
restriction, because we can discover violations when taiog the performance descrip-
tions, and remove any violation that we discover by neghgibodifying either the arrival
rate function\ or the staffing functios in a neighborhood of the problem timéo remove
the problem. That is most easily done with the arrival-ratection A\, because we only
require that it be piecewise-continuous. Fan a short intervala, b, we can replace(t)
by A(t) + e. This will introduce new discontinuity points at the endmqsia andb (if they
were not already discontinuity points), but that leaxes C,,.

All assumptions above are in force throughout this chapterwill introduce additional
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regularity assumptions as needed, startingfi6. We now determine the performance, first

considering an underloaded interval.

2.4 Scale Proportionality

To treat an underloaded interval in the next section, we @dfploit an important scale
proportionality property of thel/,/G1 /oo stochastic queueing model; see Remark 5 of
[14]. For each: > 0, let B.(t,y) be the number of customers in service in g/ G1 /oo
stochastic model at timethat have been so for a duration at mgsthen the system starts
empty at time) and the arrival-rate function is.(¢) = cA(¢), for some given arrival-rate
function A and service cdf. The following is proved like Theorem 1 of][l4sing the

two-parameter framework, as in [56].

Proposition 2.1 (scale proportionality in thé/, /G /oo stochastic modélFor all ¢ > 0,

B.(t,y) has a Poisson distribution with mean

me(t,y) = E[B:(t,y)] = cma(t,y) = C/o ’ At — 2)G(x) d. (2.12)

As a consequence of the SLLN for the Poisson distributionseesthat ' B, (¢, y) —
mq(t,y) asc — oo for eacht andy. In addition, we have the more general FWLLN
in [56, 62], which implies that™'B.(t,y) — mi(t,y), regarded as functions ofandy.
Hence, the mean functiom, (¢, y) in the M,/GI /oo stochastic queueing model directly

coincides with the limit of the scaled process; i.e.,

ml(tay) = E[Bl(tay)] = B(tvy)a
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whereB(t, y) is the fluid content in service at tintehat have been so for a duration at most
y in the M, /G1 /oo fluid model. Thus, aside from scale, the mear(t,y) = E[B.(t,y)]

in the M;/GI /oo stochastic model coincides with the corresponding fluidt@anin the
deterministic fluid model.

Moreover, the conclusions above extend to the more getgyd! /oo models. First,
the mean function in (2.12) above in tiig /G /0o stochastic model actually coincides
with the mean function in thé/,/G1I /oo stochastic model, provided that the arrival rate
function is the same; this observation is made in Remark 30p. Second, the FWLLN
in [56, 62] actually holds for th&7,/G1/oc stochastic model, provided that the arrival
process satisfies a FWLLN. To summarize, the mean functiohei/,/G1 /oo stochas-
tic model coincides with the fluid content in the correspodiz;/G1 /oo fluid model,

assuming appropriate scale.
This scale proportionality in the infinite-server stoci@stodel actually extends to the
more general7;/G1 /s, + GI fluid model. The following scale proportionality result is a

consequence of the results in this chapter.

Theorem 2.1 (scale proportionality in thé/, /G /s, + G1 fluid mode)
If the vector(b.(t, x), q.(t, x), w.(t), ve(t), a.(t), o.(t)) is the performance at timeasso-

ciated with model datéc), cs, F, G, ¢b(0, -), c¢q(0, -)), then

(bm qe, Ol¢, Uc) = C(b17 q1, 0, Ul) and <w07 UC) = (w17 Ul)-
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2.5 An Underloaded Interval

We will consider the system over successive intervals,ndueach of which it is either
underloaded or overloaded, as defined above. We start wathakier case, in which the
system is underloaded. Without loss of generality, we asdinat an underloaded interval
starts at timé) and terminates at a timg, defined in (2.11). We do not need to know in
advance the termination timE. Instead, we can assume that the system is underloaded
over the full interval0, co) and then calculaté'.

If the G;/G1/s; + GI fluid model is underloaded, then there is no queue, and so no
abandonment. Then the model is is equivalent to the asedcigy GI /oo fluid model.
We thus can obtain results for an underloaded interval tyréom available results for

the M, /G1 /oo queue in [14,56] by invoking2.4.
Sinceb(t,0) = A(t) when the system is underloaded, we immediately obtain aresxp

sion forb(t, ) from (2.5). Recall that we have assumed #{&t -) € C,.

Proposition 2.2 (service content in an underloaded intejuadr the fluid model with un-
limited service capacitys(t) = oo for all ¢t > 0),

G(z)

< At)+B(0)<oo, 0<t<T.

If, instead, a finite-capacity system starts underloadeelntthe same formulas apply over

the intervall0, 7°), where the underload termination timelis= inf {t > 0: B(t) > s(t)},
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with T" = oo if the infimum is never obtained. Henéé¢t, -), b(-, x) € C, for all ¢ > 0 and
x > 0, for t in the underloaded interval.

During an underloaded interval(t, z) depends upon the pafi, G) and the initial
conditionb(0, x). There is no queue, S@, I, w,v) play no role. The different roles of
the two regimes are summarized in Figure 2.4. Hence, Priogog.2 fully describes the
performance during underloaded intervals. The final pieg@wontinuity conclusion en-

sures that the piecewise-continuity property assumedt(for) will pass on to subsequent

intervals when we consider successive intervals.

Remark 2.1 (discontinuity att = x) From (2.13), we see thatinherits the smoothness
of G, A and ¢(0, -) except whert = x. That will be a persistent theme throughout our
analysis. For general initial conditions, this discontityis fundamental, so we cannot
expect greater smoothness. However, away from thé(set) : ¢t = x}, we can expect

smoothness of the model parameters to be reflected in owrpahce descriptions.

Remark 2.2 (the generic scalar transport PDHES, in addition to the assumptions of
Proposition2.2, A\ and b(0, -) are differentiable a.e. with respect to Lebesgue measure
on |0, c0), then, for eaclt andz, b(t, z) has first partial derivatives with respect t@ndz

a.e. with respect to Lebesgue measuréono). Moreover, satisfies the following PDE
a.e. with respect to Lebesgue measureono) x [0, c0), a simple version of the generic

scalar transport equation:

be(t,x) + b (t,x) = %(t,x} + %(t,x} = —hg(2)b(t, x).
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with boundary conditiongb(¢,0) = A(¢) : ¢ > 0} and{b(0,z) : = > 0}; see Appendix
§A.2.

We now give a monotonicity result comparing two underloafiiéid models. For this
result, we exploit hazard rate order, writihg, < hg, if hg, (z) < hg,(x) forall z > 0,
for cdf’s satisfying the assumptions §2.3. It is easy to see that hazard rate order implies

ordinary stochastic order via the representation

G(z) = e~ Jo hadu 5> (2.14)

Proposition 2.3 (comparison result fob in an underloaded modeConsider two under-
loaded fluid models. 1A; < Ao, b1(0,:) < by(0,-) and hg, > hg, as functions, then
by < by, i.e,bi(t,z) < by(t,x) forallt > 0andx > 0, andT; < T3, whereT; is the

underload termination time in model

Proof. Apply (2.13) after applying (2.14) to write
G(2)/G(x —t) = exp{—/ he(u)du}. =
r—1

The system could be in an underloaded period for an exterelgatiof time. If so, itis
often convenient to consider the system starting emptyardistant past. (That is done for
the corresponding infinite-server queueing models in [Q}t) 5That allows us to directly

construct stationary versions, including periodic vansiaf that is warranted.

Proposition 2.4 (starting empty in the distant paSuppose the system started empty in the

distant pastatt = —co) and has been underloaded up to timéf [ G(2)\(t —z) dz, <
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00, then

b(t,z) = Gx)A(t—x) < At — ), B(t)—/oo (2)A(t — ) dx,

B(t,y) = / Gz +y\t—x—y d:c—/G At —x)d

forx > 0 andy > 0. If the arrival-rate function) is constant or periodic, then so are
b(t,-), B(t) and B(t, -).

As noted above, the expression fBi(t) coincides with the mean number of busy
servers in thel/;/GI /oo model studied in [14,50]; see these sources for additidnat-s
tural results. The expressions for the two-parameter fonds(¢, y) andb(t, z) coincide

with the corresponding mean values in [56].

2.6 The Service Contentin An Overloaded Interval

Without loss of generality, we assume that the overloadestval begins at tim® and
ends at timd" satisfying (3.3). Again, we do not need to know the end tifne advance,
because we can calculate it while we are calculating theopaence measuresandw.
We proceed under the assumption that the arrival rate i<muftly large that the system
is overloaded throughout a specified interfall’) (up to, but not including, tim&"), and
afterwards detect violations before tirfie if there are any, and then reduce the interval, if

necessary.



50

2.6.1 The Special Case al/ Service

The service content density is easy to compute if the sedigtabution is exponential, so
we consider that case first. From (2.5), we can write down @anession foi(¢, =) during

the overloaded interval:

_ G
= bt —x,0)e (@) Lizepy +0(0, 2 — t)e  Lipapy, (2.16)

whereb(0,z — t) is part of the initial conditions, but whergt — z,0) remains to be

specified.
Since the service is exponential, the output ratg), and thus the rate fluid enters
serviceb(t,0), depend only on the staffing functienin particular, on the valuegt) and

s'(t). (Recall that the mean service time has been fixdd)at

Proposition 2.5 (the service content in an overloaded inteyW&lhen the service distribu-
tion is exponential, the departufservice completionrate satisfiesr (t) = B(t), t > 0,
and, during each overloaded interval, the departure ratg) and rate fluid enters service

b(t,0) have the simple form

o(t) = B(t) =s(t) and b(t,0)=s"(t)+s(t) forall ¢, (2.17)

depending only on the staffing functienThenb is fully characterized by2.16)and(2.17)

during an overloaded interval. Alggt, ), b(-,z) € C,forall z,t < T.

Proof. Apply (2.9).
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2.6.2 GeneralGI Service

We start with the general expression for the service comtensity given in (2.16), but it
requires the rate into serviéé, 0), which is part of what we are trying to determine. Since
the system is assumed to be overloaded over an initial mitérvl"), the rate into service
is determined by the rate service capacity becomes avail@bus, by (2.9), we have
bQ,O)::s%t)%—o(t)::s%t)%—j/ b(t, 2)ho(z)dz, 0<t<T. (2.18)
0
We now substitute equation (2.16) into equation (2.18) taiolithe following equation for

the functionb(t, 0):

b(t,0) = a(t) + /t b(t — x,0)g(z) dx, (2.19)
where
a(t) = (1) +/0 %d(y. (2.20)

From (2.20), we see thatc C, C D provided that the integral in (2.20) is finite. From

(4.20), it is evident thafi(¢, 0) is a fixed point of the operatdf : D — D, where

T(u)(t) = alt) + /Otu(t —x)g(x)dx. (2.21)

Under regularity conditions, we can show that there exigisigue solution to equation
(4.20) by applying the Banach (contraction) fixed point tleea. We will use the complete

(nonseparable) normed spd@avith the uniform norm over the intervéd, 7, i.e.,

[ullr = sup {fu(t)[}. (2.22)
0<t<T
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We will require an additional bound on the tail of the initsdrvice content density

b(0, -). Recall that we have assumed thgtr) > 0 for all z.

Assumption 2.8 (tail of b(0, -)) The tail ofb(0, -) is bounded relative to the service-time

pdfg via

/°° b(0,y)g(s +y)

7(b,g,T) = sup

0<s<T

Assumption 2.8 warrants discussion, because it is unaipgedt first glance, it passes
the requirement that the assumptions be on the model datay$e the service densigy
the associated cdf and the initial fluid content in servidg0, -) are all part of the model
data. However, in application we will be applying the al¢fum recursively over several
UL and OL intervals. We would thus not know in advance the fiomcb (0, -) in all OL
intervals after an initial one. It is thus important that wepde readily available sufficient
conditions for Assumption 2.8 to hold; we do that after wdestae theorem. For now,
we point out that there is a simple practical condition inmpdyAssumption 2.8 to hold: It

suffices for the service hazard rate functignto be bounded. (See below.)

Theorem 2.2 (service content in the overloaded casonsider an overloaded interval
[0, 7]. If Assumptior2.8 holds, then the operatdf in (2.21)is a monotone contraction
operator onD with contraction modulué&(7T') for the norm|| - || defined in(A.8), so that a
finite functionb(¢, 0) is uniquely characterized via equati¢4.20) Hence, for any. € D,
the fixed point can be approximated by thold iteration7 ™ of the operator] applied
to u, with

G(T)

") (0 _ i !
70w - b < 120

T (uw) —ullz -0 as n— oo (2.23)
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and, ifu < (>)7 (u), thenT"=V () < (>)T™(u) < (>)bforall n > 1.

Proof. Clearly, Assumption 2.8 implies that||; < oo, so that7 mapsD into D. More-

over, the contraction property follows from

t

[T (ur) = T(uo)llr = sup { [ (wilt =) —us(t = 2))g(x)}

o<t<T Jo

T
s — sl / 9(2) dz = s — usl|rG(T). =
0

IN

Remark 2.3 Note we require>(7") < 1 in the proof of Theorem A.2, which holds because
we have assumed that(z) > 0 for all z. However, that requirement is actually not
necessary, because we can always work in an intdéval as long as=(4) < 1 for some

9 > 0. We can show the uniquenesg0f0) for all 0 < ¢ < T by recursively considering

successive intervals of lengih

We now return to Assumption 2.8, which restricts the clasallofved service cdf’s in
a rather complicated way. We will show that it suffices for feevice hazard ratk; to
be bounded. But even that is often not necessary in pradti¢e.important to note that
Assumption 2.8 is always satisfied in a case of principle@se if there existg, such that
b(0,y) = 0 for all y > y,. That case occurs whenever the system started empty at some
(finite) time in the past. That case occurs if the overloadéstval of interest begins at time
t,0 <t < T, after the system has begun empty with, y) = 0 for all y; then necessarily

b(t,y) = 0 for all y > t, by virtue of Assumption 2.6. Then

T < B(0,T)g"(27)/G(T) < oo, (2.24)

wherez'(t) = sup {z(s) : 0 < s < t}.
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Nevertheless, other initial conditions are interestingor Example, for the station-
ary model, we might start with the stationary fluid contentyjeh has the form we have
b(0,y) = G(y),y > 0, becausé is the stationary-excess or equilibrium-residual-lifegi
density of the service-time distribution; see [77]. Thus mgev present other sufficient

conditions for Assumption 2.8.

Remark 2.4 (sufficient conditions for the bound whét) — B(0,y) > 0 for all y.)
Clearly, we need to control the initial content dendify, y) and/or the service pdf(y)

in order for Assumption 2.8 to hold. An easy sufficient caoditirectly related to the
stationary fluid content density for the stationary moddbisthere to exist a constarit’
such thath(0,y) < KG(y) for all y > 0. Another easy sufficient condition for the bound

in Assumption 2.8 is to have

(e}

sup { [ b(0,y)hag(y+1t)dy} < cc. (2.25)

0<t<T 0

In turn, three different sufficient conditions for (2.25gar

(1)  sup{hg(z)} < oo (bounded hazard rate, using(0) < oo);
x>0

(i1)  there exists? > 0 and K such that
/ b(0,9)e® dy < 0o and hg(r) < Kz forall x> 0.
0

(iii)  limsup {b(0,y)/G(y)} < oo

Y—r00

(using sup b(0,y) <oo and sup hg(0,y) <oo forall ¢>0)
0<y<t 0<y<t
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So far, we can only conclude that the functign, 0) € . We can obtain additional
smoothness properties by imposing additional smoothnasgittons on the model ele-
mentss andg. We use these properties fof-, 0) to establish properties of the ODE to

calculate the BWTw in §3.4 of Chapter 3.

Corollary 2.1 (smoothness of service content in the overloaded)daséand g are con-
tinuous, therd(-,0) is continuous as well. In that cask;, =) andb(t, z) are elements of

C, for eachz > 0 andt¢ > 0.

Proof. Under the extra smoothness conditions, we can apply theamian fixed point
theorem on the closed subspdcef continuous functions if), with the same uniform
norm. Then the fixed point is necessarilyGras well. =

We discuss alternative algorithms to calculate Appendix§A.3.

2.7 The Queue Performance Functions

We now turn to the queue during an overload interval. To dat$®convenient to initially

ignore the flow into service.

2.7.1 The Queue Content Ignoring Flow Into Service

Let g(t, z) beq(t, z) during the overload interval, 7') under the assumption that no fluid
enters service from queue. We can once again invoke the ctbonéo theM,/GI/co
stochastic model, discussedsR.4 to treatj(¢, x) just as we treatetlin §2.5, because we

can let the general patience céfplay the role of the general service-time &df Instead
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of (2.5), we can write

)2
Qi+ z+u) = at,a) I Y s (2.26)

F(x)
to obtain the following proposition.

Proposition 2.6 (queue content without transfer into service in the overezhdasg In

the overloaded case,

q(t,z) = A\t — .TJ)F(.TJ)l{xSt} +q(0, 2 — t)%l{tgﬂ}. (2.27)

so thatg(¢, -) andq(-, «) belong toC,, for eacht andzx.

Remark 2.5 Just as we observed forin an underloaded interval in Remark 2.2, in an

overloaded intervaj satisfies a version of the generic scalar transport PDE.

Paralleling Proposition 2.3, we have the following comgani result, proved in the

same way.

Proposition 2.7 (comparison result fof) Consider two overloaded fluid modelsAif <
A2, q1(0,-) < ¢2(0,-) andhp, > hp, as functions, theg, < ¢, i.e.,q(t, ) < Go(t, z) for
allt > 0andz > 0.

We now deriveg andw. The proper definition and characterization of the BWTs

somewhat complicated. We easily get an expression foovided that we can find.
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Corollary 2.2 (fromg to ¢) Given the BWTw,

- = y F
q(t,z) = Gt —2,0)F (@)l p<wmnny + ¢(0, 2 — t)ml{tqgw(t)}

= q(t — T, O)F<x)1{x§w(t)/\t} -+ Q(O, Xr — t)T)t)l{t<x<w(t)}. (228)

Moreoverq(t,-) € C, forall ¢ > 0.

Proof. Combine Proposition 2.6 and (3.15) to deduce tffat) € C, for all ¢, .

2.7.2 The Boundary Waiting Time w

It now remains to define and characterize the BWT We candefinethe BWT w by
exploiting flow conservation, in particular, by exploititige fact that two expressions for

the amount of fluid to enter service over any interfval + §| coincide; i.e.,
t+6
Bt +6)— B(t) = / b(u, 0) du = I(t, w(t), 4 8) — A(t ¢ +0), (2.29)
t

where

w(t)
I=1(t,w(t),q,0) E/ q(t,x)dx (2.30)
w(t)—e(t,0)

is the amount of fluid removed from the right boundarygofstarting atr = w(t) —
e(t,0) and ending atr = w(t), during the time intervalt, t + ] (wheree(t, 0) is yet to
be determined) and (¢, ¢ + ¢) is the amount of the fluid content ihthat abandons in the
interval[t, t+0]. Wedefinethe BWTw by lettingd | 0in (2.29). We will show in Theorem

2.3 below that, under regularity conditions, the relatiod.29) determines an ODE far
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that has a unique solution. Hence, we will show that theigig.29) serves to properly

definew and characterize it.
We need two more regularity conditions. First, we assumettieinitial valuew(0)
for the interval we consider is finite. We will be represegtinas the solution of an initial

value problem involving an ODE, so this is needed.

Assumption 2.9 (finite initial BWT) 0 < w(0) < oo.

Second, we require that the function@) andq(0, x) be appropriately bounded away

from 0.

Assumption 2.10 (positive arrival rate and initial queue densjtior all ¢ > 0,

hurlt) =t (M) >0, and
Gint(0) = og525(0>{Q(0’“)}>0 if w(0)>0.

By equation (3.14), Assumption 2.10 farimplies thatj(t, z) > e¢F(x) > 0on[0,T)
for some positive. That is useful becausgt, =) appears in the denominator in an ex-
pression for the derivative af in (2.31) below. The BWTw can be discontinuous if these
functions are) over subintervals; we give examples in Appendix A.5. We shmatw can
be discontinuous iA(¢) = 0 or ¢(0, -) = 0 over a subinterval, while can have an infinite
derivative corresponding to zeros of these functions. Hewewe obtain the following
positive result, proved i§2.11. Letx(t+) andx(t—) denote the right and left limits of a
functionz att, respectively. We can obtain a more elementary statemehpiaof if we

assume even more regularity conditions; see Appehdlit.

Theorem 2.3 (the BWT ODE Consider an overloaded intervéd, 7"). If Assumptions
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2.9-2.10hold, then the BW is well defined being the unique solution of the initial value

problem(IVP) on [0, T") based on the ODE

b(t+,0)

w'(t+) =V (t,w(t)=1- o)

(2.31)

and any initial valuew(0). In addition,w is Lipschitz continuous of), 7] with w(t +u) <
w(t) +wuforallt > 0andu > 0 witht + v < T. Moreover,w is right differentiable
everywhere with right derivative’(t+) given in(2.31)and left differentiable everywhere

(but not necessarily differentiablevith value

b(t—,0)

w'(t—) = V(tw(t)=1- )

(2.32)

Overall, w is continuously differentiable everywhere except fordigitnanyt.

Remark 2.6 (different roles ob(¢,0) and F' in shapingg) Our use ofj as an intermediate
step in constructing helps show the different roles played by, 0) and F' in producing
q. First, the abandonment'§ controls the shape @f(¢, x) and thusy(¢, z) only for z <
w(t). Second, the transportation raig, 0) controls onlyw(t), the right boundary or the
truncation ofg(¢, ) on x; it does not affecg(¢, x) itself, and thug(t, ) for any0 < x <

w(t).

We give closed-form formulae for some special cases in tliecwrollary, proved in

Appendix§A.4.
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Corollary 2.3 Suppose the system is overloadedifet ¢ < 7" andw(0) = 0.

(a). For theG;/M/s, fluid model without customer abandonméatz) = 1 for x >

0),

w(t) =t — A_l(/ot b(y,0)dy), 0<t<t,

for A=Y (z) = inf{y > 0: A(y) = x}, andt = inf{t > 0: A(t) = fot b(y,0)dy}.

(b). For theGy/M /s, + M fluid model, where the abandonment-time cdf is exponential

(F(z) =e %, 2 >0),
w(t) =t— A‘l(/t b(y,0)edy), 0<t<t, (2.33)
0

whereA(t) = fot AMy)e®dy, A= (z) = inf{y > 0 : A(y) = z}, andf = inf{t > 0 :

A(t) = [} by, 0)e?dy}.

2.7.3 The Potential Waiting Time

In the previous subsection, we characterized the dynamibe BWT w. Now we want to
connectw to the PWTu, the waiting time of an arriving quantum of fluid at timéhat is
infinitely patient.

As shown in [48], the PWD can be defined as a first passage time, with abandonment

after timet computed with the input turned off; also see [68]. gt{u) be the total fluid
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abandoning in the intervad, ¢t + «] in our fluid model, modified by having the input shut

off after timet. Paralleling (2.7),

t+u [ee]
A(u) = / a(s)ds and oy(s) = / q(s,x)hpdr, s>t, (2.34)
t s—t1
wherea,(s) is the abandonment rate of the fluid that arrives before timaetimes.

With (2.34), we can define(t) as

v(t)=inf{u>0: E(t+u)— E(t) + A(u) > Q(t)}, t>0, (2.35)

where E(t) is the amount of fluid to enter service in the inter{@l¢], as in (2.8), i.e.,
E(t) = fot b(u,0) du, t > 0. However, in general, so far, we have not assumed enough to
guarantee that the PWiTTis finite. It is possible for fluid to arrive and never be serusd
need to rule that out.

First, we show that any initial fluid content in the systemrdually must leave. Let
By (t) be the portion of the initial fluid content in servicB(0), that is still in service at
time ¢; let Qy(¢) be the portion of the initial fluid content in queu@(0), that is still in

gueue at time.

Proposition 2.8 (dissipation of initial fluid contentFor ¢ > 0,

Bo(t) = /toob(O,y)Gg(Z)y) dy 0 and

Q(O):/tmd(o,y)Fg(Z)y)dy—)O as ¢ — oo.

Qo(t)

IN
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Proof. The representation is immediate. It is elementary fidt) < B(0) andQy(t) <
Q(0) = Q(0). By Assumption 2.1,B(0) < oo andQ(0) < co. The convergence then
follows from the Lebesgue dominated convergence theorem.

However, the queue will not dissipate in finite time by abandent alone, because
F(z) > 0forall z > 0. Hence we need to have fluid enter service from the queue. Even
if we invoke Assumption 2.9, and hawug0) < oo, so that we haves(t) < w(0) +t < oo
for all t > 0, we cannot guarantee that0) < co. Indeed, we would have(t) = oo for
all t > 0 if no fluid from queue were ever admitted into service. Thaumm would be the
case if we used the feasible staffing functigh) = By (t), which is positive for alk when

B(0) > 0, becausé&:(x) > 0 for all z > 0. In order to avoid such problems, we introduce

two more regularity conditions:

Assumption 2.11 (minimum staffing levelThere exists a constan, such thats(¢) >

s, > 0forall ¢ > 0.

Assumption 2.12 (minimum service hazard raté here exists a constant; ; such that

ha(x) > he, > 0forall x > 0.

Theorem 2.4 (finite PWT) Under Assumption8.11and?2.12 the rate of service comple-

tion is bounded belows (t) > s, h¢ 1, forall t > 0. As a consequence,

v(t) < Q) +s(t) = 51 < oo, t>0.

spha.r

We give the proof in Appendi§A.4. Given that the PWD is indeed bounded above
as in Theorem 2.4, we can obtain it from our algorithmor The idea is simple: If, at

timet, the elapsed waiting time of the quantum of fluid that is énteservice isu(t), then
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this quantum of fluid arrived in queue(t) units of time ago. That implies that the PWT at

t —w(t)isw(t). We prove the following ir§2.11.

Theorem 2.5 (the PWTv and the BWTw) Consider an overloaded interval with Assump-
tions2.9-2.10holding andw(0) = 0. If v(¢) < oo for all t > 0 (for which Assumptio2.11
is a sufficient condition, by Theorem 2.¢henw is the unique function i satisfying the

equation

v(t —w(t)) =w(t) or equivalently, v(t) =w(t+wv(t)) forall ¢>0, (2.36)

as depicted in Figur@.5. Moreover, is discontinuous at if and only if there exists > 0
such thatw(t 4+ v(t) + €) = w(t + v(t)) + €, which in turn holds if and only #(u,0) = 0
fort+v(t) <u <t-+uv(t)+e Ifb(-,0) > 0a.e. with respect to Lebesgue measure, then

v IS continuous.

T
\;-——,// .....
I’ K -t
. .
. .

BWT w(t) and PWT v(t)

.
.
L7 457 line

.

0 i t‘ Time t t
Figure 2.5: Potential waiting time(t) and boundary waiting time»(t).

The proof of Theorem 2.5 directly gives an algorithm to coteghe PWTv given the

BWT w. Similarly, the second equation in (2.36) can provide ammtigm to construct
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w givenv. We now provide an alternative characterizationofia its own ODE, but this

alternative characterization involves an extra conditie give the proof ir§2.11.

Theorem 2.6 (right derivative and ODE for) Under the conditions in Theoreg5, the

right derivative ofv always exists (except possibly infinite), with value

V' (t+)
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The right derivative at is finite if and only ifb(¢ + v(¢),0) > 0. If ¢ is a continuity point of

v, then the left derivative exists as well, with

V(t—) = d(t,v(t)) = I 1=

If ® is continuous at, thenwv is differentiable att, andv satisfies the first ODE. If, in
addition,b(¢,0) > 0 for all ¢, thenv is continuous. Then is differentiable except at only

finitely manyt, and there exists a unique solution to the first ODE.

Remark 2.7 (algorithm forv andw) In an algorithm, it is convenient to avoid the com-
plications forw and v that occur whem(¢,0) = 0. To do so, we can introduce an
approximation, letting.(¢,0) = b(¢,0) +¢,0 <t < T, only to be used in the calculation
of w andv. Letw, bew andv,. bewv with b(¢,0) replaced byb,(¢,0). Sincew’ > w! and

v > !, we havew, T wandv, 1 v ase | 0.

We could also enforce a lower bound figr, 0) directly in our model by imposing a
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constraint on our staffing. We could require thigt,0) > b* > 0 for all ¢ in order for
the staffing function to be feasible. Sinc&t,0) = s'(t) + o(t), that translates into the

staffing constraint

S(t) > b —olt) = b — / bt,z)de, 0<t<T. (2.37)
0

In Appendix A.4 we give closed-form formulae for the PWTn some special cases,

paralleling those for the BW1 given in Corollary 2.3.

2.8 Overview of the Total Algorithm

We now summarize the full algorithm for tli&, /G /s, + GI fluid model. We alternately
consider successive underloaded and overloaded intéwrader the assumption that any
finite interval can be partitioned into finitely many of theséich can be verified in the
computation). For each underloaded interval, we start imitial conditions as indicated
in §2.3. We can compute the single key performance meadirectly by applying Propo-
sition 2.2. We then end the underloaded interval the firs¢ fit(¢) exceeds;(¢). Since the

gueue is empty, the functiopsw andv do not appear.

2.8.1 An Overloaded Interval with M service

An overloaded interval is more complicated. There are twsesa (i) M service and (ii)
non-M G1 service. ForM service, we do not need to solve the fixed point equation §4.20
for the rate fluid enters service from the quebg, 0). With M service (at ratd), we
know thatb(t,0) = s'(t) + s(t), by Proposition 2.5. The algorithm starts with initial

conditions as ir$2.3. The algorithm begins by calculatigyia Proposition 2.6 anéland
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b(t,0) via Proposition 2.5. We then calculateby solving the ODE (2.31) and then the
functionv via the equation (2.36), as explained in the proof of Theo2esn We consider
terminating the overloaded interval the first time thdt) = 0. At that time we check
to see if the interval actually remains overloaded, by logkat the net flow rate into the
queuer(t) = A(t) — s'(t) — a(t) (see (3.3)). Ifr(¢t) > 0, then we continue the overloaded

interval. Otherwise, we shift to the next underloaded wdkr

2.8.2 An Overloaded Interval with Gl service

With non-M service, we need to solve the fixed point equation (FPE) j4&0the rate
fluid enters service from the queugt, 0), in addition to the other steps withl service.
We now formally state the algorithm to compute all perfore@functions in an overloaded
interval of theG;/GI /s, + GI fluid model. Consider an intervéll, 7'] and assume that the
system is overloaded at= 0, i.e.,Q(0) > 0 andB(0) = s(0). However, we typically do
not know when the overloaded interval ends in advance. Tlectie is to determine the
overload termination timé; defined in (3.3) witht; = 0 along with the other performance
functions. Hence, we determingt,-) andb(t,-) for 0 < ¢t < T ANTy. If Ty < T, the
system simply switches to an underloaded interval; otheythe system stays overloaded
in [0, 7.

Since the system performance is expressed via the basitydestorP () = (b(t, -), q(t, -))
given the model data vect@ = (A, S, I, F,75(0)>, we want to compute the associated

vector of all performance functions
P(t) = <75(t),w(t),v(t),B(t),Q(t),X(t),o—(t),S(t),a(t),A(t),E(t)) (2.38)

via the definitions ir§2.3. We require thab satisfies (i)s(0) = B(0) = [;~ b(0,y)dy and
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(i) Q(0) = fow(o)q(O,y)dy > 0. Applying the fixed-point operator discussed&h6, we

have the following algorithm:

Algorithm 1 : An FPE based algorithm for th&;/G1/s; + GI Fluid Queue, with input
D= ()\, s, G, F,75(0)>
1: Initialization: UpdateR, lett := 0

2: repeat

3 fork=1,2,...,[%E]do

4: if R =UL then

5: ComputeP in interval [t + (k — 1)AT, ¢t + kAT, using Proposition 2.2
6: else

7: b (t,0) :=0fort € [t + (k — 1)AT,t + kAT]
8: fori=1,2,...do

9: b .= T(b(~Y) for T defined in (2.21)
10: if [[6® — b=V < ethen
11: b= b0
12: BREAK inner for-loop

13: end if

14: end for

15: ComputeP ininterval[t + (k — 1) AT, t + kAT, using Proposition 2.6, Corol-

lary 2.2, Theorem 2.3 and 2.6

16: end if

17: if Tr(t) <t+ kAT then

18: t:=Tgr(t)

19: R :={OL,UL}\R
20: BREAK outer for-loop
21: end if
22:  end for

23 until t>T

Note thate is the (small positive) error threshold level that we sperifadvance. Here
we let the contraction iteration in Step 2 end when the umifdistance between the
functions in two consecutive iterations is small.

The algorithm above requires that the given staffing fumcti®e feasible. However,
we can also easily modify the algorithm so that infeasipddn be detected. That extension

is discussed in Appendix A.7.
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2.9 Feasibility of the Staffing Function

So far, we have assumed that the staffing functianfeasible, yielding
b(t,0) > s'(t) + o(t) = '(t) + / b(t, 2)he () da > 0 (2.39)
0

for all ¢ > 0 such thatB(t) = s(¢). This requirement is automatically satisfied in under-
loaded intervals whem(t) = s(t), because in that case we require tiét) + o (t) > A(t)
where necessarily(¢) > 0. Feasibility is only a concern during overloaded interyatsd
then only when the staffing function is decreasing, i.e.,m#ig) < 0.

The first violation is easy to detect: L&tbe the time of first violation. Lef, be then'™
overloaded subinterval ii), oco) determined under the assumption that the original staffing
function s is feasible. Let/ be the union of these subintervals, i.e., the subsét,ob)

during which the system is overloaded. Then
t*=inf{t € I:0(¢,0) < 0}. (2.40)

Even though we require (3.11), so far we have done nothingeweept having* < oo
(violation). Thus, we computieand detect the first violation.

Correcting the staffing function is not difficult either (bynhigh we mean replacing it
with a higher feasible staffing function): We simply constra new staffing function*
consistent with turning off the input into the queue (settif¥, 0) = 0) starting at time*
and lasting until the first timeafter¢* at whichs*(t) = s(¢). (By the adjustment, we will
have made*(t*+) > s(t*+).) Since the system has operated differently during the time
interval [t*, t], we must recalculate all the performance measures aftertfibut we have

now determined a feasible staffing function up to tifre t*. By successive applications
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of this correction method (adjusting the staffing functioand recalculating), we can
construct the minimum feasible staffing function overall.

To make this precise, | ;(¢) be the set of all feasible staffing functions for the system
over the time interval, t], ¢ > ¢*, that coincide withs over|0, ¢*]; i.e., withC?(t) denoting
the set of twice differentiable positive real-valued fuais on|0, ¢| with second derivatives

in C,, let

Sps(t) = {5¢€ Cg(t) s bs(w, 0) 1B, (wy=swy >0, 0<wu<t,

and S(u) =s(u), 0<u<t'}, (2.41)

for t* in (3.12), wheré; is the functionh associated with the model with staffing function

S.

Theorem 2.7 (minimum feasible staffing functigrpAssume that € C? andb;(-, 0) exists
and is continuous for each € S;4(t)). Then there exist > 0 ands* € Sy (t* + 6) in

(B.13)for ¢t* in (3.12)such that
s*=inf {5 € Sy (t"+0)}; (2.42)

e, s e Sps(t*+0)ands*(u) < 5(u), 0 <u < t*+9,forall § € Sp,(t* +9). In
particular,

st +u) = / bs(t*, x — u)ldx, 0<u<h). (2.43)
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Moreover,d can be chosen so that
d=inf{u>0:s"(t"+u)=s(t"+u)}, (2.44)

with § = oo if the infimum in(B.16)is not attained.

Proof First, sinceb,(-,0) is continuous for our originat, the violation in (3.12) must

persist for a positive interval after; that ensures that a strictly positivean be found.
We shall prove that > s* over|t*, t* + §] for s* in (3.16) and any feasible function

and we will show that* itself is feasible. Fop <t < t* + ¢, supposé is feasible. Since

the system is overloaded, system being in the overloadeaedgplies that

W) = Bg(t*+u):/ be(t* + u, ) da
0

_ / be(t" +u — 7,0) Cz)dz + /OO bu(t “%:ldx

> /OO bs(t*, z — u)%dz = s"(t" + u),

where equality on the second line holds because of the fuadiainevolution equations in
Assumption 2.6 and becaukgt*, z) = by(t*, ) for all z, and the inequality holds because
b; > 0. On the other hand, the equality holds witeft* + «, 0) = 0 for all u, which yields

B(t* + u) = s*(t + u). Therefore, the proof is completes

Corollary 2.4 (minimum feasible staffing with exponential service timesr the special
case of exponential service times, i.e., Wittx) = e, (3.16)becomes simply (t*+u) =
B(t*)e ™, 0 <u <.

We have constructed a minimal feasible staffing function dxyuiring that the new
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staffing function agree with the original one up until theeiof the first violation. We have
shown that assumption leads to a unique minimum feasibliengtdunction. However, it
may be desirable to consider other approaches to feagihilitere we have the freedom to
revise the staffing function befotéas well as afterwards. It is natural to frame the issue as
an optimization problem; e.g., as in productions smoothigmight want to impose costs
for for fluctuations of the staffing function as well high vetu We leave such investigations

for future work.

2.10 Staffing theG,;/G1/s;+GI Model to Stabilize Delays

So far, we have discussed the performance analysis ofith€'7/s; + G1I fluid model
with the staffing functiors regarded as a given function. In this section, we assume that
we are free to choose the staffing functignand do so with the objective of stabilizing
the potential waiting time» at some (constant) target > 0. This delay stabilization
problem is a variant of one considered previously for magyer queueing models with
time-varying arrival rates in [17]. In [17], the goal was talsilize the probability an arrival
experiences any delay. in contrast, here we stabilize theey ag all fluid at precisely
v* > 0. Now everybody must wait, but only'.

As a consequence of Theorem 2.5, we see that, in order tdiztabat v*, it suffices
to stabilizew atv*. By Theorem 2.3, we see that we will be able to do so if and dniei

can find a staffing functionsfor which the resulting performance satisfies the equation

t>0 (2.45)

which implies that we must havét, 0) = ¢(t, v*) whenw(t) = v*.

Suppose that the system is initially empty, i), z) = ¢(0,z) = 0 for all x > 0.
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Thus, we do not start staffing the service facility until time so that no input enters
service durind0, v*]; i.e., we leth(¢,0) = 0 for 0 < ¢ < v*, in order to letw increase from
0 tov*. Attime v*, the input at timé) is sent to the queue, after waiting precisely tirie
With the initial conditions;(t,0) = A(t) andq(0, z) = 0, the queue instantly becomes
overloaded at tim@, and we can apply Proposition 2.6 and Corollary 2.2 (or [2&)

obtain

q(t,z) = F(x)A(t — 2)lo<acry, 0t <07 (2.46)

Combining (2.45) and (2.46), we obtain the transportataia aftert = v*:

b(t,0) = q(t,v") = Fu)A(t — 0 Ljssr).

With the explicit expression df(t, 0) andb(0, z) = 0, x > 0, (2.5) implies that

b(t,z) = G(z)F(v )Nt — 2 — v*)jo<pct—vey, >0 and z>0. (2.47)

Therefore, we can easily compul¥t), o(t), q(t,z), Q(t) anda(t) for t > v*. We

have just proved the following theorem.

Theorem 2.8 Consider the7, /G1/s,+G1 fluid model with a general arrival-rate function
A. Suppose the system is initially empty. For any specifiedtaatw* > 0, we can make
the system overloaded such that the PWT is fixed dte.,v(t) = v* for all ¢t > 0, by (4)

not allowing any input to enter service until time= v*, (ii) letting the service-capacity
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function be
t—v
s(v*,t) = s*(t) = F(U*)/ G(x)A(t —v" — x)dx - Lsee) (2.48)
0

and (7i7) operating the queue in the usual FCFS manner after tirneith b(¢,0) > 0. If

we do so, them(t) = v* fort > v* andw(t) = t for t < v*,

B(t) = s*(t), b(t,0) = FU At —v*) - Ly,

Q) = /0 F(z)A\(t — z)dz - Lo<i<pry + /0 F(z)A\(t — z)dz - Loy,

*

ot) = F) /0 h At —v" —x)g(x)dr - Lyspey,

alt) = /0 At —z) f(x)dz - Lio<i<oy +/0 At —z) f(x)dz - Lgsery, €20

If A is a periodic function, then so atg-, x), B(:) = s*(+), o, q(+, ), Q(-) and« after time

v*, with the same period.

Remark 2.8 (connection to the QED regime wheh= 0 ) All the analysis in this section
can be extended to the delay targét= 0. In this case, the staffing function in Theorem
2.8 isjust sufficient to guarantee that all fluid enters seevimmediately upon arrival (thus
with O delay in the queue) and that the system is CL for éthe service capacity is fully
occupied, i.e.B(t) = s(t)). This scenario corresponds to the heavy-traffic QED system

regime.

Remark 2.9 (general initial conditions or no delayrheorem 2.8 is based on starting

empty. However, it is possible to stabilize delays with taaby initial conditions. We
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present the details in Appendix A.8. We can also achieve thisnomm staffing level so
that there is no delay at all by simply staffing at the fluid eoi3(¢) in the underloaded
regime. These two variants may involve having an atom aaifiiiid content enter service

at time0, so that we leave the smooth framework.

2.11 Proofs of the Main Results

Proof of Theorem 2.3. We establish the different results in turn:

(a) (rate of growth) Consider an intervl ¢t + 4] that is overloaded. If no fluid enters
service during this interval, i.e., if(s,0)=0 for¢t < s < ¢ + ¢, then the waiting time of a
quantum of fluid at the front of the queue will increase witter, i.e.,w(t+96) = w(t)+4,
provided that quantum does not abandon. Hence, we havedimeet! bound on the rate
of growth: w(t + u) < w(t) +u forallt > 0 andu > 0 with ¢t + « < T'. A more formal
argument follows from (2.5) in Assumption 2.6.

(b) (characterization) However, we will hawet + §) < w(t) +0 if b(¢,0) > 0 because
the FCFS service discipline implies that the queue is beatgreaway from the head. In
other words, fluid is being transported from the queue to éneiee facility from the right

boundary of;(¢, z). Therefore,

w(t+0) =w(t)+ 0 —e€(t,0), (2.49)

wheree(t, §) is the amount of boundary waiting time(¢) that is pushed back (eaten up)
by b(t,0) from¢ to ¢ + 9, see Figure 2.6. (Note that> 0 ande(¢,0) > 0.) To determine
e(t,0), we apply (2.29), with (2.30). We will boundt, §) in (2.51) below.

(c) (controlling the abandonment term) We will show that thermlmament terni\ (¢, ¢+
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q(t, x)
0 w(t)
(a) Fluid content at time t
q(t+9,x)
\“
N
0 wi+o) win+o

=w(t)+0—¢&(0)
(b) Fluid content at time t +¢

Figure 2.6: The boundary of the waiting timé¢) under FCFS.

) in (2.29) is asymptotically negligible, so that it can beaged when computing the
derivative, but we use it to establish Lipschitz continuyen though(t, ¢t + ) is some-
what complicated, we can easily bound it above. Moreovercaredo so uniformly in

t over the entire intervald, T']. First letw" = sup {w(t) : 0 <t < T}. We necessarily
havew!' < w(0) + T < oo by virtue of the bound on the growth rate growth determined
above. Next let.}, = sup {hr(z) : 0 < z < w'} which necessarily is finite, singee C,
andF'(w') > 0; and letg" = sup {G(t,z) : 0 < » < w'}, which again necessarily is finite

becausg(t, -) € C,. We thus have the bound

At t+0) < hLg'w's = 016 (2.50)

for0 <t <t+6<T,whereC, = hl.gw'.

(d) (Lipschitz continuity) By (2.49), we can show thatis Lipschitz continuous by
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showing thak(t, d) < C¢ for some constant’. Recall that(-, 0) is continuous by Theo-
rem A.3. Hencel|b(-,0)||r < oo, so that there exists a constalrit such that&(t + J) —
E(t) < Cydfor0 <t <t+ 06 < T. Together with (2.50), that implies that the integral
I(t,w(t),q,0) is bounded above b/ for0 <t <t+ 6 < T, whereC = C; + Cs. Since

the integrand of is bounded below by > 0 by virtue of Assumption 2.10,

ce(t,8) < I(t,w(t), q,8) < (E(t +8) — B(t)) + A(t,t +8) < C§ (2.51)

for0 <t <t+4+ 6§ <T,sothatindeed

lw(t+0) —w(t)] <d+e(t,d) < (1+(Cle))d for 0<t<t+6<T.

as claimed.

(e) (the derivative) Since is Lipschitz continuousy necessarily is differentiable a.e.,
but we will establish a stronger result. Given thét §) = ¢d + o(d) asé | 0, from the
first inequality in (2.50) we see thalt(¢, t + §) = O(6?) + 0(6?), so that the abandonment
term can be ignored when we consider the derivative. Togetitle (2.29) and (2.30), that
implies that a right derivative af exists at with value in (2.31). The convergence®s$ 0
in the definition of that right derivative will be uniform ova neighborhood of if §(t, x)
is continuous function aof atz = w(t), but not otherwise.

To show (2.32) is similar. We consider an interfzat 6, ¢] that is overloaded. Similarly,

we have

w(t) =w(t —0)+ 6 —e(t—0,9), (2.52)
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and
t
B(t) — E(t—6) = / b, 0) du = J + K — A(t, t + ),
t—0
where
w(t)+e(t—6,0)
J=J(t,w(t),q) = / q(t,x)dz, (2.53)
w(t)

and

K=K(t,w(t),q) = I(t—éw(t—&) ,0) — J(t,w(t),q)

w( w(t)+e(t—4,0)
= Gt — 9, z)dx — q(t,x)dx
w(t—3)—e(t—6,9) w(t)
A closer look atK implies
w(t)+e(t—6,0)—0 w(t)+e(t—6,9) F
K = / Gt —9o,z)d t—5x—5)idx
w(t)—3d w(t) F(ZIZ’ — 6)
w(t)+e(t—6,86)—6 t)+e(t—5,6)—5 Ia 5
= q(t — 6, x)dz / q(t =9, y)ﬂd@/
w(t)— w(t)—s F(y)
w(t)+e(t—6,0)—0 F
- y+0
- q(t —0,y) (1 ( )) dy,
w(t)—s F(y)

where the first equality follows from (2.52) and fundamemtadlution equations, the sec-
ond equality holds by change of variable. Itis easy to see/tha o(d) aso | 0. Therefore,
together with (2.53), that implies that a left derivativeoéxists att with value in (2.32).
The stronger differentiability conclusion depends on tise@htinuities ofj(¢, ). From
Proposition 2.6, all discontinuity points lie on finitely ma45 degree lines in the upper
right quadranf0, co) x [0, 00); i.e., inthe sef(t,z) : e =t +c¢ and ¢ € S} whereS
containsc = 0 and the finite set of discontinuities affor ¢ < 0 and the finite subset of
discontinuities ofy(0, -) for ¢ > 0. Sincew(t + u) < w(t) +ufor0 <t <t+u < T,

the trajectory ofj(¢, w(t)) crosses over each of these lines at most once. Moreovery# st
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on each line for at most a finite interval. If the trajectorym@diately crosses over the line,
then the crossing timeconstitutes the sole discontinuity point fof associated with that

line. If the trajectory stays on the line for an interval, nhthe two endpoints constitute
discontinuity points forw’ associated with that line.

(f) (existence of a solution) The solution can be constructecbimgidering the succes-
sive intervals between discontinuity points and piecirggetber the solutions. The function
¥ in (2.31) is continuous in each continuity interval. Heredstence follows from Peano’s
theorem; se§2.6 of [69]. We apply Assumption 2.9 to ensure thd0) < co.

(9) (uniqueness of a solution) Under extra regularity cond&jahe functionl in (2.31)
will be locally Lipschitz on each continuity interval af’, so that each piece constructed
in the existence argument above will be unique, by virtuenefdlassical Picard-Lindelof
theorem; e.g., Theorem 2.2 of [69]. Specifically, it suffitesassume thak and¢(0, -)
(already assumed to be @),) are differentiable on the subintervals where they are nenti
uous with derivatives i, over these subintervals.

However, we can actually prove uniqueness without respttirextra assumptions. To
do so, we exploit the special structure of the ODE in (2.31y.(815) in Corollary 2.2,
q(t,w(t)—) in the denominator or (2.31) takes one of two forms, dependim whether
w(t) <t ornot. Our proof applies to both cases in the same way, so lyeconsider one
case: we suppose thatt) < t. Theng(t,w(t)—) = A((t — w(t))—)F(w(t)). Then ODE
(2.31) implies that

b(t+,0) d ([0
F(w(t)) dt </t1 )‘(y)dy> )

=AMt —w(t)-)A-w'(®) = —

t b(y 0) t—w(t)
so that / — Ly = / Ay)dy, t; <t <ty (2.54)
n F(w(y)) b

Now suppose there is another functignthat also satisfies ODE (2.31) with(¢;) = 0.
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Then, by the same reasoning, we get

t b(y,O) B t—(t)

Equations (2.54) and (2.55) imply that

¢ 1 1 t—w(t)
A““mwa»_ﬂww)@:[Q@A@@’“Stﬁh (2.50)

Now suppose functiom andw are different. Sincev(t,) = @ (t;) = 0, lett = inf{t > ¢, :
w(t) # w(t)}, which implies that'(£) # @'(t). Without loss of generality suppose that
w'(t) < w'(t), hence there existsda> 0 such thato(t) < @w(t) forallt < ¢t < ¢+ . Then
we havel /F(w(t)) < 1/F(w(t)) forallt < t < t+6 andt+0—w(t+6) < t+5—w(t+0).

Therefore, (2.56) implies that

o 1 1 i+6—w(i+9)
0> [ 009 (T~ ) Y ™ s SO

which is a contradiction. Hence the solution to ODE (2.31pthe unique.=

Proof of Theorem 2.5. To show that the two equations in (2.36) are equivalent, make

the change of variables = ¢ — w(t). Then the first equation givess) = w(t) =

w(s +w(t)) = w(s + v(s)), which is the second equation. The other direction is simila
For a givenw, we shall do three things: (i) construcgiven the first equation in (2.36),

(i) show that this construction gives a functiorthat is right continuous and has limits

from the left, and (iii) show that the construction in (i) leetunique one that satisfies (ii).
For an arbitraryt, we draw a 45-degree ray starting from point0): L(s) = s — t,

s > t. Letw(t) be the largest,, such that.(t,) = w(t,), as shown in Figure 2.5. We
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t t+68 tw tw+S TStw+S+e

Figure 2.7: Potential waiting time(t) is right continuous and has limits from the left.

first show that there necessarily exists at least one tjme t such thatL(t,,) = w(t,).

If w(t) = 0, thent,, = t is a solution. Otherwise, we hawgt) > 0 = L(t), andw starts
above the linel. at timet¢. By Theorem 2.3y is a continuous function. In general, we
could havew(t) > L(t) for all ¢, but then we would have(t) = cc. Sincev(t) < oo, there
necessarily is a timg, such that_(t,,) = w(t,).

By Theorem 2.3y/(t) < 1. Therefore, oncé.(t,,) = w(t,) for the first time, it either
stays there or leaves, never to return. In other words, @ueréwo cases: First, as always
occurs ifw'(t,) < 1, there may be a uniqug, > ¢ such thatL(t,,) = w(t,). Second,
there may exist an intervdl= [¢,, t5] such thatl.(¢) = w(t) fort € I,i.e.,L(t;) = w(t;)
andw’(t) = 1fort € I; see Figure 2.5. In the first case, wed¢t) = ¢,,; in the second
case, we leb(t) = w(t,) wheret,, = inf{s > t; : L(s) # w(s)}. That completes our
construction.

Next we show right continuity. For ary> 0, our construction shows that it is possible

to choose) > 0 sufficiently small thav (¢t + §) = w(t,, + d + €) such thatv(t,, + 9 +¢€) —
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w(ty,) = €, Wheree = €(t, ), as shown in Figure 2.7. Our construction implies that
€ =wty +0+¢) —w(ty) =w ) +e)
for somet,, <t < t,, + ¢ + e andw'(f) < 1, which implies that

e=e€(t,0) = ——=

w(t)(i —0, asd—0.
1 —w'(t)

Therefore, ag — 0,

v(t+0) —v(t) =w(ty +0+¢€) —w(t,) — 0,

by the continuity ofw. Thereforeyp is right continuous. Similarly, we can show thalhas
limits from the left.

It is evident that, by this construction, we have ensuretlidhsa right continuous with
left limits and unique. Moreover, is discontinuous atif and only if we are in the second

case with an interval of solutionss

Proof of Theorem 2.6. Foré > 0, the second equation in (2.36) yields

v(t+9d) —v(t) <w(t +5+v(t+6)) —w(t+ U(t))) <v(t +0) —o(t) + 5)
) v(t+0) —v(t)+9 )
w(t+o(t) +e(t,0) —w(t+ov(t)\ [v(t+0)—ov(t)
- ( (1,9) ) (5 ).
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wheree(t,0) = v(t + ) — v(t) + 6. Simple algebra implies that

v(t+0)—v(t) 1 .
- 1 _ wtto@+e(t.0) —w(t+u(®) o
e(t,0)
Lettingé | 0, we obtain
U/<t+) - lc%ﬁ)l <,U(t * 6()5 - U(t)) = - w(t+v(1t)+e(t 8))—w(t+v(t)) -1
1 —limgyo ( 0 )
o l—w((t+v t))+)
_ dtHv) wlt+ut)-)
b((t + v(t))+,0)

_dttot),00-)

b((t +v(t),0)

At F(o(t))
b(t +v(t)+,0)

where the second equality holds since right continuity @mplies thate(¢,5) — 0 as

0 — 0, the third equality follows from ODE (2.31), the fourth edjtyafollows from the
second equation in (2.36), the last equality holds becawssystem being overloaded at
timet + v(t) implies thatg(t + v(t),v(t)) = q(t,0)F(v(t)) = A(t)F(v(t)). The similar
argument applies to the left derivative with(t) — v(t — §)) /6 whent is a continuity point
of v.

By Theorem 2.5p is continuous under the extra condition tiat 0) > 0 for all ¢.
That clearly makes the right derivative finite for allHence,v is differentiable wherever
® is continuous. We can now exploit Theorem 2.3 and its proofce(¢,0) > 0 for all
t, there will be a one-to-one correspondence between thelfimtany points wherd in

(2.31) is discontinuous and the points wheéres discontinuous. Now we have the relations
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(for the right derivatives everywhere)

W' (t+o(t))
S l—w(t+o(t)

v'(t —w(?))
Vit —w)+1

) and w'(t) = t>0, (2.57)
with the denominators positive in both cases. Directly, wa establish existence and
uniqueness of a solution to the ODE by the same reasoningeaksfos ODE (2.31) for

w. m

2.12 Conclusions

In this chapter we have characterized all the standard mesfioce functions for th€, /G1/s,+
G1 fluid model, having time-varying arrival rate and staffingstomer abandonment, and
non-exponential service and patience distributions. @sults were obtained under two
important regularity conditions: (i) Assumption 2.2, raing that we have a smooth
model, and (i) Assumption 2.7, requiring that there be dimytely many switches be-
tween overloaded (OL) and underloaded (UL) intervals inditime; se&2.3. There also
is a restriction on the service distribution in Assumptio8 & order to guarantee that the
fixed point equation (4.20) for the rate of flow from queue isgovice h(t, 0), has a unique
solution that can be computed iteratively. It suffices fohei (i) the service hazard func-
tion h¢ to be bounded or (ii) the system to have started empty at sioneeinh the (finite)
past; se€2.6. Still other regularity conditions were imposed;ih?7.

For M service, the relatively simple algorithm primarily reqsrsolving the ODE for
the BWT w in Theorem 2.3 and the equation for the PWTn Theorem 2.5. For non-
exponential service, in addition we must solve the fixed peguation (4.20) for the flow
rate into servicé(t, 0), which is needed to determine the full service content dghgi, ).

The algorithm is summarized k2.8. We characterized the model, as just reviewed, under
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the assumption that the staffing functiers feasible, but in Theorem 2.7 we also charac-
terized the minimum feasible staffing function greater tbaequal to any given staffing
function, provided that it is not changed prior to the firdeasibility time. In§2.10 we
showed that we can construct a staffing function to stahtihegootential waiting time at
any desired target* > 0.

The fluid model is well defined directly, but it is intended &nge as an approxima-
tion for large-scale many-server queueing systems. Wepeed extensive simulation
experiments to confirm that the fluid model can provide a usgfproximation for such
stochastic queueing systems. One of these experimentsdsiloled in52.2; others are
described in Appendix A. The simulation results show thas},fthe fluid approximation
is essentially exact for very large queueing systems ambnsk it can be effective as an
approximation for mean values even when the scale is notai@e] e.g., the number of
servers might be onl§0. The approximation tends to be more accurate when the system
either overloaded or underloaded, rather than criticaliyded, as illustrated by Figure 2.3.

There are many directions for future research. First, itail@sto provide conditions
with G1 service, paralleling our results fdi; service in this chapter, guaranteeing that
there are only finitely many switches between OL and UL irdgkxvn finite time, as we
assumed in Assumption 2.7. Second, it remains to furtheloexg\ssumption 2.8 guar-
anteeing that the Banach contraction theorem can be appliestablish the existence of
a unique service content densityn OL intervals, and develop an effective algorithm for
calculating it. Third, it remains to consider alternatiygpeoaches to obtaining feasible
staffing functions. The method i§2.9, detects any infeasibility of a candidate staffing
function and removes the problem by increasing the staffitey the violation point. Al-
ternative methods could modify the entire staffing functiaiming to achieve minimum

cost subject to constraints. Fourth, it remains to estalgligstence, uniqueness and algo-
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rithm results for the more general model in which many of thieditions imposed here are
relaxed.

As explained irg2.1, there already is strong theoretical support for the fiaodel here
through previously established MSHT limits. Neverthelegsk is in progress to establish
MSHT limits for the smooth fluid model here, paralleling th&MT limit for the discrete-
time model in§6 of [77]. A first goal is to obtain additional theoretical @aqpt; a second
goal is to obtain a refined stochastic approximation, paafl the results for Markovian
models in [46—48]. It remains to develop alternative apprnations and MSHT limits for
G./GI/s; + GI systems that tend to be nearly critically loaded at all timestead of
switching back and forth between OL and UL intervals. Fipdtlremains to extend the
model to represented more complicated service systemsmittiple service pools and
multiple customer classes. A first step has been made folesatgss networks of queues

with time-varying Markovian routing in Chapter 3.
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Chapter 3

A Network Generalization

We now extend our analysis in Chapter 2 to the case of a sigés duid network
with a proportional routing and time-varying model paraengt We provide algorithms to
compute time-dependent performance measures for all qureadinite time interval. The
key step of the algorithms is to characterize the total (gregated) arrival rates at each
gueue, which is based on solving a functional fixed-point¢ign. Computer simulation

experiments verify the effectiveness of the approximation

3.1 Introduction

The main feature of the model is time-varying arrival ratesich commonly occur in appli-
cations but which make performance analysis difficult; &3} for background. The spe-
cific model is an open network of time-varying many-serveadffyueues with proportional
routing. There aren queues, each with its own external fluid input. In additiopr@por-

tion P, ;(t) of the fluid output from queugat timet is routed immediately to queyeand a
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(1= Pia(t)— Pii(t))ou(t) (1= P21(t) — P2.2(1))o2(2)

Figure 3.1: The ope(G;/M,/s; + GI;)* /M, fluid network.

proportion? o(t) = 137", P; ;(t) < lis routed out of the network (departs having suc-
cessfully completed all required service). This framewopekmits feedback, both directly
and indirectly after one or more transitions to other queasshown in Figure 3.1 for the
casem = 2. Following [50], we denote the model by, /M, /s, + GI,)™/M,, where the
subscript indicates time varying. The fluid model is intended to ses/amapproximation
for the corresponding many-server queueing system, havingieues, each with a gen-
eral time-varying arrival process (tlig), time-varying Markovian service (the firdt,), a
time-varying (large) number of servers (th@, a general time-varying abandonment-time
distribution (the+G1;), and a Markovian routing (the ladt/;) among queues. We later
extend thel/; service toG 1.

This (Gy/M,/s; + G1;)™ /M, model is a generalization of the classical Jackson open
network of queues in the following respects: (i) it allowsstamer abandonment while
Jackson networks do not; (ii) it has time-varying model pseters while Jackson networks

do not, and (iii) unlike Jackson networks that assume Pnissavals and exponential
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service times, here the arrival process need not be renevibieson and service times
follow general distributions.

Since the new fluid model is tractable, we are providing treedfar creating a performance-
analysis tool for large-scale service systems (allowingyrmgueues and many servers at
each queue) like the Queueing Network Analyzer (QNA), dbsdrin [73]; also see [8].
Algorithms based on performance formulas are appealinggplement and complement
computer simulation, because the models can be createdoarstl snuch more quickly.
Thus they can be applied quickly in “what if” studies. Thegatan be efficiently embed-
ded in optimization algorithms to systematically deterendiesign and control parameters
to meet performance objectives.

New methods are required because these large-scale ssysieens tend to be char-
acterized bymany-server queugwhere a large number of homogeneous servers work in
parallel. For a many-server fluid queue with time-varyingrkéaian service rate(t),
when the system content ’§(¢) and the staffing is(t), the total service completion rate
at timet is min { X (¢), s(¢) }u(t). Unlike in single-server systems, when the many-server
system is not overloaded, the service completion rateigqual to the input rate, but is
insteadproportional to the system conteut. [9].

This chapter extends earlier work. First, [77] describedsteady-state fluid content in
a stationaryG/GI/s + G1I fluid model. Second, in Chapter 2 we developed an algorithm
for describing the time-dependent behavior of the timesvar G,/G1/s, + GI model,
including the first full description of the transient belavof the stationary>/G1/s + GI
fluid model. We make several important contributions heriestfFfor the case of expo-
nential service times we extend the model from a single fluieug to a network of fluid
gueues. Second, we treat time-varying service and abarelanmy focusing onV/; ser-
vice instead of5] service, we are able to establish the existence of a uniquectable)

performance description for both one fluid queue and the orétgeneralization without
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directly assuming that there are only finitely many switchesveen overloaded and un-
derloaded intervals in any finite time interval. These rssate based on monotonicity
and Lipschitz continuity properties of the fluid queue made]3.5, which are important

in their own right. Finally, we characterize the steadyesfarformance of the stationary

network of fluid queues.

Here is how the rest of this chapter is organized: In §3.2 we introduce thé&/, /M, /s, +

G 1, model of a single fluid queue. Even though we consider onlyglsiqueue there, the
time-dependence in the service and abandonment prevenaakel from being a special
case of the model in Chapter 2.98.3 we show how the overloaded and underloaded times
occur in alternating intervals of positive length, undegularity conditions, and we intro-
duce a specific piecewise-polynomial framework for asgutirat there are only finitely
many switches in each finite time interval. §8.4 we present the performance formulas
for one queue. Ii33.5 we extend the results to general piecewise-continuoivalrate
functions, thus providing an essential step for extendnaganalysis to networks. 1§8.6

we define thé G, /M, /s, + G1,)™ /M, fluid network, that is a network generalization of the
single fluid queue introduced §8.2. In§3.7 We establish the existence of a unique vector
of arrival rate functions at each queue and thus the perfocea the network. We pro-
vide two algorithms to compute the system performancen(glgorithm based on solving

a fixed-point equation (FPE) and (ii) an algorithm based dwirsg a multi-dimentional
ordinary differential equation (ODE). 1§8.8 we make an extension from tiAé, service
distribution toG1 and provide an algorithm based on solving a functional FRE319

we evaluate the performance of the algorithms develop&g3ré and 3.8 by considering
Markovian and non-Markovian examples.§8.10 we characterize the steady-state perfor-

mance in the stationaryG/G1/s + GI)™ /M fluid queue network. Finally, i§3.11 we
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draw conclusions. In Appendix B we provide (i) some proai$ some remarks, and (iii)

an illustrative comparison with simulation of a large-gcalieueing system.

3.2 TheG;/M;/s; + GI; Fluid Queue

We define the 7, /M, /s, + GI, fluid model as an analog of th&,/G1/s, + GI model
described ir2.3. The notation largely follow§2.3, but some modification is needed. By
M, service, we mean that service is provided at the servicktjeai time-varying ratg.(t)
per quantum of fluid in the service facility; i.e., if the tbfiid content in service at time

is B(t), then the total service completion rate at titrie
o(t) = B(t)u(t), t>0. (3.1)

Let S(¢) be the total amount of fluid to complete service in the intefya]; thenS(t) =
Jo oy) dy.

Fluid waiting in queue may abandon. Specifically, we assuraed proportior¥;(x)
of any fluid to enter the queue at timeavill abandon by time + « if it has not yet entered
service, whereF; is an absolutely continuous cumulative distribution fumet(cdf) for

eacht, —oo <t < 400, with
Fi(z) = / fi(y)dy, x>0, and F(z)=1- F(x), x>0. (3.2)
0

Let hr(y) = fi(y)/F,(y) be the hazard rate associated with the patience (abandtnmen
cdf F.

Let a(t) be the abandonment rate at timeSinceq(¢, x) is the density of fluid in queue
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at timet that arrived at time¢ — z, the abandonment rate at times

alt) = / b (9 dy, £ 0. (3.3)

Let the following quantities be defined as§B.3: the total input\(¢), staffings(¢), total
fluid abandonedi(¢), fluid in queue (service) that has been in queue (servicegtforost
x B(t,z) (Q(t, z)), fluid density in queue (service)t, z) (b(t,x)), and the boundary of
waiting timew(t), in the identical way as i2.3.

Let £/(t) be the amount of fluid to enter service[iht]. We have

E(t) = /Otv(u) du, t>0, (3.4)

where~(t) = b(t,0) is the rate fluid enters service at time Clearly, we have théow

conservation equation$or eacht > 0,
Q(t)=Q(0)+A(t) — A(t) — E(t) and B(t) = B(0) + E(t) — S(t). (3.5)

The rate fluid enters service depends on whether the systenmderloaded or over-
loaded. If the system is underloaded, then the externaltidpactly enters service; if
the system is overloaded, then the fluid to enter servicetesmadéned by the rate;(t), that
service capacity becomes available at ttm8ervice capacity becomes available due to ser-
vice completion and any change in the staffing function. ldehe rate service becomes
available is

n(t)=s'(t)+o(t)=5(t)+ Bt)ut), t=>0, (3.6)

so thaty(t) = s'(t) + s(t)u(t) if the system is overloaded at tinne
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We assume Assumptions 2.1-2.5 are satisfied. In additiormalee the following as-
sumptions.

Since the service discipline is FCFS, fluid leaves the quewenter service from the
right boundary of;(¢, x). Since the service i8/,, the proportion of fluid in service at time

t that will still be in service at time + x is
B t+x
Gy(x) = e~ ML) \where M(t,t+z) = / wy)dy, t>0 and x>0. (3.7)
t

Note thatG, coincides with the time-varying service-time cdf of a quentof fluid that
enters service at time The cdfG, has densityy,(z) = u(t + 2)G,(x) and hazard rate
he,(z) = p(t+x), 2 > 0.

Paralleling to Assumption 2.6, we assume thahdb satisfy the following two funda-

mental evolution equations.

Assumption 3.1 (fundamental evolution equationsSor ¢ > 0, z > 0 andu > 0,

t+u,x+u) = q(t,x)%{;u), 0<xz<w(t), (3.8)
bt +u,xz+u) = bt x)%x(jg)“) = b(t, z)e MY, (3.9)

whereM is defined in(3.7).

In addition to Assumption 2.2, we have the following assuorpfor the model date.

Assumption 3.2 (smoothnesss’, A, fi, f.(x), i, b(0, -), ¢(0, -) in C, for eachz andt.

As a consequencs, A, F;, B(0, ), Q(0, -) are differentiable functions with derivatives in

C, for eacht; we say that they are elements@f.
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In order to treat the BWTw, we need to impose a regularity condition on the arrival
rate function and the initial queue density (when the ihgisgeue content is positive, which

never occurs after an underloaded interval). We make th@rfisig assumption.

Assumption 3.3 (positive arrival rate and initial queue densijtior all ¢ > 0,

Aing(2) = Oiggt{A(u)} >0 and gy (0) = f(o) {q(0,u)} >0 if w(0)>0.

in
0<u<w

In order to be sure that the PWT functions finite, we make two more assumptions.

Assumption 3.4 (minimum staffing levelThere exists;, such thats(t) > s, > 0 for all

t>0.

Assumption 3.5 (minimum service rateThere existg:,, such thatu(t) > p > 0 for all

t>0.

Finally to treatA with the time-varying abandonment cHf, we first introduce bounds

for the time-varying pdff, and complementary cdf,. Let

ff=sup{fix):2>0, —oco<t<T} and FY(z)=inf{F(z): —co<t<T}

(3.10)

Assumption 3.6 (controlling the time-varying abandonment distributjofi' < oo and

F¥(z) > 0forall z > 0, wheref" and F'*(z) is defined in(3.10)

In summary, here we have made Assumptions of Chapter 2 (witbrmmodifications

because of\/; service and7I; abandonment instead of both beifig). We show how to
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relax Assumption 2.7 there in the next section. Assumptiérh&re is new, because of the

time-varying abandonment.

3.3 Underloaded and Overloaded Intervals

In Assumption 2.7 of Chapter 2, we directly assumed thatyhtes alternates between un-
derloaded intervals and overloaded intervals, with theiadonly finitely many switches
in any finite interval. In this chapter, we provide condisamder which that assumption
can be guaranteed to hold, and then show how to treat the reae¥a case as a limit of
such systems. This extension is important to rigorouskgttiieid queue networks. This

extension is facilitated by havinty; service.
We initially classify the system state as overloaded or dndded at time as follows.
Recall that the rate service capacity becomes availablmattis (t) = s'(t) + o(t), as

in (3.6) above.

Definition 3.1 The system ieverloaded if either (i) Q(t) > 0 or
(i) Q) =0, B(t)=s(t) and A(t) >n(t) =s'(t) + s(t)u(t);
the system isnderloaded if either (i) B(t) < s(t) or

(i) B(t) =s(t), Q)=0 and A(t) <n(t) = s(t) + s(t)u(t).

At every timet, the system is thus either overloaded or underloaded.
We now define the set of switch times. For that purposeQlet) ((/(A)) be the set
of overloaded (underloaded) time# the subsetA of a designated interval, 7). From

Definition 3.1U(A) = A — O(A) for each subset (the complement relative td).
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Definition 3.2 The subsef§ be ofswitch timesin [0, 7] is the subset affor which

U(E—VO0,t+)AT)) £ 0 and O(((t—e) VO, (t+e)AT) £0 forall ¢3:10)

To neatly classify the switching times, we further classfyme of the underloaded

times.

Definition 3.3 An underloaded timeis isolated if (i) either [0, ¢) or (a, ¢) is an overloaded

interval and (ii) either(¢, T'] or (t, b) is an overloaded interval.

We now reclassify all isolated underloaded points as oaeled points. When we re-
classify each isolated underloaded point, we replace tlvecmnecting overloaded in-
tervals by the common overloaded interval; e.g., whé&nhan isolated underloaded time
between overloaded intervals, ) and(¢, b), we replace the two intervals by the single in-
terval(a, b). In Appendix B.1 we show that this procedure is well definedhk remainder
of this section we present the key results allowing us to enthatsS is finite. We present

the proofs in Appendix B.1. Our first structural result is

Theorem 3.1 (partition into interval$ After all isolated underloaded times have been re-
classified as overloaded and all overloaded intervals hagenbincreased as specified
above, the intervald, 7] can be partitioned into at most countably many alternatingre
loaded and underloaded intervalsf positive length The resulting switch points are the

boundary points between overloaded intervals and unddddantervals.

Our analysis above has shown how to partition the intgfv&l| into alternating over-
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loaded and underloaded intervals of positive length. Tinenswitch points are clearly
identified as the boundary points. It is then convenient tupathe convention that all in-
tervals be left closed and right open (e.qg., of the f@ind)), except at the interval endpoints
0 andT, so that the regime identification functiot) = 1;o(o,));(t), Wherelyy, is the
usual indicator function, is right continuous with left it This convention does not alter
the switch points.

We now relate the subsét to the set of discontinuity points and the zero set of the
function

Ct)y=Mt) — s'(t) — s(t)u(t), t>0. (3.12)

Note that{ depends only on the basic model functions andu. Also note thatt = A —n
in the overloaded case of Definition 3.1. [t be the set of discontinuities gfin (3.12)

and letZ, = {t € [0, 7] : ¢(t) = 0} be the zero set.

Theorem 3.2 (relating switches to zeros and discontinuitieg pfor any interval(0, 77,
the subsets, Z. and D, are closed subsets witls| < |Z.| + |D;| — 1. Moreover, the

bound in is tight; i.e., there are examples for which the lbhalds as an equality.

We now introduce a convenient subset of function€jnto represent our model data
A, ppands’. The class is sufficiently general that it can represent angtfon inC, and, at
the same time, it allows us to control the zerog p$o that we know in advance that there
are only finitely many switches between overloaded and Uoaged intervals in any finite
interval.

Let P.... = Pr.m.. be the space giiecewise polynomiaisn the interval0, 7], where
[0, T is partitioned intan subintervals, on each of which there is a polynomial of oater
mostm. We start with three elementary lemmas abByt,. (We do not require that the

overall function be continuous, but each function necdgsiarin C,.) The first lemma
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states that any function i€, can be approximated uniformly by a function fra®y, ,,, so
that there is no practical loss of generality to restrictimgmodel data to be iR, ,, instead

of C,.

Lemma 3.1 (uniform approximationFor any function: € C, over a finite interval0, 7]
and anye > 0, there exists a functioh e P, for some positive integers andn such
that||h — k|7 < e.

The second lemma states that we can go back and forth betivedmrictions\, s, i
and their integrald., s, M in P, ,, conveniently; i.e., the integral or derivative of a polyno-

mial is again a polynomial. In particular, we can analylicablculate the integral foi/

in definition (3.7), as needed for the fundamental evoluéiqQuation for in (3.9).

Lemma 3.2 (representation of integrals, s’, n € P,,,,, C C, ifand only ifA, M (¢, t+-),
M(u—-,u),s € Pmni1,NC.
The third lemma states that the functigmnherits piecewise-polynomial structure as-

sumed for the basic model functionss’, .

Lemma 3.3 (preservation of piecewise-polynomial structutler € P,,,, »,, 8" € Punynss

andyu € Py, then¢ € Py, ,,, wheren < ny +ny+ng andm < my Vimg Vms(mg +1).

The following theorem serves as the basis for our analysis.

Theorem 3.3 (finitely many switcheslf ¢ € P, ,, for (in (3.12) then|S| < n(m+1)—1.

Hence, we can carry out the construction of the desired pegnce vectofb, ¢, w, v, o, «)
under the assumptions that the basic model functians, ;1) are such that there are only

finitely many switches between overloaded intervals anetlodded intervals in any given
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interval [0, 7). It suffices to have\, s', u € P, , for somem andn. The spacé>,, ,, is use-

ful for the theory, but it should not be needed in applicatisee Remark B.3.

3.4 The Performance at One Queue

In this section we determine the performance functions uthdeassumption that there are
only finitely many switches between overloaded and unddddantervals. We have just
seen that a sufficient condition for that is to have P, ,, for somem andn, for which

a sufficient condition is to havg, s’, i € Py, for somem andn. Here we can apply
the previous results if§2.3, making proper adjustments to account for the change ¢t

service and abandonmentid, service and~/, abandonment.

An underloaded interval requires modification to accoumtf service. Since the
rate fluid enters service ig(t) = b(¢,0) = A(¢f) when the system is underloaded, we
immediately obtain an expression fidtt, =) from (3.9). Recall that we have assumed that

b(0,-) € C,.
Proposition 3.1 (service content in the underloaded caBer the fluid model with unlim-

ited service capacitys(t) = oo for all £ > 0), starting at timeD,

bt,x) = e METTONE - 2) ey + e MO0, 2 — 1)1 4s,

t
B(t) = / e MU=\t — ) de + B(0)e ™M) 0<t<T, (3.13)
0

where M is defined in(3.7). If, instead, a finite-capacity system starts underloadieei

the same formulas apply over the intery@l7"), whereT = inf {t > 0: B(t) > s(t)},
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with T" = oo if the infimum is never obtained. Henégt, -),b(-,x), B € C, forall ¢t > 0

andz > 0, for ¢ in the underloaded interval.

There is dramatic simplification in going frod/ service toM, service in an over-
loaded interval. Then we simply hav&t) = s(t). The rate fluid enters service is equal
to the rate service capacity becomes availablg) = n(t) = s'(t) + s(¢t)u(t). For an

overloaded interval starting at tintewe have

Proposition 3.2 (service content in the overloaded cafer the fluid model in an over-

loaded interval B(t) = s(t) and

b(t,x) = (s'(t —x)+s(t —x)u(t - x))G_M(t_x’t)l{xSt} + (0,2 — t)e_M(O’t)l{mt},

where M is defined in(3.7). Henceb(t,-),b(-,z), B € C, forall t > 0 andz > 0 in an

overloaded interval.

Corollary 3.1 (overall smoothness for the service conjdhthere are only finitely many
switches between overloaded and underloaded intervdls if, thenb(t,-),b(-,z), B €

C,forallt,0 <t <T,andz > 0.

We treatq, w andv just as in Chapter 2, making adjustments for the time-varyin
abandonment cdf;. Let (¢, z) be ¢(t,x) during the overload intervgD, T'] under the
assumption that no fluid enters service from queue. The nexiogition is an analog of

Proposition 2.6.

Proposition 3.3 (queue content without transfer into service in the overezhdasé Dur-
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ing an overloaded interval,

Ft—x( )

C](t, 1’) = )\(t — l')Ft—x(x)l{xét} + Q(07 L= t)m

so thatg(¢, -) andq(-, x) belong toC,, for eacht and .

Since BWTw and PWTwv are determined by two ODESs as in Theorem 2.3 and 2.6, we

get an expression farprovided that we can find, as an analog of Corollary 2.2.

Corollary 3.2 (fromg to ¢) Given the BWTw in an overloaded interval,

Ft -'E( ) 1 -
Ft m( t) {t<z<w(t)}

()
Ft x( _t)

q(t,z) = Gt —2,0)F_p(2) L pcwing + 40,2 — 1)

= )\(t - x)F ( )1{x<w( Aty q(O T — t) 1{t<:c<w(t )} (3.15)

Moreoveryq(t,-) € C, forall ¢t > 0.

Corollary 3.3 (end of the overloaded intervalWe can compute the end of an overloaded

intervalasT = inf {t > 0:w(t) =0 and A(t) < s'(t)+ s(t)u(t)}.

Corollary 3.4 (smoothness af(t, -)) Under the assumptions of Theor@m3, ¢ is given by
(3.15)with ¢(-,z) € C, for all . (We have already deduced thgt,-) € C, for all ¢ in
Corollary 2.2)

The Algorithm for One Queue. We now summarize the algorithm to compute the
performance functions in th&, /M, /s, + G I, model, assuming that there are only finitely

many switches in each finite interval. We consider the basitsitly vectorﬁ(t), given

model data vectoP, and total performance vect®(t), all defined in§2.8.2 of Chapter 2.
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Let R(t) denote the current system regime ate., R (¢) =OL or UL. WhenR(t,) =OL,

the OL interval ends at th®L termination time

Tor(to) = inf{u >1t;: Q(u) =0 and Au) < s'(u)+o(u)}.

WhenR(t,) =UL, the UL interval ends at th&L termination time

Tur(to) = inf{u >ty : B(u) = s(u) and Au) > s'(u) +o(u)}.

Therefore, the termination time of the current interval

Tr(to) = Tor(to)Lire)=ory + Tur(to) Lire)=vL}-

An algorithm is summarized as below.

Algorithm 2 : A Fluid Algorithm for Single Queues (FASQ) for th, /M, /s, + G, fluid
model, with inputD = ()\, s,G, F, 75(0))
1: Initialization: UpdateR, lett := 0

2: repeat
3 fork=0,1,...,[5#] do
4: GivenR, computeP ininterval [t + (k — 1)AT,t + k AT] using Proposition 3.1

,3.2 and 3.3, Corollary 3.2, Theorem 2.3 and 2.6

5: if Tx(t) <t+ kAT then
6: t:=Tr(t)

7: R :={OL,UL}\R

8: BREAK for-loop

9: end if

10:  end for

11: until ¢t > T

Feasibility of the staffing function. The construction above has been done under the

assumption that the staffing function is feasible. Ag2m9 of Chapter 2, the algorithm
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can detect violations of feasibility whenever they occut ean then produce the minimum
feasible staffing function greater than or equal to theahjgroposed staffing function. A
violation is easy to detect; it necessarily occurs in an loaeted interval inO([0,7]) at

timet* = inf {t € O([0,T]) : v(¢t) < 0}. As in Chapter 2, letS;, be the set of feasible

staffing functions over the intervdl, ¢] for ¢t > ¢*.

Theorem 3.4 (minimum feasible staffing functigrhere exist > 0 ands* € Sy ;(t*+0)
such thats* = inf {5 € Sy (t* +0)}; i.e., s* € Sy (t" +9) ands*(u) < 5(u), 0 < u <

t* + 6, forall 5§ € Sp4(t* + ). In particular,

S*(t" +u) = B(t*) - e METTY 0 <y <6 (3.16)

Moreover,§ can be chosen so that= inf {u > 0: s*(t* +u) = s(t* + u)}, with§ = oo

if the infimum is not attained.

Corollary 3.5 (minimum feasible staffing witii/ service For M service, i.e., with expo-
nential service times, so that(z) = ¢+, (3.16)becomes simply* (t* +u) = B(t*)e ",
0<u<y.

Theorem 3.4 shows how to construct a new staffing function (ihagrees with the
proposed staffing functior over its interval of feasibilityj0, ¢*) and (ii) itself is feasible

over the longer interval, t* + §) for somed > 0. To construct the minimum feasible

staffing function ovef0, 7, this algorithm may need to be applied several times.
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3.5 General Arrival Rate Functions

In the previous two sections we have seen that we can get aleme theory if we assume
that\, s', u € P,,,. In order to treat open networks of fluid queues, we would waet
service completion rate, which becomes the part of the input rate at other queues to b
in P,,,, for somem andn as well, butc does not inherit this property, becausg) =
B(t)u(t) and B(t) has a complicated non-polynomial form in underloaded vatis; as
shown in (3.13). We do have € C, by virtue of Corollary 3.1, but we need not have
o € Pm.n. Hence, we show how to treat the general case in which ilyitiad only assume
that\ € C,.

We will treat the case of general € C, as the limit of a sequence of systems with
A € P In particular, for arbitranA € C,,, we can represent it as the limit of a sequence

of functions{\; : £ > 1}, where\, € P,,, »,, and\, > 0 for eachk, and||\,— |7 — 0 as

ksTk
k — oo, with ||-|| denoting the uniform norm ovés, T']. (Positivity is no problem because
of Assumption 3.3 and the uniform convergence.) If we alsmae that', 4 € P, ,, for

somem, n, then we will necessarily havg € P,,, ., for all k, with m;, < oo andn,, < oo

ksTlk
for all k. We will also haven;, — oo andn;, — oo ask — oo unless\ € P, ,, for some
m,n.

In this section we establish results that allow us to treatctse of general arrival rate
functions\ € C,, without requiring that\ € 7,,,, and without directly requiring that
there be only finitely many switches between overloaded awgioaded intervals in the
interval [0, 7). To do so, we establish monotonicity and Lipschitz contynproperties,
which are of independent interest. We first establish theselts assuming thate P, ,,,
and then we show that they extend when we allow arbitbary C,. We thus start by

assuming that € P,,,. The proofs of the three theorems in this section are relgtiv

straightforward, but long; they appear in Appendix B.3.
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The M, service allows us to extend the elementary comparisontsesuPropositions
2.3 and 2.7 of Chapter 2. Recall that order of functions (egtis defined as pointwise
order for all arguments (coordinates). LE{t) = B(t) + Q(t) be the total system fluid

content. Let subscripts designate the model.

Theorem 3.5 (fundamental comparison theorg@onsider twa; /M, /s,+G 1, fluid mod-
els with common staffing functionand service rate functiop. If (;,(> € Py, With

A < A, Bi(0) < By(0), 1(0,7) < q2(0,+) andhp, , > hp, ,, then

(B1(+), @1, q1, Q1(+), X1, wy, v1,01) < (Ba(+), G2, @2, Q2(+), Xo, wa, va, 09). (3.17)

In addition to monotonicity, the model has additional bdspschitz continuity prop-

erties (beyond Proposition B.2).

Theorem 3.6 (more Lipschitz continuity Consider aG,/M,/s; + G1, fluid model with
A s 1w € P, for somem,n. Then the functions mappin@) (A, B(0)) in P, x R
into (B, o) in C2, (i) (A, B(0),Q(0)) in Py, ,, x R* into Q in C,, and (iii) (A, X(0)) in

P x Rinto X in C,, all over[0, T}, are Lipschitz continuous. In particular,

|B1 — Ballr < (AVT)([|A = Aellr V[ B1(0) — Ba(0))),
lon = oollr < pp|| By — Ballr,
Q1 — Q2llr < (AIVT)(||A — Xl V |Bi(0) — B2(0)] vV |Q1(0) — Q2(0)]),

[ X1 = Xollr < 200V T)(|A = Al v [ X1(0) — X1(0)]). (3.18)
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If B1(0) = B2(0) and@4(0) = Q2(0) (for @ and X)), then

|By — Ballr < TlA = Aelles [|@1 — Qa2llr < T||A — Aa| 7,

| X1 — Xaollz < 27|\ — Aol 7 (3.19)

As a consequence of Theorems 3.3-3.6, we can regard thefaagemeral function

as the limit of a sequendg\; : £ > 1}, where(; € P,,, », With m;, — oo andn, — oo as

kMK

k — oo. Hence, results for thet" system can be “lifted” to the general case; i.e., Theorems

3.5—-3.6 combine to imply the following general result.

Theorem 3.7 (lifting ) For a G, /M, /s, + G, fluid model withs’, u € P,,,, and X € C,,
the system performance \i&, ¢, w), for B = {B(t) : 0 <t < T'}, is well defined and the

conclusions o£3.3and Theorem8.5and 3.6 remain valid.

3.6 The(G:/M;/s; + GI)™ /M, Fluid Queue Network.

We now introduce the open network 6§ /M, /s; + G fluid queues, with time-dependent
proportional routing. There arex queues, where each queue has model parameters as
already defined i§3.2, with its own external fluid input, but in addition a prefon P, ;(t)

of the fluid output from queugat timet is routed immediately to queyeand a proportion
Pio(t) =1-37"", P;(t) < 1isrouted out of the network, as shown in Figure 3.1 for the

casem = 2.

Assumption 3.7 (proportional routing The routing matrix function for proportional rout-

ing, P : [0, 00) — [0,1]™,isin Cpand) ", P, ;(t) < 1foreacht > 0andi, 1 <i <m,
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It is elementary to treat the basic network operations oégugpsition and splitting: If
two input streams are combined to form a single input (sugsetion), then the arrival rate
functions are simply added. If one stream with arrival ratection A is split, such that
a proportionp(t) of that stream goes into a new split stream at timehen the arrival-
rate function of the split stream is,, where\,(t) = A(¢)p(t), t > 0; just like A, the
splitting proportion can be time-dependent. Similarlghé departure flow from one queue
becomes input to another, then the resulting arrival-natetion iso; (We do not let the
abandonment flow from one queue become input to anothef,weatdid, then the resulting
arrival-rate function would be.) However, converting departure rate or abandonment rate
into new input rate is more complicated when feedback isnath We discuss that case
now, for departures only.

As is usual with open queueing networks, there is an extemxadenous arrival rate
function to each queue (from outside the network) and treeeetotal arrival rate function
to each queue (which we simply call the arrival rate fungtidaking into account the
flow from other queues. Let the external arrival rate funcimo queuej be denoted by
A§0); let the arrival rate function into queuyebe denoted by\;. The model data for the
Gy/M, /s, + G, fluid queues directly provides the external arrival ratecﬁcms)\EO) (with
the superscripd now added), while the arrival rate function itself satisiesystem of

traffic rate equationsin particular,

M) = AP+ ait)Py(t),  where (3.20)

oit) = Bi()p(t), t=0. (3.21)

Equations (3.20) and (3.21) produce a system of equatiatts \wdepending upon; for
1 < i < m, while g; in turn depends on,; for eachi, becauseB; depends om\;. The

formulas forB; as a function of\; have been given in Propositions 3.1 and 3.2, provided
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that we know whether the queue is overloaded or underloadiedt requirement is the
major source of complexity.

Since (3.20) is a linear equation, it can be written in matoation as\ = \© + ¢ P
by omitting the argument as below, provided that the produef is interpreted as in
(3.20). Moreover, we can combine (3.20) and (3.21) to exyxexs the solution of a fixed
point equation mappin@;’ over [0, T into itself. To see this, note thd;(t) in (3.21) is
a function of\;(u), 0 < u < t, and the model data (only needed for quéueHence the
vectorB(t) = (By(t),..., B(t)) is a function of\ over|0, ¢) and the model data. Hence

we can express (3.20) and (3.21) abstractly as
A=T(N), (3.22)

whereV (z)(t) depends on its argumentonly over|0, ¢] for eacht > 0. Here the function

¥ depends on all the model dat&” . s;, i, Fi., b:(0,-), :(0,-), P), 1 < i < m.

3.7 Two Algorithms for the Network with M, Service

In this section we establish two different algorithms to ponte all standard performance
measures for théG, /M, /s, + GI,)™ /M, fluid network. The first algorithm is based on
solving an FPE and the second is based on solving an ODE3.8we generalize our

analysis to the network with'/ service distributions.

3.7.1 An FPE Based Algorithm

This algorithm is based on solving the FPE (3.22). We firstldsh the following contrac-

tion property of the operatob.
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Theorem 3.8 (contraction operatoy If s}, u; € P,,,, for 1 < i < m, then the operator
W in (3.22)is a monotone contraction operator on thedimensional product spadg;’
over [0, T'] for all sufficiently smalll” > 0. Hence there exists a unique solutisro the
traffic rate equation$3.20) and (3.21) over [0, 7] for any fixedI" > 0. For sufficiently
short intervals, successive iterat@é">(5\) converge uniformly, geometrically fast, to the

fixed point for any initial poinf\ € C.

Proof. We first show thatl’ actually map<C, into itself. First, if\ € C}, thenB € C}
by Corollary 3.1 and Theorem 3.7. By assumptjore C}, so thatc € Cj', so the
conclusion follows from (3.20) and (3.21). To show thais a contraction operator for
sufficiently smallZ” > 0, we use the nornfiA[|r = > [[Nillr for A = (Aq,..., \) €

(C,)™. Forany\;, Ay € (C,)™, the traffic rate equations in (3.20) and (3.21) imply that

W) = ¥)llr < Y sup Zui(t)le(t)—Bf(t)IPi,j(t)

< mupd :OgggT|Bs<t>—Bf<t>\
i=1 ==
< mppTY  sup |AHE) = A2(8)] < mpdh T | Ay — Xl
0<t<T

Wheremu;T < 1 for all sufficiently smallT” > 0. The second inequality holds since
P, ;(t) < 1. The crucial third inequality follows from (3.19) in Theone3.6. To establish
uniqueness ovep, 7’| for any fixed7 > 0, we consider a succession of shorter intervals,
over which the contraction property holds, and apply matkteral induction. Existence,
uniqueness and geometric convergence are standard censegLof the Banach contrac-
tion fixed point theorem. Finally, monotonicity follows froTheorems 3.5 and 3.7 plus

the traffic rate equations (3.20) and (3.21k
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Remark 3.1 (starting at the external arrival rates) Theorem 3.8 implibat we can ap-
proach this system recursively. If we do so with initial eect = \(*), the vector of external
arrival rate functions, then the recursion has an importardctical interpretation. Then
the k' iterate )\Sk) is the arrival rate of fluid that has previously experiendettansitions

in the fluid network. With this notation, we can write the nestue formulas

A = OO0 =20 () + io—i("‘”(t)ﬂ,j (t), n>1,(3.23)

i=1

where o\(t) = B (t)w(t) n>o0. (3.24)

Since we necessarily ha»(é” > AEO) for each, this recursion converges monotonically to
the fixed point\. By Theorems 3.5 and 3.7, all the performance measuresaser®ward

their limiting values as well.

The FPE based algorithm for the network of fluid queues.The algorithm consists of
two successive steps: (i) solving the traffic-rate equat{@120) and (3.21) and (ii) solving
for the performance vectdb, ¢, w, v, o, ) at each queue using the algorithmgih 3. For
step (i), we start with an initial vector of arrival rate fuions, which can a rough estimate
of the final arrival rate functions or the given externahatrate functions. We then apply
the performance formulas §38.4 to determine the performance functidfisando; at each
gueue to determine a new vector of arrival rate functions. tNeéa iteratively calculate
successive vectors of arrival rate functions until thesdléghce (measured in the supremum

norm over a bounded interval) is suitably small. Then we wapf#p (ii).
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Given a desired duratiofi of an interval0, 7’|, we specify the following input data: (i)

Model parameter input vector
(A9 s.G, F,P(0)) = <)\Z(.O)(t),sz-(t),GZ-,E,PZ-(O), 1<i<m,te [O,T]) . (3.25)

where the initial performance vector (at time 0) of queue< i < m

and (ii) algorithm accuracy parameters: the error toleegrarameter (ETR) > 0 and the

step sizé) < AT < T. We next summarize the algorithm formally as the following.

Algorithm 3 : An FPE based algorithm for th&r; /M, /s, + GI;)" /M, Fluid Network
1: Initialization: AV := X9 0 <i<m
2. fork=1,2,...do
3: fori=1,2,...,mdo
4 Compute o; in [0,7] wusing FASQ (Algorithm 2) with input
)\(k) Si, Gi7 E? 752(0))

5. end for
6: Let A\t .= \O) 1 PT.5in[0,T]
7. if ACTD — A®)||; < ¢ then

8: A= )\(kz—i—l)

9

10: endif
11: end for
12: Compute P; for 1 < i < m using FASQ (Algorithm 2) with input

<)\i7 si, Gi, i, 752(0))

Remark 3.2 (complexity of the FPE based algorithm with respect to thelmenof switch-
ing pointsS and the size of the system) The running time of this algorithm depends on

the number of regime switchings (between UL and OL). Supiheseumber of switchings
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for each queue ifD, 7] is O(S), then in each iteration of the fixed-point recursion the com-
plexity isO(mS) because the single-queue fluid algorithm is calledficimes to compute
performance measures for all queues. If the total number of iterationsisthen the total

complexity is of orde©(nmsS). Thus, the running time is linear both éand inm.

We conclude this section by establishing a network gergaiadin of the single queue

comparison in Theorem 3.5. The proof appears8m.

Theorem 3.9 (network comparison theorer@onsider twq G, /M, /s, + G1,)™ + M, fluid
gueue networks with common staffing functienservice rate functiong;, abandonment
cdf’'s F; and routing matrix functior? for 1 < i < m. If Ag‘? < )\502 Bi,(0) < By,(0),
q1:(0,-) < ¢2.(0,-), 1 < i < m, then the performance functions are ordered at each

queue:

()\u, B1,i, 01,1,y q1,i5 QL@, a1 4, X1,i, W1 4, U1,z’)

< (Nayiy Boiy 094, Goiis @24y Q2,05 024y Xo gy Wa g, v2,)  for 1 <i < m. (3.26)

3.7.2 An ODE Based Algorithm

Now we consider an alternative algorithm for th@,/M, /s, + GI;)™ /M, fluid queue
network. Again, the key is to compute the total arrival rdtesall queues and then treat
them separately as single queues. This new algorithm isrfast] easier to implement. In
some special cases, analytic formulas are available.

Finding the total arrival rates: Instead of solving the FPE as in Chapter 2, we hereby

solve anm-dimensional ODE. The key is to characterize and updateyiers regime in
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different intervals and recursively advancetinWe describe the system regimetatith
two sets:U(t) (the set of indices of queues that are UL) afi¢f) (the set of indices of

gueues that are OL). In other words,

<
~~
<~
~—
Il

{1 <i<m:Bt) <si(t), Qi(t) =0}

©
—~
~
SN—
Il

{1 <i<m:Bi(t) =si(t), Qi(t) > 0}.

GivenU(t) and O(t), considerl < i < m. (i) If Queuei is UL, i.e.,i € U(t), flow

conservation implies that

Bi(t) = N+ Y wiOPt)Bi(t) + > ) Pea(t)si(t) — () Bi(1).
JEU(L) keO(t)

If i € O(t), B;(t) = s;(t). We partition the indices of queues so tBdt) = [B,(¢), Bo(t)],

M) = D), Ao, A1) = N (), A8 ()], 1t) = [ru(t), po(t)], s(t) = [su(t), so(t)],

Ly (t) = diag(pu(t)), To(t) = diag(po(t)),

P(1) = Puy(t) Puolt) |

Pou(t) Poo(t)

where P, (t) (Powu(t), Puo(t), andPpp(t)) denotes the transition probability from a
state i/ (O, U, andO) to a state i/ (U, O, andO) at timet. Let Pyy(t) = Pyo(t) =
Poo(t) = 0 whenPy,,(t) = P(¢) (i.e., all queues are UL) and |8y, (t) = Pyo(t) =

Puu(t) = 0 whenPoo(t) = P(t) (i.e., all queues are OL) Therefore, in matrix notation,
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we have
B, (t) = C(t)-By(t) + D(t), (3.27)
Bo(t) = soft). (3.28)
where
D(t) = uo(t) +To(t)Poy(t)su(t)

Q
—~
~
S~—
Il

Tu(t) (Ph(t) — ).

If the service rates and the routing probability matrix av@ependent of timegu;(t) = u;
andP, ;(t) = P, ;, i.e., the model becomes th&'; /M /s, + G1,)™ /M network, therly, =

I'y(t) = diag(pu), C = C(t) = Ty (P}, — I), and (3.27) has the unique solution

By(t) = ¢ ©! (/t 6_C“D(u)du+B(O)) :
0
In all cases, the total arrival rate
A1) = 2O + PT()T(t) - B(t). (3.29)

Regime termination criterion: It is also critical to determine when the system regime
changes and to updat&t) andO(t). Since each queue can be either UL or OL, there are
overall2™ different regimes. We say that the system changes its rafjone of the queues

changes its regime, i.e., from UL to OL or from UL to OL. We piae/the following regime



114

termination time

TR(tQ) = Tl(to)/\TQ(tQ), where (330)

Tl(t(]) = 1nf{t >ty : some; € O s.t. Ql(t) = 0, )\z(t) < O'Z<t>},

Th(ty) = inf{t > t;:somej € U s.t. B;(t) = s;(t), \;(t) > o;(t)},

to Is the starting time of the desired interval, the infimum ofeampty set is understood to
be infinity. When the system regimes changes, we updéteand O(t). Let k* be the

index of the queue that causes the regime switching: § O(t—), i.e.,T =T}, let

O(t) « OWO\{k*} and U(t) « Ut) U {k*); (3.31)

if k" eU(t—),i.e,T =T, let

Ut) « UG} and O®) « O(t) U {k"}. (3.32)

Given a desired duratioff of an interval|0, 7], the vector of the model data defined
as (3.25), and a step site< AT < T, we summarize the algorithm formally as the

following.

Remark 3.3 (complexity of the ODE based algorithm with respect to thelrermof switch-

ing pointsS and the size of the systen) The running time of this algorithm again depends
on the number of system regime switchings (between UL andSDippose the number of
switchings for each queue [, 7 is O(S), then the number of system regime changes is

at most the sum of the total number of regimes switches of glieues irj0, 7] (assuming
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Algorithm 4 : An ODE based algorithm for thg+, /M, /s, + G1,)™ /M, Fluid Network
1: Initialization: t :== 0
2: repeat
3 fork=0,1,...,[%] do

4: Compute\(s) andB(s) for s € [t + (k — 1)AT,t + k AT], using (3.27)-(3.29)

5: ComputeP(s) for s € [t + (k — 1)AT,t + k AT] using Proposition 3.1 ,3.2 and
3.3, Corollary 3.2, Theorem 2.3 and 2.6

6: if Tr(t) <t+ kAT for Tx(t) in (3.30) then

7: t:= TR(t)

8: Updatel/(t) andO(t) by (3.31)-(3.32)

9: BREAK for-loop

10: end if

11:  end for

12: until t>T

no two queues change their regimes at the same time). Heaaeothplexity of the new

algorithm is of orderO(mS). It is again linear both inS and inm.

3.8 An Extension to(GI Service Distribution

In this section, we extend our analysis from thleservice distribution t@-/. Without the
M service distribution, neither algorithms §8.6 is applicable. Here we provide another
algorithms that is based on solving a new FPE. Throughostgbction, we make the

following assumption.

Assumption 3.8 (finitely many switches between intervals in finite tifBach interval is
of positive length, so that the positive half lifie co) can be partitioned int@™ inter-
vals. Moreover, there are only finitely many switches betwibese intervals in each finite

interval.

The key is to obtain the total arrival ratg(t) for 1 < i < mand0 < ¢t < 7. Once

Ai(t) is given, the algorithm developed in Chapter 2 can be appiezbmpute all other
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performance measures. If quepél < 57 < m) is UL, from Chapter 2 we have that

bilta) = Gile)y(t = )1y + —,Cf;(f)t)bxo,x—t)l{x»},
o;(t) = Ooob](t,x)h(;](x)dx
- /0 92N (t — z)da + /0 b %&;)@(o,x)dz. (3.33)

If queuek (1 < k < m)is OL, from Chapter 2, theny(t) = bx(t,0) — s, (¢) and the rate

into service (RIS)y(t, 0) satisfies the FPE

be(+,0) = T (b (-, 0)), (3.34)
where
TW)(t) = a) + / y(t = 2)gu(x)
ax(t) = s;(t)+/0°° bk(o,y)f(ky(;fw) "

Moreover, we have showed in Chapter 2 tfiats a contraction operator under mild con-
ditions, which thus implies that (3.34) has a unique sotutiblavingoy(t) andb(t,0)

computed folk € O(t), the total arrival rate at queue

N = AO@) + Z Pei(t)on(t) + > Pra(t)oy(t

keO(t JEU(t)

= a0+ Y putn / A~ x)dx) , (3.35)

JEU(T)
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where

( = )‘(0 Z sz Uk Z Pj,i(t) /OOO wb](&x)dx

kEO(?) JEU(t) i(®@)

and the second equality holds by (3.33).

From (3.35), it is evident that satisfies a FPE, i.e.,
A=T(N), (3.36)

of the operato7 : D™ — D™, where

J ()it + 3 Pt </ ()uj(t—x)dx>, 1<i<m. (3.37)

JEU(t)

Under regularity conditions, we can show that there exigisigue solution to equation
(3.35) by applying the Banach contraction theorem. We v&l the complete (nonsepara-

ble) normed spacB™ with the uniform norm over the intervéd, 7, i.e

m

= (D). 3.38
[Jwllz ZoiltlgTIU()l (3.38)

=1 0=t

Theorem 3.10 (the aggregated arrival rate faiz I service Assume the system regime does
not change in a small interval, 7'|. The operator7 in (3.37) is a monotone contraction

operator onD™ with norm defined ir3.38).
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Proof. Assume thaf” > 0 is small enough so that the system regime does not change, i.e

U(t)=UandO(t) =Ofor0 <t <T.

m

1700 = Tllr = 30 s | 5 20| [ o) (st =) < (e - )
) 0

X <t<
P ey

m

< Zi ZHUU_UZJHT (0G5t
=1 "= ]

< mlglg;Gj( ) - ur = ual7

A
Q
=
5
|
S
3

where

cT) = m max G,(T),
and the second inequality holds by the Lipschitz continaggumption or?, ;(¢). Note
that we can maké'(T") < 1 for smallT > 0 sinceG;(t) — 0 ast — 0 forall 1 < i < m.
O
Given a desired duratioff of an interval|0, 7'], the vector of the model data defined
as (3.25), a step size < AT < T, and an error tolerance parameter (EEP) 0, we

summarize the algorithm formally as the following.

3.9 Examples

In this section we implement the algorithmsli8.6-3.8 on a Markovian and non-Markovian

fluid network models.
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Algorithm 5 : An FPE based algorithm for th&;,/G1 /s, + G1;)™ /M, Fluid Network
1: Initialization: t :== 0
2: repeat

3 fork=0,1,...,[%] do

4 forall i € O(t) do

5: - Compute); (s, 0) solving FPE (3.34) With ETR, s € [t+(k—1)AT, t+k AT

6: - Leto;(s) := bi(s,0) — si(s)

7: end for

8 Compute)(s) using FPE (3.36) with ETR, s € [t + (k — 1)AT,t + k AT]

9 ComputeP(s) for s € [t + (k — 1)AT,t + k AT] using using Proposition 2.6,
Corollary 2.2, Theorem 2.3 and 2.6

10: if Tr(t) <t+ kAT for Tr(t) in (3.30) then

11: t:= TR

12: Updatel/(t) andO(t) by (3.31)-(3.32)

13: BREAK for-loop

14: end if

15:  end for

16: until ¢t > T

3.9.1 An(M;/M/s; + M)?*/M,; Marvovian Example

We first consider a MarkoviaW/, /M /s, + M)? /M, example (a two-queue network), with

sinusoidal external arrival rates

exponential service and patience distributiofs{z) = e #%, Fy(x) = e %%, i = 1,2,

constant staffing functions, i = 1, 2, and a Markovian transition probability matrix

P171 P172 0.3 0.2
P(t) = = . (3.40)
P271 P272 0.2 0.3

Therefore, with probability”?, o = P, = 0.5, a customer leaves the system after finishing

service at each queue. Let = a, = 0.5, b; = 0.25,b, = 0.35,¢1 = ¢ = 1, ¢; = 0,
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A

A0

== A,(): ODE

Figure 3.2: The convergence to the fixed point of the totavalrrate.

Oy =1,p1 =1, u =0.5,0; =0.5,0, = 0.3, s = 1, ands, = 2. We let the network be
initially empty.

We first demonstrate how the FPE based algorithm works. $ine&ey to obtain the
total arrival rates\; (¢) and\y(¢) for 0 < ¢ < T, we first demonstrate how fast the fixed-
point algorithm converges. We initially Ie\lfl) be)\go), i = 1,2. In Figure 3.2, we plot the
total arrival rates in every iteration. The two functionsta bottom are\\” (¢) and A" (¢);
the functions at the top are the(¢) and\»(¢) (computed using the ODE based algorithm);
the other functions are the intermediate values (computetjuhe FPE based algorithm).
Recall that the FPE based algorithm terminate at 8t¢p and let); = AEN(E)), 1 =1,2,

for

J]=

N(e) = inf {N > 0: &(N) = max AV — A < e} :

20

wheree > 0 is a pre-specified error tolerance parameter (ETP). Forekasnple, we

demonstrate how the number of iteratiovi&) and the terminating errdl; (N (¢)) depends
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on the EPTe in Table 1. Here the monotone convergence and the geomeme&mence

rate are explained by the monotone contraction propertigeobperatory.

logo(e) | -1 | -2 -3 -4 5 -6 7 -8 -9
&r(N(e)) | 0.81] 0.007| 9.2E-4| 4.8E-5| 4.9E-6| 2.8E-7| 5.2E-8| 8.3E-9| 1.4E-10
N{e) 3 | 6 8 11 13 15 16 17 19

Table 3.1: The number of iteratiodé of the FPE algorithm, depending on the EAP

(0)
A%

. 2o
—\0

- ==X
0 2 4 6 8 10 12 14 16 18 2 2(‘)

T
0.6~ —_— Ql(t)
- -Q

b(t,0)

Figure 3.3: Computing the fluid performance functions fa thZ; /M /s, + M)? /M, net-
work fluid model.

In Figure 3.3, we plot all standard performance measurdsedfitid network using the
FPE based algorithm, including, @Q;, w;, B;, X;, andb;(-,0), i« = 1,2. In Figure 3.4,
we compare the fluid approximations with results from a satiaoh experiment for a very

large-scale queueing system. The queueing model has nagsmous Poisson external
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arrival processes with sinusoidal rate functions

Aoi(t) =N (@), i =1,2,
with n = 2000. We compare the fluid model predictions to a single sample pathe
gueueing system (one simulation run). In Figure 3.4 theddalies are the simulation
estimations of single sample paths applied with fluid sgaland the dashed lines are the
fluid approximations. We conclude that the fluid approximais remarkably accurate as

an approximation when the scale of the queueing model ismdly large.
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Figure 3.4: A comparison of th@\/, /M /s, + M)? /M, network fluid model with a simu-
lation run of single sample paths,= 2000.

When the scale of the queueing model is not large (hels small), single sample

paths of the queueing functions do not necessarily agrdetietfluid functions because of
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Figure 3.5: A comparison of th@\/, /M /s, + M)? /M, network fluid model with a simu-
lation run averaging 50 independent sample paths,100.

large stochastic fluctuations. However, the mean functidrisese processes can be well
approximated. In Figure 3.5 we estimate and means by averagultiple independent
sample paths and compare them with the fluid functions foc#sen = 100. Therefore,

the fluid approximation is still quite accurate when the egsts not in a large scale.

3.9.2 A(G{/LN/s; + E»)*/M; non-Marvovian Example

We now evaluate the performance of the FPE based algoritinodinced in§3.8. We
consider a non-Marvovian example: tt@&;/LN/s; + F,)*/M, model with a Lognormal
service distribution (thé.N) and an Erlang-2 patience distribution (thg). Specifically,

we let the service time at statiome S; = ¢%, whereZ; is a Normal random variable with
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Figure 3.6: Computing the fluid performance functions fag th/;/LN/s; + E»)*/M,
network fluid model.

meanji; and varianceé?, i.e., Z; ~ N(ji;, 67),1 = 1,2. The service pdf is

(1) = —=
g<) x&i\/27r

1

i=1,2.

The mean service times and the variances are

= eﬂi—i_%&?

= (% —
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We let the patience distribution be Erlang42,J with pdf

fi(x) =402z e 27 2> 0.

Let A; be a generic patience time of a customer at quewe haveF[A;| = 1/6;,1 =1, 2.

08 T

W](I)I sim
w,(
(
(

t): sim

- - =W t): num

-— W, t): num

w(t)
T

QW
|
1

2
5

B,(1): sim

Bz(t): sim
-- _Bl((): num
151 - = =B, ®):num

0 L L L L L L L L L

0 2 4 6 8 10 12 14 16 18 20
X, (t): sim Time t
X,(0): sim T T T T T === T T
2| - - - Xl(l): num ]
— = = X,(t): num
_1s 50 _
=
X L
05— —
0 1 1 1 1 1 1 1 1 1
0 2 4 6 8 10 12 14 16 18 20

Figure 3.7: A comparison of the\l,/ LN/s, + F5)*/M, network fluid model with a sim-
ulation run averaging 50 independent sample paths,100.

The E, distribution has a squared coefficient of variatidn=s Var(X)/E[X]? = 1/2. We
chooseii; = —0.549, 67 = 1.048, i = 0.144, 65 = 1.048 such thatu; = 1, us = 0.5,
o? = 2, 03 = 8. Thus, we have? = 2 for the service distributions. We 16f = 0.5,
0, = 0.3. In this way both the service rateg,(andu;) and the patience rateg, (and6s)

remain the same as in the examplg&9.1. For comparison purpose, we let the external
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arrival rate\(”) be sinusoidal (as in (3.39) and the Markovian routing ma®rixe constant
(as in (3.40)) with the same parameters there. We also letyftem be initially empty.

We again plot the standard performance measures and cotiganewith simulation
experiments in Figure 3.6 and 3.7 respectively, these twodgare analogs of Figure 3.3
and 3.5. In Figure 3.6, we plot and compare the fluid functafrike (M, /M /s, + M )? | M,
model (the solid lines: blue for Queue 1 and red for Queue@}laose of thé M, /LN /s, +
E,)? /M, model (the dashed lines: lightblue for Queue 1 and lightlorfov Queue?2). As
we have described above, these two models have the same paoaeleters (including the
service and patience ratesandd) except for the service and patience distributions. Figure
3.6 delivers an important message: unlike the statio6&i§// /s + G queue, the service
and patience distributions beyond their means play an itapbrole for the fluid network
with time-varying model parameters; the transient systetmalior can be significantly
different if we change the service or patience distributieigure 3.7 verifies the effective-
ness of the fluid approximations to the performance of theesponding stochastic queue
networks.

Finally, we end this section with a few remarks on the pertmoe of these algorithms.

Remark 3.4 (Performance of the algorithms with respectffp AT, ande) (i) The com-
plexity of these algorithms is linear in the length of theeiml 7. (i) The complexity is
almost independent of the step siX&. The reason is intuitive: IAT is big, the algorithm
reaches the end of the time horizon in less steps while themcahcomputation in each
interval of lengthAT" takes more time; i7" is small, it takes more steps for the algorithm
to advance in time while the numerical computation of eaep becomes simplg(iii ) The

way how the total number of iteratiod$(¢) of the FPE operator depends on the EdR
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similar to the case of Table 1. Again, this is so because ofdinéraction property of these

operators. In conclusion, the running tirffie= O(m1 log(1/¢)).

Remark 3.5 (Comparison of the algorithmsOn the running time of these three algo-

rithms, the ordering is
Algorithm 4< Algorithm 3< Algorithm 5.

Consider the(M,/M /s, + M)?*/M, example in§3.9.1 withT = 20, AT = 0.5, and
e = 107°, the running times are 44 (for Algorithm 4), 72 (Algorithm &hd 118 (Algorithm

5) seconds. On the complexity of the implementation, theriorglis
Algorithm 3< Algorithm 4< Algorithm 5.

It is clear that when treating th&, /M, /s, + GI)™ /M, model, Algorithm 4 runs with the
least time and Algorithm 3 is the easiest to implement. Hewevanalyze théG,/GI/s;+
GI)™ /M, model, we have to use Algorithm 5 although it is the worst botlinning time

and in implementation complexity.

3.10 The Stationary(G/GI/s+ GI)"/M Fluid Network

This chapter is primarily devoted to the time-varying fluidege network, but the corre-
sponding stationary fluid queue network also is of interébe stationary performance of
asingleGI1/G1/s+ GI fluid queue was characterized in [77]. (The proof is complé&te

Chapter 2 because the transient dynamics are characténzed) The corresponding sta-

tionary (G/GI/s + GI)™/M fluid queue network is actually quite elementary given [77].
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In particular, the stationary performance of this modelagedmined by a fixed point equa-
tion for the (now constant) arrival rates. We start by rewmgthat stationary distribution

of theGI/GI/s + GI fluid queue.

Theorem 3.11 (steady state of th€' /G /s + G fluid queue, fronf77]). TheG/GI/s +

G1 fluid model specified with model parameter vedtors, i, G, F') has a unique steady
state described by the vectd¥, ¢, B, Q, w, o, «), whose character depends on whether
p=Nsu<lorp>l1.

(a) Underloaded and balanced casgs< 1. If p < 1, then forz > 0
B = sp, blx)=AG(x), o=Bp=)\, Q=a=w=q(x)=0,
(b) Overloaded casep > 1. If p > 1, then forz > 0

B = s, bx)=suG(x), o=su, a=A=su=(p—1)su=\F(w),

w = F! <1 — %) ., Q= )\/ F(z)dr and q(x) = A F(2)1j0<s<w)-
0

We now turn to the arrival rates. As can be seen from Theordém&bove, unlike for
the time-varying model, for the stationary model we canlg&sindleG 1 service, because
the total service conter®® is independent of the service-time distribution beyonadnéean.
The vector of constant arrival rat@ds determined by the system of fixed point equations

m

A=A 3 WA s Py, 1< <m, (3.41)

J
i=1
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wherel, A\ s, 1, € R™ and P is anm x m stochastic matrix. We can write (3.41) more
compactly as

A=3\) =29 + (AAsp)P. (3.42)

Equation (3.42) was already analyzed by [23] in the studyofargodic Jackson networks;

also see [9] and p. 168 of [10]. However, the model here i®hfit.

Theorem 3.12 (fixed point equation for stationary arrival rates, frof23]) The arrival
rates in the stationaryG/GI/s + GI)™/M fluid queue network satisfy equati(@41)
Hence, if the stochastic matrix has spectral radius less thawhich holds if and only if
P™ — 0asn — o0), then®d in (3.42)is a monotone:-stage contraction operator oR™
with an appropriate norm, so that there exists a unique sotuto the fixed point equation
in (3.41)and (3.42) The fixed point can be calculated by solving at mastifferent

systems o linear equations.

Proof. Even forG1 service, if fluid queué is underloaded, then the stationary service
content isB; = \;/u; and the service completion rateds = B;u; = A;. On the other
hand, if queue is overloaded, the®; = s; and the service completion ratesig:;. In all
cases, the service completion rate at quase\; A s;u;. Since there is a unique solution to
equation (3.41) or (3.42), that equation determines thestary arrival rates at all queues

and which queues are in fact overloaded.

3.11 Conclusions

In section 3.2 we specified the sindlg/M, /s, + G 1, fluid queue; it differs from Chapter

2 by havingM,; service and~I; abandonment instead of both bei@g. The M, service
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eliminates the need to solve a fixed point equation to find #meice content density.
In §3.3 and§3.4 we showed that a single fluid queue can be analyzed by asgtinat
the arrival rate function\, the staffing functiorns and the service rate functiqn are all
piecewise polynomials. However, that did not permit an esiten to networks because the
departure rate function does not inherit that property3® we used asymptotic methods
to show how to analyze the single fluid queue without havinggsume either (i) that
the arrival rate function is piecewise polynomial or (iijpththere are only finitely many
switches between overloaded and underloaded intervalaah @nite interval. In§3.7
we provided (i) an FPE based algorithm and (ii) an ODE basgdrihm to compute
all standard performance functions for th@,/M;/s, + GI;)™/M, network in a finite
time interval. In§3.8 we extend our analysis to the fluid network wiiti service. We
provided the theoretical basis and a new algorithm for theegized model. 1133.9 we
evaluated the performance of these algorithms describggBig-3.8 with Markovian and
non-Markovian examples. We conducted simulation expertmehowing that the fluid
model provides very accurate approximations for very lagge many-server queueing
systems. The approximations are also excellent fontkan valuesf the corresponding
gueueing random variables when the scale is quite smal),velxgn there are00 servers
or fewer In§3.10 we treated the stationaf§/GI/s + G1)™ /M networks with constant
model data and proportional routing. Theorem 3.8 estaddighe existence of unique
vector of arrival rate functions, allowing for feedbackdahus a corresponding unique
performance description for the entire network. The penmce functions at each queue
are given ing3.4.

There are many directions for future research. It remairstablish supporting many-
server heavy-traffic limits, including stochastic refinerse it remains to extend Theorem
3.8 to GI and G, service. It remains to develop alternative approximatifamstime-

varying many-server queueing systems, where the staffijugtsddynamically (appropri-
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ately) to the time-varying demand, so that the system temde tcritically loaded at all

times, as opposed to switching between overloaded inteaval underloaded intervals.
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Chapter 4

Large-Time Asymptotics for the

G+/My /sy + G Fluid Queue

We next focus on the fluid model with exponential serviceritigtion. We allow all
model parameters to be time dependent. Complementing &iséh8 that investigated the
transient dynamics in a finite interval, here we study thgdarme asymptotic behavior of
the fluid model. When the model parameters are periodic, we shat the performance
functions converge to a periodic steady state (PSS); whemmtbdel is stationary with

constant parameters, we establish the convergence totkerdomonal steady state.

4.1 Introduction

In Chapters 2-3 we investigated the determini€ti¢G 1 /s,+G1 and(G, /M, /s, +G1,)™ | M,
fluid models with time-varying parameters. There we progidicient algorithms to com-

pute system performance formulas in finite time intervalem@lementing Chapters 2-3,
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in this chapter we study the large time asymptotic behavidhe G, /M, /s, + G 1, fluid
model. We focus on the impact of the initial conditions onglistem performance as time
evolves. To treat the general nonstationary setting, wavghat, under regularity con-
ditions, an initial difference in the state variables dis$es over time, i.e., the large-time
behavior is asymptotically independent of the initial chioahs; we call this thesymptotic
loss of memoryALOM) property. For non-stationary Markov processes, All@as been
calledweak ergodicity33], Ch. V. We also quantify the rate of convergence (whihti
the magnitude of the abandonment and service rates), shdlanit is exponentially fast,
again under regularity conditions. This fast convergeesalt also justifies the usefulness
of approximating transient dynamics with steady-statéoperance.

This ALOM property can be quite useful. First, we apply ALOMdstablish the exis-
tence of a unique steady statestationaryfluid models (that have constant model param-
eters), and convergence to that steady state as time evdNt®ugh the existence and
form of this steady state were established in [77], the cayarece from transient system
dynamics to this steady state (and the rate of the conveeyéas never been shown before
to the best of our knowledge. We also employ ALOM to estaliligexistence of a unique
periodic steady statéPSS) inperiodicfluid models (that have periodic model parameters),
and convergence to this PSS as time evolves. This PSS campaseaful to determine
system congestion in service systems with daily or weakbtesy We use the algorithm
developed in Chapters 2-3 to compute performance functigasinitial intervals. Since
convergence is exponentially fast, that directly yields BSS performance, but we also
develop an alternative direct algorithm to compute the PSfpnance.

The specific fluid model we consider here&ds/ M, /s, + G1;. That model is placed on
a firm mathematical foundation §8.4 of Chapter 3; it is a relatively minor modification
of the correspondings;/G1 /s, + GI fluid model introduced and analyzed in Chapter 2.

The performance of thé&',/M,/s, + GI, model is characterized i§63.2-3.4 of Chapter
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3, building on§§2.5-2.9 of Chapter 2. Regularity conditions were developeder which
all the standard performance functions are characterizkuieover, an algorithm was de-
veloped to compute these performance functions. We wilvdreavily upon this previous
material.

The special case of th@,/M /s, + GI fluid queue, where only the arrival rate and
staffing function (number of servers) are time-varying,8tdde adequate for most ap-
plications. The most useful generalization then would belkow G service instead of
M service. WithG1 service, the fluid content density in serviéét, z) (see (2.3) and
(3.9) below) during an overloaded interval depends on ther palues of the rate fluid en-
ters service{b(s,0) : 0 < s < t}, (see equation (2.16) of Chapter 2), and Theorem A.2 of
Chapter 2 shows thatt, 0) is characterized as the solution of a fixed point equatio2(4
in Chapter 2). Here we exploit the fact that, with service, the density of fluid in service
b(t, z) can be exhibited explicitly. Weonjecturethat ALOM extends ta7,/GI /s, + GI
models with non-exponential service times, provided thiatha regularity conditions in
Chapter 2 are satisfied, including the service-time distiiim having a density.

In fact, in Chapter 5 we provide a counterexample showingAh&®M doesnotextend
beyond)/; service toall GI service. Indeed, we show in Chapter 5 that ALOM does not
hold even in all stationary fluid models. That is done by cdesng theGI/D/s + GI
fluid model with deterministic service times. Of course, de¢erministic service-time dis-
tribution does not satisfy the density condition in Cha@end [77]. Nevertheless, the
G/D/s + GI fluid queue has the stationary performance given in [77] amebfem 3.11
here. However, the performance does not converge to thetrstay value when the system
starts empty. Instead, it approaches a PSS. The same phemomecurs for two-point
service-time distributions when one point(isbut otherwise weconjecturethat ALOM
extends to all many-server fluid queues in which servicetilistributions are neither de-

terministic nor exponential.
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Here is how the rest of this chapter is organized: In §4.2 we review comparison and
Lipschitz continuity results from Chapter 3 that we will &gpand we establish a new
boundedness lemma, Lemma 4.1.5f3 we establish ALOM. Ir£4.4 we show that the
transient performance of the station&ry )/ /s + G1 fluid queue converges to its steady
state performance. I§%.5 we establish the existence of a unique PSS and convergeiic
in the periodids, /M, /s, +G1; queue. We draw conclusionsgd.6. Additional supporting
material appears in Appendix C, including comparisons wiithulations of corresponding

stochastic queueing systems.

4.2 Structural Results

The model definition, assumptions, and performance forsfoletheG, /M, /s, + G, fluid
model are described i§§3.2-3.4 of Chapter 3. In this section we highlight three ctical
results that we will apply here to establish the ALOM resnl§4.3, two from Chapter 3
and one new.

The first structural result is tHiendamental comparison reswstablished in Theorem
3.5 of Chapter 3. This result establishes an ordering ofafigpmance functions in two
fluid queues given an assumed ordering for the model datdidumsc\, hr, B(0), and
q(0,-). See Theorem 3.5 for details.

The second is th&ipschitz continuity resulestablished in Theorem 3.6 of Chapter
3. This result applies to the fluid content functions (ef},,(0, and X), it bounds their
absolute uniform differences (iio, 7)) of two fluid queues by those of the two models’
data functions\, B(0), Q(0) andX (0). See Theorem 3.6 for details.

We now add a new structural result: boundedness. For thiseglary boundedness
result and other results to follow, we make a stronger assompn the staffing and the

rates in the model data, requiring that they be uniformlyroad above and below. Our
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conditions will involve the maximum rate fluid can enter seev~ in (5.25) as well as the

two-parameter abandonment hazard tatéy) = f;(y)/Fi(y), defined after (5.25). Let

T Lo
her = ooct2 T30 h (@), M = —oo<1tl%fT,:v20 i (@),
F'(z) = sup F(z), FY2)= inf Fy().
—oco<t<oo —oo<t<oo

Assumption 4.1 (uniformly bounded staffing and rateShe staffing and the rates in the

model data are uniformly bounded above and below, i.e.,

)\go < 00, ,ulo<oo, slo<oo, ygo<oo, h}oo<oo

Ao > 0, ph>0, sh>0, 4L >0, hp >0

Assumption 4.1 repeats Assumption 2.11 and strengthengwssons 2.10 and 3.6.

We also assume a further regularity condition on the abaméoncdf’s.

Assumption 4.2 (abandonment cdf tailF'*(z) — 0 asz — oo.

We assume that these two additional assumptions are in forcie remainder of the
chapter. Our boundedness result also exploits the finitalionditions, provided by

Assumption 2.1.

Lemma 4.1 (boundednegsUnder the assumptions above, all performance functions are



137

uniformly bounded. In particular,

B(t) < s(t)<sk, bt,x) <b0,2) VAL VAL,

Q) < <2Tg°>v@(0)7 q(t,z) < q(0,2) vV AL,
o (k) (Q0
alt) < hTFhC’;AZO, and o(t) < pul sl

Proof. Most are elementary; onl9(t) andw(t) require detailed argument. Flow conserva-
tion in (3.5) implies tha®)'(t) = \(t) — a(t) —y(t) < A\l, —a(t). Sincea(t) > hfpw Q(t),
we have()’(t) < 0 wheneverQ(t) > Ago/hfpw. The bound foru(t) follows directly from
(4.5) and the final part of the proof of Theorem 4.1 below, \wtdoes not use the present

lemma. = |

4.3 Asymptotic loss of Memory (ALOM)

In this section we establish ALOM for th&, /M, /s, + G, fluid model. We start with an

illustrative example.

Example 4.1 (a sinusoidalG;/M /s + M example Consider &, /M /s + M fluid queue

that has the sinusoidal arrival rate function

At) =a+0b-sin(ct), (4.1)
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with « = ¢ = 1 andb = 0.6, exponential service distribution with rate= 1, constant

staffing functions = 1, and exponential abandonment time distribution with fate 0.5.

Applying the algorithm in Chapter 2, we compute and complaeeperformance measures

w(t), Q(t), B(t), X(t) andb(t,0) with four different (ordered) initial conditions: the sys-

tem is initially (i) empty with@(0) = B(0) = 0 (the yellow solid lines), (i) UL with

Q0) =

0, B(0) = 0.5 < 1 = s (the dark dashed lines), (iii) OL witlp(0) = 0.4,

B(0) = 1 = s (the light-blue dashed lines) and (iv) OL with(0) = 0.8, B(0) = 1 = s

(the red dotted lines), as shown in Figure 4.1.

15 e T — T T— 7
O " R - .
< “..‘ - “"5‘

0.5 e e -

I I I I I I I I I
0 1 2 3 5 6 7 8 9 10
Time t
T ] T T T T T T T

0.6 et . -
= =TT g e T
S - .
<04 .- : o 3
2 " A P

02 e 3 ’ —

obe a7 ! ! T S I e ! |
0 1 2 3 4 5 6 7 8 9 10
Time t
T T T T T T T T T

08F, e _
o6~ _emmm~ < . n
) - ~3 - -

- . -, —|
O 04k . - -
02 - Ni R
ob——=”" | I R T i e I I
0 1 2 3 4 5 6 7 8 9 10
Time t
T T T T T T T T T

1 - L — - = e JER —
= s ST
0 05F i

0 I I I I I I I I I

0 1 2 3 4 5 6 7 8 9 10
= Time t
S 2 L T T T T T T T T
¥ 151 e os S o SIRR & ]
= " S
& - - Sy s -
o St s
I 05p —
=
S I I I I I I I I I
X "o 1 2 3 4 5 6 7 8 9 10
Timet
T T T T T T T T T
151 -
-
g el - - - T - _— -
=1 1 "
05 [EH— B
I I I I T I I I I
0 1 2 3 4 5 6 7 8 9 10

Time t

‘ ini. UL (B(0)=Q(0)=0)

= = = ini. UL (B(0)=0.5, Q(0)=0)

ini. OL (B(0) =s =1, Q(0) = 0.4)

+orini. OL (B(0) =s =1, Q(0) = 0.8)

Figure 4.1: The performance measures for@heM /s + M model in Example 4.1 with
four different (ordered) initial conditions.
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Figure 4.1 shows that the differences in these four casegeoga to zero so fast that
it looks as if the distance becomes 0 after finite time (but dicdually never occurs), even
though the initial conditions are dramatically differeRtgure 4.1 also illustrates the com-

parison result in Theorem 3.5«

To state our ALOM result, we usA to denote absolute difference. Specifically, for
real-valued functions{; on [0,00), ¢ = 1,2, and0 < 7" < oo, l[et AX; 5(t) = AX(t) =

| X1 () — Xa(t)], t > 0.

Theorem 4.1 (asymptotic loss of memojyConsider twoG,/M,/s, + G1, fluid models
with common arrival rate function, service rate functiop, staffing functiors, and time-
varying abandon-time cdf’8}, but different initial conditiongsatisfying Assumption 2.1

Then(a)
AX(T) < Ce @D for C(T) =T (g A hy,), (4.2)
whereC, = C(B4(0), B2(0), ¢1(0, ), ¢2(0, -)) is the constant

¢, = AB(O)+/OOO<[QI(Oax>\/Q2(O7x)]_[QI(O7x)AQ2(O7x)])dx (4.3)

< AB(0) + Q1(0) + Q2(0).
Moreovet,

Aa(T) < h}TC'le_C(T) and Ac(T) < p}Cre ¢ (4.4)
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for all 7' > 0. Hence, forC, = pf, A by, > Oand allT > 0,

AX(T) < Cre T, Aa(T)gh}wCle_CQT and Ac(T) < ul Cre™ T,

In addition, for eachHl” > 0,

AX(T)
AL FHwy (T) V wsy(T))

S CgAX(T) S (CgCl)e_CQT, (45)

Aw(T)

~_ |

where

Oy = (F) e ) v (0 v a0 + SO g
(b) If, in addition, the initial content is ordered by
X1(0) < X5(0) and ¢(0,2) < g2(0,2) forall = >0, 4.7)
thenX () < Xy(¢) forall t > 0,
AX(T) < 0 and Ax(T) <220 1oy (4.8)

=1+ 0(T)
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for C(T') in (4.2), so that

AX(T) < e “DAX(0),

Aa(T) < L AX(T) and Ac(T) < plAX(T). (4.9)

Proof. We first show that (a) follows from (b). Without loss of gergyawe haveX; (0) <
X5(0). ThenX;(0) < X,(0) is equivalent taB;(0) < By(0) and@1(0) < (2(0). In order
to derive (a) from (b), construct another two systems, 3 andith ¢5(0,z) = ¢:(0,z) V
2(0,2), B3(0) = B1(0)V B5(0), ¢4(0, 2) = q1(0, 2) Ag2(0, z) andB4(0) = Ba(0) A B2(0).
With this construction, systems 3 and 4 are bonafide fluid nsoaéth X, (¢) < X;(¢) <
Xs3(t) and Xy (t) < Xy(t) < X;(t) for all t, which implies thatA X, »(t) < AXj4(¢) for
all t. SinceAX34(0) < ¢, for C} in (4.3), (4.2) in (a) follows from (4.9) fo\ X5 4(¢).
(The final bound ort; in (4.3) arises when the supports@f0, -) andqg, (0, -) are disjoint
sets, which actually is not allowed by Assumption 2.10, laut be approached.)

Now we prove (b). Observe that (4.9) follows (4.8) becausdalitig the interval0, 7]

into N subintervals yields

N
1
AX(T) < AX(0).
< (srpormmy) +70
Letting N — oo, we get (4.9).
We now prove (4.8). With the ordering assumed in (4.7), alcfions in the two sys-

tems can be ordered according to Theorem 3.5. Hence, theemmbrthree casegi) both
systems are UL(ii) both systems are OL(jii) system 1 is UL and system 2 is OL. We

treat the three cases separately and use mathematicatiordtacshow (4.8).



142

In case(i) we haveB;(0) < By(0) < s(0) and@;(0) = @Q2(0) = 0. LetT™* be the
underload termination time of system 2. FoK ¢ < 7™, neither system changes regime.

Observe tha\ X (¢) = AB(t). Flow conservation implies that

Bi(t) = At) —u(t) Bi(t) for i=12,
which yields

AX'(s) = AB'(s) = —u(s) AB(s) < —uy AB(t) = —pf AX (1), 0<s<t,

where the inequality follows fromu(s) > uf and AB(s) > AB(t) since AB(s) has

negative derivative. Therefore, we have

AX(t) — AX(0) < —pr t AX(t)

and
1

1+ut¢t

AX(t) < AX(0). (4.10)
()

In case(ii) we haveB;(0) = By(0) = s(0) andq(0,:) < ¢2(0,-). LetT* be the
overload termination time of system 1. R0 ¢t < T*, neither system changes regime.

Observe than\ X (1) = AQ(t). Theorem 3.5 implies thag (¢,-) < ¢o(t, ) andw;(t) <
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wy(t) for <t < T*. Therefore, we have

wz(t) wl(t)
aslt) — an(t) = / ao(t,2) b (a)dz — / a1t 2) b (2)da
0 0

wi(t) wa(t)
= / (@2(t,2) — q(t, ) hr,_, (z)dz + / @(t, ) hr,_, (z)dz
0 w1 (t)
w1 (t) wa(t)
> hi} / (go(t, ) — qu(t, x))dx + h%ﬁ / ¢ (t, v)dx
0

w1 (t)

= hy, (Qa(t) — Qu(t) = ki, AQ(t). (4.11)

Flow conservation implies that

which yields

AX'(s) = AQ(s) = —(aa(s) — ai(s))

< —hp AQ(s) < —hy, AQ(H) = —hF AX (1), 0<s<t,

where the inequality follows from (4.11). Hence, reasorésgor (4.10) in caséi), we

have

AX(t)g( ! )AX(O). (4.12)

1+ hy, t
In case(iii) we haveB;(0) < s(0) = By(0) and@(0) = 0 < ()2(0). LetT™ =
Ty N T, whereT; is the underload termination time of system 1 ahdis the overload
termination time of system 2. For< ¢t < 7™, neither system changes regime. Observe

thatAX (1) = AB(t) + AQ(t) = s(t) — Bi(t) + Q2(t). Flow conservation in (3.5) implies



that the derivatives satisfy

which implies that

AX'(t) = () = Bi(t) + @5(t)

= —au(t) — u(t) (s(t) — Byi(t)).

Reasoning as in casé), we have

ax(t) = hip, Qa(t) = hip, AQ(1).
Therefore, (4.13) and (4.14) imply that

AX'(s) < —hp, AQ(s) — uyAB(s)
< —(hy, A ) (AQ(s) + AB(s))

< —(hy, A ) AX (s) < —(bp, A i) AX(2),

Hence, reasoning as for (4.10) in cdsg we have

1
AX(t) < <1 s Amt> AX(0).

0<s<t.
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(4.13)

(4.14)

(4.15)
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Finally, combining (4.10), (4.12) and (4.15), the desirdd]) follows by mathematical
induction.

We directly have the second and third inequalities in (4\®jch implies (4.4) because
AQ(T) < AX(T)andAB(T) < AX(T).

Finally, we treatw(t). As above, it suffices to assume that we have the orderingii (4

of (b). Then (4.5) follows from

AX(T)

v
>
2
=
I
>
S
|
=
S
N
=
U
8

> ALFHwy(T)) Aw(T). (4.16)

We now constructv* such thatwy(7") < w* for all T'; in general,w* will depend on
wo(0). First note that at tim&,, = Q»(0)/u% sk, all fluid that was in queue 2 at time
0 is gone (entered service or abandoned). Chaose 0 big enough such that'(w) <

st ut /. ODE (2.31) implies that for > T,

s(t) (1)

A(t = wa(t)) Fimwsy(ey (wa(t))
St Ik

L FH (@)

wh(t) = 1-

< 0,

if we(t) > w for somet. Hencew is an upper bound fows(t) if wy(T,,) < w. If
wo(T,,) > w, itis easy to see that,(t) decreases until it is below because we can bound
wj(t). This argument implies that, () < w; = (w0 V (w2(0) + T,,)) forall ¢ > 0. The

constant’s in (4.5) is obtained by inserting established bounas. O

For a real-valued function on [0, c0), let||z||, = [;~ |«(t)] dt.
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Corollary 4.1 Under the conditions of Theore#nl (b),

161(T,-) — by(T, )|l = AB(T) < AX(T) < AX(0)e= D),

l1(T.-) = @2(T. ) s = AQ(T) < AX(T) < AX(0)e “. (4.17)

Hence, there is exponential rate of convergence under thditons in Theorerd.1 (a).

Remark 4.1 ( monotonicity of the difference of two quep&heorem 4.1 shows that except
for the densitieg andb, the differences of all performance measurasy(, A«a, Ao, and
Aw) of the two queues go to 0 as— co. However, even in cagdé), only AX (¢) goes to

0 monotonically. Note thaha(t) = 0, Aw(t) = 0 and Ao (t) > 0 when both queues are

UL; Aa(t) > 0, Aw(t) > 0 and Ao (t) = 0 when both queues are OL.

Remark 4.2 (Example 4.1 revisitedn Example 4.1 we hav@€(7") = u A6 = 0.5in (4.2)
of Theorem 4.1\}, = 0.4 > 0, A\l = 1.6 < oo, F¥(z) = e ?* > 0and F'(z) — 0 as
x — oo. Moreover((t) = A(t) —pus(t) —s'(t) = a— ps+b-sin(ct) is sinusoidal so that
it has finitely many zeros in any bounded interval. Theregfalleconditions in Theorem 4.1

are satisfied, establishing the exponential rate of coremeg seen in Figure 4.1.

4.4 The StationaryG /M /s + GI Fluid Queue

In this section we focus on the station&ry M/ / s+ G fluid queue. The steady-state perfor-
mance of the more gener@l/ /G1/s + GI fluid queue withGI service was characterized
in [77], but the transient dynamics was only characterizehgetely in Chapter 2. See

Theorem 3.11 of Chapter 2 and Theorem 4.4 in [77] for det@tsmplementing Theorem
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4.4 in [77], our next result shows that the steady state giv@heorem 3.11 is indeed an

invariant state, i.e., if the system is initially in this &athen it stays there forever.

Theorem 4.2 (aninvariant state for thé&' /G /s+G1 fluid queug Consider the7 /G /s+
G fluid queue specified with model parametgrs, i, G, F'). Then the steady state given

in Theorem 3.11 is an invariant state. In other words, if thitial condition satisfies

that is the steady state given in Theorem 3.11, then themsystg/s in steady state, i.e., for

all ¢t >0,

(b<t7 ')7 Q<t7 ')7 B<t)7 Q(t)v w<t)7 Oé(t), 0<t)) = (b()7 Q<‘>7 B, Q7 w, &, O'),

that is given in Theorem 3.11.

Proof. First consider (a) withh < 1. By (2.9) of Chapter 2, the initial rate that service is

being completed with(0, z) = AG(z) is

7(0) = /0 (0, 2)he () dr — /O T AG(@) cg;((?) dr = . (4.18)

If p < 1, thenB(0) = sp < s and there initially is spare capacity. pf = 1, then
A(0) = A = o. In both cases, the system remains UL. Hence we can appl$)(ih1l

Proposition 2.2 of Chapter 2 to characterize the evolutiolh d-or suitably smalt > 0,
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G(x)

b(t,z) = b(t —2,0)G(x) Ljp<z<sy + b(0, 2 — 1) G- Lizst}

G)

Gz —1t)

Lizsty = NG (z) = b(0, x),

which implies that the system stays UL wiltY, x) = b(0,z), B(t) = B(0) ando(t) =
o(0) for t > 0. For an alternative proof under the extra condition of défeiability, we
can exploit the transport partial differential equatioDE) from Appendix A.2 of Chapter

2. That tells us thai(¢, ) satisfies the PDE

ob ob
5 (b0) + (6 w) = —ha(2) bt, ),
which implies that
ab L __d(G(x) -
E(O,JJ) = —%(O,JJ) — ha(2) b(0, ) = - dr ha(2)AG(2)

= Ag(z) — ha(z)G(z)\ = 0.

Next consider case (b) with > 1. We can apply (4.18) to see that the initial rate
of service completion, starting with(0, z) = suG(x), is 0(0) = su. Sincep > 1, we
necessarily have(0) = A > su = ¢(0). Hence, the system necessarily remains OL
over a positive interval. Next we apply the fixed point equafior b during an overloaded

interval. Assumption 2.8 in Chapter 2 is satisfied with thisial densityb(0, x) because

7(b,g,T) = sup

0<s<T

/°° b(0,y)g(s +y) dy = sj1 < oo, (4.19)
0

Gy
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Next we observe that 0, =) satisfies the fixed point equation (4.20) of Chapter 2, i.e.,

b(t,0) = a(t) + /o b(t — z,0)g(x) dv = suG(t) + /0 b(t — x,0)g(z) dz, (4.20)

yieldingsu = suG(t)+suG(t) = su. Theorem A.2 of Chapter 2 implies thidt, 0) = su,
t > 0, is the unique fixed point. Next Proposition 2.6 of Chaptemplies that the service
density in queue satisfies

s F(x)

q(t,z) = AF(2)lp<y +q(0,2 — t)ml{t@@w(t)}

= )\F(l’)l{ogmgw(t)}. (421)

It remains to show that’(0) = 0, so thatw(t) = w(0) = F~*(1—(1/p)). However, ODE
(2.31) implies that

pe g #s g

a(0.w(©0) ~ T NFw(0)) T M1/p)
where the third equality holds sineg(0) = w = F~*(1 — 1/p). The last equality holds
sincep = \/su. Hencew(t) = w in (4.21), so thay(t,z) = ¢(x) and all performance
functions are constants for< ¢t < ¢ for some smalb and thus for alt > 0. = O
Now we apply Theorem 4.1 to show that the transient perfoomamtheG /M /s + G1
fluid queue with exponential service converges to the stasaly described in Theorem
3.11 for any given initial conditions. As a byproduct, thiablishes uniqueness for the
steady-state performance in Theorem 3.11 in the specialafa® service. We give two

convergence results, the first obtained by directly commigifiheorems 4.1 and 3.11.
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Theorem 4.3 (direct implication of ALOM For the stationaryG /M /s + G1I fluid model,

ast — oo,

(a(t),w(t),Q(t),o(t),B(t) — (o,w,Q,0,B), (4.22)

lg(t,-) =gl =0 and [|b(t,-) = b()[r =0,  (4.23)

where vector(q(-), o, w, Q,b(-), o, B) is the steady-state performance in Theorem 3.11.

Hence, the steady-state performance specified by Theofenisunique.

Proof. Consider twoG /M /s + G fluid queues that have identical model parameters but
different initial conditions. Let system 1 be initially ihé steady state given in Theorem
3.11, let system 2 have arbitrary initial condition. Theonr@ 11 implies that system 1 stays
in steady state for all > 0. Therefore, the convergence in (4.22) and (4.23) followsfr
ALOM in Theorem 4.1. O

We next establish a stronger convergence result, whosd doms not rely on the
ALOM property in Theorem 4.1. We establish pointwise cogeace of the fluid con-

tent densitie$ andq ast — oo in addition to (4.22) and (4.23).
Theorem 4.4 (more on convergence to steady sja@@ensider the stationarg /M /s+ G 1

fluid model. In addition to Assumption 2.1, assume that thialiservice density satisfies

lim sup b(0, z) < co. (4.24)

T—00



151

Then, in addition to the conclusions of Theorérg
(q(t,x),b(t,z)) = (q(x),b(x)) as t— oo,

for eachz > 0, where the limit(¢(x), b(z)) is the pair of steady-state fluid densities in
Theorem 3.11. Moreover, there is at most one switch betwee=®L and UL(including
critically loaded regimes during the convergence. More precisely, the numbgwitches
depends on the the model parametet \/su and the initial conditions as shown in Table
1. If p > 1, there exists & > 0 such that fort > 7', w(t) — w monotonically, ag — oc.

If, in addition,C' = f(iQ(O) , > 0wheref) = info<,<, f(z), then

/sp)V

1

Aw(®) = wt) —wl < T —ma

Aw(T), fort>T (4.25)

so that

Aw(t) < e DCAw(T), t>T. (4.26)

traffic intensity | initial condition | number of switchings

oL 0
p>1 UL(CL) 1
oL 1

p<1 UL(CL) 0
_ oL 0
p= UL(CL) 0

Table 4.1: How the number of switches between OL and UL irtisrdepends on the model
parametep and the initial conditions, in the setting of Theorem 4.4.
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Proof. We only give the proof for the case in which the system isafiitiUL, i.e.,q(0, z) =
w(0) = 0 foranyz andB(0) = [;°b(0,z)dz < s. The other case in which the system is
initially OL or critically loaded is treated in essentiatlye same way; the details are given
in the appendix. For simplicity, we assume= s = 1 and therefore = \/su = A.

(i) p < 1. Since the service is exponential at the fixed pate 1 and the staffing is
fixed ats = 1, the maximum output rate of the service facility is 1. Henbe, system
always stay in the UL regime. Thus we can apply (3.13) of Géraptto characterize the

density in service. By Assumption (4.24),

bt,x) = peliocacty +b(0,2 —t)e  1psy

xT

— pe " ast—o00, x>0.

e~
Il
ﬁ

pe tdx + / b(0,r — t)e 'dx
t
= p(l—e")+e"B(0),

= p—(p=B(0)e" =p, ast— o0,

Moreover,o(t) = B(t) — p, ast — oo. If p = 1, then we obtain the monotone conver-

gence
B(t)=1-(1-B0)e 11 as t— .

(i) p > 1. Asin case (i), the maximum output rate of the service fgcif 1. Since

p > 1, A > 1, so that the the system necessarily will switch to the OLmegin finite time.
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From (3.13), we see thgt, ) and B(¢) initially evolve as

b(t> l’) = pe_ml{xﬁt} + 6_tb(07 T — t)l{:c>t}

B(t) = p—(p—B(0))e™", 0<t<t. (4.27)

The total fluid content in servic8(t) increases irt until time ¢; at which we first have
B(t) = B(t;) = 1. After timet;, since the arrival rate is greater than the maximum
departure rate which is 1, the system stays in the OL reginfier Amet,, we can apply
Proposition 3.2 of Chapter 3 to describe the evolutioh(ofz). In particular, fort > ¢,

and for eachr > 0,

b(t — tl, JI) = €_m1{x§t_t1} + b(tl, r—t+ tl)e_(t_tl)l{ﬂf >t — tl}, (428)

where

b(tla l’) = pe_xl{mgh} + 6_tlb(0> r— tl)l{m>t1}> (429)

so that, by assumption (4.24), the second term in (4.28)yimpsotically negligible as
t — oo, implying thatb(¢, z) — e~ = b(z) ast — oc.

Since we start UL, we first have a queue buildup at timdy (3.14), we have

q(t,x) = pF ()L pcwing—rty, > ti, (4.30)

where the BWTw satisfies the ODE

w(t)=1— —=——=H(w(t)), fort>ty, (4.31)
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with initial conditionw(t;) = 0. Itis easy to see that(t,z) — q(z) = pF(x)lz<wy if
w(t) — w ast — oo.

Letw = F~(1—1/p). Since the cdf" has a positive density, the functidhis strictly
decreasing and/ (w) = 0. Therefore ifw(ty) = w at somet,, w(t) will stay atw for
all t > t,, sincew’(ty) = H(w) = 0. Moreover, ifw(t) < w, thenw'(t) = H(w(t)) >
H(w) = 0.

The functionw(t) starts at 0 at time;, and is increasing (has positive derivative) as long
asw(t) < w. We also know thatv(¢) will stay atw if it hits w, andw(t) is continuous.
Therefore, to show that(¢) — w ast — oo, it remains to show that for any> 0, there
exits at. such thatv(t) > w — € for anyt > t¢..

BecauséH is strictly decreasing in a neighborhoodwof we havew’(t) = H(w(t)) >
H(w—¢€) =0(e) > Hw) = 0, if w(t) < w — e. Therefore, the derivative af(¢) is not
only positive, but also bounded bye) > 0. Sow(t) will hit w — e at least linearly fast with
sloped(e), i.e., for anyt > (w — €)/d(e), we havew(t) > w — e. Therefore, we conclude
thatw(t) 1 w ast 1 co. As a consequence, we ggt, z) — q(x) = pF(z)l{p<z<uw) @S
t — oo from (4.30).

We now establish (4.25) and (4.26). To do so, we assume thensys initially OL
with w(0) = wy. From the above analysis,jf> 1, then the system stays OL for ali> 0,
which implies thaty(t) = us = 1 forallt > 0. Hence, aftefl’ = Q(0)/us = Q(0), all
fluid that was in queue at= 0 is gone (has entered service or abandoned).(H) = w,
then the system is already in equilibrium.«{7") > w (the casev(T) < w is similar),

then the above analysis implies thal(t) < 0 for ¢ > T sinceH in (4.31) is decreasing.
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Therefore, the monotonicity ab follows. Integrating equation (4.31) yields, for> T,

/1
w(t) —w(T) = t_T_;/TWdS
/1 1
: t‘T‘;/T_F<w<t>_>d8: =D (1 i)
- - my )= Pt

where the first inequality holds becausés) > w(t) by the monotonicity ofw, the third
equality holds becausE(w) = 1/p, the second inequality holds becausg) > w and
F(w(s)) < 1, the last inequality holds becausét) < w(0) + 7 for 0 < t < T andw is

monotone non-increasing for> 7'. This immediately yields

Aw(t) =w(t) —w < —fju(o)JrT(t —T)Aw(t) + (w(T') — w)

_ _fju(OHT(t —T)Aw(t) + Aw(T),

and

Aw(t) < !

Aw(T).
B 1+f1t(0)+T(t_T) ZU( )

Relation (4.26) follows from (4.25) by splitting interv@l’, ¢] into N disjoint subintervals

with equal lengths. Mathematical induction implies that

N
1
= Aw(T).
L+ fi(o)+T (TT)>

Aw(t) < (

Letting N — oo yields the desired (4.26).= O
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We next give explicit expressions of all performance fumesiin theG /M /s + M fluid

model, with exponential abandonment, when the systemtialigiempty.

Corollary 4.2 (theG/M/s + M fluid queug Consider the /M /s + M fluid queue with
model parameters, , s, 6, whered > 0 is the abandonment rate, starting empty.

(a)if p=A/su > 1, then

1 P
UJ(t) = 5 (1 _'_( — 1)6—9(15—151)) 1{t>t1} T logp, (432)
q(t,x) = Xe " Lococwy,izn T A€ Ljoco(iog )0} (4.33)
A A 1
QY = 3 (1——) L= e sy 15 (1—;), (4.34)
alt) = 60 (1 - —) (4.35)
bt,x) = Ae™™* Ljo<a<to<tany + 1S " Yoca<t oy — pse ™, (4.36)
B(t) = ps(l—e™) Locicny + 5 Lpzuy 15, (4.37)
o(t) = uB(t) tus, as t—oo, for x>0, (4.38)

wheret; = —1/u log(1 —1/p).

(b) if p <1, then

b(t,ﬂ?) = Nse_uzl{ogmgt}T,uS@_“ma
B(t) = ps(l—e™) tps,

ot) = Ml—e ") 1A
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Proof. We only prove casé:) since(b) is similar. First, since the system is initially empty,

flow conservation of the service facility implies
A=B'(t)+pB(t), B(0)=0,

which has unique solutioB(t) = ps(1 — e *') whent is small. The system switches to
the OL regime at; wherep s(1 — e #') = s, and stays in that regime for alt> ¢;. This

yields (4.37), from which (4.38) and (4.36) follow. Fo¥ t;, we have the ODE for BWT
w(t) = —FE () =0,

which has unique solution (4.32), from which (4.33), (4.84) (4.35) follow. = O

We give a numerical example illustrating Corollary 4.2 inp&mdix C.2.

Remark 4.3 (explicit results for queues in serigg/e can apply Corollary 4.2 to obtain
explicit expressions for the performance functions with twmore queues in series, with
exponential abandonment, because the arrival rate of eachessive queue is the depar-
ture rate from the previous queue, and the departure ratemfemach queue is available

explicitly.

4.5 Periodic Steady State (PSS) for Periodic Models

In this section we consider the special case of periodic fiwdels. We provide conditions
under which (i) there exists a unique periodic steady sR&S] for a periodic fluid model

and (ii) the time-varying performance converges to that 888l (finite) initial conditions.
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45.1 Theory

Recall that a function of a nonnegative real variahles periodicwith period 7 if g(t +

7) = g(t) for all t > 0, wherer is the least such value, required to be strictly positive. If

the relation holds for arbitrary smaill| then the function is constant; we exclude that case.

We say that &, /M, /s, + G, fluid queue is geriodic modelf the function mapping into

the vector(\(t), u(t), s(t), {Fy(z) : x > 0}) in R x D is periodic. If the four component

functions are periodic, where there is a finite least commattiphe of the periods, then

the overall function is periodic with the overall period bgithat least common multiple of

the component periods. Since the time-varying abandontimeatcdf's{ F;(z) : * > 0})

are defined on the entire real line, we require that they hiegieron their entire domain.
We have not yet said anything about the initial conditigh®),z) : = > 0} and

{q(0,x) : x > 0}. If these initial conditions can be chosen so that the sygterformance

of the periodic model with period, {P(t) : t > 0}, where the system state vector

P(t) = ({b(t,z) : x > 0}, {q(t,x) : 2 > 0}, B(t), Q(t), w(t),v(t),o(t), a(t)). (4.39)

is a periodic function of with periodr, then those initial conditions producepariodic
steady statgPSS) for the periodic model with period The performance functiof®
constitutes the PSS. See Figure C.3 for an example. In oodéistuss continuity and

convergence in the domain &f, we use norm

IP@

sup {|P(t)|}, where

t>0

B + Q)] + [a(®)] + o (t)] + [w(t)] + [v(t)]
/000 b(t, x)dx /000 q(t, z)dz

P )]

L + _ (4.40)




159

A common case is a periodic model that does not start in a PS&Sthéh want to
conclude that the performance converges to a PSS as timees\ol all finite initial con-
ditions. We say that a function of a nonnegative real vaeighlis asymptotically periodic
with periodT > 0 if there exists a (finite) functiog., such thaty(nr + t) — g (t) as
n — oo for all t with 0 < ¢ < 7, for the given positive value of, but no smaller value;
the limit g, necessarily is a periodic function with peried This limit can be viewed as
an application of the shift operatdr, on the functiory: V.(g)(t) = g(7 +¢),t > 0. The
functiong is asymptotically periodic if and only if successive it@sbf the shift operator

converge, i.e., iﬂ!S")(g) = \I/T(\IIS"_I)(g)) converges ag — oc.

Theorem 4.5 (PSS for the periodic fluid modeConsider a periodic fluid queue with pe-
riod 7 > 0. If the conditions of Lemmé.1 hold, then

(a) There exists a unique P38 with periodr, but not with smaller period.

(b) For any finite initial conditions, the performan@@is asymptotically periodic with

periodr, i.e.,

(P (t)=P(nt +t) = P*(t) as n—oo, 0<t<T. (4.41)

Proof. First suppose that the system starts empty. By Theorem I35shift operator

U is a monotone operator oR(n7) for any n, because we can think of the perfor-
manceb(t,-) and¢(r,-) as alternative initial conditions for the model at tirgsince

the model is periodic with period. Therefore, the sequence of system performance vec-
torsP(0), P(7), P(27), ... (at discrete tim@®, 7, 27, . ..) is monotonically non-decreasing.
By Lemma 4.1, the performance is bounded, so that there isite fimit for P(nr)

asn — oo. By Theorem 3.6, the operator is continuous as well, whicplies that
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P(t +nt) = U, (P(nr)) is convergent for alD < ¢t < 7 asn — oo. Hence the limit

is a PSS. By Theorem 4.1, we have ALOM, which implies that wetlye same limit for

all initial conditions. = O
Theorem 4.1 shows that the rate of convergence to the PSSewrdim 4.5 is exponen-

tially fast as well, under regularity conditions.

4.5.2 An Example

Example 4.2 (anG;/M /s, + M example with periodic arrival rate and staffingve now
consider a variant of Example 4.1 that has sinusoidal sgpffdwell as a sinusoidal arrival
rate. As before, we have the fluid queue with arrival rate fiondn (4.1) witha = ¢ = 1,
b = 0.6, constant service rate = 1 and constant abandonment réte- 0.5. However,

now we also use the sinusoidal staffing function

s(t) = 5+ u sin(y 1). (4.42)

Lets =a=c=p =1u = 0.3andy = 2. Note the period of is 27 /c = 27, while
the period ofs is 27 /v = m. Hence the overall model has periddpi. Figure 4.2 shows
the results after applying the algorithm in Chapter 2 to cotaphe performance measures
w(t), Q(t), B(t), X(t) andb(t,0). Instead of plotting just one OL and UL intervallin 7’|
with 7" = 10 as we did in Example 4.1, here we plot four OL and UL intervalfi 7”]
with 7" = 23.

Figure 4.2 shows that performance measuug$)( Q(t), B(t), X (t) andb(t,0)) con-

verge very quickly to periodic limit functions, with periad= 7. In Appendix C.6 we
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Figure 4.2: Performance of th@&, /M /s; + M model with sinusoidal arrival and staffing,
v =2.

compare the fluid approximation in this example to simulatiesults for a large-scale
gueueing system. As in Chapter 2, we see that the fluid modeldes a useful approx-
imation for the queueing systems. It is very accurate fol \large queueing systems
(with thousands of servers) and provides a good approxamé&dr mean values for smaller
gueueing systems (with tens of servers). In the Appendixisgecnsider the performance
when~ is changed fron2 to 0.5. Figure C.2 there shows that the period of the PSS becomes

T=47. =
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4.5.3 Direct Computation of PSS Performance

Given the rapid convergence, it usually is not difficult torgqmute the PSS by simply ap-
plying the algorithm with any convenient initial conditiorlowever, the PSS can also be
determined in another way. We can start by observing thae thee only three cases for
PSS: (i) the system is OL for all < ¢ < ; (ii) the system is UL for alb < 7; or (iii)
there is at least one switch between UL and OL regimég$,in]. We can simply check
which of these cases prevails. For each of these scenamosanvseek a fixed point in the
performance at times and(0. That produces equations we can solve. One of these three
cases will yield the PSS.

Consider case (i), in which the system is OL. It suffices taatirize its performance

in one cyclel0, 7]. We can write
w(0) _
B(t) = s(t) and Q(0) = / Mt —2)Fy o (2)de for w(0) >0,
0

because in the PSS the system remains OL. Hence, we musyftade = A(¢) and
q(t,z) = A\t — 2)F;_.(x). Note thatw, = w(0) is the only unknown here. To solve
for the PSS, we do a search of the initig) such that during the cycl®, 7|, the system
is always OL, i.e.w(t) > 0, andw(7) = wy. The uniqueness of the PSS guarantees that
there is at most one of suahy. If the system switches to UL regime at some time, then we
know this is not the right scenario for the PSS.

Next consider case (ii), in which the system is UL in the iné[0, 7]. Since the system
is UL, the fluid content in servic®(t) satisfies the ODB\(t) = B'(t) + w(t) B(t) with

initial condition B(0) = By > 0 which has a unique solution

t
B(t) =e" Jo 1(s)ds (/ elo nwdu ) (s)ds + BO) , foro<t<rT. (4.43)
0
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Since we seelB(7) = B, it suffices to solve equation

By =¢e~ Jo n(s)ds (/ 6f08 'u(u)du)\(s)ds + Bo>
0

for By. Again, the uniqueness of PSS guarantees that there is abm®suchB, > 0. If
this equation does not have a solution, then we know thistish@right scenario for the
PSS.

Finally, consider case (iii), in which the system switchéseast twice between UL
and OL regimes, as shown in Figure 4.2. Since system regiraeges in the PSS, we
consider the intervgD, 7] and assume that in PSS the system is critically loaded-at
and becomes OL att, i.e., we can always let the beginning of the cycle of PSS be a
regime switching point from UL to OL. We assume that the prdierence between the
PSS cycle and the model function®)is< ¢, < 7. Hence, we start with the BWT ODE

p(t +to) s(t + to) + 5'(to)

YOG - wi) Py O =0

andlett; = inf{t > 0: w(t) =0, A(t +t1) < p(t) s(t) + ()} If 1 > 7 (€.9.,t1 = o0),
then we know this is not the right scenariot f< 7, the system switches to the UL regime

att,. Then, just as in (4.43), we have

t t s

B(t) =¢e" Jiy ls+to)ds </ elo mtuttoduy (g 4 10)ds + B(tl)) ,
t1

with B(t1) = s(t1 + to). We letty = inf{t > t; : B(t) > s(t + to)}. If to < 7, then the

system switches back to OL regime afterWe repeat the above procedure until we get to

time 7. If the initial phase difference variablg is the right one, the system should again

be critically loaded at. We do a search fay in [0, 7].
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Since analytic expressions are available fordh@//s + M fluid model as shown in
Corollary 4.2, we show how explicit PSS performance fundican be calculated in the

next example.

Example 4.3 (explicit PSS performance in special cas€snsider thez, /M /s + M fluid
model in Example 4.1 that has sinusoidal arrival rate as.ih)(4xponential service distri-
bution with rateu, constant staffing and exponential patience distribution with réteNe
suppose that we are in case (iii) above, in which there is &chimig point from UL to OL
regimes, which we can take to be at the beginning of a cyclea¥dame the arrival rate
is \(t) = A(t + t,) for some0 < t, < 7. At somet; for 0 < t; < 7 = 27 /c, the system
will switch to the UL regime. Hence, in order to charactetize complete performance in
acycle|0, 7], it remains to determine the valuestgfandt, for 0 < ¢, < 7,0 <t <.

Since the system is critically loadedtat= 0, OL in [0,¢;) and UL in[t;, 7], we need

two equations for two unknowrtg andt;. First, the BWT ODE implies that(0) = 0 and

ot
wW(t)=1— = il —1- fac 0<t<t,

Xt — w(B) e 0w Xt w(t) w0

which yields that

IuseBt = A\t —w(t)) 66(t—w(t))(1 —w'(t)) = 5\(t —w(t)) 66(t—w(t))d(t - w(t)).

dt

Integrating both sides and lett) = t — w(t), we have

t v(t)
/ psedu = / Ay)elYdy.
0 0
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Plugging the sinusoidal arrival ratét) = A(¢ + t,) into the above equation yields that

b

HS . ot _ A )
L -1 = = -1 -
(e ) 5le )+1+02/92

1
|:566 YO sin(co(t) 4 cty)

_§<€€v(t) cos(cv(t) + cty) — cos(c to))] :

Sincev(t;) =t —w(ty) = ty, lettingt = ¢; in the above equation yields

s a b1, .
%(eetl _ 1) — 5<€€t1 o 1) + m [éeem Sln(Ctl —|—Ct0)
—9—62(69“ cos(cty + cty) — cos(cto))] . (4.44)

Second, since the system is UL[tq, 7], we have
At +to) = At)=B'(t) +uB(t), t;<t<T,
which implies that

t
B(t)e" — B(t)et" = / Au + to)eUdu.

t1

Since the system becomes critically loaded agaity @nd at the end of the cycle, i.e.,

B(t,) = B(r) = B(2r1/c) = s, plugging the sinusoidal arrival rate into the above equmti
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yields

8(6—u27r/c . 6—ut1) _ g(e—u%r/c . 6—ut1)

v

+L l(e“%/c sin(2m + ctg) — e sin(cty + cty))
1+c2/p? [p

—%(6“2”/0 cos(2m + ctg) — e cos(cty + cty))] . (4.45)
i

Unfortunately, Equation (4.44) and (4.45) evidently do have explicit solutions in
general, but they can be solved quite easily numerically dryopming a search over the
two unknowns. However, we can continue analytically in acsdecase with convenient
parameters: (a) = sp and (b)u = 6.

Note that(a) says that the average traffic intensitypis= \/sp = a/sp = 1 and(b)
says that this model is equivalent to an infinite-server mdmEaused = u.

With these extra assumptions, equations (4.44) and (4idp)ify to

gcos(c to) = —esin(ct, 4 cty) — gcos(c t1 + cto)l,

e 2/ [sin(cty) — € cos(cty)] = elsin(ct, + cty) — < cos(cty + ctp)].
p It
Adding these two equations yields

1
0 <ty = ~arctan(l — e *¥/¢) < 7 /c. (4.46)
c

Note that we need(0) = a + bsin(cty) > p s so that the system switches from UL to UL

regime at = 0. Similarly, we require\(to +t;) < u s, which implies thatr/c <ty +1t; <
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27 /c. Hence, plugging (4.46) into the first equation above ingiliett, is the solution to

sin(cty + ) = —

2w/
(/0

(4.47)

wherey = arctan(x/y), x = e#?™/¢ — 1 — (c/0)et?™/¢, y = et/ 4 (/) (et?/c — 1).

Givent, andt;, we can compute analytically all performance functionfdr, /M / s+

M example in a cyclé), 7] = [0, 27 /c]. For0 <t < t,, the system is OL with

q(t,0)

A(t) = a+ b sinfc(t + to)],
At —x) e = e70%(q + b sinfe(t + to — 2)]),
—1 (K3, gy
t— A (7(69 - 1)) ,
w(t) s
/0 q(t,x)dr = e "TA(t) — %(1 — e,
0Q(t),
s, o(t)=us,

pse M Lo ((thkr—to)* tke])

—i—)\(t — I) e re 1{meugozo(t+kr,t+(k+1)r—t2]}7
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whereA(z) = [

o Ay) e?vdy. Fort, <t <, the systemis UL with

agt,z) = Q) =w(t) = a(t) =0,

b(t,0) = A(t) =a-+bsinfe(t +to)],

b(t,z) = At —2)e " Lgeue (t+(h—1)r)*+ t4hr—ta]}

—Ux
+pse 1{meug°:o(t—t2+kr,t+kr]},

t
B(t) = se‘“<t—t1)+6_“t/ AMu)e'du,

t1

ot) = wpB(1),

4.6 Conclusions

In this chapter we supplemented Chapters 2 and 3 and [77]ualyisiy the large-time
asymptotic behavior of thé&',/M,/s, + G, many-server fluid queue with time-varying
model parameters. 1§4.3 we established the asymptotic loss of memory (ALOM) prop
erty, concluding that the difference between performaneetions evaluated at timg
with different initial conditions, dissipates exponefitidast ast — oo, under regularity
conditions. In§4.4 we applied ALOM to establish convergence to steady sbatie sta-
tionary model. In54.4 we also went beyond ALOM to provide additional detailg; ewe
showed that the system changes regimes (overloaded orloaded) at most once. k#.5
we applied ALOM, first, to establish the existence of a unigegodic steady state (PSS)
and, second, to establish convergence to that PSS in thedpenodel, where the period
is the least common multiple of the periods of the model finmst, assumed to be some
finite value.

There are many directions for future research: First, itais to establish ALOM
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properties for the&~, /G 1 /s, + G fluid queue with non-exponential:() service that was
considered in Chapter 2 (under regularity conditions tixatusle the counterexample in
Chapter 5) and th&=, /M, /s, + G1,)™ /M, network of fluid queues with proportional rout-
ing considered in Chapter 3. Second, it remains to estalviehy-server heavy-traffic lim-
its showing that appropriately scaled stochastic procassmany-server queues converge
to the fluid queues, as discussed in Chapter 2 and [77]. Itralsains to establish refined
stochastic approximations as a consequence of many-deeaey-traffic limits. Third, it
remains to establish corresponding ALOM (or weak ergogicind PSS properties for
the corresponding stochastic queueing models and the defiloehastic approximation;
see [24, 30, 33, 78] and references therein. Fourth, it nesnai exploit the deterministic
fluid models to approximately solve important control peshk for the stochastic systems
and, fifth, it remains to apply the fluid models to analyze ¢asgale service systems, such

as hospital emergency departments. We hope to contribtibese goals in the future.
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Chapter 5

The OverloadedG/D /s + GI Queue

We next focus on many-server queues with deterministicigeimes. In particu-
lar, we investigate the many-sernv&y D/s + GI model with a stationary arrival process,
deterministic service times, and general abandonmenstinmeaddition, we study its as-
sociated fluid model to gain insights and establish an MSHWemence theorem to that
fluid model. Our main observation is that the system reveadsiy periodic behavior due
to the assumption of deterministic service times. When thdehis overloaded, we also
demonstrate the invalidity of the interchange of two limitise steady state (obtained as
t — o0) of the limiting fluid model (obtained as — oc) does not coincide with the
fluid limit (obtained as: — oo) of the steady state (obtainedias> oo) of the queueing

processes.
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5.1 Introduction

In this chapter we continue to investigate the performariceverloaded many-server
gueueing systems with customer abandonment, extendihigreaork in [75, 77] and
Chapters 2-4; we focus on the special case of deterministicce times. By overloaded,
we mean thap > 1, wherep is the traffic intensity.

It was shown in [77] that the steady-state performance obteeloaded~/G1/s+ GI
gueueing model when is large is well approximated by the steady-state perfoomanri
an associated deterministit/ G1/s+ G fluid model (when the two models are connected
by many-server heavy-traffic (MSHT) scaling; sgeof [77] and§5.3 here). Supporting
MSHT limits were established ir?[?]. In Chapter 2, as a special case of a more general
fluid model with time-varying parameters, we fully specifiedtG /G 1 /s+G1 fluid model
and described its transient performance. In Chapter 4 weesthtor the special case of the
G/M/s + G1 fluid model that the time-dependent performance functiamverge to the
steady state values as time evolves. It remains to estatdislergence to steady state for
theG/GI1/s+ GI fluid model with other service distributions, even though $keady-state
performance is available from Theorem 3.1 of [77] and Theo8el1l of Chapter 3. In this
chapter we show that convergence to steady state in the flodhadoes not occur for all
service distributions; some conditions are needed.

We began investigating convergence to steady state fotoaderd fluid models with
non-exponential service distributions by consideringgpecial case of deterministic ser-
vice times, even though the deterministic distributiongloet satisfy the smoothness con-
ditions imposed on the model elements in [77] and Chaptérs\®e began considering the
case of deterministic service times primarily becausertlistively easy to analyze. How-
ever, deterministic service times are also of applied @serbecause computer-generated

service times, such as automated messages, may well bendestic, and computer-
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generated service is becoming more prevalent. Many mesgatggams can handle multiple
requests in parallel, justifying the many-server model.

We started by considering a specific examplé&:/a@ /s + M fluid model having arrival
rate \, deterministic service times equal igu, service capacity and an exponential
abandonment cdf’ with mean1/6. (The model is specified in detail later in the chapter,
starting in§5.4.) We let the other parameters be- 2 andy = s = 1, making the system

overloaded with traffic intensity = \ /sy = 2 > 1, so that the model is overloaded.

15

-
T

B(t)

o

o o
T

|

0 05 1 15 2 25 3 35
Time t

b(t,0)

o = N w

0 05 1 15 2 25 3 35
Time t

a(t)
° e m o

Time t

w(t)

QM

a(t)

Figure 5.1: The&7/D/s + M fluid model withs = =1, A = 2.

Figure 5.1 shows six performance functions evolving ovaetfor theG/D/s + M
fluid model starting empty. The performance functions shavethe total fluid content in

service,B(t), the rate that fluid enters servidgt, 0), the departure rate;(t), the elapsed
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waiting time for the quantum of fluid at the head of the queug), the total fluid content
waiting in queue()(t), and the abandonment ratéf) over the initial time intervalo, 3.5].
There are two plots for the final three performance functitmessolid line for abandonment
rated = 2 and the dashed line for abandonment rate 8.

We had initially expected to see convergence to the statygmaint of this fluid model
(which we later show is well defined), because the fluid moslahi approximation for the
M/D/s + M stochastic model, but instead we see that the performaroertss periodic
with period equal to the service-time distribution aftenéit = 1.0. At first, we thought
that the periodic performance was due to the special chditgegparameters, but that is
not the case. Theorem 5.11 shows that the overloaddd/s + G1 fluid model starting
empty exhibits periodic performance after a finite time fibaerival rates), service times
1/ and staffing levels with p = \/su > 1, for all abandonment-time cdf’B.

In fact, the functions displayed in Figure 5.1 are easy tceustdnd. Since the system
starts empty and the service capacity is 1, the arriving fluid flows directly into service
at rateb(t,0) = A = 2 over the interval0, 0.5]. Hence, the total fluid content in service,
B(t) grows linearly at rat@ over the interval0, 0.5], reaching the capacity = 1 at time
t = 0.5, where it stays thereafter. The fluid that entered servi¢@ in5] completes service
exactlyl/u = 1time units later. Hence there is service completion ate&tg= 2 over the
interval[1, 1.5]. Since new fluid cannot enter service until there is free ciéaganew fluid
enters service only at time Hence, we havé(t,0) = 0 during the interval0.5, 1] and
theno(t,0) = 2 again in the intervall, 1.5], which leads to the periodic behavior. Since
no arriving fluid can enter service in the interyal5, 1], the queue content grows during
the interval[0.5, 1]. It does not grow linearly because some portion of the fluirémgy
the queue is lost due to fluid abandonment. For this exampeser that all functions
exhibit periodic behavior beginning at time- 1. Explicit expressions for the performance

functions for thez/ D /s + M fluid model starting empty are given in Corollary 5.8.
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Having seen how pervasive is this periodic behavior in thid flbodel, we were led to
seriously doubt the value of the fluid model as an approxwondbr the stochastic queueing
system. For the special case of the/D/s + M stochastic model, it is evident that the
stochastic model has a unique stationary performance andhh performance converges
to that stationary performance as time evolves. Indeed5i@ here we prove that the
stochastic procesy = {X(t) : ¢ > 0} representing the number of customers in the more
generalGI/D/s + GI queueing model is a regenerative stochastic process thatiges
to a unique stationary distribution as time evolves, predidnly that the interarrival-time
cdf G is nonlattice, has a finite meari\ and is unbounded above, while the abandonment-
time cdf F' has finite mean /.

However, when we conducted simulations of the stoch&gticD /s + G I model, we
found that the sample paths actually agree closely with #terthinistic fluid model, ex-
hibiting periodic performance over the horizon of our siatidn runs. For example, we
simulated a many-servei/D/s, + M stochastic queueing system with Poisson arrival
process approximated by th@/D/s + M fluid model, for which the periodic perfor-
mance is shown in Figure 5.1. We obtain the related stochiastdel by exploiting MSHT
scaling, i.e., by letting the arrival rate bg = n\ = 2n and the number of servers be
s, = [ns] = n, where[z] is the least integer greater than or equat tavhile leaving the
service times and abandonment rate unchangéd,as- 1 andd, respectively. We expect
to have a good approximation whens large.

Figure 5.2 compares the fluid approximation (the dashed)ingh simulation esti-
mates (the solid lines) for the large-scdle/ D/s + M queueing system with = 1000.

We plot (i) the elapsed waiting time of the customer at thedrefahe linelV,,(t), (ii) the
scaled number of customers waiting in quéygt) = Q,,(t)/n and (iii) the scaled number
of customers in servicB, (t) = B, (t)/n. We plot single sample paths of these processes.

For this large value of, there is little variability in the simulation sample patiEsach sim-
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Figure 5.2: A comparison of th€/D/s + M fluid model with a simulation (of single
sample paths) of the correspondiity D /s + M stochastic model with = 1000.

ulated sample path falls right on top of the the approxinmat{d@ he two different plots are
two different cases of the abandonment ra)erigure 5.2 shows that the fluid approxima-
tion is effective in describing the performance of the sastit system. The deterministic
periodic character is exhibited by the waiting times, whiisle linearly at the end of each
interval [k, k 4 1], reaching a peak at the integer endpoint.

However, Figure 5.2 only compares the performance overéively short initial inter-
val of length3.5, corresponding t8.5 service times. At first, we thought that we only need
look at a somewhat longer time interval. However, repeatadlations show that the same
periodic behavior is seen in the stochastic system overititeevals of lengthl000. That
is illustrated by Figure 5.3, which shows simulation estiesaf the elapsed waitind’, (¢)
for large timeT" = 1000 (instead of small” = 3.5 in Figure 5.2) of the sam&/ /D /s + M
model with the same parameters=£ 2, s = p = 1, § = 2) and initial conditions (initially
empty), but with a smaller fluid scaling= 100. The two plots in Figure 5.3 compare the

behavior of a single sample pathdf,(¢) at the end [089, 999], the blue solid curve) and
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at the beginning|(, 10], the red dashed curve). Figure 5.3 shows that the periotiavier

of W, (t) remains at time 000 for n = 100. (The process),, behaves the same Hs,.)
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Figure 5.3: Large-time periodic behavior of an overloadgd /s + M queueing model:
simulation estimates of the head-of-line waiting tiMg with A =2, s =y = 1,0 = 2,
n = 100, T" = 1000.

Of course, the regenerative theory is not wrong. The stadicheygsstem will eventually
approach its stationary distribution if we consider a sigfidy long time. In fact, we do
see the periodic pattern broken b§00 service times in typical simulation sample paths
if we decrease the system loadind the scale sufficiently. For example, Figure D.5 in
the appendix shows that occurs if we replace 2 by p = 1.3 (by changing)\). By time
T = 1000, the periodic behavior df,, is gone.

In §5.3 we will establish a many-server heavy-traffic limit slogvthat a sequence
of scaled stochastic processes indexed lmpnverges to the deterministic fluid model as
n — oo, under regularity conditions. Since we are consideringloaded models with
p > 1, this is a many-server heavy-traffic limit for tli&/ D /s + G 1 model in the efficiency
driven (ED) regime [20], as in [75].

It is customary to apply HT approximations to approximate sheady-state perfor-
mance of queueing systems. HT approximations for the stetadg performance of queue-

ing processes are supported by results showing that tvagettimits coincide. For MSHT
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fluid limits, we want

Jim Jimm, ™ X(0) = Jim fim ), &)
whereX,,(t) is a stochastic process or vector of stochastic processeaathrizing perfor-
mance in modeh. On the left in (5.1), we have the steady-state (obtained-asoco) of
the HT limiting process (obtained as— oo); on the right, we have the HT limit (obtained
asn — oo) of the steady state (obtainedias+ o) of the queueing process. Such limit-
interchange results have recently been obtained in [19, B@t MSHT approximations,
such results were obtained for exponential service tim§Q28].

Here we do not have that nice state of affairs. Indeed, afitabéishing the MSHT
limit asn — oo, we show that the subsequent limittas» oo fails to hold because of the
periodicity. Moreover, the form of that periodic behavi@pa&nds on the initial conditions.
Even the average over a periodic cycle depends on the iodralitions; see Remark 5.5.
We will show that the fluid performance is stationary if andlyahthe fluid model starts in
its unique stationary point; see Theorem 5.14.

Here we directly consider only the iterated limit on the iaef{5.1), but we can deduce
that the two iterated limits do not tell the same story.5h2 we show that there exists
regenerative structure implying that thd /D /s, + GI stochastic model converges to a
steady state as— oo for eachn and each finite initial condition. Moreover, we can do
so for two-parameter processes that yield a Markov prodesseachn, we can then ini-
tialize with the stationary distribution of the Markov pess, so that we obtain a stationary
process (as a function of for eachn. Now, if we consider the limit of the sequence of
scaled stationary distributions as— oo, if we obtain convergence, then we necessarily
obtain convergence to a stationary process. If such a lioniesponds to the deterministic

fluid function, then it necessarily must be the unique stetig point of the fluid model.
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(We conjecture that the sequence of scaled steady-stateiggeprocesses does indeed
converge to the unique stationary point of the fluid model.)

However, a major conclusion from our analysis is that, fer teny-serve6 /D /s +
(G stochastic queueing model, we should not focus on the stetatly behavior of the
gueueing model at all. After much analysis of this kind, weacaiade that the periodic
phenomenon associated with deterministic service is genfioir the stochastic model as
well as the fluid model. Moreover, we conclude that, whendlae many servers with
deterministic service times and > 1, the approximating fluid model is likely to better
describe the time-dependent performance of the stochagtiem than is the stationary
distribution of the stochastic system. The present chapight better deserve the title
of [72].

In retrospect, we should perhaps have anticipated thidyneariodic behavior of the
overloaded~/D/s + GI queueing model. First, when tli¢/G1 /s + GI queueing model
is overloaded and is large, all the servers remain busy for long intervals wietj that is
evident from the steady-state performance of the fluid modgt7]. With deterministic
service times, when the servers remain busy, the times atwhistomers complete ser-
vice and thus enter service in the intervgtls- (k — 1)/u,t + k/u] for integerk will be
independent ok. That gives rise to the observed periodic behavior.

Once the periodic phenomenon is recognized, it can be dtatrib it is considered
undesirable. For example, the periodic behavior of an oaeldéd system starting empty
leads to corresponding periodic behavior in the output femallustrated by the plot af(t)
in Figure 5.1. Such fluctuations in the output may be deemeésirable. For example, if
that output became input at a following queue, then the fateins could cause congestion
at the subsequent queue.

A simple way to avoid periodic output is to restrict the floweranto service, allowing

flow into service to be at most at ratg at all times. That can be done while still respecting



179

the first-come first-served service discipline. Startingogmthis control imposes extra
delay on some of the initial input, but the output rate wikbadecome constant af:.

There should be broader implications of this work, but ong twabe careful about
generalizing, because closely related models behave dtiisgently. In contrast to the
overloaded//D/s+M andG1I/D/s+GI models considered here, the associated infinite-
serverM /D /oo andGI/D /oo models are remarkably well behaved, as shown by [22].
Indeed, the number of customers in thig D /oo system reaches steady state in finite time,
after just one service time. Similarly, the MSHT fluid andfaiion approximations in the
GI/D /oo model reach steady state after one service time. Havinglimibany servers
that are busy all the time is an important part of the storyia thapter.

Closer to the model we consider is th¢ D /s model without customer abandonment in
the QED MSHT regime. For this model, Reed [61] observed thatimiting G/ D/ s fluid
model can exhibit periodic behavior with a special initiahdition in his Example 1 at the
end of§4, but the implications of that example for the queueing nheaze not explored.
TheG/D/s queueing model is considered further in [63, 64]. Theredi® /s queueing
model for larges is identified as an example ofreearly deterministic queueThat work
establishes MSHT limits in which the traffic intensity apgcbes its critical value from
below, extending earlier work in [34]. The papers [63, 64joatonsider the limiting be-
havior asn — oo in the G,,/G,,/1 model in which the interarrival-time and service-time
distributions aren-fold convolutions of a given base distribution, genelalizhe construc-
tion of the ErlangF), distribution fromk-fold convolutions of the exponential distribution.
As n increases, thé/,,/G,,/1 model approaches the/D/1 model. Interesting limiting
behavior is obtained by letting the traffic intensity in@eas: increases.

Of course, in the stochast&!/D/s andGI/D/s + GI queueing models, only the
service times are directly deterministic; the interairttme and abandonment-time distri-

butions may be far from deterministic. However, wheis large and the arrival rate is
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large, the essential behavior of the arrival process andbla@mdonment becomes deter-
ministic, primarily because of the law of large numbers (DLNWhat can be explained by
heavy-traffic limits, such as for non-Markovian infiniterger queues [6, 22, 39,56, 62]. (If
the system is underloaded, then the limits in [22] applydiye We elaborate throughout
the chapter.

Finally, we mention that oscillating behavior and bi-sli#phave been found in other
gueueing systems [16,21,78]. Another recent example ohtladidity of limit interchange

is [65].

Here is how the rest of this chapter is organized: In §5.2 we establish the regenerative
structure in the&71 /D /s+G1 stochastic model and show that the mean busy cycle increases
rapidly in s. In §5.3 we establish a MSHT limit showing that a sequence of theugung
models indexed by the number of servers converges to thaflodel. In§5.4 we carefully
specify the limitingGG/ D /s + G fluid model. In§5.5 we derive the performance formulas
fortheG/D/s+ GI fluid model, part of which are variants of those of thg/ G1 /s, + G1
fluid model developed in Chapter 2. §5.6 we focus on the case in which there exists a
finite time T after which the system remains overloaded (has no idle dgpaén §5.7

we present key structural properties of theD /s + G fluid queue assuming the queue is
overloaded for alt > 0. In §5.8 we analyze the periodic steady state of@he /s + G1
fluid model assuming the queue is overloaded after finite.tinme§5.9 we discuss the
asymptotic behavior of thé&'/D /s + GI fluid queue with general initial conditions. In
§5.10 we present three postponed longer proofs, namely rdwégpfor Theorems 5.1, 5.2

and 5.5. Finally, ir§5.11 we draw conclusions.



181
5.2 Regenerative Structure intheGI1/D/s + GI Model

It is well known that a regenerative proce¥s= {X(¢) : t > 0} with sample paths in
the function spac® of right-continuous functions with left limits in which a geric cycle
T has a distribution that is nonlattice with finite mean has@ppr limiting steady-state
distribution. In particular,X (t) = X(c0) ast — oo, where=- denotes convergence in

distribution, i.e., for any continuous and bounded redlwd functionh,

E[h(X(t)] — E[h(X(c0)] = 5] as 1o oo, (5.2)

where E, denotes the expectation conditional on a regenerationt poitime 0 and T’
denotes the end of the first cycle; see Theorem VI.1.2 of [Bg importance of the sample
path regularity was observed in [51]. That regularity cdiodi allows the process to take
values in a general Polish topological space [74], but tmeltmn is needed even with the
usual real-valued processes. That sample-path regulkaggsily seen to be satisfied in our
gueueing model.

Consider the71/D /s + GI model, having interarrival times distributed @swith cdf
G, deterministic service times of lengthi. and abandonment times distributedwith
cdf F. Let the interarrival times and abandonment times be miytiradlependent. Let
X (t) represent the number of customers in@&/ D /s + GI system at time. Let a busy
cycle be the interval between successive epochs at whichrigal@omes to find an empty
system. If the system starts with an arrival to an empty systetime0, then the first busy
cycle begins at timé. Each busy cycle begins with a busy period and then is fokblaye

an idle period. We prove the following #5.10.

Theorem 5.1 Consider the stochasti6//D/s + GI model in which an interarrival time
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U has a nonlattice cdfr with finite mean®[U] = 1/ and support unbounded above, i.e.,
G(z) < 1forall z > 0, and an abandonment that has cdf’ with finite mearnE[A] = 1/6

and has support unbounded above and below,(.e<, F'(z) < 1 for all z > 0. Then the
busy cycles for thé&'1/D/s + G1 system constitute an embedded renewal process for the
stochastic procesX for which a generic busy cycl€é has a nonlattice distribution with
E[T] < oo, so that the the stochastic proceXsrepresenting the number of customers in
the system has a proper limiting steady-state distribyt@sin(A.15), for all proper initial

conditions. In addition, the mea#i[T] is bounded below by

G(1/p)
G1/)

E[T] > E[UIU <1/u]l+1/p. (5.3)

Theorem 5.1 provides both good news and bad news: The goxlisévat there exists
regenerative structure, so that a proper steady-statédisbn for the stochastic process
X exists under general conditions. The bad news for largke-sgatems (explained below)
is that the mean return time @otypically grows at least exponentially i Of course, that
does not directly prove that the process converges to stattyslowly, but it lends support
to that notion.

We can formalize this growth im by considering a limitinvolving a sequence of models
indexed byn. We scale time in the arrival process while changintp keep the traffic
intensityp = \/nu fixed. The following corollary shows thadt[7™)] is at leasD (") as
n — oo, Wherec is some constant with < ¢ < oo when the arrival process is Poisson or

in a renewal process when the interarrival-time cdf has porantial tail.

Corollary 5.1 Consider a sequence 6fI/D /s, + GI models indexed by satisfying the

conditions of Theorer.1with generic interarrival timeg/™ = UM /n, while the service
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times and abandonment cdf’s are independent dfhen

lim inf { AnGW (n/p) E[T™]} > 1, (5.4)

n—00 -

so thatE[T™] — oo asn — oo. If, in addition, the arrival processes are Poisson with
E[UW] =1/, then

lim inf {A\ne " E[T™]} > 1. (5.5)

n—o0

Proof. First, asn — oo, nE[U™|U™ < 1/u] = E[UV|UN < n/u] — 1/), and
G (1/u) = PU™ < 1/p) = GY(n/u) — 1. Also, the first moment condition
E[UM] < oo implies thatyG(y/u) — 0 asy — oo; e.g., see the proof of Lemma
1 on p. 150 of [18]. Therefore, (A.16) in Theorem 5.1 impli&<, which in turn implies,
first, that E[T™] — oo asn — oo and, second, (5.5). O

The situation is quite intuitive. If indeed is large ancgp > 1, then we will necessarily
have\ >> p and, since it is natural in applications to havée the same order as it
is natural to also have >> 6. In that case only rarely will the queue be empty and even
more rarely will the entire system be empty, so that the reggion we are relying on to
have a nice steady state is then a rare event.

As noted toward the end §56.1, periodic behavior inth& /D /s+ G stochastic model
will occur over some time interval whene\at servers remain busy over that time interval.
In §5.6 we provide conditions under which there exists a finiteeti™ after which the fluid
model remains overloaded (has no idle capacity). We carcalsclude that there will be a
strictly positive queue. Combined with the MSHT limit in thext section, we can deduce

that, under regularity conditions, there will be long finitéervals over which no server
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is idle in the queueing model. There is no contradiction Wikleorem 5.1; here the limit

interchange in (5.1) does not hold.

5.3 A Many-Server Heavy-Traffic Limit

In this section we establish a many-server heavy-traffidt lishowing that a sequence of
G/D/s, + GI stochastic queueing models indexedrbgonverges to thé//D/s + GI
fluid model considered if5.4 and§5.5 in the customary many-server heavy-traffic regime,
under regularity conditions.

The sequence of models is indexed by the number of senvefge let the arrival rate
in modeln be \,, and the number of servers bg, where

_ A,

A\, = — A and EnES—n—>S as n — oo. (5.6)

n n
We let the deterministic service times take valyg and the abandonment times have cdf
F, independent of.. We assume limits for the arrival process and the initialdibons. In
particular, we assume that the sequence of stochasticgaessatisfiesfanctional weak
law of large number$FWLLN). For that purpose, léd be the usual function space of real-
valued functions with limits from the left, endowed with ookthe Skorohod topologies,
which reduces to uniform convergence on bounded interviatsmhe limit is a continuous
function [74]. Let= denote convergence in distribution.

Let B,(t, ) (Qn(t, x)) be the number of customers in service (queue) at timenodel
n that have been so for a duration less than or equal t8ince modeh hasn servers,
0 < By(t,00) = Bu(t,1/p) < n,n > 1. LetQ,(t) = Q.(t, 00) be the total number of
customers in queue. Let, (t), S,(t) and £, (t) be the numbers of customers to abandon,

depart after completing service, and enter service, réispdg in [0, t] in modeln. In full
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generality, we will establish a limit for the time-scaledpess

(Bn(t,x), S, (1), E,(t) = n  (Bn(t, x), S, (t), B, (1)), (5.7)

which characterizes the performance of the service faciinder the additional assump-

tion of exponential abandonment, we will also establistmat lfor the time scaled process

(Qn(t), An(2))

n”H(Qn(t), An()). (5.8)

Let V,,(t) be the number of arrivals in the interjal ¢ in modeln.

Assumption 5.1 (FWLLN for the arrival processAsn — oo,

n!N,=A in D as n— oo, where A(t)=X\, t>0, (5.9)

for a positive constant.

The FWLLN in Assumption 5.1 is implied by either a functiore@ntral limit theo-
rem (FCLT) or a functional strong law of large nhumbers (FS)LMost applications are
covered by simple time scaling of a fixed stationary coungiragess, i.e., whelV, () =
N(nt),t > 0,n > 1. An FSLLN holds for the time-scaled renewal counting pregés’)

considered ir§5.2, provided only that the interrenewal time has finite mean
We now make assumptions about the initial conditions. Weicesttention to starting
with the queue empty, but we allow customers to start in sefwmposing some additional

restrictions in the theorem.
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Assumption 5.2 (an initially empty queueFor eachn > 1, Q,,(0) = 0.

We also assume a FWLLN for the initial fluid content in service

Assumption 5.3 (FWLLN for the initial conditionsAsn — oo,

B,(0,-) = B(0,-) in D, (5.10)

where

B(0,x) = /01‘ b(0,u)du, x>0, (5.11)

for a deterministic functioh(0, -) on[0, co) in C, withb(0, z) > 0 forall x andB(0,1/u) =

B(0,00) <1

We are now ready to state the many-server heavy-traffic.lifat that purpose, by
be the space db-valued functions ifD, as in [?]. The limit below will be continuous, so the
topology onDy, is equivalent to uniform convergence over the compact[8etsx [0, 1/
for t > 0. Let a superscript on a topological space, as wifb*, indicate the associated
k-fold product space, endowed with the product topology.

Let 7, be the first time that all servers are busy in the stochasgaging model, i.e.,
T,=inf{t >0:B,(t,1/u) =n}, n>1. (5.12)
Let 7T be the first time after which all servers remain busy forever,

Tr=inf{t >0:B,(u,1/u) =n forall wu>t}, (5.13)
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with T = oo if there exists no such time. Similarly, l&tbe the time that the limiting fluid
model first has no idle service capacity, defined in (5.33),latii™* be the time after which
the limiting fluid model never has any idle capacity, defineq5.31). The conditions in
(5.14) and (5.16) below will imply that the limiting fluid metinever has any idle capacity

after timet*, i.e.,T* = t* < o0; see§5.6.

Theorem 5.2 (many-server heavy-traffic FWLLSuppose that Assumptiofid—5.3hold

with A > 1,
and, ift* > 0,
b(0,1/u—t") <X and b(0,1/u—t) continuousat ¢ =t". (5.15)
Then
(Bu, En,S,) = (B, E, S) € Dy x D, (5.16)
where
Y
Bty = [ Weayde, 0y <1/ (5.17)
0

with b(t, =) given in(5.28)for 0 < ¢ < t*, b periodic as a function of its first argument for

t > t* with period1/p and, fort > t*, b(t — t*, x) given in(5.29) In addition,

S(t)E/Ota(y)dy where o(k/pu+1t)=blk/p,1/u—1t), 0<t<1/u, (5.18)
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for integerk with £ > 0,
t
E(t) = / b(y, O)dy where b(t, 0) =\ 1{O§t§t*} + O’(t) 1{t>t*}- (519)
0

If B(0,1/u) < 1, thenT,, = t* = T* asn — oo. If, in addition, the abandonment

distribution is exponential, i.e., if (z) = ¢~2, then
(Qn, A,) = (Q,A) € D?, (5.20)

whereQ(t) = A(t) =0for0 <t < t* and

Q) = /t_t*F(t—t*—s)v(s)ds, (5.21)
0
w(t)
:/ \F(z)dz, t>1t*, (5.22)
0
Alt) = A(t) — / e 0)ds— Q). £ (5.23)
0

wherew satisfies ODE2.32) with w(t*) = 0, v(t) = A — b(¢,0).

We now observe that in general we need not have eithes t* or 1" = T™*.

Example 5.1 (counterexample on first passage tim&uppose thah > p = 1. Let

b(0,2) =\, 1= (1/)N) <t <1,andb(0,z) = 0,0 <z <1—(1/)),sothath(t,0) = A,

0<t<1/Aandb(t,0)=0,1/A<t<1,B(t1/pn) =1forallt >0andT™* =t* = 0.
Forn > 1,let{B,(0,y) : 0 <y < 1} be deterministic. To be a legitimate sample path

for a queueing systen&3,, (0, y) must be nondecreasing and integer-valued as well as satisfy
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0 < B,(0,y) < n. Thus, letB,(0,y) = |B/(0,y)], where|z| is the greatest integer
less than or equal to and B{(0,y) = n~'B/(0,y) = [/ b.(0,2) dz, whereb,(0,z) =
(n+1)/n)A 1= ((n—1)/n\) <t <1,andb,(0,2) =0,0 <z <1—((n—1)/n)\).
First, observe thab/(0,1/u) = (n? — 1)/n? < 1 for alln > 1. Second, observe that we
have0 < BS(0,y)—B,(0,y) < 1/nfor ally andn. Hence,B,,(0,1/pn) < B{(0,1/u) < 1
for all n > 1. NeverthelessB,(0,) — B(0,-) asn — oo. On the other hand, consider a
deterministic arrival process with rate\, i.e., with N,,(t) = [n At|, ¢ > 0,n > 1. Then
Sn(t) = [(n+1)At] > N,(t) for0 <t < (n—1)/nA. SinceB,(0,1/u) < n, the system
is underloaded fop < t < 1/\. However,N,,(1/)\) = n. Hence,T,, = T)f = 1/ for all

n > 1, in contrast ta* = 7™ = 0. A similar example can be constructed3f0, 1/u) < 1

and condition (5.15) is not imposed; see Appendix D.8.

5.4 TheG/D/s+ GI Fluid Queue

We now study the&~/D/s + G1 fluid queue. The correspondirtg /G /s, + G1 model,
having time-varying arrival rated;), time-varying staffing{;) and a general service-time
distribution (1) was studied in Chapter 2. Here we restrict attention to teorirrival
rate A\ and constant staffing, although the model can easily be extended to allow these
functions to be time-varying.

Paralleling t055.4, we define the total inpui(¢), departure rate(t), total outputS(t),
total fluid abandoned\(¢), fluid in queue (service) that has been in queue (servicejtfor
mostz B(t, x) (Q(t, x)), total quanty of fluidX (¢), fluid density in queue (service)t, x)
(b(t, z)), and the boundary of waiting time(¢), in the identical way as i§5.4. This model

has constant staffingt) = s.
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We assume Assumptions 2.1-2.5 are satisfied. In additiormalee the following as-
sumptions.

Because the service time is deterministic, each quantumaidftiiat enters service stays
in service for timel /. before leaving the system. The total service completiamattime
t is the density of fluid that has been in service f@p.. That is also the rate into service

1/p time units before, i.e.,
o(t)=0b(t,1/pu) =b(t —1/u,0), t>0. (5.24)
Let E(t) be the amount of fluid to enter service[in¢]; then
t
E(t) E/ b(u,0)du, t>0, (5.25)
0

whereb(t, 0) is the rate fluid enters service at timeThe rate fluid enters service depends
on whether the system is underloaded or overloaded. If teesyis underloaded, then
the external input directly enters service; if the systeovisrloaded, then the fluid to enter
service is determined by the rate that service capacityrhesa@vailable at timg which is
the departure rate(t), because the total fluid content in servigé) = s does not change
att.

Since the service discipline is FCFS, fluid leaves the quelenter service from the
right boundary ofq(¢, z). The fluid content densitieg and b satisfy the following two
fundamental evolution equations. (Recall that the se#tifoe ccdf isG(z) = 1{o<z<1/,}-)

Paralleling (2.6), we have the following fundamental etiolu equations.
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Assumption 5.4 (fundamental evolution equationBor ¢t > 0, x > 0 andu > 0,

gt +u,z+u) = q(t,x)%, 0<z<wt), (5.26)
b(t +u,r + u) = b(t, x)% = b(t, x) 1{$+u§1/u}' (527)

We assume that all assumptions in this section are in forcaithout the chapter.

5.5 Performance of theG/D/s + G1 Fluid Queue

In Chapter 2 we showed how the system performance expressedevbasic functions
(b, g, w,v) depends on the model data, s, i, F',b(0, -), q(0, -)), for the time-varying fluid
models, i.e., forG,/GI/s; + GI and G,/M,/s, + GI,. From the basic performance
four-tuple (b, ¢, w,v), we easily compute the associated vector of performanaetituns
(B,Q,B,Q,X,0,5,a, A, E) via the definitions ir§5.4. We now establish similar results
for the basic function$b, ¢, w, v) of theG/D /s + GI model.

The service content densityis elementary within each interval that the system is ei-
ther entirely underloaded or entirely overloaded. The darafions occur when there are
changes from one regime to the other. We state basic reaults$si section and others in
the next section. The results here provide the basis for factefe algorithm, assuming
that there are only finitely many changes between undertbadd overloaded regimes in

each interval0, 7', for which we give a sufficient condition at the end of thistget

Theorem 5.3 (service content in the underloaded caBer the G/ D/s + G1I fluid model
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with unlimited service capacitys = oo), starting at timeD,

b(t,z) = 00,2 —1t) Ljoctca<i/m + A L{o<a<i/p o<t} (5.28)

1/p A
. w w

If, instead, a finite-capacity system starts underloadeelntthe same formulas apply over
the interval[0, T"), whereT = inf {t > 0 : B(t) > s}, with 7' = oo if the infimum is never
obtained. Hence(t,-),b(-,z), B € C, forall t > 0 andx > 0, for ¢ in the underloaded
interval.

Proof. To show the first relation, note thatt, z) = 0 for all z > 1/4 because the service
time is exactlyl /p. If 0 <t < 1/p, b(t,z) = b(0,x —t) fort < x < 1/pandb(t,xz) = A

foro0 <z <t Ift > 1/u, then all fluid that was in service at time O is gone, hence

b(t,x) = Nif 0 <z < 1/u. Simply integrating the first relation gives the second. O

Corollary 5.2 (reaches steady state at tig:) If the system is entirely underloaded, then
the performance reaches steady state by timewith o(t) = b(t,z) =\, 0 <z < 1/u

andt > 1/p.

The periodic behavior observed in the overloaded numeexaimples is mostly ex-

plained by the following theorem and the subsequent Cayolie.

Theorem 5.4 (service content in the overloaded cpBer theG/D /s + G1I fluid model in
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an overloaded intervalB(t) = s and

b(t,x) = (0,2 —1t) Ljoctca<iyu

1 t—x
—|—b (0, p — (t - l’) + %) : 1{0§x§1/u, x<t}> (529)

where| x| is the integer part of a real number Hencep(t,-),b(-,z), B € C,forallt > 0
andx > 0 in an overloaded interval.

Proof. Noteb(t,z) = Oforallz > 1/u. If 0 < ¢t < 1/u, b(t,x) = b0,z — t) for
t<ax<1/ub(t,x)=00t—20)=0c(t—x)=00,1/p—(t—2x))for0 <z <t If
t>1/u,thent —z > 0. LetN = |(t — x)u), we have) <t —x — N/u < 1/u. Hence
b(t,z) =b(t—z,0) =0c(t—z) =0c(t—x—N/u) =0b(0,1/u—(t—x— N/un)). Moreover,
simple calculation by integrating (5.29) oveverifies that indeed®(t) = fol/“ b(t,x)dx =

S. O

Corollary 5.3 (periodic performance in service starts at timef B(t) = s forall ¢t > 0,
then the density is either stationary or in a PSS starting at tinde It is stationary if

b(0,x) = sp, 0 < x < 1/u. Otherwise it is in a PSS with

for0 <ax<1/p,0<t<1/pandk > 0.

Corollary 5.4 (overall smoothness for the service conjdfthe system changes regimes
only finitely often in the intervdD, T, thenb(t, ), b(-,x), B € C, forall t,0 < ¢ < T,

andz > 0.
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TheG/D/s + GI model differs from the=,/GI/s; + GI model in Chapter 2 in the
service facility, but not in the queue. Therefore, the dymaof ¢, w andv are the same.
Their dynamics are described by Proposition 2.6, Corolkagy Theorem 2.3, 2.5 and 2.6.
Similarly, the regime termination criterion are charaizted by that in Chapter 2.

We now provide a sufficient condition for there to be only Bhytmany switches be-
tween overloaded and underloaded intervals in any boundedval[0, 7']. To do so, we

use a function involving the model elementandb(0, z), 0 < = < 1/u. In particular, let

((z)=0(x) = A=0b0,1/p—2z) — A\

Let D, be the set of discontinuities gfin [0,1/u], let Z; = {z € [0,1/u] : {(x) = 0} be

the zero set of, and letZ;, be a subset of,, defined by
Zi={r € Z::Pe>0suchthat(y) =0forally € (z — e,z +¢)}
The subseg, excludes those pointse [0, 1/] such that (x) = 0 for z € (a, b).

Let S be the total number of regime-switching (between overldadel underloaded)

points in[0, 7] as in Chapters 2-3. For any sétlet | A| be the cardinality ofA.

Theorem 5.5 (relating switches to zeros and discontinuities(pfFor any interval[0, 7]

withT > 1/p,

S| < [Tul(12] + [De| + 1), (5.30)

where[z] is least integer greater than or equal io
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Remark 5.1 (tightness of the bound in Theorem FT® show that the bound in Theorem
5.5 is tight, consider & /D /s + GI fluid queue in[0,7] = [0,2/3y| that is initially
critically loaded, i.e.,.B(0) = s andQ(0) = 0, with b(0,x) = 2 s - 1{1/9u<2<2/3,) and
A= 1.5ps. Weknowo (t) = b(0,1/pu—1t) = 2p15- Lio<i<1/2,3- HENCEB' (1) = A—0 (1) =
—0.50 s - Ljo<u<iyony + 1.50s - 11 ou<i<2/3,3, Which implies thatB(t) = (s — 0.5pust) -
Lio<t<ijouy + 15105t 141 /9,<1<0/3,3- Therefore the system is underloadeddir2 /3] and
becomes critically loaded againtat 2/3u. In this case the bound in Theorem 5.5 is tight
becauseV = [2/3| +1 =1, |D;| = 1, |Z;] = 0 and|Sr| = 2, where the two switching

points are) and2 /3.

Assumption 5.5 (controlling the number of switchg$or ¢ > 0, |Z;| < oo, so that
there are only finitely many switches between overloadedardoaded intervals in any

bounded subinterval.

We assume that Assumption 5.5 is in force throughout thetehap

Remark 5.2 (an algorithm These results yield an efficient algorithm to compute the ba-
sic performance four tupl@, ¢, w, v). First, we can computigt, =) directly via Theorems
5.3 and 5.4. We computgdirectly from Proposition 2.6. We then compute the BWT
by solving the ODE in Theorem 2.3. The proof of Theorem 2.5 ihma@ter 2 provides
an elementary algorithm to computeoncew has been computed. Theorem 6 of Chap-
ter 2 shows that satisfies its own ODE under additional regularity condisiomheorem

5.3 and 5.3 specify how to switch between alternating oeeldol and underloaded inter-
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vals. Assumption 5.5 ensures that the total number of sesdietween underloaded and

overloaded intervals is finite.

5.6 The Fluid Model Eventually Always Overloaded

For the rest of this chapter, we assume that the fluid arratalx exceeds the maximum

possible long-run average service rate so thatp = \/su > 1.

Assumption 5.6 (p > 1) A > spu.

We say that the service capacity (and thus the system) isoawterd at time if B(t) =
s. In this section we describe the fluid density in servicé& theG /D /n+ G fluid model
assuming that there exists a finite time after which the systitys overloaded; lat* be

the first such time, i.e.,
T"=inf{t >0:B(u)=s forall u>t}, (5.31)

with 7* = oo if there exists no such time.

We also provide a sufficient condition f@r* to be finite. We show that the service
densityb reaches a PSS at tin¥e*. In the next two sections we use this assumption to
show that the queue performance (e(@.t) and«(t)) converges to a PSS after tirfi&.

(These auxiliary performance functions typically do n@tale PSS in finite time.)

Assumption 5.7 (a time after which the system remains overlogdeor 7 defined in

(5.31) T* < co.
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Assumption 5.7 is very useful because it identifies the titnetach the service fluid

densityb reaches a PSS. The following is a consequence of Theorem& @aollary 5.3.

Corollary 5.5 (a PSS fom starting at7™*) Under AssumptioB.7, the service fluid density

b either reaches steady state or a PSS at tiffigi.e.,
b((n/p)+t,z)=>0b(tzx), n>1, t>T" 0<z<1/pu.

A steady state is achieved if and only(if™, =) = su, 0 < =z < 1/p.

In applications it is not necessary to identify; it suffices to identifyanytime ¢ with
t > T*. Corollary 5.5 implies thab is in a PSS starting at any time> 7*. We now
provide a sufficient condition for Assumption 5.7. To do sttt be the time that the

service facilityfirst becomes full; i.e.,

t* = inf {tzO:)\t+B(O)—/ta(x)dx:$}. (5.32)
0

If the system is initially overloaded, thef = 0. Necessarily* < 1/u, because no new
input during the intervgl, 1/] can depart in that interval and 1u > s, sincep = \/su >

1. Define a class of initial service densities
1/p
ix =9 0(0,-) 1 B(0) :/ b(0,2) =5, b0,z —t") <\ t"<ax<1/u;.
0

Theorem 5.6 (a sufficient condition for Assumption $.17 (0, -) € B ,, then Assumption

5.7is satisfied with/™ = ¢* for T in (5.31)andt* in (5.32)
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Proof. If t* = 0,i.e.,B(0) = sandb(0,z) < A\, 0 < z < 1/u, then new fluid will arrive in
the system at least as fast as the fluid is departing, thraughe interval0, 1/u]. Hence,
a full service facility is maintained throughout the inteiN0, 1/1]. Hence fluid enters
service immediately replacing all departing fluid. (Thisdlwill enter from the head of
the queue if the queue is not empty, but that is not importarit f Thus, the service facility
remains full forever.

If t* > 0, thenB(0) < s, so that new fluid will enter service from outside at ratentil

the service facility becomes full &. We have

t*=inf{t >0: Xt + B(0,1/p—t) = s}, (5.33)

following from (5.32) and Theorem 5.3. Sing@, z) < A for t* < x < 1/pu, the system
then reaches the first case starting“aso we can apply the previous analysis to this case.
O

Note that the condition of Theorem 5.6 is satisfied in the commase in which the
system starts out empty. 5.8 we will describe the system performance in detail in that
special case. Also note that we can apply Theorem 5.6 to #te sf the system at any
finite time ¢, not just at time). In particular, we can apply the algorithm in Remark 5.2
over some finite intervgD, t] and then check to see if the conditions of Theorem 5.6 are

satisfied at time.

5.7 Structural Results for the Queue Performance

In this section we focus on the performance related to thaegirean overloaded /D /s -+
G1 fluid model withp > 1, thus showing how we can exploit Assumptions 5.6 and 5.7

in the previous section. In this section we assume that the dlueue is overloaded for
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all t > 0. We present four structural results: (i) comparison, (ipdchitz continuity,
(iif) asymptotic loss of memory (ALOM) and (iv) uniform bodadness. The proofs of
Theorems 5.7-5.10 are also given in Appendix D.3.)

Our comparison result establishes an ordering of the pegnce functions given an

assumed ordering for the model data functions.

Theorem 5.7 (comparison of fluid content in queue for the overloadedD /s + GI
mode) Consider twoG/D/s + GI fluid models with common staffing functienser-
vice timel /u, abandonment cdf' and initial fluid density in servicé(0, -). Assume both
queues are overloaded for all > 0 (By(t) = Ba(t) = s). If ¢1(0,-) < ¢2(0,-) and

)\1 < )\2, then

(Q1,q1, 00, w1, v1) < (Q2, ¢2, A2, Wa, Va).

For an integrable real-valued functieron [0, o), let ||z||, = [, |=(t)|dt. Also, let

b= inf b(0,2), b= sup b0, x),

0<a<1/p 0<e<1/p
hi, = O<inf he(z), hh = sup hp(z).
<zr<oo 0<z<oo

Our Lipschitz continuity result also applies to functiorsor it, we use the uniform

norm on real-valued functions on the interf@I7'|: ||x||r = sup {|z(t)| : 0 <t < T'}.

Theorem 5.8 (Lipschitz continuity of fluid content in queue for the ovadedG/D/s +
GI mode) Consider aG/D/s + G1 fluid model with arrival rate\, staffing functions,

service timel /i, abandonment cdf. Assume the queue is overloaded forzal> 0.
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Then the function mapping\, Q(0)) in R? into (Q,«) in C2 all over [0,T7] is Lipschitz

continuous. In particular,

Q1 — Qall7 < T|A — Ao +|Q1(0) — Q2(0)]

< (IVT)(JA = A2| V[Q1(0) — Q2(0))), (5.34)
lor —asllr < hLIQ1 — Q2llr, (5.35)
o=l = | [ " a(a)de - / " gl 1) )

S T‘)\l — )\2‘ + qu(O, ) — QQ(O, )Hl (536)

Theorem 5.9 (ALOM of fluid content in queue for the overload@dD /s + GI mode)
Consider two initially overloaded:/D/s + G1 fluid models 8;(0) = B»(0) = s). Sup-

pose these two models have common arrival patstaffing functiors, service timel /.,

abandonment cdf’, initial fluid densities in servicé(0, =), but different initial fluid den

sities in queuey; (0, ).

(a) If both queues are overloaded for alb> 0, then

AQ(T) = |lg(T,") — o(T, )|y < Cre ™7, (5.37)

Aa(T) < hLCy e_hf”T,



whereC; = C1(q1(0, -), ¢2(0, -)) is the constant

Gy = /OOO([Ql(va)VQZ(()»x)] = 19010, 2) A ¢2(0, )] d

< Q1(0) + Q2(0).

In addition, ifb* > 0, then forT > T*,

AQ(T)
Aull) = X E(wy(T) V s (T))
< CLAQ() < (CoCy)e T,
where

. _ @1(0) +Q2(0)
T = - 7

_[pt ) ,

C, = F {%v (w1<0)Vw2(o>+ CHORSAD

(b) If, in addition, the initial densities in queue are ordereg b

¢1(0,x) < g2(0,2) forall z >0,

then@,(t) < Q(t) forall ¢ > 0,

_ Q)

AQ'(T) <0 and AQ(T) < AL T
F

, 1IT'>0,

)]
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(5.38)

(5.39)

(5.40)

(5.41)

(5.42)
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so that

AQ(T) < e " TAQ(D), Aa(T) < hLAQ(T). (5.43)

For the following boundedness result, we make a strongemgstson on the initial
fluid density and the abandonment hazard rate in the moda] daquiring that they be

uniformly bounded above and below.

Assumption 5.8 (uniformly bounded initial fluid density and hazard raféhe staffing and

the rates in the model data are uniformly bounded above af@hhee.,

0<bt<bl <oo, 0<hyp<hl<oo.

Assumption 5.8 strengthens Assumptions 2.1 and 3.6. Weresthat this additional as-

sumption is in force for the remainder of the chapter.

Theorem 5.10 (boundednegsConsider the&/D/s + G1 fluid queue that is overloaded
for all ¢t > 0. Under Assumptio.8 and the previous the assumptions, all performance

functions are uniformly bounded. In particular,

B(t) = s, bt,z) <b0,2)V,

2
=
A

<i> vV Q(0), q(t,z) <q(0,2) VA,

()4 (20 ).
B A

=4
A

o
=
IN

and o(t) = b(t,0) <b'.
F
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5.8 The Full Performance Under Assumption 5.7

In §5.6 we saw that the fluid density in serviégreaches steady state or a PSS at tithe
if the system remains overloaded after tiffig as stipulated in Assumption 5.7. We now
exploit the structural results in the previous section tectibe the full queue performance,
given Assumption 5.7. In the next section we show that Asgionb.7 is not always
satisfied.

As in §4.5 of Chapter 4, we consider the performance vector attifg) defined by
(4.39). If the initial condition”(0) can be chosen so th&P(¢) : t > 0} is a periodic
function of ¢ with period, then this initial condition produces a PSS. If not, we want t
show that the performance converges to a PS8s time evolves. We follow our discussion
on PSS as i§4.5 of Chapter 4. To discuss continuity and convergencedmtmain ofp,
we use norm|P(t)|| defined by (4.40) ir84.5.

We primarily want to establish convergence to a PSS, but we tkat the case of
stationary performance, which arises whgfi™, =) = su, 0 < = < 1/u. Given that
stationaryb, the remaining stationary performance can be obtained &éydhsoning in

Theorem 4.4 of Chapter 4. The remaining stationary perfan@aneasures are

B = s, a=A—su, w=F"(su/\),

QR = )\/pr(x)dx, and q(z)=\XF(z), 0<z<w. (5.44)

Theorem 5.11 (PSS for the overloaded/D/s + G1I fluid mode) Suppose that Assump-

tion 5.7 is satisfied in theG/D/s + GI fluid model withp > 1. If b(T*, z) = spu,
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0 < x < 1/u, then there exists a constant functiBn as in(5.44)such that
[ (P) —P*|| -0 as n — oo. (5.45)

for all 7 > 0. Otherwise, the fluid performand@e is asymptotically periodic with period

1/p, i.e., there exists a periodic functigR* with period1/u such that(5.45) holds for
T=1/p.

Proof. We can treat the two cases together by the same argument; lwelisouss the
second case. We must show th&((n/u) + -) — P*(-)|| — 0 asn — oo. However, since
P* is periodic anci[fg’}L(P) involves the shift operator, it suffices to prove th&((n/u) +

) = P*()|li/n — 0 @sn — oo, where the supremum in the norm is over the finite interval
0,1/}, i.e., for||P||1/, = sup {|P(¢)| : 0 <t < 1/u}. Thatin turnis a form of the norm
in Theorem 3.6.

If 7 > 0, we can simply move the origin t6*. Therefore, it remains to consider the
case where the system is initially overloaded, and remaitiseseafter. In that casg(t, z)
ando(t) = b(t,0) are periodic with period /u starting from¢ = 0, by Theorem 5.4 and
Corollary 5.3.

Next, suppose that(0, z) = 0 for z > 0, i.e., the system is initially critically loaded.
By Theorem 5.7, the shift operatdr, ,,, is a monotone operator dA((n/u) + -) for anyn,
because we can think of the performance/ ., -) as alternative initial conditions for the
model at time 0, since the model is periodic with perig@ (A ands are constant(¢, 0)
is periodic with periodl /i by Theorem 5.4 and Corollary 5.3. Therefore, the sequence of
system performance functio®0 + -), P((1/u) + -), P((2/1) + +), . .. (at discrete time
0,1/w,2/u,...)is monotonically non-decreasing. Since the performasedsio bounded,

by Theorem 5.10, there is a finite limit for the sequefig¥(n/u) + -)} asn — oo. By
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Theorem 3.6, the operator is continuous as well, which iespihat\Ifm(P) is convergent
in the specified norm as — oo. Hence the limit is a PSS. By the ALOM property in

Theorem 5.9, we get the same limit for all other initial fluiehdities in queue(0,-). O

Remark 5.3 (computation Given the rapid convergence, it usually is not difficult torco
pute the PSS associated with any given initial conditionilnpsy applying the algorithm
with that initial condition. We can then verify that the catieh in Theorem 5.6 is satisfied
after some finite time, so that we kndfif and we know the PSS for the fluid density in
serviceb. We then can observe the convergence of the other perfoemaaasures. How-
ever, the PSS for the remaining performance functions cemla determined in another
way, givenT™* andb. First, if the abandonment distribution is exponentiagrttanalytic
expressions are available, see Corollary 5.8. Secondhéardse of non-exponential aban-
donment, consider a cyc|e, 1 /] of the PSS. For each candidaie> 0, we numerically
solve the ODE (2.31) if0, 1/ ] with w(0) = @w andb(t,0) = b(T™*, 1/ — t) and check if
w(l/p) = w. Sincew > 0 is our only unknown variable, we shall do a searchd@or 0.

Theorem 5.11 guarantees the existence and uniquenessha gue 0.

Remark 5.4 (different initial conditiong Theorems 5.6 and 5.11 provide sufficient condi-
tions for Assumption 5.7 to hold, and for the performancecfiom to converge to a PSS.
That PSS depends strongly on the fluid density in servieg¢ the timel™ after which the
system remains overloaded. In Appendix D.4 we show that déigrent PSS’s can result

by considering two different initial conditions for the ewple in§5.1.

We now describe the time-average performance over a pergydie. Some average
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performance measures are independent of the initial donditand thus agree with the

stationary performance, whereas others are not.

Corollary 5.6 (average performance over a cyglBuppose that AssumptiériZ holds for
aG/D/s + GI fluid queue and consider the PSS beginning@ at The average abandon-

ment ratex and departure rate over a cycl€0, 7| = [0, 1/u] of the PSS are

a = 1/ at)dt = a*=N—pus (5.46)
T Jo
1 T

o= —/ ot)ydt = o =ps, (5.47)
T Jo

If, in addition, the abandonment distribution is exponahtihen

__1 T . * v —0x
Q:;/O Q)dt = Q :/0 Ne " da. (5.48)

wherea*, o*, Q* andw* = F~!(1/p) are the stationary abandonment and departure rates,
gueue length and BWT given({5.44)

Proof. First, (5.48) follows from (5.46) wheR'(z) = ¢, becausex(t) = 6 Q(t), which

implies

which is equal to the right hand side of (5.48), as can be eerifiy simple calculation.
Since the system is overloaded for alb> T, thenb(¢, x) ando(t) are periodic for all

t > T*, by Theorem 5.4 and Corollary 5.3. Therefore, consider &ggcl/u] of the PSS,
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we must have(t,0) = o(t) = b(1",1/p — t) for someT” > T*. Hence, (5.47) follows
becausefol/“ b(T", 1/ —t)dt = B(T") = s.

To show (5.46), flow conservation of the queue implies that
Q'(t)=X—a(t)—bt,0)=X—a(t)—a(t), for0<t<1/p.
Integrating both sides fromito 1/, yields that

O:Q(l/u)—Q(O):)\T—/OToz(t)dt—/OTa(t)dt:AT—/OToz(t)dt—,uST,

which implies (5.46). O

Remark 5.5 (average of other performance functigrisxcept fora anda, the average
of other performance functions in PSS typically does noeagwrith the corresponding
stationary values. We illustrate with an example in Appgmal5, considering Erlang and
hyperexponential abandonment cdf’s. In our numerical gaswe found that the average
BWT w is consistently greater than the stationary valie In contrast the averagg is
greater (less) than or equal to the stationary vgltieshen the abandonment-time chfis
more (less) variable than exponential. It remains to estasLpporting theorems.

A common case occurs when the system is initially empty. Qimsly this initial con-

dition belongs to clasB; ,. We next establish results for this special case.

Corollary 5.7 (PSS for the initially empt§s / D / s+G1 fluid mode) Consider the /D /s+
G1 fluid model withp > 1. If the system is initially empty, then the performariteés

asymptotically periodic and converges to a unique PS8ith periodr = 1/p. In partic-
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ular, B(t) = s, b(t, =) ando(t) are periodic afters/\,

b(t + k/p, x)

A Lp<a<irs/a)s if ﬁ <t<
o(t+k/p)

b(t + k:/u, 0) =\ 1{1/u<t§1/u+8/>\}v fork > 0.

Performance functions in queue converge to a PSS with tlmwiolg structure:

qit +k/p,x) — AF(2) - Lo<o<uwr @),
QUt+k/u) —
alt+k/p) —

w(t+k/p) — w*(t), ask— oo, (5.49)

wherew*(t) = w + ¢ (linear) for s/A < t < 1/u for somew > 0; w*(t) solves ODE
w'(t)=1—1/F(w(t)) for1/u<t<1/p+s/Awithw(s/A+ 1/p) = .

Proof. Since the system is initially empty, it becomes overloadddee t* = s/A < 1/u
and stays overloaded for all> t* by Theorem 5.6. Hence, the formulas fofollow
from Theorem 5.4 and Corollary 5.3. The convergence of opleeformance functions
follows from (5.49). Therefore, it remains to show (5.49)nc® o (t) = b(¢,0) = 0 for
(k—1)/pn+s/A <t <k/u the BWT ODE (2.31) in Theorem 2.3 implies thal(t) = 1
so thatw(t) is linear with slope 1 fofk — 1)/ + s/X <t < k/p. O
We now give explicit expressions for the PSS of theD /s + M fluid queue that has

exponential abandonment and is initially empty. We givegtaof in Appendix D.6.
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Corollary 5.8 (explicit expression for the PSS of th& D /s + M fluid queue starting
empty Consider the~ /D /s+ M fluid queue starting out empty, with arrival rakeservice
time 1/, staffings, exponential abandonment with rateandp = \/sp > 1. The system
becomes overloaded and remains so at tifne- 7* = s/\. In the PSS (starting at time
0) the system is overloaded with performance functions givémo parts([0, 1/ — s/

and(1/u—s/A 1/u]) ofacycled <t <1/u:

(a) In the first part of the PSS cycle, for< ¢ < 1/p — s/,

w(t) = t+b, (5.50)
A 1— 6—68/)\ B
Q) = 7 {1 — <71 — = ) e et} 7 (5.51)
b(t,z) = A ly<a<irs/n)s

o(t) = b(t,0) =0,

where

=%
Il

1 1—e0m
w(0) =w(l/p) = i log (m) > 0. (5.52)



210

(b) Inthe second part of the PSS cycle, fop — s/A <t < 1/pu,

1 1 — f(/n=s/X) B
A [f0=s/N 1\
Q(t) - 5 ( 1-— e—G/H ) € et’ (554)

b(t,x) = A L{o<u<i—1/pts/NUft<a<1/u}s

o(t) = b(t,0)= A\
In addition, for0 < ¢ < 1/p,
B(t) = S, Q(tv ZE') = )\F(ZIZ’) : 1{0§x§w(t)}a a(t) = QQ(t)a

(c) If we consider a cyclél /u — w, 2/ — w], then the PWT

1 0(1/p—s/A) _ 1
U(t) = 5 log (]. + (66/u6]-_w) . e_gt) s (555)

forl/p—w<t<2/pu—wandvjumps a2/ — w to
v(2/p—w)=v(l/p—w)=w+1/pu— s/

Remark 5.6 Since we have an explicit expression fg(t), in which it is an exponential

function in both (a) and (b), simple calculation directlyifies (5.48) in Corollary 5.6.
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5.9 General Initial Conditions

In §5.7 and35.8, we provided a quite complete description of systemoperénce if there
exists a finite tim@™ such that the system is overloaded fortalt 7. Moreover, Theorem
5.6 provides widely applicable conditions for the tiffieto coincide witht*, the first time

t that B(t) = s, which necessarily is less than or equallfa.. More generally, Theorem
5.6 can be applied to show that the tiffieexists subsequently after applying the numerical
algorithm to compute the performance over an initial ind&rigecause we can check to see
if the conditions in Theorem 5.6 hold after some finite time.

Nevertheless, we now show that in general there need ndtakisite time such that
the system remains overloaded thereafter, 7€ can bexc. We have seen that the system
necessarily becomes overloaded for a first tifmerith ¢t* < 1/u. However, withp > 1,
it is possible for the the system to switch between overldasied underloaded regimes

infinitely often.

Theorem 5.12 There need not exist a finite tirfi& such thatB(¢) = s forall t > T™*.

Proof. We provide an explicit counterexample. We considé¥/& /s + M fluid queue

with A = 1.2, u = s = 1, 0 = 2. Let the queue be initially overloaded with

b(O, IL’) = 2- 1{1/2§x§1} SO thatB(O) =s=1,

w(0) = 2 and ¢(0,2) = Xe " Lpcpcwoy = 2€ 2" - Ljgcp<ay.

We can apply mathematical induction to show thdt) = s andB(n + 1/2) < B(n +

3/2) < sforalln > 1. We elaborate in Appendix D.7. O

Remark 5.7 (The influence of(0, z)) It is important to note that the initial queue fluid

densityq(0, -) plays an important role, both in the counterexample abodérathe system
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performance more generally. Foe> 7%, ¢(t, -) plays only a minor role, because then we
have ALOM for the queue performance, by virtue of Theorem F®wever, the initial
queue fluid density(0, -) plays an important role in determiningif < oo and the form
of the PSS. Ir§D.7 we consider the above example with the same initial fl@dsity in
service but different initial fluid in queuen(0) = 0.2 instead ofw(0) = 2). There we
show that this different value far(0) (initial fluid in queue) completely changes both the
transient evolution of performance functions and the stmecof the PSS.

We now obtain additional results for general initial coiatis. To do so, lef\(™ be the

set of time points at which the rate of fluid entering serv&cequal to the arrival rate in the

n' cycle[(n —1)/u,n/ul, i.e.,

A ={t€[0,1/pu]: b(t+ (n—1)/p,0) = A} (5.56)

For the example in the proof of Theorem 5.1\27) = [t&”), té")] (see Appendix D.7). Since
¢{" is strictly decreasing and” is strictly increasing, we havé™ C A®+D_ |n general
A™ may not be a single closed interval as in this case, neveghéhe monotonicity still

holds in general.

Theorem 5.13 (monotone convergence of the s&t®)

(a) The sequenc€A™ : n > 1} is monotonically increasing, i.e.,

A™ C ACHD foralln > 1.
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(b) The sequencéA™ : n > 1} converges to a bounded set, i.e.,

U A = A% C [0, 1/u].

Proof. The convergence in (b) directly follows from (a) becanse C [0, 1/y] and is thus
bounded for alh, > 1. To show (a), consider antyc A", we haveh(t+(n—1)/pu,0) = A,
which implies thato (t + n/p) = b(t + (n — 1)/p,0) = A. If the system is overloaded
at timet + n/pu, thenb(t +n/p,0) = o(t + n/u) = X by flow conservation of fluid in
service; if the system is underloaded at titnen /1, then we again havgt +n/u, 0) = A
because external arrival flows into service directly. Tfees b(t + n/u,0) = X implies
thatt € A"+, |
We now show that convergence to the stationary point of thd flensity in service

occursonly if the initial fluid density is that stationary point.

Theorem 5.14 (convergence to the unique stationary poiihe only initial fluid density
in serviceb(0, -) for whichb(t, z) — b*(x) = sp, 0 < & < 1/u, ast — o is the stationary

pointb* itself.

Proof. First the conclusion is clearly true whenevB(t) = s for all ¢ > 0, because
the densityb((n/pn), x) = b(0,2),0 < x < 1/uforall n > 1. We shall show that for
anyb(0, x) that is different from the steady state, i:®@axo<,<1/, |0(0, ) — 5| > 0, there
exists & <t < 1/usuchthab(t+n/u,0) # psforalln > 0sothat(t+n/u,0) - ws.
In this case there must existia< ¢ < 1/u such thafu s # b(0,t) = b(1/u — t,0). If the
system is overloaded at timg/;, — ¢ for all n > 1, thenb(n/p—1t,0) = b(1/u—1t,0) # us
for all n > 1, by Theorem 5.4 and Corollary 5.3. If the system is undeedaal time

n'/p — t for somen’ > 1, then we must havé(rn'/u — t,0) = A, which implies that
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b(n/u —t,0) = X for all n > »n’, following from Theorem 5.13 (because s&tV is
increasing). Therefore, we concludé/p — ¢,0) - ps asn — oo. In particular,
b(n/p—1t,0) — ps| 2 [6(0,t) — ps| A (A= ps). O

We now establish convergencetdt, -) to a PSS for general initial conditions.

Theorem 5.15 (PSS in serviceConsider theG/D/s + GI fluid queue with arbitrary

initial conditionb(0, -). For0 <t < 1/u, asn — oo,

bt +n/p,0) — b>(t,0) =X Iyeney +0(0,1 — 1) - Lygacey,
bt +n/p,x) — b2t —2,0) Ljocacy + 070 — 2+ 1/11,0) - Lypcu<iyjpy

o(t+n/u) — b2(t0).

Proof. First, itis easy to see that the third relation follows frdra second(letting = 1/y)
and the second follows from the first. To establish the fisttien, consided < ¢ < 1/p.
If the system is overloaded at- n/u, 0 for all n > 0, thenb(t + n/u,0) = b(0,1 — ¢)
for all n > 0 and thus converges tg0,1 — ¢) asn — oo, following from Theorem 5.4
and Corollary 5.3. If the system is underloaded &t »n'/u,0 for somen’ > 0, then
b(t +n'/u,0) = A, which impliesb(t +n/u,0) = A for alln > n/, by Theorem 5.13. O
We now show that the system is fully overloaded in each PSS) gthe PSS is only
approached in the limit. For the proof, define the sets in wiie system is overloaded

(including critically loaded) and underloaded in a cycleéhwd PSS as

O°={0<t<1/pu:B(t)=s} and U* ={0<t<1/u:B(t) < s}.
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Theorem 5.16 (overloaded in each PS%ach PSS for thé&/D/s + GI fluid model is

overloaded everywhere, i.e., inacyfel/u], O = [0,1/u] andU = ¢.

Proof. First, it is easy to see th&@ cannot bed), because > 1. Suppose there exists a
0 <t < 1/p such that the system is underloaded,ahen there must exists a switching
time0 < ¢ < 1/u at which the system switches from overloaded to underloagigithe,
which implies that(¢,0) = A < o(t). This will makeo(t + 1/u) = b(t,0) = X # o(t).

Hence, this contradicts with our assumption that the systenitially in PSS. O

5.10 Proofs

In this section we present three postponed longer proofs.

Proof of Theorem 5.1 The busy cycle is a random sum of i.i.d. interarrival times] 8o
necessarily has a nonlattice distribution because theaimieal time cdf is nonlattice; see
Proposition X.3.2 of [2]. Hence it suffices to focus on the mbasy cycle. We stochasti-
cally bound a busy cycle of the&1/D /n + G1I system above and below by quantities that
are easier to analyze.

We start with the upper bound. For the upper bound, we use plinguwconstruction
to produce sample-path stochastic order, as in [2, 40, 7&]c@vstruct both systems on a
common probability space so that the sample paths are aréepel while each process
separately has its own proper distribution. We give bothesys the same arrival process
(the same sample paths). For the upper bound; (€t be the number of customers in the
gueue of the associated system in which no servers are wprkhre stochastic proce3s
behaves as the number in system i6'8/G1 /oo model with interarrival-time cdfz and
service-time cdf’ (our abandonment cdf). Thent+ Y is our candidate sample path upper

bound forX. Start bothX andY with an arrival to an empty system at tifie Continue
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the sample path construction by assigning all customet®tiiar the queue in the original
“X model” abandonment times equal to the service times as$ignthe corresponding
arrival in the bounding¥” model,” both according to cdf. As a consequence, whenever a
customer completes service in the boundihgnodel, the matching customer in the original
X model customer will either have entered service or abardionthe originalX model.
Hence the sample-path order is maintained. Since the ahareld times are i.i.d., this
assignment rule does not alter the distribution of the Bses.

The key now is to observe that the busy cycles in bothXheodel and th&” model
(not counting then) will end after one more interarrival time beyond the begignof
a busy cycle of thé” process if the interarrival-time and service-time pdir A) at the
beginning of theY busy cycle satisfie§/ > 2/1 > A, which is an event, sag/, with

positive probability

p=PC)=PU>2/u>A)=PU >2/u)P(A<2/u) >0, (5.57)

by the assumption§(z) < 1 andF(z) > 0 for all z. In addition,p < 1 sinceP(A <
2/p) < 1 because we have assumed thédt) < 1 for all z. For theY model, given
the eventC, the one customer in the system at the start of the busy cyitlelepart at
time A, which is less than the time of the next arrivél, Hence, given event’, theY
busy cycle isU. On the other hand, for th& model, at this same epoch, there are at
mostn + 1 customers in the system, with at most one in queue. Givent &/eby time
1/p, all customers initially in service will have completed\see and departed. Again
given event”, by time2/u, any initially waiting customer will have entered servigeda
completed service if the customer did not abandon first. Heweiven event’, we also
haveA < 2/u, so that the customer also would have abandoned. (We ondiitheel part

of the eventC for theY model.) Thus if evenf’ occurs at the beginning of a busy cycle in
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theY model, then the current busy cycle ends in both models dfeetitmelU (which has
been conditioned to be greater thz).

Thus the busy cycl&’y for the X model is bounded above by the random sunivof
modelY busy cycles]y ;, until the event first occurs at the beginning of a busy cycle,
plus the single speciél. For theY models, these successive trials are i.i.d. because of the
regenerative structure. The key fact we now exploit is tioetfaat a busy cyclé&} of theY
process always has finite mean. For that, we can apply Coroll&d2.5 of [2] or Theorem

2.2 of [70]. We can express the finite me&fiy | as

E[ly] = pE[T¥|C]+ (1 —p)E[Ty|C]
= pE[U|U > 2/u) + (1 - p)E[Ty|C"]. (5.58)
Since,E[U] < oo, necessarily[U|U > 2/u| < oo, so that

E[Ty] - pE[UIU >2/u] _ E[Ty]
1—0p ~1-p

E[Ty|C < < 00. (5.59)
(Here we use the fact that< 1.)

Finally, we can combine the results above to conclude thakKaousy cycleTy is
stochastically bounded by a geometric random sum of i.idloen variables, each dis-
tributed ag7y |C], plus one more random variable distributed@g/ > 2/.]. Hence, we

have the bound

% + E[U|U > 2/u] < ElTy] + ElU] < 0. (5.60)

p(l—p)  PU>2/p)

E[Tx] <

(Here we use the fact that< p < 1.)

We now consider the lower bound. We obtain a simple lower Hdynobserving that
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the original (X)) system cannot empty until at least one interarrival timeeexls the service
time 1/ of that arrival. LetN' = {n > 1 : U, > 1/u}, a geometric random variable
with parametep’ = P(U > 1/u) = G(1/u). Thus the cycle tim&'x is stochastically
bounded below by a sum df — 1 i.i.d. interarrival times that are less thaniu plus
the last interarrival time that is greater thaf:.. Hence the expected cycle time must be
bounded below by
N'—1
E[Ty] > Y E[UU < 1/u+E[UU > 1/4)

i=1

1—p
= EUIU < 1/p] +1/p.

Proof of Theorem 5.2 We first establish the limit fo(B,, E,, S,) in (5.16). Since the
service times are deterministic with constant valyg, the departures (service comple-
tions) in the interval0, 1 /4] are completely determined by the initial age distribution i
service, i.e.S(t) = B(0,1/u) — B(0,1/u—t) andS,,(t) = B,(0,1/u) — B,(0,1/p—t),

n > 1. By Assumption 5.3B,,(0,-) = B(0,-) Hence we necessarily ha# = S in
D([0,1/u]), whereS is nondecreasing and continuous.

For the next step, we first do the proof in the c&®@®,1/p) = 1, i.e.,t* = T* = 0;
afterwards we reduce the other case to this one. By Assumptib, we haveV, =
A. By condition (5.14), asymptotically, the instantaneousval rate is greater than or
equal to the instantaneous service completion rate. Hémeduid entering service during
[0, 1/u] is asymptotically equivalent to the fluid completing seevice., we havel E,, —
Sulli/u = 0asn — oo, where||z||. denotes the uniform norm over the inter{@|c]. By
the convergence-together theorem, Theorem 11.4.7 of 4% £ in D([0,1/u]).

However, we can writé(1/u, x) = b(1/pn — x,0),0 <z < 1/u, sothatB(1/u, x) =

EQ/u)—E(1/p—2),0 <z < 1/u,and,similarly,B,(1/u,z) = E,(1/p)— E,(1/p—x),
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0 <z < 1/u. Thus, by above, we gé&8,,(1/u,-) = B(1/u,-) in D([0,1/u]). We then
see that the properties in Assumption 5.3 hold again attimd /.. Hence we can apply
mathematical indiction to conclude th@,, £,) = (S, E) in D? asn — oo. Since we
can represent the two parameter prodgssn terms ofE,,, we getB,, = B in Dy as well.
Since all limits are deterministic, all the limits are joioy Theorem 11.4.5 of [74]. That
establishes (5.16) whef(0,1/u) = 1.

We now consider the case in whidk(0,1/u) < 1. For the rest of the proof, let
V(t) = B(t,1/u) andV,,(t) = B,(t,1/u) with V,,(t) = n~'V,(¢). In this case, the
limiting fluid model is underloaded until tim& = 7™ in (5.33). Moreover, in this case
(unlike Example 5.1) we can establish thHgt=- t* asn — oo, exploiting condition (5.15).

We first show that, for any > 0, P(T,, > t* — ) — 1 asn — oo. SinceV is
continuous, the definition af implies that, for any > 0, there exists > 0 such that

v

#_s < 1 —e. Now observe that, for all, V,,(t) < V4(t) = V,(0) + N, (t) — S,(t).
However,||[V* — V|, = 0 forallt > 0, whereV (t) = V(0) + M\t — S(t) with V(¢) < 1
forall t < ¢*. Hence, for any > 0 ande > 0, P(||V;¥ — V||¢_s > €) — 0 asn — oo. If

v

s <l—cand|V¥—V|w_s < thenV,(t) < VU(t) < 1forallt, 0 <t < t* -4,

which implies that7,, > t* — §. Hence, we have shown that, for atiy> 0, P(7,, >
t* —0) — 1lasn — oc.

We now show that, for any > 0, P(7,, > t* + J) — 0 asn — oo. Given that we have
just shown thaP (7}, > t*—4) — 1 asn — oo, we necessarily also hayid, — N, ||;+_s; =
0, so that||V;, — V“||;-_s = 0 for V* defined above, so thdt;, — V||-_s = 0 as well for
anyd > 0. Moreover, since botk,, andV are bounded below byand above by, we can

obtain||V,, — V||~ = 0, which implies that/, (t*) = V (t*) = 1. asn — oo.

Since the limiting fluid model becomes overloaded at tifpeve can apply condition

(5.15) to conclude that there must exist 0 andn > 0 such that\o > S(t*+0)—S(t*)+n.
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Given thaty andn, define the following events:

Com = {T, >t +5}
Cin = {Vaut") <1-n/4}

Con = {Sa(t" +06) — Su(t*) > A6 —n/2}

Csn = {N,(t"+08) — No(t*) < A0 — n/4}. (5.61)

Then observe that, ,, C ¢, ,UC, ,UC} ., sothatP(Cy,,) < P(Cy,)+P(Con)+P(Csp).
However,P(C;,) — 0 asn — oo for eachi, 1 < i < 3. Hence,P(T,, > t* +0) — 0 as
n — oo. Combining the two results, we obtdif) = t* asn — oc.

We now continue to establish (5.16) in the c&%@) = B(0,1/u) < 1. The asymptotic
behavior prior to time* is easy, becausk, (t) = N,(t) for 0 <t < T, whereT,, = t*
asn — oo. Hence, we havé’,, = E'in D([0,t*]) asn — oo. For the rest of the proof, we
shift t* to the origin and apply the first part of the proof for the c&ise 0.

It now remains to establish the limit (5.20) f@p,,, A,,), for which it suffices to consider
the system after timé&", when the system is full, but the queue is empty. Hencefogh w
assume that the system is full initially with an empty queber this remaining step, we
can proceed under the assumption that, asymptoticallysehgce facility is always full

with an asymptotic rate of fluid entering service and depgrtif

b((k—=1)/p+t0)=0(k/p+1t) =bk/p,1/p—1t) =b0,1/p—1), 0<t<1/p

Now we will focus only on the queue and regard the queue@g@/ /oo model with
service times equal to the original abandonment times arehaanrival process. Service

completions in th&7 /G /oo model are to be interpreted as abandonments, while the total
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number of customers in th&/G1 /oo system is to be interpreted as the number in queue.
The arrival process for th@ /G 1 /oo system in modek is N,,(t) — E,(t), whereE,(t) is
the number of customers to enter servic@ir].

Note that this representation fails to faithfully captune briginal FCFS service disci-
pline, because new arrivals go to the end of the queue, whevstomers enter service from
the front of the queue. Instead, this representation appliectly to the last-come first-
served (LCFS) discipline. However, that is where the exptiakabandonment assumption
comes in. With exponential abandonment, the number in qugue) is independent of
the service discipline.

Given theG/GI /oo representation, we are able to directly apply FWLLN'’s efisaled
in [56]. Alternatively, we could apply [62]. Sincg,, is asymptotically equivalent to the
service completion process,, this new arrival process satisfies a FWLLN, having limit
A — S, which in general is not a linear function. However, sin¢e, x) < A for all z,

0 <z <1/u,we also haver(t) < Aforall ¢ > 0, so it has a nonnegative rate. Hence we
can prove (5.20) with (5.21) and (5.23) by applying Theor@&xisand 7.1 of [56]. To do
so, we exploit the fact that the limit of the arrival procdssrt is allowed to be nonlinear.

Finally, we complete the proof by showing (5.22) holds. Wt faxploit (5.21), which
implies that

t

e =X = b(s,0))ds

©
|
o\

| >

t
(1—e ) — e_et/ b(s,0)e’*ds. (5.62)
0

On the other hand, the ODE.32) implies that

b(t,0)

, f— _——
w (t) =1 Nefw)’

w(0) =0,
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which has a unique solution

t
w(t) =1t — 1log Q/ b(s,0)e? ds +1) . (5.63)
0 A Jo
Combining (5.22)and (5.63), we obtain (5.62).

Proof of Theorem 5.5 First consider the interval, 1/u]. The departure rate is(t) =
b(t,1/pn) = b(0,1/u —t) for 0 < t < 1/u. Since the staffing function is constantit

is necessary to have > o(t) (A < o(t)) if the system switches from underloaded (over-
loaded) to overloaded (underloaded).aConsider an underloaded interyalb] C [0, 1/ ]
wherea andb are switching points, we must hagéz) > 0 > ((b), which implies that/
changes its sign ifia, b) at least once from positive to negative. The sign changimg ca
be achieved in two cases: (i) crossing level O continuouslynfabove to below, or (ii)
jumping from above 0 to below. Thereforghas at least a zero in case (i) and a disconti-
nuity in case (ii) in intervala, b). Similar reasoning works for an overloaded interval. This
reasoning applies to all overloaded and underloaded sriais that begin and end in the
interior (0, 1/u) of the interval[0,1/4]. In addition, there are the two intervals with the
interval endpoints. Thus the number of switches exceedauh®er of internal intervals
by at mostl. LetSjy;,, be the total number of switching points i 1/.]. We have just
shown that we must haye&y 1/,)| < |D¢| + | 2] + 1.

We are done i’ = 1/u; hence assume th@t > 1/u. We continue for{ 7'u| cycles of
length1/4. Next we consider the next intervdl/ i, 2/u). We will show that the number
of switching points can be no greater than in the first intevf/&ength1 /4 just considered.
Recall that the departure rateni&) = b(¢, 1/pu) = b(t—1/p,0). LetG(t) = o(t+1/pn) —

A =0b(t0)—Xfor0 <t < 1/u. Therefore,S}1/,.2/4|, the number of switching points
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in [1/u,2/p], is totally determined by the number of zeros and discoittgsiof (,, by the
same argument as above.

We now show thatZ.,| < |Z.|. To do so, we first observe that we haye 0) = o(t)
when the system is overloaded. Hence the functignsand(,(¢) differ only when the
system is underloaded durin@ 1/.]. Consider an underloaded interyalb] C [0, 1/
wherea andb are switching points, which implies thata) > A > o(b) (((a) > 0 > ((b)).
Since the system is underloadeddnd|, we must havé(t,0) = \. In case (i) changes
its sign in(a, b) with (at least) an zero at somec Z; N (a,b). However,(, has no such
zeros inZ;, N (a, b) because,(y) = 0 for a < y < b (which yields thatz,, N (a,b) = ¢),
we have|Z,, N (a,b)| = 0 < |2, N (a,b)|, which implies that Z.,| < |Z;| counting all
underloaded intervals i, 1 /| that are in case (i).

In case (ii),¢ changes its sign ifu, b) with (at least) a jump from positive to negative.
However(, has at most two discontinuity points @&ndb) in (a, b) (because,(y) = 0
for a < y < b). Although the number of discontinuities ¢f in [a,b] may outnumber
the discontinuities of by at most 1, these two jumpgs(a—) > A to (;3(a) = X and
C2(b—) = Ato (a(b) < A) can at most contribute to one sign changédrb). In other
words,(> may have more discontinuities thanbut those extra ones are redundant. Hence,
St /p2/ul < D¢l + |26] < |De| + |2¢|. The desired bound in (5.30) is obtained by

induction on intervaln/u, (n + 1)/u}, continuing untilN = [T'u].

5.11 Conclusions

We considered the heavily loaded many-server queue witiocies abandonment and de-
terministic service times, i.e., the stochasti¢/D/n + GI model. Even though the ar-
rival rate exceeds the maximum possible service rate, thier abandonment keeps the

system stable. 135.2 we showed that the busy cycles in the stochasfi¢D/n + GI
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gueueing model constitute regeneration times, so thahasbic processes describing the
performance, such as the number of customers in the systamerge to proper steady
state distributions as time evolves for any proper init@idition.

In §5.3 we showed that a sequence®dfD /n + G I queueing systems with= \/u >
1 indexed byn satisfies a many-server heavy-traffic limit in the efficiewciven (ED)
regime, converging to a deterministic fluid model, provideat the arrival processes and
initial conditions obey functional weak laws of large nunmgoeln general, Theorem 5.2
only establishes a limit for the performance measures db#sgrthe service facility, e.g.,
B, (t,y), but those fluid limits capture the essential periodic cttera A many-server
heavy-traffic limit for the queue-length and abandonmeatesses was also obtained un-
der the assumption of exponential abandonment.

Like the stochastic system, we found that the limiting fluiddal has a unique station-
ary point. However, unlike the stochastic model, Theoreid Shows that the fluid model
never converges to that stationary point unless it statfsanstationary point. Instead, the
fluid model tends to exhibit periodic behavior. Moreoveg #pecific form of the periodic
behavior depends critically on the initial conditions. Ascmsequence, the asymptotic loss
of memory (ALOM) property established for tiig /M, /s, + G 1, model in Chapter 4 does
not nearly hold with deterministic service times.

Moreover, as illustrated i§b.1, simulations of the stochastic system show that the-time
dependent behavior of the stochastic system is well desthly the fluid model for large
n. Indeed, the fluid model tends to provide a better descnpicthe performance in the
gueueing model than the steady-state distribution of tkeeiging model, amplifying [73].

The rest of the chapter was devoted to a careful study of thigidig fluid model. We
obtained quite complete results for the case in which thgigtsea finite timel™ after
which the system remains overloaded. Theorem 5.6 providesrgl conditions for this

to be true. That condition is in terms of the initial densifyflaid in serviceb(0, -), but
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can also be applied at later times after applying the algoritn Remark 5.2 over some
initial interval. However,§5.9 shows that, in general, such a finite time need not exist.
Nevertheless, Theorem 5.15 shows that the fluid densityrincgs) converges to a PSS,

In summary, the fluid content in service evolves in threeeddht ways, depending on

the initial conditions:

1. The fluid in service is in steady state foralb 0 if it is initialized with (0, x) = u s

for0 <z <1/p.

2. The system first becomes overloadedat 1/u and remains overloaded after time

T*, t* < T* < oo, in which casé(t, -) is in a PSS determined iyT™, -).

3. The system first becomes overloadedat 1/, but switches between overloaded
and underloaded infinitely often. Then the fluid densitpnverges to an overloaded

PSS.

In cases (ii) and (iii), if instead we initialize by redefigin(0, -), letting it have the PSS
version, then the system is initially overloaded and thalftiensity in service is periodic
with period1 /. for all ¢ > 0. The remaining queue performance then converges to a PSS as
well. In case (i), the associated queue performance coes¢oghe unique stationary point
as well. In cases (ii) and (iii), if we start with the PSS foithen the queue performance
converges to a PSS as well. In case (iii) it remains to detegnfithe queue performance
converges to the PSS associated with the limiting PS$ wanen we use the given initial
conditions; we conjecture that it does.

It is natural to wonder what happens with other service-tilis&ibutions. In Appendix
D.9 we show that the same periodic behavior is exhibited leycitrresponding model
with a two-point service-time distribution, provided tate of the points is at the origin

(in the same spirit as the corresponding special hyperexuai distribution in in [76]).
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However, in Appendix D.10 we present results from simulaggperiments showing that
the periodic phenomenon ceases to hold for other two-pastitilsitions and, more gen-
erally, if the service-time is only nearly deterministic.n@h the service-time distribution
is nearly deterministic, the performance is similar to tleefgrmance with D service and
the same initial conditions over suitably short time intdsy but convergence to stationary
performance is evident @sncreases.

We concentrated on the stationary D /n + GI fluid model, but some of the results
can be extended. First, as in Chapters 2-4, we can analydeyl#ain an algorithm for,
the G;/D/s; + G1 fluid model in which the arrival rate and the number of senaees
allowed to be time varying. In particuldi5.4,55.5 andi5.7 extend to this case. In general,
we lose the periodic structure, on which most of this chafieuses, but that periodic
structure is retained as well if the arrival rate functioand the staffing functiom are also
periodic with the same periot)/ ;.. (However, the periodic structure is less surprising in
that case.) Moreover, the structural properties of the g@stablished i§5.7 also extend
to GI service, provided that the fluid density in servicis given. Of course, determining
b is more complicated fofz/ service that is neitheb nor M. Theorem A.2 of Chapter 2
shows that it is necessary to solve a complicated fixed pguritgon in order to determine
b in those cases.

As stated ir5.1, we began this study in an effort to understand if ALOMdsdbr the
G/GI1/s+GI andG, /G, /s, + G1, fluid models when the service-time distribution is nei-
ther M, nor M. That question remains after we stipulate that the servgtalgltion also is
neitherD nor the two-point distribution with one massatWe conjecture that ALOM does
hold for the fluid model under that extra condition and thautagty conditions imposed in

Chapter 4.
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Appendix A

Appendix for Chapter 2

A.1 Overview.

This appendix contains material supplementing Chapter 2. sWrt with results for the
fluid model and conclude with simulation experiments.
First, §A.2 explains why the service content dendity, «) satisfies the transport PDE
in an underloaded (UL) interval, as noted in Remark 2.2.8Am we supplemen§2.6
by presenting alternative algorithms for the service coingdensityb during an overloaded
(OL) interval. This leads to a another PDE tdt, x) under extra smoothness assumptions.
In §A.4 we present additional results for the BWiTand the PWT during an OL inter-
val, thus supplementing?.7. We begin by providing a more elementary proof of Theorem
2.3 for the ODE for the BWTw under additional smoothness regularity conditions. Then
we prove Corollary 2.3, which provides explicit formulas fle BWT in special cases. We

also state an analog of Corollary 2.3 for the PW.TWe also prove Theorem 2.4, which
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established conditions for the PWTto be finite. In§A.5 we discuss the structure of the
BWT functionw. Theorem 2.3 requires the positivily,,; > 0 in Assumption 2.10. We
now consider cases in whict{t) = 0 for somet > 0. We show that the BWTv can have
more complicated structure when the the zero set has zereshjgb measure or positive
Lebesque measure.

In §A.6 we say more about the flows, i.e., the service-completba function,o,
and the abandonment-rate functien,defined in (2.7) and (2.9). 1§A.7 we supplement
§2.8, which summarizes the algorithm, by providing more asston of the algorithm. In
particular, we specify the algorithm to adjust for an irfljianfeasible staffing function
s and illustrate its performance. KA.8 we present additional material relateds& 10
on choosing staffing functions to stabilize delays. In gattr, we show how to stabilize
delays with general initial conditions. (F2.10 we assumed that the system starts empty.)

Finally, in §C.6 we supplemen§2.2 in Chapter 2 by presenting additional compar-
isons of the fluid model to simulations of large-scale quegisystems. These additional
simulations confirm the observations§.2: First, for very large queueing systems, with
thousands of servers, the individual sample paths of thiedcpeueing processes have
negligible stochastic fluctuations and agree closely withdcomputed fluid model perfor-
mance functions. Second, for smaller queueing systems,veity about20 servers, the
fluid model performance functions still provide remarkabbycurate approximations for

the mean values of the queueing processes.

A.2 The Transport PDE for b in a UL Interval

In Remark 2.2 we observed that the service content dehsstisfies a version of the

generic scalar transport equation in the underloaded dAfseprovide more details here.
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The same reasoning applies to the queue content dejgity), during an overloaded

interval, ignoring flow into service; s€@.7.1.

Proposition A.1 (transport pdeln the underloaded region, if0, -) is differentiable inz,
then the service content functiéims differentiable fort £ x and satisfies the the following

pde, a simple version of the generic scalar transport equmati

b b
ot Ox
Proof. Since\ andb(0,-) are both differentiable, then it is easy to see thatx) is

differentiable fort # z. If we letp(u) = b(t + u, x + u), we have that

bt(t’x) + biE(tvx) = p/(O) = lim (M)

u—0

= lim
u—0

:
i (2222-0) ()

— G(m)b(t’ r) = —hg(z)b(t, v),

(t+u,x+u) —btx)

where we apply the chain rule of calculus and the fundamentaltion equation fob in
(2.5).

Solving pde (A.1) with initial conditions\(¢) andb(0, x), yields Proposition 2.2. To
verify that, recall that the general solution to pde (A.1pis z) = e Jo hedug(t —
r) = G(x)l(t — z), where function is any differentiable function. Here we hawét) =
A(t)1{>0y. By the initial condition)(0, z) = ¢(—z)G(x) whenz > 0. Therefore we see

that the claim is valid.



239

A.3 Alternative Algorithms for b in an OL Interval

We now discuss alternative algorithms to calculate theisewontent density in an over-
loaded interval.

If Assumption 2.8 holds, then a finite functiéns uniquely characterized via equation

(2.16), where

b(t,x) = b(t,z)/ha(z), 0<z<t<T, (A.2)

with b being the unique solution of the equation
~ t_x A
o) =afe) o) [ Mi-mpdy 0Se<i<T, (A3)
0

where

a(t,z) = g(x)s'(t — z) + g(x) /OOO b(0, y)%@zyﬂ; t—)

We can establish the existence of a unique solution to emuéfi.3) by applying the Ba-

dy € Fr. (A.4)

nach fixed point theorem on an appropriate space of functibtwgo variables.
Although this new fixed-point equation is more complicaiedan lead to a PDE char-
acterization of. This PDE representation follows directly by differeniigtin the equation

(A.3). (Convenient cancelation occurs.)

Theorem A.1 (PDE for b) Under the assumptions of Theoremg and A.3, whereverh

has first partial derivatives with respect t@ndz, it satisfies the PDE

~ ~

be(t, ) + by(t, ) = §(t, ) + 2(x)b(t, ), 0<z<t<T, (A.5)
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where

1) = at2) +au(t2) — LDt ) and 3(2) = L) (A.6)

for a(t,z) in (A.11). (The functiong) and z in (A.6) are well defined by the assumptions

in TheoremA.3.) Associated with the PDE is the boundary condition

~

b(t, 1) = a(t. 1) = g(t)s'(0) + g(t) /Ooobm,y)hc;(y)dy, 0<i<T, (A7)

which is finite by(2.25)

We now continue with the two-parameter functidns: b(¢, «). To apply the Banach
fixed point theorem in this setting, we use the spagg of measurable real-valued func-
tions of the pair of real variablgg, =) over the “triangular” domaifh < = <t < T, for

which the norm

t
|ul|r1 = sup / |u(t, z)|dzx. (A.8)
0<t<T Jo

is finite. The norm| - |1 is anL; norm in one coordinate and dn, norm in the other; it

makesF;; a Banach space.

Theorem A.2 (service content in the overloaded ca§®nsider an overloaded interval
[0,7"). If Assumptior2.8 holds, then a finite functiolis uniquely characterized via equa-
tion (2.16), where

b(t,x) = b(t,z)/ha(z), 0<z<t<T, (A.9)
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with b being the unique fixed point of the operafor. Fr; — Fr; defined by
t—x
T(u)(t,x) =alt,z) + g(x)/ u(t—zy)dy, 0<x<t<T, (A.10)
0

where

a(t,z) = g(z)s'(t — z) + g(z) /OO b(0,y)g(y +1 —x)

O =) dy € Fr. (A.11)

Moreover, the operatofl” is a monotone contraction operator ofy; with contraction
modulusG(T) for the norm|| - ||, defined in(A.8), so that, for anyu € Fr, the fixed
point can be approximated by thefold iteration7 ™ of the operatof7 applied tou, with

1T w) = by < S

WHT(U) — UHT,I —0 as n— o (A12)

Proof. First, we show thaliin (A.9) is a fixed point of the operatdF, i.e., that7 (b) = b.
To see that, multiply (2.16) through biy;(z), noting that (i)hg(2)G(x) = g(x) and (ii)

we are interested in the case< . We geth(t, z) = b(t, 2)ha(z) = b(t — z,0)g(z). Next



242

we successively apply (2.18), (2.5) and a change of vasdblget

b(tx) = bt —2,0)g(x) = /(¢ — 2)g(x) + g(x) / bt — 2 y)hely) dy

— - 0g(a)+9(e) [ b - mhat) du o) [ ble = bt dy
_ °° G(y)
= =)o) + o) [ 0.y = (=) s halo) dy

g() / bt — e y) dy

= St =ooa) + o) [ H0 I by gla) [ b= aay

~ ~

_ a(t2) + g(x) /0 it — 2y dy = TO)(E ), (A13)

wherei(t, z) = é(t, z) + d(t, x) with

ét,x) =g(x)s'(t—x) and d(t,z) = g(x) /0°° b(oay)%

dy.

We next show thalia||r; < oco. First,||¢||lr1 < G(T)||s'||r < oo because’ € C, C D.
Because of the factay(z), ||d| 1 is bounded by the integral term. Taking the supremum
overz andt with 0 < = < ¢ < T of the integral in the expression fdryields the term

7 in Assumption 2.8, which we have assumed is bounded. Hﬁaiﬁ:ﬁl < oo, and so
laflz,; < oo.

Next note thaf/” is indeed a contraction operator Qfr 1, || - ||7.1), because

t t—x
|7 (u1) = T (ug)||rn < sup / g9() (/ luy — ug|(t — ,y) dy) dr < G(T)||ur — ugl|71,
0 0

0<t<T

and we have assumed th@{7") < 1 for all 7. The geometric rate of convergence in

(A.12) is the standard conclusion from the Banach fixed pbiebrem, and the subsequent
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ordering follows from the monotonicity of . Finally, b(¢,t) = a(t,t) because the subset
of win Fr; for whichu(t,t) = a(t) is closed, and” maps that subset into itself, because
T (u)(t,t) = a(t,t),0 <t <T, foralluin Fr;. By (2.18),a(t,t) = ¢g(t)b(0,0). =

We now provide conditions fobi(-, z) andb(-, z) to be inC, for all x > 0. (We use
these properties fd¥(-, 0) to establish properties of the ODE to calculate the Bwn

§2.3 of Chapter 2.) We first introduce extra smoothness ciomdit

Assumption A.1 (extra smoothness for g angdgands’ are differentiable with derivatives
g'ands” in C,.
We next impose additional regularity conditions on the mertime pdfg. For that

purpose, let|g|| be the uniform norm, i.ellg||. = sup,>q {|g(z)[}.

Assumption A.2 (extra regularity for g The service-time pdf satisfies:g(z) > 0 for all

, ||lg]leo < oo and there exist# such thaty(x) < g(0)e”® for all z > 0.

We will use the last inequality in Assumption A.2 in its ecalent form: |¢'(x)|

IN

Kg(x) for all z. (To see the equivalence, Divide hyx), integrate and take the exponen-

tial.)

Theorem A.3 (smoothness of service content in the overloaded)dégessumption®.8-
A.2 all hold, theni(-, ) and b(-, z) are differentiable functions for each > 0, almost
everywhere equal to their partial derivatives with respeet, for b in (A.9) and b in

(A.10). Hence)(-,z),b(-,z) € C, forall z > 0.

Proof. We again apply the Banach fixed point theorem, but now on apswiesof 7 ;
with a new norm. Consider the subspace of measurable resd/dunctionsu of the

pair of real variablegt, x) over the same triangular domain< = < ¢t < T that are
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differentiable with respect to the variableand equal almost everywhere to the integral of

its partial derivativer,, with finite norm||u||7,2, where

[ullz2 = sup {/(|U(t,x)|+|ut(t7x)|)dx7} (A.14)
o<t<T 0

which is like the Sobolev norm on the Sobolev spa¢e> (0, ¢). The functions inFr, are
Lipschitz continuous in the first variabieor eachz in 0 < x <t < 7. Reasoning as in
the proof of Theorem A.2, we will show th#t||r» < oo, and then we will show thal
mapsFr, into itself.

Then,

lallre < llaflzy + G(T) (HS"HT + K sup /Ooo(b(oay)g(ery)/@(y))dy) <00

0<s<T

by the proof of Theorem A.2 and the conditions in Assumptidi®s A.1 and A.2. (Since
Cp D, [|s"[[r < 00.) Next, || T (u)llr2 < l[allz2 + G(T)(lullr.1 + supocier {[ult 1)} +
|luel|71) < oo. Then we see thak is again a contraction operator Q#r o, || - ||7,2) with
modulusG(T'). We can ignore the term involving, (¢,t) — us(t, t)|, because, as noted at
the end of Theorem A.2, we can restrict attention to the des#dspacer;» containing
only u for whichu(t,t) = ¢(¢)b(0,0); as a consequence,(t,t) = uy(t, t) for all t. Hence,

the fixed point is an element of 2, and so has the claimed smoothness properties.

A.4 More on the Performance in Overloaded Intervals

We now present additional material on the queue performéumetions during an OL

interval.
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A.4.1 More onthe BWT w

Alternate Proof of Theorem 2.3: the ODE for the BWT w. If we assume additional
smoothness, then we can obtain a simple direct proof of EHme&.3. In particular, we
can obtain the expression for the ODE describing the evariudf the BWTw(t) by differ-

entiating in the basic flow conservation equation in (2.6)nslder an overloaded interval
that starts out with the queue empty, so t@&0) = 0. Then, when we differentiate with

respect ta in (2.6), we get

LQU) = Q1) = Mt) — alt) — b(t,0). (A15)

where, from (2.7) and Corollary 2.2, by a change of variable,

0 w(t) ¢
a(t)E/O q(t,x)hp(x)dx:/O )\(t—x)f(x)dx:/t N@) f(t— ) do. (A.16)

—w(t)

and,

w(t) t
Qt) = /0 ANt —2)F(x)dr = /t M) F(t — x) d. (A.17)

—w(t)
Then, assuming that is differentiable (as well ag), we can differentiate under the inte-

gralin (A.17) to get

Q'(t) = Nt) — q(t,w(t))(1 —w'(t)) + /t_ " Ax)f(t — z) du. (A.18)

We remark that the standard conditions to justify diffel@idn under the integral, i.e.,

differentiation of

I(t) = / ::) Wt z) dx (A.19)
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is to have (i) the partial derivative @f(¢, ) with respect ta be well defined, (ii)h(t, x)
andoh(t, x)/0t both be continuous in the two variableandz in some region including
{(t,z) s a(t) <x < b(t),t; <t <ty}, and (iii) a andb to have continuous derivatives in
the region{t : t; <t < t,}. Under these conditions,

b() x
I'(t) = h(t, b))V (t) — h(t, a(t))d (t) + / o ahg{ )

dz. (A.20)

Equation (A.18) is an application of (A.20) to (A.17).
Inserting (A.18) into (A.15) and making appropriate caatiehs (\(¢) anda(t) appear

on both sides), we get

b(t,0) = q(t, w(t))(1 — w'(t)), (A.21)
which yields
PN (X))
w'(t) =1 ) (A.22)

The more complicated analysis in our main proof is neededusswe do not have all the

smoothness conditionss

Proof of Corollary 2.3: explicit expressions for the BWT w. Since the proofs to (a)

and (b) are similar, we will only prove (b). ODE (2.31) imithat

t—w(t)
b(t, 0)e” = At —w())e" (1 —w'(t)) = % (/O A(y)eeydy> :

which implies

At —w(t) = / by, 0)c™dy,
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and inverting function\(-) yields (2.33). Moreover,

t=inf{t >0:w(0) =0} =inf{t >0: A(t) = /t b(y,0)e™dy}. =

t1

A.4.2 More onthe PWT v

We now give closed-form formulae for the PWTin some special cases, paralleling those
for the BWT w in Corollary 2.3. We omit the proof, which is similar to theopf of

Corollary 2.3, which is given in the next subsection.

Corollary A.1 Suppose(0) = 0, the system is overloaded for< ¢ < 4, b(¢,0) > 0.

(a). If there is no abandonment, i.e., if the modekigM//s;, then

o(t) =T / A(y)dy) — 1.

for0 < ¢t < ¢, wherel'(t) = fot b(y,0)dy, T=*(x) = inf{y > 0 : I'(y) = z}, and

t=inf{t >0:T(t) = [ My)dy}.
(b). If the abandonment-time distribution is exponentia(4£) = ¢=% for z > 0), i.e., if

the model is7,/M/s; + M, then

o(t) = B / A(y)edy) —t,

for0 <t < 7, whereT'(t) = [ b(y,0)e’dy, T'(z) = inf{y > 0 : [(y) = z}, and

t=inf{t>0:T(t) = [} Ay)e™dy}.
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Proof of Theorem 2.4: finiteness of PWT v. Proof.Recalling the definition o (¢) in

(2.9), and using Assumption 2.12, we obtain

o(t) = /000 b(t,z)hg(z) dx > /OOO b(t,z)hg  dr = B(t)he, .

However, in the overloaded intervaB(t) = s(t) ands(t) > spq by Assumption 2.11.
Hence we have the claimed lower bound ®ft). We use that lower bound to bound

E(t+ u) — E(t) below. Note that
E(t+u)—E(t) = /t ub(v, 0)dv = /t u(s’(v)JrU(v)) dv > s(t+u)—s(t)+sphg Lu.

By Assumption 2.11s(t + u) > s;. Starting from the definition (2.35), we apply the

inequalities above to obtain

v(t)

inf {u>0: Bt +u) — E(t) + A (u) > Q(t)}

< inf{u>0:E({t+u)—FE{t)>Q(t)}
Q(t) + s(t) — sg, .

< inf{u>0:(sphgru—s(t)+s.)t>Q1)} <
SLhG,L

whereQ(t) < Q(0) + A(t) < oo for all ¢. O

A.5 Structure of the Boundary Waiting Time w.

Theorem 2.3 requires the positivity,; > 0 in Assumption 2.10. We now consider cases
in which A(t) = 0 for somet > 0. That leads to more complicated behavior for the BWT

functionw.
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A5.1 The Zero Set of)\(-) Has Zero Lebesgue Measure.

First, suppose that(t,) = 0 for somet, > 0 but the zero set ok(-) has zero Lebesgue
measure, i.e.fOT 1;A(t) = 0}dt = 0, see Figure A.1(a). Again we assume that bgth0)
and\(t) are continuous fod <t < T'.

We only consider the overloaded case (the underloaded sasat interesting since
w(t) = 0). For simplicity, suppose the system is initially critigaloaded, i.e.,B(0) =
S(0), w(0) =0, Q(0) = 0, andA(0) > o¢(0), then the system becomes overloaded in the
next moment.

We give a vivid example. Let the system be initially critigaloaded and suppose
b(t,0) = 1 as long as the system is overloaded. For instance, this cachieved if
S(t) = 1 and the service-time distribution is exponential with ratel et the arrival-rate
function \(t) = t* — 3t + 9/4 and the abandon-time distribution be exponential with rate
0.5,i.e.,F(z) = 0.5- e~ for z > 0.

We can see from Figure A.1(a) that3/2) = 0 andfOT Liaw=oydt = 0 forall 7" > 0.
Because\(0) = 9/4 > b(0) = 1 the system becomes overloaded after time 0. We plot in
Figure A.1(b) the boundary waiting time(¢),0 < ¢t < T with 7" = 3. One can see that
the derivative ofw(¢) reaches-oco once, and this corresponds to the fact thi@) touches

0 once but does not stay at O.

A.5.2 The Zero Set of\(-) Has Positive Lebesgue Measure.

In a more general setup of the arrival procegg) can stay at O for a while meaning that
the arrival process is turned off. For instance, it is ndtilvat the arrival process may look
like the first picture in Figure A.2.

Intuition tells us in this case(t) cannot be continuous for all > 0, it will jump at

some times. But when wilb(¢) jump? What will be the heights of the jumps? To answer
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Figure A.1: An example of boundary waiting tim€¢) with A(¢) = 0 once.

these questions, we simply assume th@} = 0 for 0 < #; < ¢ < £, < oo. The case that
A(t) = 0 for ¢ in finite disjoint intervals can be easily generalized. Nibtat \(¢) being
left-continuous or right-continous does not matter beealis just a rate function.

Again, we consider a vivid example. Suppose the systemtigligioverloaded with
w(0) = 2andq(0, z) = e** 1< <w(0)}- We choose\(t) large enough such that the system
stays overloaded far> 0 and fixb(t, 0) = 0.5. LetA(t) = (9t —3t?)-Ljo<t<31 +3- Li>3.5)-
In other words \(t) is quadratic fort € [0, 3), stays at O fot € [3,3.5), and is constant 3
fort > 3.5, see Figure A.2(a). Let the abandon-time distribution b@eential with rate
0.5.

In Figure A.2(b), the red line ig(¢,z) att = 0, which is a function ofr. The blue
line on the negative half-line is the arrival-rate functig) reflected with respect to the

axis. Imagine that with the origin fixed, the blue line movestte right at rate 1, because
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Figure A.2: The dynamics af(t, x) of an example with\(¢) = 0for 0 < ¢; <t < t3 < oo.

new fluid keeps arriving to the system after time 0. The righiridary of the red line is
the boundary waiting timev(¢) at eacht, which is being controlled by the ratio between
b(t,0) = 1 andq(t,w(t)). So one can see that the right boundary of the red line is rgovin
at ratel — b(t,0)/q(t,w(t)) since fluid at the front of the queue is being transported into
service (eaten away) hiyt, 0).

As time evolves, for the part of the reflected arrival-ratection that exceeds the ori-
gin (that is pushed onto the positive half-line), the heigbtreases with time because
of abandonment. In Figure A.2(c), all fluid that was in quetiéirae O is just gone at

time ¢;, andw(t;) = t; because the blue line travelled byto the right. At timet,,
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Figure A.3: An example of the boundary waiting tim¢t) with A\(¢) = 0for0 < ¢t; <t <
ty < 00.

q(t1,2) = A(t1 —x) - e %% - 1{p<p<s,y Which is the red line, and(t,, w(t1)) = q(t1,t1) =0
implies thatw’(t;) = —oo, see Figure A.3. Although/’(t) has a discoutinuity aft;, w(t)
itself is continuous at; .

At time t,— which is the moment right before the quadratic parh@f) is eaten away,
the boundary waiting time(t,—) = ¢, — 3, where 3 is the length of the quadratic part of
A(t). Then at timey+, w(t) jumps fromw(ty—) =ty — 3 to w(ta+) = t2 — 3.5, because
there is an interval of length 0.5 in whiclit) = 0, see Figure A.3. At, the left derivative
w(ty—) = oo because(to—, w(ty—)) = 0.

This example shows that discontinuities)oyield discontinuities ofv’, and\ staying

at 0 over in interval yields discontinuities of.
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A.6 More on the Flows

We next discuss the departure functi®im (2.9) and the abandonment functidnn (2.7).

These flows are performance measures of interest in theirrmfb but they are also
important because they enable us to extend the model treatedlirectly to open networks
of fluid queues, in which the departing fluid or abandoningdffiuom one queue become

input to another queue; see Chapter 2.

A.6.1 Main Results

We show that the flows$' and A inherit the structure of the original input, so that the
results in Chapter 2 extend to open networks of fluid queud® fdllowing results are

elementary. The proofs and other properties are given ifolfe@ving subsection.

Theorem A.4 (the departure rajeAssume that the conditions in Theorén3 hold. For

whereb(t,0) = A(t — u) in an underloaded interval, but is the solution to the fixethpo

equation in Theorem A.2 during an overloaded interval. Asesequences € C,,.
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Theorem A.5 (abandonment rateAssume that the conditions in Theorem 2.Ebhpter

2 hold, so that the BW is well defined and continuous. Foe> 0,

w(t)
at) = ( /0 A(t—x)f(x)dx> Liw(n<y

t w(t)—
+</ L R }{f*”dy) Lwioa-

As a consequence, € C,.

A.6.2 Elaboration on the Flows

We now elaborate on the discussion about the flows in the quevsubsection; i.e., we
discuss the departure process (2.9) and the abandonment procesi (2.7). Make the

same assumptions as above including the conditions in €heér3 and Assumption 2.12.

Theorem A.6 (departure rate

1. Fort >0,

o(t) = /Ooob(t,x)h(;(x)dx:/Otb(t—x,O)g(x)dx+/ooo b(0,

whereb(t,0) = A(t — u) in an underloaded interval, but is the solution to the fixed

point equation in Theorem A.2 during an overloaded interval
2. 0 € C,, as assumed fox in Assumptior2.2

3. 0(t) > B(t)hg > 0forall t > 0, so thato satisfies the requirement for in

Assumption 2.10 over the intenval ¢] for eache > 0.



255

4. If there exists a constami; ;; such thathq(z) < hgy < oo for all z > 0, then

o(t) < B(t)heu < s(t)hgy forall t > 0.

5. If b(t, 0) is absolutely continuous with derivativ&w, 0) in C, on the intervall0, ¢|

(as occurs in the case of exponential seryiaed if

+ )|

/%&Mﬂ

S
7Q<bvg7t) = sup (?(y)

0<s<t

dy < oo, (A.24)

theno is absolutely continuous with derivativa.e)

d@:wmmm@yh[ywmm@mx+4mMaﬁig+wdy (A.25)
Proof. We prove the properties in turn:

(i) (representation (A.23)) Apply (2.9) and Assumption 2.6.

(ii)(c € C,) By the finiteness of the initial conditions, Assumption 2:& the con-
tinuity of b(-,0) from Theorem A.30(t) < co. By Theorem A.3)(-,0) is in C,. By
the Lebesgue dominated convergence theorem, the cowtofuitt, 0) andg(t + y) in the
integrands of (A.23) is inherited by, soo € C,, as claimed.

(i ) (lower bound) By the initial relation in (A.23), we havét) > B(t)h¢ . Since
s(u) > s > 0for0 < u < ¢, A(t) > Nins(t) > 0andG(x) > 0 for all z, we have
B(t) > this(t)G(t) A sp for all t > 0, which implies that there exist constaats- 0 and
Ofinfmer SUChthab (u) > opinppnea > 0for0 <e <u <t.

(iv) (upper bound) By the initial relation in (A.23), we hawé&) < B(t)hs,u, but we
always haveB(t) < s(t).

(v)(derivative) We differentiate under the integral in (A.28jng Leibniz integral for-
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mula for differentiation under the integral, for which weguére the finiteness of; in
(A.24). =

The abandonment rate is somewhat more difficult. First, tamdonment is only pos-
itive during the overloaded intervals, so we assume thatredagusing on a single over-
loaded interval. Second, the abandonment dependg @rhich in turn depends ow,

which also is more complicated, requiring more conditions.

Theorem A.7 (abandonment rateAssume that the conditions in Theorem 2.3 hold, so that

the BWTuw is well defined and continuous.

1. Fort >0,

w(t)
at) = ( /0 A(t—x)f(x)dx> Lw<n

t w(t)—t
+ ( /0 Mt — 2)f(x) do + /0 10.9)f (i ) dy> 11 (AA26)

2. a € C,, as assumed fox in Assumptior2.2

3. If Assumptior2.12holds, therx(t) > Q(t)h¢ , forall ¢ > 0.

4. If there exists a constari; ;; such thathg(z) < hgy < oo forall z > 0, then

o(t) < Q(t)heu, which is bounded over finite intervals, becadses continuous.
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5. Ifb(t,0) > 0 a.e., thenv is absolutely continuous with derivativa.e)

w(t)

o(t) = (A(t—W(t))f(W(t))w'(t)ﬂL/ X(t—l")f(l“)d$> Lw(<ty

0

+ (M0 + [ X)) do+ (LEDZDION) () - )
w(t)—t (g
+ /O Q(O’y;{y() ) dy> Ltu(on. (A.27)

Proof. We prove the properties in turn:

(i) (representationApplying definition (2.7) and Assumption 2.6, we have

aft) = /OO g(t, 2)hp(x) dz = /t g(t — 2,0)f(z) dw + /OO 1ONIEHY) 4 (a28)
0 0 0 F(y)
from which (A.26) follows.

(if) (e € C,) Note that), ¢(0,-) € C, by Assumption 2.2¢(-,0) € C, by Theorem
2.3 and Corollary 2.2 ana is continuous by Theorem 2.3. Hence, by the Lebesgue domi-
nated convergence theorem, the continuith@f 0) and f (¢ + y) as a function ot in the
integrands of (A.23) is inherited by, soo € C,, as claimed.

(iii ) (lower bound) By the initial relation in (A.26), we haw€t) > Q(t)hp 1.

(iv) (upper bound) By the initial relation in (A.26), we haxét) < Q(t)hp .

(v) (derivative) We differentiate under the integral in (A.28jng Leibniz integral for-
mula for differentiation under the integral. Since the grends are bounded over the finite

intervals, the integrals are finites
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A.7 A Fluid Algorithm with Infeasible s.

Our main algorithm ir2.8 for theG,/GI/s, + GI fluid model assumes that the staffing
functions is feasible. That algorithm is designed to stop whenevegiven staffing func-
tion s is detected to be infeasible. Now we want to apply the resnlt.9 to find the
minimum feasible staffing function.

We illustrate how to do so for thé&';,/M /s, + G1 model; §2.9 shows how to do the
same for more generél!/ service. In the context of th&, /M /s, + GI model, a sufficient

condition for feasibility ovef0, 77 is

s(t)+s'() >0, 0<t<T. (A.29)

Here we want to generalize our algorithm. Suppose the tatgéfing functions is not
feasible for alk. Instead of stopping the algorithm, we want (i) to produdeest’ modified
capacity functiors¢(t) and (ii) to finish the algorithm with our new targeg().

We only need to modify our initial algorithm when the systesnn the overloaded
regime. Flow conservation of the service facility says thiat)) = B’(¢)+un B(t) which is
equaltos’(t)+s(t) if s(t) were feasible. However, if we want to makét) decrease as fast
as possible, the best we can do is toiget0) = 0 and let fluid deplete with only its service
completion. Therefore, whenbecomes infeasible at, i.e., s'(t;+) + s(t;+) becomes
negative,B(t) will satisfy ODE B'(t) = — B(t) for t € [t1,t, + 0] with B(t;) = s(t1),
which implies thatB(t) = s(t;)e~ 1),

We lett, = inf{t; <t < T :5s(t) = BO)} AT =inf{t; <t <T:s(t) =
s(t))e” =)} A T. Note thath(t,0) = 0 for t; < t < t, guarantees that the queue does
not empty out before, so that the system does not switch from overloaded to urateld

regime before,. This is so because with(¢,0) = 0, abandonment becomes the only
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source that deplete the queue, and the abandonment(rfatgoes to 0 ag)(¢) goes to 0.
For instance, if the abandonment distribution is expoéwntith rated, thena(t) = 6 Q(t).

If t, = T, the system stays overloaded urffiland we are done. Otherwise, we let
ts=inf{to <t <T:5(t)+ S(t) <0} AT, b(t,0) = §'(t) + ps(t) forty <t < t3. Just
as in the original algorithm, we solve ODE (2.31) wittity) = 0 for ty <t < t3. If ty =
{t >ty : w(t) = 0} < t3, then the system switches from overloaded to underloadsches
and we continue with the old algorithm in Chapter 2; otheepdbecomes infeasible once
again att; while the system is overloaded, and we shall repeat the adrguenent, and as
before, we run the algorithm dynamically until we proceetiree 7.

Itis not hard to see that under the above construction, waesgtully obtain the interval
Iy iInwhichss is infeasible and a modified service-capacity functipft) = B(t) s, +

s(t) Licjo,r)/1..,- AlSO, s¢(t) is the closest feasible function to the given targe].

Example of the Algorithm. To evaluate the performance of the modified algorithm, we
use the example i§A.9.2, i.e., we consider the Markovial /M /s, + M model that
has a Poisson arrival process with a constantxagxponential service and abandonment

distributions with rateg andd respectively, and a sinusoidal capacity function

s(t) = A+ X -sin(c-t). (A.30)

We stillletA = 1,¢c =1, . = 1, = 0.5. To makes infeasible, we let\ = 0.9\ = 0.9
instead of0.6A = 0.6 in §A.9.2. Now s has greater fluctuation and it is easy to see that
condition (A.29) is no longer satisfied.

We plot the performance measures of the fluid model in Figude £ompared with
Figure A.12, we see thdt,; = [3.27,5.05] U [9.55,11.33] U [15.84,17.62] is the interval

in which s becomes infeasible. Fore 1;,f, s¢(t) (the blue dashed curve) is different from
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Time t

Figure A.4: TheM /M /s, + M fluid model with infeasibles.

(above)s (the red solid curve), anB(t) follows s instead ofs sinceB(t) cannot decrease
as fast asi(t). Moreover, sincé(t,0) = 0 fort € I;,r, w(t) increases with slope 1. In
other words, since the system stops transporting fluid flemgtieue into service, whatever
is waiting at the head of the queue keeps waiting there. Hewé\(t) does not increase
with rate 1 because abandonment still occurs.

Figure A.5 shows that(t), Q(t) and B(t) obtained from our modified algorithm (the
red dashed curves) agrees with single sample paths of sionuéstimates ofv,, (), Qn(t)

andB, (t) (the blue solid curves), where we still set the fluid scalagtérn = 1000. Both
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Figure A.5: TheM /M /s, + M fluid model with infeasibles compared with simulation.

B(t) and B, (t) are distinct from the given service-capacity functiofthe dashed green

curve) inly,;.

A.8 Stabilizing Delays with General Initial Conditions

Is §2.10 we showed how to choose a staffing function to stabiheeRWTv at any de-
sired targetv*. However, Theorem 2.8 considered a special initial cooditithe system
is initially empty. We generalize Theorem 2.8 to arbitramjtial conditions in the next

theorem.

Theorem A.8 Consider the5,/GI /s, + G fluid model with a general arrival-rate func-
tion A and initial conditionsw(0—) = wy > 0,b(0—, ) = ¢¥(z) > 0forz > 0,¢(0—, x) =

¢(x) > 0for 0 < = < wp, Q(0—) = [, ¢(0—, x)dz, s(0—) = B(0—) = [~ b(0—, z)dz.
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For any giverw* > 0, we can make the system overloaded such that the PWT is fixgd at

i.e.,v(t) = v*forall t > 0, by letting the service-capacity function be

s(t) = / Y~ 1) ))dx+G()/:°w o(x)dz

t(U—wo) we A v* — T
(U)</( d(wo Av* —t + ) Gla)

. F(wg Av* —t + )

dx) s (o)) (A31)

L P ( /0 VT v*)G(x)dx) Loy,
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If we do so, then

w(t) = v - Lt (0 —wo)+ 1
d(wo Av* —t) F(v*)

wo Vo™ _
b(t, 0) = (50(t)/ ¢(Z’)dl’ + . 1{(@*—w0)+§t<v*} —+ )\(t — ’U*)F(U*) . 1{t2v*}7

¢ r—1t)f
/ At — ) f(x)dx + / Lot —wp)r <t<v*}
0 F(z —t

F(wg A v* —t)
B(t) = s(t),
o(t) = /t — G(gf_)t)dwg(t) /wv d(x)dx
([ )
+ Fw) ([ M= a ) 1,
Q1) < ww I_xt)_];( oo P, / At —a) Pl )dfc) Lost<r—wo)t)
+ ( 0 ANt —x)F dx+/ gm_xt_t )y )'1{(v*—wo)+<t<v*}
+ ( i )\ t—x) F(x )dx) Lisoey,
alt) = (/wom 0 ;;tzﬂ )dx+/tk(t—ff)f( )dx) “Lo<t<(vr—wo)t)
(
(>

whered,(t) is the direct-delta function ag, i.e., 0,(t) = 0 for ¢ # y, f dy(t)dt = 1if

a<y<b.

Proof. (i) If the system is initially underloaded, i.ey(0—) = wy = 0, ¢(0—,x) =
o(z) = 0,Q(0—) =0, B(0—) < s(0—). This case is similar to Theorem 2.8 where the

system s initially empty. Note the only difference is tHatte is fluid in the service facility.
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Let B°(t) be the fluid in service that has been in service-at Then we have

B°(t) = /too b(t,z)dr = /too b(0—,x — t)Lx)tdx.

Again, we do not allow any input to enter service until tilme v*, we can let the staffing

function be

s(t) = B(t) + (1)
T — G _ t—v*
- / . —1) ey +F(v*)/0 G2t = 0" = 2)dz - Ljpseey,

wheres*(t) is defined in (2.48). It is obvious that this expression cioies with (A.31)
whenw, = ¢(0—, x) = ¥(z) = 0. When we do this, the input rate to the servi¢e 0) is
the same as in Theorem 2.8. The proof of other performanceunesmare similar.

(ii) If the system is initially overloaded, i.ew(0—) = wy > 0, ¢(0—, ) = ¢(z) > 0,
QU0—) = [[" ¢(x)dz > 0, s(0—) = B(0—). There are two cases (a)y > v*, (b)
wy < v*.

(iLa) If wy > v*, then in order for(t) = v*. We let all fluid that has been in queue
for z > v* enter service immediately at time 0. The quantity of fluid thiaters service
at0is . q(0—, z)dz = [.° ¢(x)dz. However, this will makeB(t) have an atom at 0.
Similar argument to Theorem 2.8 implies that it suffices toana(z, 0) with (¢, v*) for all
t>0.Ift <v*, q(t,v*) = q(0—,v* —t)F(v*)/F(v* —t). If t > v*, then all fluid that has

been in queue dt— has entered service, which implies thét, v*) = q(t —v*,0)F(v*) =



265
A\t —v*)F(v*). Therefore, we have

wo

b(t,0) = 0do(t) o(x)dz + q(t,v")

¥

_ w o — (")
= aolt) [ onde + T

° 1{0§t<v*} + )\(t — U*)F('U*) . 1{t2v*}-
The service capacity and fluid content in service are
t —
s(t)=B(t) = B°(t)+ / b(t — x,0)G(z)dx.
0

If 0 <t < v*, we have

s(t) = / Yo~ 1) ))d + jvoé(m)dx/Otéo(t—x)G(x)dx

¢v —t+x) (x)dx

i Fo—t+z) 0
i LG oty e,
_ / Wz té da+ 1) [ olwr + P oy e
If ¢ > v*, we have
s(t) = / e >>d:)3+G(t) :Ogb(:)s)d:)s

(v —t + :L")F(v*) o .
+ / < F(U it x) . 1{O§t—x<v*} + )\(t —Tr—0 )F(U ) . 1{t—x>v*}) G(l’)d.ﬁ(}

= - G(x) x g v x)dx
— / (x tG(:c >d + G(t) 5 o(z)d

. (/ ¢(“* —t+20)G@) /OH* Mt —a— U*)G(x)dx) |

Fv*—t+ )

It is easy to see that this expression coincides with (A.31).

(ii.b) If wy < v*, then we do not allow any input to enter service until tirie— wy,
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which implies

Blwo — 1) F(v")
F(wo — t)

b(t,0) = L —wosters) + At = 0 )F(07) - Lgmey.

Therefore, if0 <t < v* — wg, No new fluid enters service,

— /too (x —1t) G_Y(G;E(i)t) dx.

If v* —wy < t < 0¥,

¢w0—t+x F(v)

S(t) = wo — P n l’) . 1{U*_w0§t_x<v*}é(l’)dl’
B ) = =w0) g (wy — t + x) G(x)
- / wx‘té e+ P [ Flan—t+o)
If ¢ > v*,
s(t) = B°(t)

t —t F ) )
/ <¢< F?(wo j—tl’—)i_ xé ") Lo —wo<t—a<ory T ANt — 2z —v")F(v*) - 1{t—m2v*}) G(z)dx

_ (x)
= / Y(x —1t) G_fx—t)dx
v*—wo) wo — ) G(x t—v* B
R ( /t_v* ¢<F (thjt lf; i + /0 Nt — o — U*)G(x)dx> |

It is easy to see that this expression coincides with (A.Blhg proof of other performance

measures is similar.
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A.9 Comparisons with Simulation

In this section we present additional results evaluatimgflind model approximations by
comparing them to simulation results for large-scale qungpenodels. These results com-
plement those for th&/,/ Hy /s + E, example ing2.2.

We start by applying our algorithm to the special “base” cakan M, /M /s + M
model, having only a time-varying arrival rate function.r filas special case, we could also
have applied [46—-48]. I§A.9.2 we present additional simulation results for allogvthe
alternative features: (i) time-varying staffing functigin) non-exponential abandonment-
time cdf, and (iii) non-Poisson arrival process. (The fluiddel does not change when we
change the arrival process frahd,, to GG;, but the queueing system does.)

In §2.2 we already considered ti¢, / H, /s + E> model, which has both time-varying
arrival rate and non-exponential service and patienceillistons. We consider other ex-

amples inA.9.3.

A.9.1 A Base Example

We start by applying our algorithm to the base case of\apM /s + M model, having
only a time-varying arrival rate function.
For the initial M, /M /s + M model fluid example, we consider constant staffingve

let the arrival rate function be sinusoidal, i.e.,

At)=a+b-sin(c-t), t>0, (A.32)

where we leth = 0.6a, ¢ = 1 anda = s. By making the average input ratecoincide
with the fixed staffing levet, we ensure that the system will alternate between overtbade

and underloaded. We let the service rate.ze 1 and the abandonment rate= 0.5; i.e.,
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Giz)=1l—-ecandF(z) =1—e % =1— e %52 for x > 0. Without loss of generality,
for the fluid model we let = 1.

Figure A.6 shows key fluid performance functions of this/M /s + M example. In
Figure A.6, we plot key fluid performance measures(for ¢ < T, whereT = 16. Itis
easy to see that the system alternates between underloaded®(¢) = 0 and B(t) <

s(t) = 1) and overloaded (whe®(¢) > 0 andB(t) = s(t) = 1) intervals.
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Figure A.6: The performance functions of thé /M /s + M fluid model with sinusoidal
arrival-rate function: (i) arrival rate\(¢); (i) waiting time w(¢); (iii) fluid in buffer Q(¢);
(iv) fluid in serviceB(t); (v) total fluid X (¢); (vi) rate into servicé(t,0).

As discussed if2.2, it is important that the fluid model provide useful apgpnoations

for stochastic queueing models. We apply simulation to stih@awthe fluid approximation

indeed is effective for that purpose. For very large quagisystems, the stochastic system
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behaves like the fluid model, having relatively small st@titafluctuations. That is illus-
trated for the same example for a queueing system Widh servers in Figure A.7. (In the
plot, the queueing content processes are scaled by diMying= 1000, so thats remains

at1.)

=S
=

(
I : T m\ T T

Figure A.7: Performance of th&f,/M /s + M fluid model (dashed lines) compared with
simulation results (solid lines): one sample path of thdestgueueing model fon =
1000.

We did not plot the abandonment rateand the service-completion rate because
in the exponential case they are simple functions of theop@dnce measures shown:
a(t) = 0Q(t) = 0.5Q(t) ando (t) = uB(t) = B(t). All performance functions are contin-
uous except for the transportation-rate functen0), which has discontinuities when the
system alternates between underloaded and overloafted) = A(¢) when the system is
underloaded)(t,0) = s = 1 when the system is overloaded.

With the MSHT scaling, we let = 1000. Since,s = 1, that makes;,, = a,, = 1000,

which of course is very large. The other parameters of theigjng model are the same
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as for the fluid model, e.gb,, = 0.6a,, = 600. In Figure A.7 we compare the simulation
results for the queueing performance functid¥is, 0, and B,, from a single simulation
run to the associated fluid model counterparis) and B. The blue solid lines represent
the queueing model performance, while the red dashed leesent the corresponding
fluid performance. Since is so large, we get close agreement for individual samplespat
we are not displaying averages over multiple simulatiorsrun

Of course, most service systems have fewer servers. It ssithportant that the fluid
approximation can still be useful with fewer servers. Wiglwér servers, the stochastic
fluctuations in the queueing stochastic processes play partant role. In that case, the
fluid model can still be very useful by providing a good appneation for themean values
of the queueing stochastic processes. That is illustrated the plot of the average of
the scaled performance measureg@f independent sample paths when there are 2nly
servers in Figure A.8.

In Figure A.9 below we plot the analog of Figure A.7 for theea$ one sample path
of the simulation withn = 100, for the same fluid model. In Figure A.10 below we plot
the average of 0 sample paths. We see that the fluid approximation providgssorough
approximation for a single sample path, but it is remarkaalgurate for the average over
10 sample paths. The accuracy is especially high in this exarbplcause the extent of the
overloads and underloads are quite large.

The quality of the approximation does degrade dgecreases, for the given fluid model.
To illustrate, we plot a single sample path for= 20 in Figure A.11 and the average
over 200 sample paths in Figure A.8. (The latter appears in ChapjeiTBe stochastic
fluctuations are so much greater for a single sample pathvinated to average over more
sample paths to get a good estimate. kor 20, the fluid model clearly yields a good
approximation only for the mean values, but the mean is reatdy well approximated for

n = 20. The approximation for the mean values in Figure A.8 are smidbat it is evident
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0.6 -~ ==

Figure A.8: Performance of th&/, /M /s + M fluid model (dashed lines) compared with
simulation results (solid lines): an average20f) sample paths of the scaled queueing
model based on = 20.

that the fluid model approximations can provide useful apipnations for the mean values

for much smaller: (and thus the number of servess).

A.9.2 Variants of the Base Model

We now consider three variants of the base model in ordelustiiate consider: (i) time-

varying staffing, (ii) non-exponential abandonment anjl§inon-Poisson arrival process.

Time-Varying Staffing Levels

We now consider a Markoviai//M /s, + M model that has a Poisson arrival process with

a constant rate,, exponential service and abandonment distributions vatasy. and ¢



272

0.8 —
0.6 —
e . N
S 04 L
’
0.2 —
o ! 7
0 12 14 16
1 \
= DA Y
S o5 L ~
4
o ! L
0 12 14 16
T T
1= ’r’-
= Y <7
)
m 05— P —
0 | | | | | | |
0 2 4 6 8 10 12 14 16
Time t
= 2 T
o
11_5, Lamm T . ‘4—‘ R ", >
= - ~
e Ad S = 2 °F N
1l Ssa 2 =
~ 05 —
=
X 9 | | | | | | |
0 2 4 6 8 10 12 14 16

Figure A.9: Performance of th&/, /M /s + M fluid model compared with simulation re-
sults: one sample path of the scaled queueing model fer100.

respectively, and a sinusoidal capacity function

s(t)= X+ A-sin(c-t). (A.33)

In the previous base example §A.9.1, we fixed the capacity function and varied the
arrival rate around it; now we fix the arrival rateand varys(t) around\. We let\ = 1,
A=0.6A=0.6,c=1,=1andd = 0.5.

Before implementing the algorithm, we first verify that thegpacity functiors is fea-

sible. With exponential service distribution, we know tlaasufficient condition for the



273

Q*B(
—r—
/

|

o
wn
T
|

X(t)

o

(=}
N
I
[
©
=
S}
-
N
[N
~

16

Figure A.10: Performance of th&/,/M /s + M fluid model compared with simulation
results: an average @f) sample paths of the scaled queueing model based-eri00.

feasibility of s is

s'(t) > —ps(t), t>0. (A.34)

In this example, we requir€cos(ct) > —u) — pAsin(ct) which is equivalent t@in(ct +
0) > —(u/\/c2+ p2)(A\/X) whered = arctan(c/p). It is easy to check that this equality
holds withA = 1, A\, u = 1 andc = 1.

We plot the performance measures of tWgM /s, + M fluid model in Figure A.12
and compare them with simulation estimates in A.13, analogsgure A.6 and A.7. In
Figure A.13, our simulations add real system constrainist the staffing levels must be

integer-valued, so they must be rounded. Second, whendfimgtlevels decrease, we do
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Figure A.11: Performance of th&/,/M /s + M fluid model compared with simulation
results: one sample path of the scaled queueing model fo20.

not remove servers until they complete the service in pgggras ingC.6, we letn = 1000
for the sequence of scaled queueing models. Thus we have a,, = 1000, b, = 600,

c, = 1.

Simulation Comparisons for the M, /M /s, + GI Fluid Model.

For the general abandon-time distribution, we considenexidases: Erlang-2 (E2) and
Hyperexponential-2 (H2). Letl be the generic abandonment timé follows E2 implies
that A = X; + X, in distribution, whereX; and X, are two iid exponential random
variables. Moreoverf(z) = v2xe™ 7%, wherey is rate of X;.

If A follows H2, thenA is a composition of two exponential random variables, i.e.,
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Time t

Figure A.12: TheM /M /s, + M fluid model with sinusoidal service-capacity function.

f(x) =p-0e7 %+ (1—p)-Be %%, wheref, andd, are the rates of these two exponential
random variables, andl< p < 1 is the sampling probability.

If we fix the mean ofA4, i.e., letE[A] = 1/6, E2 has squared coefficient of variation
(SCV) Cscv = Var(A)/E[A)? less than 1; H2 ha§'scy greater than 1 if, 0, andd, are
appropriately chosen.

For E2, we letf(x) = 40%ze 2% such thatCscy = 1/2. For H2, we letf(z) =
p- 0167 4 (1 —p) - e with p = 0.5(1 —+/0.6), 6, = 2pb, 6, = 2(1 — p)#, such that

Csov = 4.
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Figure A.13: TheM /M /s, + M fluid model compared with simulations of the queueing
system.

We still let the arrival-rate function be sinusoidal, as in (A.32). We let= 1, b =
0.6 xa = 0.6, c = 1. We let the service-capacity function be constant 1. Lett = 0.5
andu = 1. We plot the dynamics of th&/, /M /s + E2 and M, /M /s + H2 fluid models in
Figure A.14 and A.16 respectively forc [0, 7] with T = 16. The performance measures
shown in Figure A.14 and A.16 are the boundary waiting tinig), the fluid in queu&)(t),
the fluid in serviceB(t), the total fluid in the systermX (¢), the abandonment ratgt), and
the transportation rati(t,0). We omit the departure raig(t) = ©B(t) because of the
exponential service times.

In Figure A.15 and A.17 we compare the fluid approximationthwimulation experi-
ments. The queueing model has a nonhomogeneous Poissa@h@micess with sinusoidal
rate function as in (A.32), with = s = 2000, b = 0.6a = 1200. In Figure A.15 and A.17,

the blue solid lines of the simulation estimations of sirggenple paths applied with fluid
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Figure A.14: TheM, /M /s + E2 fluid model with sinusoidal arrival-rate function.

scaling, and the red dashed lines are the fluid approximatidfe conclude that the fluid

approximation is remarkably accurate.

Simulation Comparisons for theG;/M /s, + M Fluid Model.

We first explain how to construct a non-Poisson arrival pgethat has a well-defined rate

function.

LetM = {M(¢) : t > 0} be adelayed renewal process. In other wordsYletX,, X, . ..
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(
R

Figure A.15: TheM, /M /s + E2 fluid model compared with simulations of the queueing
system.

be independent random variables with finite means, suctthtllows cdf H, X, follows
cdf G forn > 2. LetS, = >"}_, X, and defineV/(t) = sup{n > 0: S, < t}.

In particular, if we letH (z) = G.(z) = 1/mx fot G(u)du for mx = E[X,], which is
the equilibrium distribution of7, thenM becomes an equilibrium renewal process and we
have E[M (t)] = t/mx for anyt > 0. We callM standard equilibrium renewal process
(SERP) ifmy = 1.

For a given rate function\(¢), let A(t) = fot A(u)du. We assume thax(t) > 0 for
t > 0, henceA(t) is a strictly increasing function. For a given SERP, we construct
a process that has rate functiaft) by performing a change of time with respect to this
function A(t). We defineN = {N(t) = M(A(t)) : t > 0}. SinceE[N(t)] = A(t) for
t > 0, processN has a well-defined rate function.

Since the cdfz is not necessarily exponentid\ is just in general a non-Markovian
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Figure A.16: TheM,/M /s + H2 fluid model with sinusoidal arrival-rate function.

arrival counting process that has time-dependent ratdibmg(z). Now we explain how
to simulate the point process associated Wth.e., to simulate the times of arrivals Bf.
For a given sample path of the SERR, let S,, = s, for n > 0, we want to determine
the arrival times,,’s, wheret,, is the time at which the nth arrival occurs. It is easy to
see that,, = A~!(s,) forn > 0, whereA~!(-) is unique since\(-) is strictly increasing.
Therefore, to obtain a sample pathMf we simulate a sample path d and do a change
of time.

In Figure A.18, we compare the fluid approximation with siatidn experiments of the
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Figure A.17: TheM, /M /s + H2 fluid model compared with simulations of the queueing
system.
G/M /s + M model. Here the only difference from Figure A.7 is that thévat process

(G;) is not Poisson but has the same sinusoidal rate functiof.88)

A.9.3 More Comparisons for the Example in§2.2 with GI Service

Here we consider th#/,/ H, /s + E5 example ingC.6 with smallem. As shown in Figure
A.19, we plot the mean value functions, obtained by averatiia paths of 500 independent
simulation runs, witlh = 15. Although less accurate than the case 30, the fluid model

serves as a much better approximation than the algorithiv eérvice.
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Figure A.18: TheG,/M/s + M fluid model compared with simulations of the queueing
system.
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Figure A.19: Simulation comparison for the,/H,/s + E, fluid model: (i) simulation
estimates of an average @0 sample paths of the scaled queueing model based en
15 (blue solid lines), (ii) fluid functions foir{, service (red dashed lines) and (iii) fluid
functions assuming/ service (green dashed lines).
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Figure A.20: Fluid dynamics of thé&;/G1/s + E, model with fixed mean service time
and E2 patience distribution. The service distributions are:H (CV'S = 0.5); (i) M
(CVS =1), (iiiy H2(CVS =2)and (V) H2 (CV S = 4).
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Figure A.21: Fluid dynamics of th&',/M /s + GI model with fixed mean patience time
and M service distribution. The patience distributions are:H (CV.S = 0.5); (i) M

(CVS = 1); (iii) H2(CVS =2)and (iv) H2 (CVS = 4).
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Appendix B

Appendix for Chapter 3

This e-companion has six sections, presenting supportaignmal primarily in the order
that it relates to Chapter 3. [§B.1 we present the proofs f¢8.3. In§B.2 we present
proofs for§3.4. In§B.3 we present proofs fdj3.5. In§B.4 we present one proof f§B.6.

In §B.5, we make remarks about: (i) characterizing the isolateterloaded points i§3.3,
(ii) representation of the fluid conterit in an underloaded interval via an ODE, and (iii)

the applied significance of the space of piecewise polynisi#ig,,,.

B.1 Proofs for §3.3.

We need some basic regularity propertie§)adnd B, which will be valid with the assump-
tions in§3.2. For that purpose, we exploit two bafimw-conservation equationsi) the
gueue content at timeequals the initial queue content plus input minus outputttoee
abandonment or entering service, and (ii) the service obraetimet equals the initial

service content plus input minus output. However, the irgniers the queue only when
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the system is overloaded; otherwise it directly entersiservihus we have the following

elementary bounds and the subsequent Lipschitz continuity

Proposition B.1 (elementary bounds)(t) + A(t) + E(t) < Q(0) + A(t) < oo and
B(t) + S(t) = B(0) + E(t) < B(0) + Q(0) + A(t) < o0,

so thatQ, F, A, B andS are all bounded fof) <t < T.

Proof. The relations follow from flow conservation. The first retatiis an inequality
instead of an equality because input enters the queue thefdhae service facility only

when the system is overloadea.

Proposition B.2 (Lipschitz continuity The functionsS, E, B, A and Q) are Lipschitz

continuous.

Proof. For a nonnegative real-valued functigron [0, co), let = Supg<,<¢ f(y). TO

treatS, recall thatS is the integral otr, where
o(t) = B(t)u(t) < s(t)u(t), sothat o(t) <siul, >0, (B.1)

and

t+u
|S<t+u)—5<t)\=/ o(y)dy < shpbu, 0<t<t+u<T.  (B.2)
t

To treatF, recall that it is the integral of the rate fluid enters sezyiwhere the rate fluid

enters service is either(t) = \(t) if the system is underloaded oft) = s'(t) + o(t) =
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(B.3)

wherevl. = AL v (|s/[} + shul) < oo. By the second equation in Proposition B.1,

B(t4+u) — B(t) = (E(t+u) — E(t)) — (S(t +u) — S(t)),

so that

|B(t +u) = B(t)| < |E(t +u) = E()] +|S(t +u) = S(t)] < (ef + spuf)u

foro<t<t+u<T.

Next we combine (3.3) with (3.8) to get

/t Q(Ov_x B t)ft—x(x) dr

(t) = /Mwmw Vo) da +
ae 0 P w(t)AL Fyo(z—1)

so that, by applying Assumption 3.6, we get

and

(B.4)

(B.5)

(B.6)

(B.7)

(B.8)
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Finally, by the first relation in Proposition B.1,

Q(t +u) = QM) < [Alt+u) = AD)| + [E(W +u) — E()| + |A(t + u) — AQR)|

< My ral)u, 0<t<t+u<T. w (B.9)

We now apply Proposition B.2 to relateto the zeros ofX — s, whereX (t) = Q(t) +

B(t).
LemmaB.1 (zeros ofX —s) S C Zx _.

Proof. Since(@ andB are continuous by Proposition B.2 ang continuous by assump-
tion, X — s is continuous. Sincé& — s is continuous, ifX (¢) — s(t) # 0, thent cannot be
an elementof. =

We now characterize the overloaded times.

Lemma B.2 (overloaded intervajsWith the possible exception @&nd7’, all overloaded
times appear in intervals of positive length. Hence, urambated sets consist of either single

isolated points or intervals.

Proof. If t € O([0,T)), then either ()X (¢) — s(t) > 0 or (i) X (t) —s(t) = 0and((t) >
0. In case (i), since&X — s is continuous by Proposition B.2, there exists a neighbwalod
t that is overloaded. In case (i), SinC&) > 0, we will haveX (t) — s(t) > 0 in an interval
(t,t 4 €) for some positive. Since overloaded sets are necessarily intervals by Lemma

B.2, each underloaded set must fall between two overloaded/als. =

Proof of Theorem 3.1. We apply the results above. Since there can be at most cdyintab

many overloaded intervals of positive length[n7’], the isolated points are well defined
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and countably infinite. Since the isolated points are at moantably infinite, we can
order them and reclassify them one by one. With that constryove reduce the number
of disjoint overloaded intervals by one at each step. Rmall underloaded times appear

in intervals too. =

We now relate the zeros qfin (3.12) to the overloaded and underloaded intervals.

Lemma B.3 (zeros and intervaJsFor each interval in the partition of0, 7] into under-

loaded and overloaded intervals, there exists at least @me ar discontinuity point of

.

Proof. First, consider the closure of an overloaded intejwdl]. If ¢ has one of its finitely
many discontinuity points if, b], then we are done. Suppose thias continuous on the
closed intervala, b|. Necessarily, we hav& (a) — s(a) = X (b) — s(b) =0,((a+¢€) >0
for all suitably smalk > 0 and((b) < 0. First, we could have(b) = 0 and we are done.
If instead((U(t)) < 0, then there must exist with a < t* < b such that{(t*) = 0 by
the intermediate value theorem. The reasoning is esdgritial same in the closure of an
underloaded interval, say, b]. If ¢ has one of its finitely many discontinuity points in
la, b], then we are again done. Suppose thitcontinuous on the closed interval b]. If
either((a) = 0 or {(b) = 0, then we are done. Hence we must hawe) < 0. Sinceb is a
switch point and; is continuous ab, we must have (b) > 0. As before, there must exist

t* with a < t* < b such that (t*) = 0 by the intermediate value theorena.

Proof of Theorem 3.2 Since the interval0, 7] can be partitioned into at most count-
ably many intervals that alternate between overloaded addnpbaded after reclassifying
isolated underloaded points as overloaded, the switchipoan be placed in one-to-one

correspondence with the internal boundary points (exodiand7’). Hence the number
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of switch points is equal te — 1, if the number of intervals in the paritition isfor some

n < oo. Otherwise both sets are countably infinite. Next, LemmaiBdies that there is
either a discontinuity point or a zero in every overloaded anderloaded interval. Since
the number of intervals i$ greater than the number of switches, we obtain the conclu-
sion. To see that the bound is tight, consider the commoninasghkich ¢ is differentiable

on [0,7] and((t) # 0 at all switch times. Thew has a zero where it attains its maxi-
mum in each overloaded interval, whijehas a zero where it attains its minimum in each

overloaded interval. To have the bound an equality; ledive no other zerosw

Proof of Theorem 3.3. First, any discontinuity points af must be contained in the set
of n interval boundary points. Henc&. < n. On each of the: subintervals( is a
polynomial of order at most:. By the fundamental theorem of algebra, on each of these
intervals the zero set is either a finite set of cardinalitynastm or it is the entire subin-
terval. If ¢ = 0 throughout the interval, then there can be at most a singielsw the
interval, whergQ(t), B(t)) becomeso0, s(t)), after which it will remain there throughout
the subinterval. In other words, the first subinterval isrtmaged and the second is under-
loaded, so this interval produces at most a single switchcalethus treat this interval just
like any of the others; we can act as if it produces at mosteros. HenceD, < n and

Z; < mn. Finally, Theorem 3.2 implies thas| < mn +n — 1, as claimed. =

Proof of Lemma 3.1. The Weierstrass approximation theorem implies that caotis
functions can be approximated uniformly over bounded Vmtisrby polynomials. That
uniform approximation extends ©, provided that the boundary points of the polynomial
pieces of the function i®,, ,, includes the finitely many discontinuity points of the fuoot

in Cp. [
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B.2 Proofs for §3.4.

B.2.1 Proof of Uniqueness in Theorem 2.3.

When the abandonment cdffs are independent af the proof of uniqueness of the solu-
tion to the ODE (2.31) in Theorem 2.3 is the same as the protfetorresponding part
of Theorem 5.3 in Chapter 2. However, that argument doesxiene directly to time-
varying abandonment cdf’'s. Hence we give a different proular different conditions.
In particular, in Theorem 2.3 for time-varying abandonmetfts we imposed additional
regularity conditions. With those extra regularity comatis, we can apply the classical
Picard-Lindelof theorem for the uniqueuenss of a solutithe ODEw’(t) = W (¢, w(t)),
which requires thatv (¢, z) be locally Lipschitz in the argument uniformly in the argu-
mentt; e.g., Theorem 2.2 of [69].

One regularity condition added in Theorem 2.3 was for the flaid enters service to
be bounded below. We will show how to guarantee that conditidhe next section. Given
that the rate fluid enters service is indeed bounded belewgiven thaty(t) > e, > 0 for
all ¢ € [0, 7], from (2.31), there exists a constant > 0 such that'(t) < 1 —wy <1
forall t € [0,T]. Sincew(0) < oo, by assumption, and(t) < w(0) + ¢ for all ¢, we have
w(t) < w(0)+ T for 0 <t < T. Together with the fact tha, ¢(0, -) € C,, that implies
that the denominator in (2.31) is bounded above.

Sincew’(t) < 1—wj, < 1forallt, for eachz we will havet —w(t) = x for at most one
value oft. Since), ¢(0, -) have been assumed to have bounded derivatives where they are
continuous, and since the partial derivatig,(z)/0t of the time-varying abandonment
cdf F; as been assumed to be bounded, the mappimy (2.31) is Lipschitz continuous

in the argument: except at only finitely many, uniformly in¢. Hence, we can deduce
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uniqueness of the solution of the ODE in (2.31) under thes@a eggularity conditions by
applying the Picard-Lindelof theorem.

We now elaborate on the details. Here we have

Sty =1 2O ps0 + 50

i) it (8.10)

whereq(t, x) is given in (3.14). Consider the regior< z; < ¢,0 < x5 < ¢. In this region

we have

(W (t,21) — V(L 2)]
_ pu(t)s(t) + s'(t) CAF () — At — 2NE. (2
TN )R @ ) AL ) e )
plst 4 s _ _
< W\A(t — 1) Fiay (1) = Mt — 22) Fy oy (1)
+ At = 29)Fyay (1) = At — 22) Fy sy (22))]
Wrst 4 s ) )
< W(M( 21) = At = 22)[ + At — 22)|Fyosy (21) — Fiosy (72)])
plst +s1 - _ _ _
< W(A 21 — 2o + N Fy_py (21) = Fioa, (22) + Fieg, (22) — Fioay (22)])
Tst 4 st al
< ﬁ()\’”zl To| + )\Taa—]; |1 — 22| + AgT |2y — 25))

C‘Jfl - l’2|,

whereC = (ﬂ;’ﬂ(ﬂ + ATaFT A'g"). The caser;,z, > t is similar. Hence the

regularity conditions given in Theorem 2.3 are sufficiemt¥oto be locally Lipschitz inz

uniformly in ¢.
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B.2.2 ¢;-Feasibility of the Staffing Function s.

We have two goals in this section: first, to prove Theoremsh@wing how to construct the
minimum feasible staffing function greater than or equalny proposed staffing function
s and, second, to determine the minimum feasible staffingtiomsuch that the rate fluid
enters service at time +(¢), is bounded below. We use this stronger notion of feasybilit
to provided conditions for the ODE in (2.31) in Theorem 2.B&we a unique solution. We
treat both problems at once by introducing the notion;efeasibility: A staffing function
s is said to be: -feasible ify(t) > e, > 0 forall ¢t € [0, T].

So far, we have assumed that the staffing functi@e-feasible (as one condition in

Theorem 2.3) or simply feasible (-feasible fore; = 0), yielding

Y(t) > §'(t)+o(t) =5'(t) + /OO b(t,z)hg(x)dx > e, >0 when B(t) = s(t).
: (B.11)

This requirement is automatically satisfied in underloasheervals whenB(t) = s(t),
provided that\;,((7") > ey, for A,y in Assumption 2.10, because in that case we require
thats'(t) + o(t) > A(t) where necessaril)(t) > ey; see Definition 3.1¢,-Feasibility
is only a concern during overloaded intervals, and then wign the staffing function is
decreasing, i.e., wheti(t) < 0.

Aviolation is easy to detect; it necessarily occurs in arrlmagled interval irO([0, 77)
attimet* = inf {t € O([0,T) : v(t) < er}. Paralleling Chapter 2, I, ; ., be the set of

er-feasible staffing functions over the interyalt| for ¢ > ¢*. Then

t"=t"(ep)=inf{t € I :v(t) <er}. (B.12)
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Even though we require (B.11), so far we have done nothingdegnt having* < oo
(violation). Thus, we compute and detect the first violation.

Correcting the staffing function is not difficult either (byhigh we mean replacing it
with a higher feasible staffing function): We simply constra new staffing function*
consistent with reducing the input into the queue to its mumn allowed level (setting
v(t) = ey, > 0) starting at time* and lasting until the first timeaftert* at whichs*(t) =
s(t). (By the adjustment, we will have madé(t*+) > s(t*+).) Since the system has
operated differently during the time interva&l, |, we must recalculate all the performance
measures after timg but we have now determined a feasible staffing function upe
t > t*. By successive applications of this correction methodustitjg the staffing function
s and recalculating), we can construct the minimum feasible staffing functioarall.

To make this precise, I&i; , ., () be the set of alt, -feasible staffing functions for the

system over the time intervél, ¢, ¢ > ¢*, that coincide withs over[0, t*]; i.e., let

Sise(t)={5¢€ C';(t) cYs(u) By y=s)y = e, 0<u<t, 3(u)=s(u), 0<u<ty,

for t* in (B.12), wherey; and B; are the functions and B associated with the model with

staffing functions.

Theorem B.1 (minimum ¢, -feasible staffing functionFor eache;, such that0 < ¢, <
Ning(T) for X s(T') in Assumptior2.1Q, there exist = d(er,) ands* € Sy, (t* + ) in

(B.13)for ¢* in (B.12) such that

s*=s"(ey) =inf {5 € Sy, (t"+0)}: (B.14)
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i.e.,s* € Spse, (t"+6)ands*(u) < 5(u), 0 <u <t"+4,forall s € Sgs., (t*+6). In

particular,
st +u) =ep /Ou e MW Hu=a ) g0 4 B(t*) e MEE ), (B.15)
Moreover,s can be chosen so that
d=inf{u>0:s"(t"+u)=s(t"+u)}, (B.16)

with § = oo if the infimum in(B.16)is not attained.

Proof. First, sincey, is continuous for our original, the violation in (B.12) must persist
for a positive interval aftet*; that ensures that a strictly positiveean be found. We shall
prove thats > s* over[t*, t* + 4] for s* in (B.15) and any feasible functiof) and we will
show thats* itself is feasible. Fof < ¢ < t* + ¢, suppose is feasible. Since the system

is overloaded, system being in the overloaded regime i pthat

S +u) = Bg(t*+u):/ bs(t* + u, 2)da
0

_ / et 41— 2) e () d + / R </t R
O U

Giqua(T — 1)

o0

- / Y5 (t* 4 u — ) e MEFumetH0) g0 4 / by (t*, 2 — ) e” M+ gy
0 u

> eL/ e MEFu—e ') g 4 =M Hu) / bs(t*, y)dy = s™(t* + u).
0 0

where the second equality holds because of the fundamerdhition equations in As-

sumption 2.6, the third equality holds becausg*, ) = b,(t*, z) for all z, and the in-
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equality holds becausg > e;. On the other hand, the equality holds wheft*+u) = e,

for all u, which yieldsB(t* + u) = s*(t + u). Therefore, the proof is complete

Corollary B.1 (minimume -feasible staffing with exponential service timésr the spe-
cial case of exponential service times, i.e., withr) = e~**, independent of, (B.15)

becomes simply*(t* + u) = er (1 — e ™) /u+ B(t*)e #, 0 < u < 4.

B.3 Proofs for §3.5.

B.3.1 Proof of Theorem 3.5.

First, the assumption that, ¢, € P,,,, assures that there are only finitely many switches
between overloaded intervals and underloaded intervaistimsystems. That leads to three
cases: (i) when both systems are underloaded, (ii) whengperwsystem is overloaded
and the lower system is underloaded, and (iii) when bothesystare overloaded. We
apply mathematical induction over the successive altergattervals of these three kinds.
(The switch points are the union of the two separate sets d€lswwoints.) We ensure
that the initial conditions for each succeeding intervais$athe initial ordering assumed
in the theorem. If we start in an interval where both systemsumderloaded, then the
ordering holds while both systems are underloaded by vofuke explicit representation
in Proposition 3.1. Consequently, the underload termamatiimes are ordered as well, by
Proposition 3.1. The orderin$;(t) < Bs(t) necessarily remains valid when the upper
system is overloaded and the lower system is underloadedube then we havg, (t) <
s(t) = Bs(t). For an interval where both systems are overloaded, it ssffic consider

the two systems starting the first time both systems are aageld. At that time, the initial
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conditions necessarily will be ordered properly, becabsesystem to become overloaded
later hag), (t) = 0. At this initial time, B, (t) = Bs(t) = s(t).

The M, service assumption comes to the fore in an interval wherk bgétems are
overloaded. Here we use the fact thand~(t) = b(¢, 0) depend only upor andy during
the overloaded interval, and so are the same for the tworagsteecause the functionand
w have been assumed to be fixed. The rate of service completidt)i= s'(t) + s(t)u(t).
When the two systems are both overloaded over a commonahtert/+ u|, the total fluid
to enter service from queué&(t + u) — E(t) is therefore the same in the two systems.

When both systems are overloaded, we have the ordérirgg, directly from Propo-

sition 3.3, just as in Proposition 2.6 of Chapter 2, exphgjtihe representation

Fi_.(z)

_ = fzw—t thfz(y) dy.
Ft_x(l' — t)

Hence, to show that, < ¢», it suffices to show that; < w,, which would imply that that
the overload termination times are ordered as well.

Suppose we start at with w;(t1) < wq(t;). Suppose that,(t) > ws(t) at some
t > t1. The continuity ofw; andw, implies that there exists sonie¢ < t, < t such
thatw, (to) = wo(ty) = w. However, the ordering of; andg, implies thatg, (t2, w) <
¢2(t2,w). Therefore, ODE (2.31) implies that] (t2) < w/(t2). This contradicts with our
assumption that there existsg auch thatw, (t) > ws(t).

Now we turn tov. The equation (2.36) in Theorem 2.5 implies that the ordeah
w 1S inherited byv. That is made clear by applying the proof of Theorem 2.5, Wwhic
shows that(t) is determined by the intersection of the functiomwith the linear function
L,(u) =t +u. Clearly, if we increase the function, then that intersection point increases

aswell. =
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B.3.2 Proof of Theorem 3.6.

We directly prove (3.18); the corresponding results in §3.\4ill be obtained along the
way. To show(i), consider two models with common model data excepAfd?(0), where
A1, A2, 8’ 10 € Py, fOr somem, n. Without loss of generality, by Theorem 3.5, it suffices
to assume that; < A\, andB;(0) < B,(0). If that is not initially the case, consida; =
A A A2, A = AV Ao, Bi(0) = B1(0) A By(0) and B (0) = B;(0) V By(0) to geth; < A,
andB; (0) < By(0) with ||\ — Xo||7 = ||\ — X2||r and| By (0) — By (0)| = | B1(0) — B,(0)].

When both systems are overloaded, we hByg) = B (t) = s(t). Hence, the overall
story depends on what happens wliehboth systems are underloaded, ghdsystem 1
is underloaded and system 2 is overloaded.

For simplicity, suppose that the two systems both start dodéed at time) with
B1(0) < By(0), Ay < Ay If both systems remain underloaded over the intejva,],

then by Proposition 3.1 we have

t
[Bi(t) — Ba(t)] < IIM—)\zIIT/ ™M@ dz + | B1(0) — By(0)|
0

< A = Xl + [B1(0) = By(0)], 0<t<t. (B.17)

Suppose system 2 becomes overloadeg at 0 while system 1 remains underloaded.
Fort > t1, we haveB;(t) < Bs(t) = s(t) < Xs(t) = Bs(t) + s(t). Hence we have
0 < |Bo(t) — Bi(t)| = Ba(t) — Bi(t) < Xs(t) — Bi(t). Flow conservations of both
systems implies thaB’ (t) = A\ (t) — u(t) Bi(t) and X (t) = Aa(t) — aa(t) — u(t) s(t).

Therefore,

Xo(t) = Bi(t) = Ma(t) = Aa(t) — na(t) — pu(t) (s(t) — Ba(t)) < Aa(t) — Mi(2),
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which implies that

|Bi(t) — Ba(t)| < |Bi(t1) — Ba(t1)| + (t —t1) - [[ A = Aol
<t A= Aallr + [ Bi(0) — Ba(0)| + (t — t1) - [|A — Aelr

< A= Al + [Bi(0) = B(0)], (B.18)

where the second inequality follows from (B.17) witk- ¢;.

If we then later start a second underloaded interval for Bgtttems at time,, where
0 < t; <ty < T, then we will have inequality (B.17) holding at timg Thus proceed-
ing forward, applying (B.17) with initial values;(¢,), during the following underloaded

interval we have fot > t,

IA

t
|B1(t) — Ba(t)| A1 — >\2HT/ e M) dz + |By(ts) — Bal(ts)|

to
< (t—ta) - |IA = Xallr +ta - [[Ar — Xa|lz + | B1(0) — By(0)]
< e [[A = Xaflr + [ B1(0) — B(0)|

< (AVH([[A& = Aeflr V [B1(0) = B2(0)]). (B.19)

where the second inequality follows from (B.18) with= ¢,. Applying mathematical
induction over successive underloaded subinterval§,df], using the second to last in-
equality, we obtain the first relation in (3.18), from whi¢tetdesired conclusion follows.
To show(ii), when both systems are underloaded, we liame) = Q-»(t) = 0. Hence,
the overall story depends on what happens wlgrboth systems are overloaded, ghg

system 1 is underloaded and system 2 is overloaded.
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When both systems are overloaded, flow conservation imibiags

Hence, we have

Q5(t) — Q1(t) = Aa(t) — Ma(t) — (az(t) — an(t)) < Aoft) — (),

where the inequality simply follows from Theorem 3.5 whea tivo systems have common

abandon-time distribution. This yields

1Q1(t) — Q2(t)] = Q2(t) — Q1(t) < [Q1(0) — Q2(0)[ + 1 || A1 — Xof|7. (B.20)

When system 2 is overloaded and system 1 is underloadedirfpligty, assume at time
0 the two system have initial conditior#$,(0) = s(0) > B;(0), @2(0) > 0 = Q1(0).

Let 7" = T1 A Ty, whereT; denotes the underload termination time of system 1&nd
denotes the overload termination time of system 2. Hencense khat both systems will

not change regimes for< ¢ < 7. For0 <t < T*, we have

Q5(t) = Aa(t) — aa(t) — 7a(t) < Ao(t) — 7a(t)
< (Aa(t) = Aa(t) + (M) —2(2)

< (Ra(t) = M) + (Aalt) — p(t) s(t) = (1)),
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which implies that

|Q2(t) — Q1(1)] = Q2(2)
Q2(0) + t[[A2(t) — M(t)|l7 + /0 A (u) = pa(u) s(u) — s'(u)du

IN

IN

Q2(0) + £ [ Aalt) — M (D) + / M(u) — () By (u)du — (s(t) — 5(0))

IN

Qa(0) + 1 alt) = M (D)l + / B (u)du — s(t) + 5(0)
Q2(0) + £ [[Aa(t) — M (8) |l + (5(0) — Ba(0)) — (s(t) — By(t))

|Q2(0) = @1 (0)] + £ [ X2(t) = M(#)llx + | B2(0) = Bu(0)], (B.21)

IN

IA

where the second inequality holds becaikét) < s(t), the third inequality holds since
B! (t) = A\i(t) — u(t) Bi(t), and the last inequality holds sinég (0) = 0, B2(0) = s(0)
and B (t) < s(t). Again, the desired conclusion follows by mathematicauictebn.

Finally, to show(iii), (B.18), (B.19), (B.20), (B.21) imply that

1 Xa1(t) = Xo(W)] < |Bi(t) — Ba(t)] + |@Q1(2) — Qa(t)]
< 2t[[A = A2l +2|B1(0) = Ba(0)] + [Q1(0) — Q2(0)]

< 2LV E)([]A = Aellr v IX1(0) = X2(0)]),

where the third inequality holds becausé (0) — X5(0)| = |B1(0) — B2(0)| + |Q1(0) —

Q2(0)] in all regimes. =

B.3.3 Proof of Theorem 3.7.

Given A € C,, we choose an increasing sequege : £ > 1} with A\, € P, for

ksNk

eachk > 1 such that|\, — \||lr — 0 ask — oo. For eachk > 1, we can apply all
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the results above. By Theorem 3.6, we can define the(air) in C? as the limit of the
sequence (B, ox) in C; with the maximum/uniform norm. There is such a limit, be@aus
the sequence is necessarily Cauchy and the space is a cempd#ic space. Given the
limit, the convergence holds in the space by Theorem 3.6.

To show that the monotonicity extends, we start with < \,. We then construct
sequences$);  : k > 1} fori = 1,2 with A, ;, < Ay for eachk and||\; . — \;||lr — 0 as
k — oo. We apply Theorem 3.5 for eaéh Since the ordering is preserved in the limit, the
conclusion of Theorem 3.5 holds for the limiting pair by Lefee monotone convergence.
We use a similar argument to show that the Lipschitz cornyruioperties in Theorem 3.6
extend as well: Starting witljA; — Xs||r = ¢, for anye > 0, we construct sequences
{Nig t k> 1} fori =1,2with ||\, — Ao y|| < ¢+ eforeachk and||\; , — \i||[r — 0 as
k — oofori = 1,2. We then can apply Theorem 3.6 for edck 1, and get the conclusion
there with modification by. However, since is arbitrary, we get the preservation of the

Lipschitz property to the limit.=

B.4 One proof for §3.6.

Proof of Theorem 3.9. We recursively apply the monotone contraction operatan

0 .
0

Theorem 3.8, starting with'? = 0, so that\{"} < A{/ for all 7, because\\) = \""

1,2 and the external arrival rate functions have been assumiee undered)@ < )\goz)

By Theorem 3.5 applied to each queue separately, using suenasi ordering3; ;(0) <
B,,4(0) for all 4, we have first3!) < BS!) and thers{) < o{"). By (3.23), we then have
)\ﬁ) < )\gzz) We then get the order holding for allby applying mathematical induction.
However,/\gf? — A1, asn — oo. Since the order is preserved in the convergence, we
deduce that\, ; < )\, for 1 < i < m. Finally, we can apply Theorem 3.5 to each queue

separately to get the remaining orderings.
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B.5 Remarks

Remark B.1 (characterization of isolated points
Definition 3.3 implies that is an isolated point only i)(¢) = 0, B(t) = s(t). More-
over, ift is a discontinuity point of, then((t — §) < 0 and((¢) > 0 for somed > 0; if ¢

is a continuity point of, then((t — §) < 0, ((¢) = 0 and((t + ¢) < 0 for somej > 0.

Remark B.2 (an ODE forB in an underloaded interval
In an underloaded interval, the total fluid content in seevig(¢) can also be charac-
terized via the ODE

B'(t) = A\(t) — u(t)B(t), t>0. (B.22)

The formulain Proposition 3.1 provides the solution to thigal value problem determined

by this ODE with initial conditionB(0).

Remark B.3 (applied significance dP,,,,) We have provided a full algorithm whens’, i, €
Pm.n- An algorithm forh € C, can be developed by considering a sequence of successive
approximations irP,,, ,,, but we see no motivation for doing so. We have introduced the
spacep,, ,, of piecewise polynomials as a device to establish matheataéisults. In ap-
plications, it should suffice to usay convenient representations of the functionasnd s,
andassumehat there are only finitely many switches in any finite iné&r¥While running

the algorithm, that assumption can be verified, and the meaelbe modified if too many
switches occur. However, if we start from data, then we ceablabse to let the functions

be inP,,,, without loss of generality. Lemma 3.2 shows that it is comrerto work in
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the spaceP,, ,,, because we can obtain closed form expressions for integkébreover, if
we want to bound the number of switches in advance, then weamamd the parameters
m andn, with the understanding that there is a tradeoff betweergtnaity of fit and the

maximum number of switches.



305

Appendix C

Appendix for Chapter 4

C.1 Overview.

This appendix contains additional supplementary matetiakC.2 we give a numerical
example illustrating convergence to steady state for thgostaryG/M /s + M model
starting empty. IriC.3 we give the other half of the proof of Theorem 4.4, essdlitig
pointwise convergence of the fluid densitiés x) andq(t, x) ast — oo when the system

is initially OL. In §C.4 we give another example of periodic steady state (PS&)model
with both sinusoidal arrival rate and staffing function, gdementing Example 4.2. In
§C.5 we verify the explicit formulas for the PSS in Example.418 §C.6, we compare
the fluid approximation to results from simulations of cgpending stochastic queueing
models, for the example considered§@.2. These simulation results substantiate that
(i) the theorems are correct, (i) the numerical algorithsreffective and (iii) the fluid

approximation for the stochastic queueing system is eftecthe fluid model accurately
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describes single sample paths of very large queueing sgstathaccurately describes the

mean values for smaller queueing systems, e.g., itbervers.

C.2 Convergence to Steady State inth@ /M /s+M Model

In this section we give a numerical example illustratingt¢bavergence to steady state for
aG/M/s+ M queue starting empty, as characterized by Corollary 4.2e e letu = 1,
A=15s=1,0 = 0.5. In Figure C.1, we show how performance functions (the solid
lines) converge to their steady states (the dashed lingglyiag the algorithm described
in Chapter 2. Figure C.1 shows thatt), Q(t), B(t) andb(t, 0) quickly converge to their

steady state values.

b(t,0)

Figure C.1: Performance measures ofdhe\//s+ M fluid queue converge to their steady
states.
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C.3 Proof of Theorem 4.4

Proof. We now complete the proof of Theorem 4.4 by proving (4.22) @#3) when the
system is initially OL, i.e.g(0,z) > 0 for somez, w(0) > 0, Q(0) > 0 andB(0) = s. As
before, for simplicity, we assume= s = 1 and thereforey = A\ /sy = A.

(i) p < 1. Since the service is exponential at the fixed fate 1 and the staffing is fixed
ats = 1, the output rate of the service facility is 1. Hencg(t) = X\ — a(t) — b(t,0) <
A —b(t,0) < 1 as long as the system is in the OL regime; moreover, the Oloregyill
end after som® < T' < 1/(1 — p). The system will switch to the UL regime &t (i.e.,
Q(T) =w(T) =0, B(T) = s = 1) and will stay there for alt > T". Thus we can apply

(2.13) to characterize the density in service. By Assunmpiéo24), fort > T,

b(t,z) = pe "Ljp<a<i—ry +0(T, 2 —t+ T)e_(t_T)l{:v>t—T}
= pe "Ljo<p<i—ry + 0(0,2 — t)e  1pyo1y
— pe ¥ ast— o0, x>0.

t—T oo
B(t) = / pe “dx + / T,z —t+T)e D
0 ¢

-
= p(1—e DY 4 EDB(T) = p, ast — oo,

Moreover,o(t) = B(t) — p, ast — 0.

(i) p > 1. Asin case (i), the maximum output rate of the service fgcis 1. Since
p > 1, A > 1, so that the the system necessarily will stay in the OL or @jime forever.
Sinceb(t,0) = o(t) = 1, all old fluid will leave the queue aftéf = Q(0)/b(t,0) = Q(0).
Therefore, fort < T', we havey(t, z) = pF(2)lcwimne—1)y — () = pF(2) 1<y if
w(t) — w ast — oo.

If w(T) < w, the same reasoning in part (i) of the proof in Chapter 4 iegpthat

w(t) T w monotonically afterl’. If w(T") = w, then from (4.31) we see that(7") = 0,
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which implies that the system is already in steady state hnsl will stays there forever.

If w(T) > w, itis easy to see that'(t) = H(w(t)) < H(w) = 0 fort > T, where
H(-) is defined in (4.31). Thereforey(t) is decreasing (has negative derivative) as long
asw(t) > w. To show thatv(t) — w ast — oo, it remains to show that for ary> 0,
there exits &, such thatw(t) < w + € for anyt > t.. Becausef is strictly decreasing

in a neighborhood ofv, we havew'(t) = H(w(t)) < H(w +¢€) = d(e) < H(w) = 0,

if w(t) > w + €. Therefore, the derivative af(¢) is not only negative, but also bounded
by d(¢) < 0. Sow(t) will hit w + € at least linearly fast with slopé&(e), i.e., for any

t > T+ (w(T)—w—e¢€)/|d(e)|, we havew(t) < w + e. Therefore, we conclude that
w(t) | wast — oo. All the other results follow from the same reasoning as égroof in

Chapter 4. O

C.4 Another Example of Periodic Steady State

We complement Example 4.2 by considering another valudhfparametey in the sinu-
soidal staffing function in (4.42). Here we let= 0.5 instead of.0. That makes the model

period4r instead ofr. Figure C.2) shows the performance functions.

C.5 \Verifying the Sinusoidal PSS

We now verify the PSS for Example 4.3. To verifyandt; in (4.46) and (4.47), we let
a=s=p=c=0=1,b=0.6. For these parameters, we get= 0.78 andt; = 3.15
from (4.46) and (4.47). We apply the algorithm in Chapter @ ptot the performance
measures(t), Q(t), B(t), X (t) andb(t,0) in Figure C.3for0 < ¢ < 3-27/c = 67 (three
cycles) with the system initially critically loaded andigal rate \(t) = a+b-sin(c(t+tp))

(see Plot 1 in Figure C.3 for the phase differen&@8 — 5.50 = 0.78 = ty).



A(t) and s(t)

Time t

w(t)

Time t

Q)

Time t

B(t) and s(t)

Time t

X(t) = B(®) + Q(t)

Time t

b(t,0)

Time t

Figure C.2: Performance of th&, /M /s, + M model with sinusoidal arrival and staffing,
v = 0.5.

Figure C.3 shows that the fluid performance immediately bexsostationary (a DSS
cycle starts at time 0 and ends2at). Since theM,/M /s + M model here is equivalent
to the M, /M /oo model, we can also verify these analytical formulas by shgwhat they

agree with previous ones derived for thg /)M /oo model in [15].
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Figure C.3: TheG,;/M/s + M model in Example 4.3 is in PSS at time 0, with period
T = 27 = 6.28. In each cyclgnr, (n + 1)7] of PSS, the system switches between UL and
OL regimes twice at timer andnr + 3.15.

C.6 A Comparison with Simulation

In §C.4, we considered th&;/M /s, + M fluid queue, which has a sinusoidal arrival rate
A(t) as in (4.1) witha = ¢ = 1, b = 0.6, sinusoidal staffing function(t) as in (4.42)
with s = 1, u = 0.3, v = 0.5, exponential service and abandonment distributions with
ratey = 1 andd = 0.5. We let the system be initially UL witt3(0) = 0.5 < s(0). We
now compare the fluid approximation as shown in C.2 with caimpsimulations of the
associated/, /M /s, + M queueing model.

This queueing model has the same service and abandonmesit bat scaled arrival

rate and number of servers:\(t) andn s(t). There aren B(0) customers in service at
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time 0. LetWV,,(¢) be the elapsed waiting time of the customer at the head ofitbeajat,

Q. (t) be the number of customers in queue d@hcbe the number of customers in service.
Applying the spatial scaling, we &9, (t) = Q,(t)/n and B,(t) = B,(t)/n. We let
X,(t) = Qn(t)+ B, (t) be the scaled total number of customers in the systemmaFigure
C.4, C.5 and C.6, we compare the simulation results for tleeigyerformance functions
W,, Q, and B,, from a single simulation run to the associated fluid modelntexparts
w, @ and B, with n = 30, n = 100 andn = 1000. The blue solid lines represent the
gueueing model performance, while the red dashed linessept the corresponding fluid
performance. We observe that the bigger the scalirig, the more accurate the fluid
approximation becomes. When= 1000, we have a large-scale queueing model (with
arrival rate1000 + 600 sin(¢) and staffingl000 + 300 sin(0.5¢) servers) and we get close
agreement for individual sample paths.

Whenn is smaller, there are bigger stochastic fluctuations as showigures C.4 and
C.5, but the mean values of the queueing functions still aregvell approximated by the
fluid performance functions when the system is not nearlycetly loaded. We illustrate
by considering the cases = 100 andn = 30 in Figures C.7 and C.8, where average
sample paths of simulation estimates are compared with dppfoximations. In Figure
C.7, we average 20 sample paths for= 100; in Figure C.8, we average 200 sample
paths forn = 30. We need more samples for smaller scalindecause there are bigger
fluctuations.

A careful examination of Figure C.7 and C.8 show that in batkes the total fluid
content, X (t), very accurately approximates the expected value of tHedtatal number
of customers X, (¢), in the queueing system. However, the fluid queue cor@gnt and
the fluid service contenB(¢) do not approximate the mean values of their counterparts in
the queueing system as well. In particular, the quality esthapproximations degrades

when the system is nearly critically loaded. That is un@erdable, because only positive
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Q®

B(t) and s(t)

Time t

X =B() + Q)

Time t

Figure C.4: Performance of th@,/M /s, + M fluid model compared with simulation
results: one sample path of the scaled queueing model fo80.

fluctuations will be captured by the queue length, while ordgative fluctuations will be

captures by the number of busy servers.
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Figure C.5: Performance of th&;/M/s; + M fluid model compared with simulation
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Figure C.6: Performance of th&,/M /s, + M fluid model compared with simulation
results: one sample path of the scaled queueing model for1 000.
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Figure C.7: Performance of th&;/M/s; + M fluid model compared with simulation
results: an average of 20 sample paths of the scaled quemedel based on = 100.
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Appendix D

Appendix for Chapter 5

D.1 Overview.

This appendix contains additional supplementary matenibich is presented in order of
the material to which it relates. First, §iD.2 we present additional simulation results for
the example irk5.1. Specifically, we report results of simulations with #erascaling
n but averaged over multiple sample paths, to show the qualitize fluid model as an
approximation for mean values in the queueing system. Videcalssider an example with
smaller traffic intensityy for the example ir§5.1 to show that the periodic behavior is
eventually broken.

In §D.3 we give proofs of Theorems 5.7-5.1058.7. In§D.4 we return to the example
in §5.1 and show that different initial conditions can yieldydifferent PSS’s. Ir$D.5 we
apply the algorithm in Remark 5.2 to numerically evaluat @lerage performance over

a cycle with non-exponential abandonment distributioneese examples show that the
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average boundary waiting time over a cycle tends to be Istgeceater than the stationary
value, whereas the average queue length over a cycle catinbesrictly greater or strictly
less than the stationary queue content in the fluid modeEDl® we provide a proof of
Corollary 5.7, giving explicit expressions for the perfamnce in theG/D/s + M fluid
model with an exponential abandonment cdf. §M.7 we provide a proof of Theorem
5.12 showing that there need not exist a finite tiiffeafter which the system remains
overloaded. To do so, we show that the given example switchek and forth between
overloaded and overloaded infinitely often, with two swéshn each cycle. 1§D.8, we
give another counterexample with(0) < 1 that is an analog of Example 5.1§6.3.

We then start to consider other service distributions;Dr® we provide the same PSS
results for fluid models that have two-point service disttibns with one of the points at
0. Simulation verification is also given there. §B.10 we provide results of simulation
experiments for queues that have nearly deterministidaetimes. The simulation results
shows that the behavior fap service is not exhibited for other two-point distributions
This supports (but of course does not prove) our conjechaeALOM holds in all other

GI/GI/s+ GI models and even in the more generafG1/s; + GI models.

D.2 More on the Example in§5.1

D.2.1 Smaller Scalingn

We used a very large scaling, in particutar= 1000, for the queueing model in the ex-
ample in§5.1. We used a very largefor two reasons: first, to demonstrate that the fluid
model becomes accurate in the limitras— oo and, second, to provide a good test of the

numerical algorithm for the fluid model. However, in ordeb®useful as approximations
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for realistic large-scale queueing systems, the appraxmalso should be reasonable for

smaller scaling factors. We demonstrate that now.

Time t

Time t

Q(®) +B(®
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simulation | _|
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= = = numerical

X(®
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N
=
o
~
)
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3 35
Time t

Figure D.1: Performance of th&/ D /s+ M fluid model compared with simulation results:
one sample path of the scaled queueing modetfer100.

We consider the same badé/D/n + M fluid model here as i85.1, but we only
consider the caseé = 2. The other parameters remain unchangkd= 2, u = s = 1.
However, we consider different values of the scaling faetéor the associated stochastic
gueueing model, which coincides with the number of sen&rncé we set = 1).

Figure D.1 below provides the analog of Figure 5.2 for theeaz#one sample path of
the simulation withn = 100, for the same fluid model. Figure D.2 below gives the average
of 10 sample paths for the same model. We see that the fluidxippation provides only
a rough approximation for a single sample path whes 100 instead ofn = 1000, but
it is remarkably accurate for the average over 10 samplespatfe accuracy is especially
high in this example, because the extent of the overloadsiaddrloads are quite large.

The quality of the approximation does degrade dgecreases, for the given fluid model.
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Figure D.2: Performance of tli¢/ D / s+ M fluid model compared with simulation results:
an average of 10 sample paths of the scaled queueing moeel bas = 100.

To illustrate, we plot a single sample path for= 30 in Figure D.3 and the average over
100 sample paths in Figure D.4. The stochastic fluctuatioessa much greater for a
single sample path that we need to average over more santhktpaget a good estimate
of the mean values. For = 30, the fluid model clearly yields a good approximation
only for the mean values, but the mean is remarkably well@pprated forn = 30. The
approximation for the mean values in Figure D.4 are so goatitis evident that the fluid
model approximations can provide useful approximatiomstie mean values for much

smallern (and thuss).

D.2.2 Smaller Traffic Intensity p

For the initial heavily loaded example with= /s = 2 and scaling: = 1000 discussed

in §5.1 we were not able to detect a break in the periodic behavisimulations. For
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Figure D.3: Performance of tli¢/ D / s+ M fluid model compared with simulation results:
one sample path of the scaled queueing modet fer30.

example, Figure 5.3 shows that the periodic behavioiQft), the head-of-line waiting
time att, remains even for largé (7" = 1000). However, we found that a break in the
periodic behavior can be observed if we considered lessliidaaded examples.

To illustrate, we now consider the samé&/D/n + M queue in§5.1 with the same
parametersy (= 1, 0 = 2, n = 100) except for a smallek, now letting\ = 1.3 n, so that
the system has a lower traffic intensity= \/nu = 1.3 instead ofp = 2 as in§5.1. We
repeat the same simulation experiment with 1.3 and plotlV,, in Figure D.5. Figure D.5
shows essentially the same periodic behavior over thalitterval [0, 10], but it shows

that the periodic behavior is gone By= 1000.
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Figure D.4: Performance of tli¢/ D / s+ M fluid model compared with simulation results:
an average of 100 sample paths of the scaled queueing mabel ban = 30.

D.3 Proofs for§5.7

We omitted the proofs for the four theoremss 7 because they follow from the proofs of

corresponding results in Chapter 4. Nevertheless, we gedhie details here.

D.3.1 Proof of Theorem 5.7

Proof. Since both queues are overloaded fortali 0 and they have the same initial fluid
densities in service, we have(t,0) = by(t,0) = 01(t) = o2(t) by Theorem 3.2. For the
fluid content in queue, we havg(t, x) < ¢ (t, =) for all z by Proposition 2.6 because the
two queues share the sarfie

It remains to showw, (t) < wy(t) for all t > 0. We will do a proof by contradiction.
Hence suppose this inequality does not hold for some). Then continuity ofw; andws

implies that there exists sonfle< ¢; < t such thatw;(t;) = ws(t;) = w. However, the
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Figure D.5: Large-time periodic behavior of an overloaded> /s + M queueing model:
simulation estimates of the head-of-line waiting tibhg with A = 1.3, s=pu=1,0 = 2,
p=1.3,n=100,T = 1000.

ordering ofg; andg, implies thatg, (¢, @) < ¢ (¢, w). Hence the BWT ODE in Theorem
2.3 of Chapter 2 implies that)(t,) = w/,(t;) becauseé,(t,0) = by(t,0). Therefore,
this contradicts our assumption that there existsach thatw, () > w»(¢). Hence that

establishes the desired ordering.

The ordering of) and« follow directly from the ordering off andw since

w1 (t) wa(t)
Qut) = / qu(t,2)dz < / ao(t,2)dr = Qu(t),

w1 (t) wa(t)
ap(t) = / ¢ (t, x)hp(z)dx S/ G2 (t, x)hpdr = an(t).
0 0

Now we turn tov. The equation (27) in Theorem 5 implies that the orderingvok
inherited byv. That is made clear by applying the proof of Theorem 5, whiubwss that
v(t) is determined by the intersection of the functiorwith the linear function/;(u) =

t + u. Clearly, if we increase the function, then that intersection point increases as well.

O
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D.3.2 Proof of Theorem 3.6

Proof. Without loss of generality, by Theorem 5.7, it suffices touasse that\; < X\, and
¢1(0,-) < ¢2(0,-). If that is not initially the case, consider another two eyss, system 3
and 4 withA\z3 = A\ A X, 3(0,2) = ¢1(0,2) Aga(0,2), Ay = A1 V A, q4(0,2) = ¢1(0,2) V
¢2(0,z). Therefore, it is easy to see that — X\o| = |A\3 — A4 and|Q1(0) — Q2(0)] <
|Q5(0) — Q4(0)].

Since both queues are overloaded and, 0) = b2(¢,0), flow conservation of fluid in

gueue implies that for = 1, 2,

QL) = A — au(t) — by(t, 0).

Hence, we have

Q5(t) — Q1(t) = Xy — Ay — (ap — ) < Ay = Ay, (D.1)

where the inequality follows from Theorem 5.7. This yields

[Q1(t) — Q2(t)] = Q2(t) — Q1 (t) < [Q1(0) — Q2(0)] + £ [A1 — Aql.
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Obviously, (5.36) directly follows from (5.34). To show 85), we have

o (t) — 042( )| = aa(t) —ai(t)

wl(t)
o(t, x)hp(x)dx —/ ¢ (t, x)hp(z)dz
0

w2 (t)

(@(t:0) ~ it a)he(@)ds+ [ alt,a)he(o)do

w1 (t)

[
/wl(t

w1 (t) wa (t)
<l ( | @t —at o+ | q2<t,x>hF<x>dx>

wl(t)

= h(Qa — Q1) = hh|Qs — Q1]

where the first and last equality, and the inequality allde® from Theorem 5.7. O

D.3.3 Proof of Theorem 5.9

Proof. We first show thata) follows from (b). Without loss of generality, we assume
Q1(0) < @2(0). We construct another two systems, 3 and 4, witld, z) = ¢;(0,z) A
¢2(0, ) andqy (0, ) = ¢1(0, ) V ¢2(0, z). With this construction, systems 3 and 4 are bona
fide fluid models, withQs(t) < Q1(t) < Q4(t) andQs(t) < Qo(t) < Q4(¢) for all ¢, by
Theorem 5.7. This implies thak@) »(t) < AQs4(t) for all t. SincedQs 4(t)(0) < C4
for C; in (5.38), (5.37) in(a) follows from (5.43) forAQ)s 4(¢). (The final bound o, in
(5.38) arises when the supports@f0, -) andqg. (0, -) are disjoint sets.)

Now we prove(b). Observe that the first inequality in (5.43) follows (5.42chuse

dividing the interval0, 7'] into N subintervals yields

AQ(T)<< ! )AQ(O).

1+ hpL

Letting N — oo, we get (5.42).
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We now prove (5.42). Since both queues are overloaded faorzalld and they have
the same initial fluid densities in service, we hayé,0) = by(¢,0) = o1(t) = oo(t),
following from Theorem 3.2. Since;(0,z) < ¢(0,z), we haveq(t,z) < ¢t x),

wi(t) < wq(t) anday (t) < aw(t) for all ¢t > 0. Hence, we have

wa(?) wi(t)
an(t) — () = /0 ao(t, 2)hp () dz — /0 o1 (8, 2)hpe () da

w1 (t) wa(t)
- [ o) - ateappeois + [t ooty

wl(t)

w1 walt)
> h (/0 (ga2(t, ) _Q1(t7x))dx+/ C.Iz(t»if)(x)di’f)

wl(t)

= hp (Q2(t) = Qu(t) = hp AQ(1). (D.2)
Flow conservation implies that
Qi(t) = XN — ay(t) — b;(¢,0) fori=1,2,
which yields
AQ'(s) = —(as(s) —ai(s)) < —hp AQ(s) < —hp AQ(H), 0< s <t,
where the first inequality follows from (D.2) and the seconelquality holds sinc&Q(t)

has negative derivative. Therefore, integrating bothsswli¢h respect ta from 0 to ¢, we

have

AQ(t) — AQ(0) < —hj t AQ(t)
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and

1
AQ(t) < (tht) AQ(0).

To show the second inequality in (5.43), repeat the reagoimir{D.2) and use the face
he(z) < R}, instead ofhp(x) > hi.

Finally, we treatw(t). As above, it suffices to assume that we have the ordering in
(5.41). We have(t,0) > b* following from Proposition 5.4 and Corollary 5.3. First sot
that at timel™ = (Q1(0) + Q»(0))/b*, all fluid that was in queue 1 and 2 at time O is gone

(entered service or abandoned). Then (5.39) follows from

AQ(T) = / W;T) NF(z)dz < A F(ws(T)) Aw(T), T > T,

Chooser > 0 big enough such thdt(w) < b*/\. The BWT ODE implies that fot > T,

if wo(t) > w for somet. Hencew is an upper bound fotwy(t) if we(T*) < w. If
wy(T™) > w, itis easy to see that,(t) decreases until it is below because we can bound
wh(t). This argument implies thaty () < w V (wy(0) + 7) for all £ > 0. The constant

(5 in (5.40) is obtained by inserting established bounds. O

D.3.4 Proof of Theorem 4.1

Proof. Most are elementary; onl@(¢) andw(t) require detailed argument. Flow conser-

vation implies that)'(t) = A — a(t) — b(t,0) < X — a(t). Sincea(t) > hi. Q(t), we have
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Q'(t) < 0 wheneverQ(t) > \/h%. The bound forw(t) follows directly from (5.39) and

the proof of Theorem 5.9. O

D.4 Different Initial Conditions

Theorems 5.6 and 5.11 provide sufficient conditions for Agstion 5.7 to hold, and for
the performance function to converge to a PSS. That PSS dstrongly on the fluid
density in service) at the timeT™ after which the system remains overloaded. We now

illustrate that different initial conditions can yield yedifferent PSS’s.

15
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Figure D.6: A comparison of the PSS performance of@eé /s + M fluid queue with
different initial conditions: (i) critically loaded witth(0,z) = 1.5 - 1jo<z<i/2y + 0.5 -
111/2<2<13, @(0) = 0 (the blue solid lines); (i) starting empty (the red dashiads).

We again consider th€/D/s + M example in§5.1 withA = 2, y = s = 1,6 = 2.
In Figure D.6, we apply the algorithm in Remark 5.2 and plet performance functions

B(t), b(t,0), w(t) andQ(t) in interval [0, 3.5] for two different initial conditions: (i) The
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system is initially critically loaded (CL) with(0,z) = 1.5 - Lio<a<i/2y + 0.5 - 1{1/2<a<13,
Q(0) = 0 (the blue solid lines); (ii) The system is initially emptyé red dashed lines).
Both cases yield a PSS with perivdi. = 1, but the performance in these two cases differs

greatly.

D.5 The Average Performance Over a Cycle

In Remark 5.5 we noted that, unlikeanda, the averages of other performance functions

in a PSS typically do not agree with the steady-state val\és investigate) andw

1 [ w(t) dt now.

We consider an initially emptg /D /s + G1 fluid model with three types of abandon-
ment distributions: (i) Erlang-2H,), (ii) exponential (/) and (iii) Hyperexponential-2
(H3). We first review these distributions.

Let A be the generic abandonment timd. follows F, implies thatA = X; + X5
in distribution, whereX; and X, are two iid exponential random variables. Moreover,
f(x) = vz e, wherev is rate of X;. If A follows H,, then A is a mixture of two
exponential random variables, i.g(x) = p- 0, e % + (1 — p) - fy e~ %*, whered, and
0, are the rates of these two exponential random variabled) ang < 1 is the sampling
probability.

We fix the mean of4, letting E[A] = 1/6. An E, distribution has squared coefficient
of variation (SCV)C? = Var(A)/E[A]* = 1/2, which is less than 1. On the other hand,
all H, distributions haveC? greater than 1. FoE,, we lety = 26. For H,, we let
p=0.5(1—-+0.6),0, =2p0, 0, = 2(1 — p) 0, so thatC? = 4.

We let\ = 2,0 =2, u = s = 1. In Figure D.7, we plotv, @ anda in one cycl€0, 1/y]
of PSS for these three abandonment distributions, by apgplyie algorithm described in

Remark 5.2. (Here we start the system empty and compute feeimance functions
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Figure D.7: A comparison of the PSS of th¢ D /s + G fluid queues with different aban-
donment distributions: (B, (red dashed), (ii))/ (blue solid) and (iii)H, (black dashed).

in NV cycles for N large.) In Table 1, we compute and compare anda, the average
of w, @ anda in one cycle tow*, Q* anda*, their steady-state values. We have three
observations: (i) As proved in Corollary 5.@,indeed agrees with* (except for a small
computation error from numerical integration); @) # Q* in general, in particula) <

Q* for E, abandonment an@ > Q* for H, abandonment; (i} > w*, i.e., customers’

average waiting is longer in PSS than in the steady state.

D.6 The Case of Exponential Abandonment

In this section we prove Corollary 5.7, giving explicit foahas in the case of exponential

abandonment. We give two different proofs.
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abandonmentdist. F, (C* =0.5) | M (C* =1) | H, (C* = 4)

a (PSS average) 1.001 1 1.001
o (steady state) 1 1 1

w (PSS average) 0.437 0.367 0.260
w* (steady state) 0.420 0.347 0.226
Q@ (PSS average) 0.649 0.5 0.330
Q* (steady state) 0.657 0.5 0.324

Table D.1: A comparison of the average performance of PS8eof:{ D /s + GI fluid
gueue with ()Es, (i) M and (iii) H, abandonment distribution to the steady-state values.

D.6.1 First Proof of Corollary 5.7

First, sinceb(t,z) ando(t) are periodic functions an@(t) and «(t) can be written as
expressions in terms af(¢), it remains to derive the dynamics oft).

In a cycle[0,1/u], w(t) = w+tfor0 <t < 1/u— s/X andw(t) solves ODE
w(t) = 1—1/F(w(t)) = 1 — 1/e7® with w(l/p — s/\) = @ + 1/u — s/ for
1/pw—s/XA <t <1/u wherew > 0 is both the starting and the ending valueudf) in

each cycle. Letting(t) =t — w(t), we have forl /. — s/\ <t < 1/p,
69t _ (1 . w/(t))66(t_w(t)) _ U/(t)66v(t).
Forl/pu— s/A <t <1/pu,integrating both sides from/;, — s/ A to ¢ yields

t v(t)
eIt — 0 n=s/N) — 9/ dy = 6’/ e du
1/u—s/ o(1/u—s/3)
_ Mw®) _ 00 s/ A—w(1 /s /X)) (D.3)

Becausev(1/pu—s/\) =w+1/p—s/Xandw(1/u) = w, lettingt = 1/pin (D.3) yields
(5.52), from which (5.50) follows. Solving the ODE yields%3).

Finally, to show (c), we consider a cydle/n — w, 2/u — w| instead of 0, 1 /). First,
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Figure D.8: PWTu(t) and BWTw(t) of the PSS of th&'/D/s + GI fluid queue.

the PWTu(t) is periodic with the same peridd ;.. Moreover, it is continuous ovét /. —
w,2/u —w) and it has a discontinuity at= 2/, — w, as shown in Figure D.8, following
from Theorem 2.5. Also see Theorem 2.3 and 2.6 in Chapter 2dtails. Following

Theorem 2.6 in Chapter 2(t) satisfies the ODE

vy = 2 At
b(t +v(t),0) A
= ¢ 0v® _q, l—w§t<z—w, (D.4)
It It

where the second equality holds becabge0) = X for 2/u — s/A < t < 2/u and
t+ov(t) > 2/u—s/ A (obviously from Figure D.8). Since(1/p—w) = w+1/pu—s/ X = v,
solving ODE (D.4) with(1/u — w) = v, yields (5.55).
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D.6.2 Second Proof of Corollary 5.8

We can provide an alternative proof of Corollary 5.8 by fangon Q(¢). Sinceo(t) =

b(t,0) =0, Q(t) satisfies an ODE fob < ¢ < 1/u — s/ with
Q'(t) =A—-00Q(1),
which has a unique solution

Qt) = 2 (1—e)+Q(0)e . (D.5)

Sinceo (t) = b(t,0) = Afor 1/u — s/A < t < 1/, Q(t) satisfies another ODE
Q'(t)=A—-0Q(t) —b(t,0) = -0 Q(1),
which has a unique solution
Q) =Q* e, (D.6)

where

=

Q' =Q G - ;) = % (1-eG3)) 4 Quoye (i)

is the ending value af)(¢) in [0, 1/ — s/)]; i.e., lett = 1/u—s/Xin (D.5). SinceQ)(t) is
periodic in the PSS with periotl/;;, we must have) = Q(0) = Q(1/u). EquatingQ(0)
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to Q(t) in (D.6) witht = 1/ yields

_ A 6—03/)\ o e—G/u
Q:5< 1—6_6/l/« ) (D?)

PluggingQ(0) = Q in (D.7) into (D.5) and (D.6) yields (5.51) and (5.54). To 8h(5.52),

we let

- D A
Q:/O Ne Py =2 (1—e77), (D.8)

which yields (5.52).

D.7 On Theorem 9.1

Recall that Theorem 5.12 concludes that there need notafisite time7™ after which
the system remains overloaded; i.e., there need not €Xist oo such thatB(t) = s
forall t > T*. The proof involves a concrete counterexample. We now siatthe

counterexample indeed has the claimed property.

D.7.1 Proof of Theorem 5.12

We start by giving a feel for the performance by applying thenerical algorithm in
Remark 5.2. We plot the performance functian&), Q(¢), B(t), b(t,0) ando(t) for
0 <t < 5in Figure D.9. Figure D.9 clearly shows th&{n) = s for all n and that
B(n+ (1/2)) increases towards

However, from the picture alone, we cannot be sure Bhat + (1/2)) < s for all n.

To justify that, we need to consider the behavior more céyeflio show that the system
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alternates between overloaded and underloaded infinifedyn,owe consider successive
intervals[n,n + 1] for n > 0. First, in the first unit0, 1], we haveb(t,0) = o(t) =
b(0,1 — ) = 2 - 1{9<z<1/2}. Sinceb(t,0) = o(t) whenever the system is overloaded and

the system is initially overloaded, the BWiI(¢) satisfies the ODE

b(t.0 2
(71 = Lio<i<1/2} (D.9)

122w

with w(0) = 2, which has a unique solution

1 ' =1 e
w(t):t—§log +e for0 <t <1/2.

Lettingw(t) = 0 yields that

1 1—0.6e2w0)
t =21 ( -

5o 0 ) = 0.453 < 1/2, (D.10)

that is the time at which the system becomes underloadect tNat fortgl) <t <1/2,
o(t) =2 > 1.2 =b(t,0) = A, therefore, the fluid content in service decreases (liggarl
with B(t) = s — (o(t) — b(t,0)) (t — V) = 1 — 0.8(t — t{V). Fort > 1/2, b(t,0) =
A=12>0=o0(t), B(t) increases (liearly) withB(t) = B(1/2) + (b(t,0) — o(t)) (t —
1/2) = 0.96 + 1.2(t — 1/2). So the system again becomes overloadet'at= 0.53
sinceB(tY") = 1 = s. Moreover,t!" andt{" satisfy1.2(t" — 1/2) = 0.8(1/2 — t{).
Fort, < ¢t < 1, by ODE (D.9),w(t) = t — t{"), which implies thatv(1) = 1 — t{" =
0.47 < 2 = w(0). In summary, the system is overloadeddn:{"] U [t 1] and (strictly)
nd

underloaded int", t{"), ¥ (¢,0) = b(t,0) = 2 -1 +1.2-1

{o<t<t{M} (tV<t<1/2} a

w®(0) = w(0) > w(l) = wh(1), with0 < !V < 1/2 < ¢{") < 1. See Figure D.9.

Now consider the next unit interval, 2]. We can simply shift the origin to time 1
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Figure D.9: The counterexample providing a fluid model tr@gsdnot become (and stay)
overloaded in finite time; it switches between overloaded anderloaded regimes in-
finitely often.

and again consider the interv@l, 1]. Therefore the system is initially overloaded with

w®(0) = w(0) = wh(1) < w®(0), o(t) = bV (,0) =21 +12-1

{o<t<t{M} () <t<ely

(which is the rate into service in the previous interval). Wént to show that the same struc-
ture of all performance functions are preserved in the somit interval. The switching
time (from overloaded to underloaded) is a strict monotametion ofw(0), by (D.10),

therefore the system becomes underloadeti*atsuch thatt!? < ¢\ sincew(0) =
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w (1) < w®(0). Becauser(t) =2 - 1 +1.2-1 we have

fo<t<t{V} {1 <t<eMy

~ 2
Blt) = Lpepapiee ay 1~ 08¢ =)o)

(1 42
+[1—0.8(t;" — 5 )]1{t§1)§t§1/2}

1 2 1
H[1 = 0.8(" = 1) + 120 = t5)]1 0 oy
wheret!? satisfiesl.2(t% — (") = 0.8(t1" —{?) so that!” > ¢{", which implies that the
system is overloaded fof” <t < 1andw®(1) = w(1) =1 — £ < w(0) = wV(1) =
w®(0). In summary, in the second interval, the system is overidad@, +* Ut 1] and

(strictly) underloaded iit'>, ¢{?), 5@ (t,0) = b(t,0) =2 - 1 +12-1

{o<t<t!Py

andw®(0) = w(0) >

(1 <e<i?y

c@(t) = o(t) = bI(t,0) =21 +1.2-1

{o<t<t{M}

w(1) = w® (1), with 0 < £ < £V <4l < +{? < 1. See Figure D.9.

(M <e<elMy

Using an inductive argument, we can show that insitie unit interval[n — 1, n], the
same structure is preserved. In particular, if we move tiggroto timen — 1 (i.e., consider

0, 1] instead ofin — 1, n]), then

_ overloaded for t € [0, U [t 1],
the system is

(strictly) underloaded for t € (tgn),tg”)),

(n) = —9. .

"™ (t,0) = b(t,0) =2 1{0§t<t§n)}+1.2 1{t§n)§t§tén)},
o™ (t) = o(t) = b("_l)(t, 0)=2- 1{0§t<t§n71)} +1.2- 1{t§n71)§t§tgnfl)},
w™(0) = w(0) > w(l) =w™ (1),

with 0 < ¢ < ¢" D < ("D < I < 1. Therefore, the bounded sequengé ¢, . ..
is strictly decreasing and the bounded sequ&ﬁéaﬁ@) ... Is strictly increasing so that

we must have ¢ t° >0 andt(” 1t < 1. We next show that® > 0 and#3® < 1.
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Suppose® = 0, thenw™>(0) = w>(1) = 0, which implies that3° = 1 (the monotonicity
structure is preserved in the limit). Therefore, the systeamderloaded or critically loaded
in [0,1]. However, since we have = \/su = 1.2 > 1, this cannot happen. Hence a

contradiction.

D.7.2 More On Theorem 5.12

The example in the proof of Theorem 5.12 discussed aboy@.in1 also can illustrate the
important role played by the initial queue densjty, -) on the asymptotic performance.
Indeed, we can ensure that a tifié < oo exists such thaB(t) = s for all ¢ > T* by
changing the initial queue density. Moreover, we achiewgfthite 7 in this example by
reducingthe initial fluid content in queue, not by increasing it.

We consider the same example as before, as discus§&diri, with the same initial
fluid density in service bui(0) = 0.2 (instead ofw(0) = 2). Figure D.10 is the analog of
Figure D.9. As shown in Figure D.10, the system becomes aaddd in the second cycle
and stays overloaded thereafter. Moreover, the strucfutreed®SS is entirely different (in
this case there is no critically loaded interval as in FigDr@).

As concluded ir5.6 - 5.8, the initial fluid density in queug0, =) does not play a role
in determining the system'’s asymptotic behavior if the eyysts overloaded for atl > 0,
by the ALOM property in Theorem 5.9. In this example, howey€d, x) is also critical,
because it determines the behaviob afs well.

By a minor modification of the reasoning used§in.7.1, we can show that the sys-
tem is overloaded for all > 1/u. Let0 < ¢; < 1/u be the time at which the system
switches from overloaded to underloaded interval§,t/.]. First, we can establish a sim-
ilar (strict) monotonicity result. Withv(0) = 0.2, we can show thai (1) ~ 0.3 > w(0),

which implies that)(1/p +t;) > 0. Sinceo(t + 1/u) = b(t,0) for 0 < t < 1/u, we have
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Figure D.10: The dynamics of the system performance of tlaengke in Theorem 5.12
that has the same initial fluid density in service o) = 0.2 instead ofw(0) = 2.

b(t+1/u,0) = b(t,0). Therefore, the system is overloadedlifiu, 2/|. Using an induc-
tive argument, we can show thatn+1) > w(n) ando(t+n/u) = b(t+n/u,0) = b(t,0)

so that the system is overloadedinn + 1] for all n > 1.

D.8 More on First Passage Times

As an analog of Example 5.1 5.3, below we give another counterexample for first pas-

sage times wittB(0) < 1.

Example D.1 (counterexample on first passage times witt)) < 1 ) Suppose thak >

w=1.Letb(0,z) = Afor1— (1/\) <x <1-—1/2xandb(0,z) = 0 otherwise, so that



340

B(0) =1/2,b(t,0) = X\,0 <t < 1/X andb(t,0) =0,1/A <t <1,B(t) =1/2+ X\t for
0<t<1/2 andB(t) = 1fort > 1/2\. Thereforel™ =t* = 1/2).

Forn > 1, let{B,(0,y) : 0 <y < 1} be deterministic. To be a legitimate sample path
for a queueing systen&3,, (0, y) must be nondecreasing and integer-valued as well as satisfy
0 < B,(0,y) < n. Thus, letB,(0,y) = |B/(0,y)], where|z] is the greatest integer
less than or equal to and B/ (0,y) = n~'B/(0,y) = [/ b.(0,2) dz, whereb,(0,z) =
(n+1)/m)A\ 1—=((n—1)/n\) <z <1—((n—1)/2nX), andb,(0, x) = 0 otherwise. First,
observe thaB/(0,1/u) = (n>—1)/2n? < 1/2foralln > 1. Second, observe that we have
0 < BJ(0,y) — B,(0,y) < 1/n for all y andn. Hence,B,(0,1/p) < BS(0,1/p) < 1/2
for all n > 1. Nevertheless5,(0,-) — B(0,-) asn — oo. On the other hand, consider
a deterministic arrival process with rate\. ThenB,(1/2)\) = B,(0) + N,(1/2)\) =
|(n? —1)/2n%| + |(n—1)/2] = n—1 < n (note there is no departure ih, 1/2)]). Also,
Sn(t) = Sn(1/2X) = [(n+ DA (t = 1/2)\)| > [n A (t — 1/2X)] = N,(t) — N,(1/2)) for
(n—1)/2n\ <t < (n—1)/n\. Therefore, the system is underloadedoc ¢t < 1/\.

Hence,l,, =T =1/Aforalln > 1, in contrastta* = T* = 1/2\.

D.9 A Two-Point Service Distribution

We next generalize the PSS result of théD /s + G1 fluid queue discussed 5.8 to the
G/GI/s + GI model with a special two-point service-time distributianparticular, to a
two-point distribution where one of the two pointslisWe also give an analog of Corol-

lary 5.8 where analytic expressions for the PSS functioeasaailable when the system is
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initially empty and the abandonment distribution is expured. The proofs are similar to

the proofs of Theorem 5.11 and Corollary 5.8.

Corollary D.1 (PSS for the overloaded/D /s + G fluid mode) Consider the stationary
G/GI/s + GI fluid model with parametef), i1, p, s, F') wherep = A/su > 1 and the
service distribution is a two-point distribution withP(X = 1/pu) = p and P(X =

0) =1—pfor0 < p < 1 such that the mean service timelj§:. Suppose that Assumption
5.7is satisfied. 1H(7T*,z) = su, 0 < = < 1/u, then there exists a constant functipm
such that

[ W(P) —P*|| -0 as n— oo. (D.11)

for all 7 > 0. Otherwise, the fluid performand@e is asymptotically periodic with period

1/u, i.e., there exists a periodic functign* with period1/x such that(D.11) holds for

T=1/p.

Corollary D.2 (explicit expressions for the PSS with the special two-psgntice timep
Consider the~ / D / s+ M fluid queue with two-point service distribution given in Gliéary
D.1. If p = A/su > 1 and the system is initially empty, then the system is oveedan
the PSS with performance functions given in two pafisi(pu — s/pA] and (1/pu —

s/pA, 1/pp]) of acycled <t < 1/pu:
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(a) Inthe first part of the PSS cycle, (i.e., oK ¢t < 1/pu — s/p)),

A 1 — 6—95/;17)\ vy
Q) = 5[1—<m>6 }
b(t,z) = A Lu<e<its/p}s

o(t) = b(t,0)=0,

where

1 1 — e 0/ru
@ = log (_67) > 0, (D.12)

(b) Inthe second part of the PSS cycle, (i.e.,fgpu — s/pA <t < 1/ppu),

1 1 — ef?(/u—=s/A)/p oy
w(t) = —glog<1—|—( o ).e ),
\ [ fA/n=s/N/p _q
QW) = 5(° e
] 1 — e 9/pn

b(t,x) = A Ljo<a<t—1/ppts/pAyuft<a<i/pu}

o) = b(t,0) =\

Moreover, ford <t < 1/ppu,

B(t)=s, q(t,z) =X lp<ezuwy, ot)=00Q().
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Proof. In a cycle[0, 1/pA], w(t) = w +tfor0 <t < 1/pu — s/pA andw(t) solves ODE
w'(t) =1 —1/e7 % with w(1/pp — s/p\) = w + 1/pu — s/pA for 1/pp — s/pA <

t < 1/pA, wherew > 0 is both the starting and the ending valueugft) in each cycle.
Similar to the proof of Corollary 5.8, solving this ODE i/pu — s/pA, 1/pu] and set

w(1/pp) = w yields (D.12). O

Remark D.1 Theorem 5.11 and Corollary 5.8 in Chapter 5 arise as spe@aés of Corol-

lary D.1 and D.2 whemp = 1.

Time t

Time t

Time t

Q)
T
%

af(t)
T
|

Time t

Figure D.11: Performance of the fluid model with the spe@@a-point service distribution
ands=pu=1,p=1/2,A\=0=2.
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Figure D.12: A comparison of the fluid model with the speaid{point service times with
a simulation of a corresponding large-scale queue system.

We next compare the fluid performance with simulation ediiona of large-scale queue-
ing systems. We consider the overloaded>( 1) G/GI/s + M example with two-point
service distribution such tha&(X = 1/pu) = pandP(X = 0) = 1 — p. Let the system
be initially empty. We plot the system performanc@(), B(t), w(t), b(t,0), a(t), o(t))
in Figure D.11. We let = § = 2, p = 1/2 ands = u = 1. We havew =~ 0.0635 when
0 = 2 from (D.12), which can be verified by Figure D.11.

In Figure D.12 we compare our fluid approximation (the dasteedlines) with sim-
ulation estimates (the solid blue lines) of a large-se@j&>1/s + M queueing system
that has arrival rate A\ andn s servers. We plot (i) the elapsed waiting time of the cus-
tomer at the head of the liné’,(¢), (ii) the scaled number of customers waiting in queue

Q.(t) = Q. (t)/n and (iii) the scaled number of customers in senitgt) = B, (t)/n.
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We plot single sample paths of these processesnith1000. Figure D.12 shows that the

fluid approximation is effective.

Q)

P(X = 0.8) = P(X = 1.2)=1/2 ‘

Figure D.13: A comparison of simulations of large-scaleugusystems with two-point
service-times distributions, all having mean

However, from simulation experiments of correspondingugileg models, we con-
clude that the fluid model with other kinds of two-point seevidistributions must not
converge to a PSS.

To illustrate, in Figure D.13, we plot single sample pathpicesses$V,, and@,, of
four two-point distributions: (a)P(S = 1) = 1 (red dashed curves), (S = 0) =
P(S = 2) = 1/2 (blue dashed curves), (&)(S = 0.2) = P(S = 1.8) = 1/2 (yellow solid
curves) and (dP(S = 0.8) = P(S = 1.2) = 1/2 (black solid curves), witm = 1000
in interval [0, 16]. The traffic intensity i = A\/nu = 2 here. Figure D.13 shows that the
periodic structure is preserved only for case (a) and (bgrerhe have established periodic
behavior of the associated fluid model. Cases (c) and (d)veuao-point distributions,

but the periodic structure fades away very quickly and thetdlations decrease substan-
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tially. Thus we conclude that the corresponding fluid modalst not have asymptotically

periodic structure.

D.10 Nearly Deterministic Service Times

It is natural to wonder to what extent our results for detaistic service times apply to
other service-time distributions that are nearly deterstiiry but not fully deterministic. We
investigated this question by conducting simulation expents of corresponding queueing
systems with nearly deterministic service times.

For the experiments reported here, as before, we consigér tli-7 /n + M queueing
model withA = 2, u = 1 andf = 2, but now we let the service-time distribution be nearly
deterministic. For all example&;[S] = 1/ = 1 and we maké/ar[S] small, whereS is a
generic service time.

In our examples now we consider two kinds of service-tim#ithistions, both of which
have small variance: (i) Erlang-and (ii) a two-point distribution, taking the valuegu 4§
with probability 1/2. For the Erlangd service times, the variance (agt) is Var(S) =
1/N. We plot single sample paths of procégs with N = 100 and N = 5000 in Figure
D.14, with smallem (n = 100) and largefl’ (1" = 100). The periodic behavior is preserved
for the caseV = 5000 but not for N = 100.

For the two-point distribution at/ ;.4-§ with 1/2 probability, the variancEar(S) = §2.
We plot single sample path of procdss with § = 0.1 andd = 0.01 in Figure D.15, with
n = 100, T" = 100. Again, the periodic behavior is preserved for the case0.01 but not
foro =0.1.

From these experiments, we conclude, first, that over dyisdiort finite intervals, both
the large-scale many-server queueing systems and thexamatong fluid models with

nearly deterministic service-time distributions shouhéve much like the fluid model
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Figure D.14: Simulation estimates of the head-of-line ingitimesiV,, inanG/ E / s+ M
many-server queue with Erlany-service, with\ =2, s =y =1,0 = 2, p = 2, n = 100,
T = 100 in two cases: (i)V = 100; (i) N = 5000.
with deterministic service times and, second, that the a$gtic behavior of the approx-
imating fluid model will not be periodic. We conclude that aadhamount of variability
in the service time distribution will eventually break ugtperiodic behavior (provided of
course we do not have the special two-point distributiorsaered in the previous section).
More generally, we conclude that the quality of the appr@tion provided by the fluid
model with D service over finite time interval9, 7'] should improve as the service-time
distribution becomes more nearly deterministic, e.g.,h@svariancel/ar(S) decreases.
We conjecture that again the order of the limits cannot beramianged: If we first let
Var(S) |0, e.g., by lettingV 1 oo in the Ey distribution, and then afterwards let> oo,
then we have the asymptotic PSS established in Chapter 5heDattier hand, if we first

letT" — oo for any fixed N in the ErlangEy distribution, and then lelV 1 oo, then our
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Figure D.15: Simulation estimates of the head-of-line ingitimesiV,, inaG /T P/s+ M
many-server queue with a two-point (TP) service-time digtion taking valued /i + §
with 0.5 probability, withA\ =2, s = u = 1,0 = 2, p = 2, n = 100, T" = 100 in two cases:
() 6 =0.1; (ii) 6 = 0.01.
simulation experiments lead us to conjecture that the padace converges to the unique
steady state of the fluid model.

Even more generally, we conclude that when s system tendshewbe in a deterministic

or nearly deterministic way, that the transient behaviarauitably short time intervals

may not be well captured by long-run stationary or steadyesiescriptions.
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