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Abstract

Many-Server Queues with Time-Varying Arrivals, Customer Abandonment and

Non-Exponential Distributions

Yunan Liu

This thesis develops deterministic heavy-traffic fluid approximations for many-server

stochastic queueing models. The queueing models, with manyhomogenous servers work-

ing independently in parallel, are intended to model large-scale service systems such as call

centers and health care systems. Such models also have been employed to study commu-

nication, computing and manufacturing systems. The heavy-traffic approximations yield

relatively simple formulas for quantities describing system performance, such as the ex-

pected number of customers waiting in the queue.

The new performance approximations are valuable because, in the generality consid-

ered, these complex systems are not amenable to exact mathematical analysis. Since the

approximate performance measures can be computed quite rapidly, they usefully comple-

ment more cumbersome computer simulation. Thus these heavy-traffic approximations can

be used to improve capacity planning and operational control.

More specifically, the heavy-traffic approximations here are for large-scale service sys-

tems, having many servers and a high arrival rate. The main focus is on systems that

have time-varying arrival rates and staffing functions. Thesystem is considered under the

assumption that there are alternating periods of overloading and underloading, which com-

monly occurs when service providers are unable to adjust thestaffing frequently enough to

economically meet demand at all times.

The models also allow the realistic features of customer abandonment and non-exponential

probability distributions for the service times and the times customers are willing to wait

before abandoning. These features make the overall stochastic model non-Markovian and



thus very difficult to analyze directly. This thesis provides effective algorithms to compute

approximate performance descriptions for these complex systems. These algorithms are

based on ordinary differential equations and fixed point equations associated with contrac-

tion operators. Simulation experiments are conducted to verify that the approximations are

effective.

This thesis consists of four pieces of work, each presented in one chapter. The first

chapter (Chapter 2) develops the basic fluid approximation for a non-Markovian many-

server queue with time-varying arrival rate and staffing. The second chapter (Chapter 3)

extends the fluid approximation to systems with complex network structure and Markovian

routing to other queues of customers after completing service from each queue. The exten-

sion to open networks of queues has important applications.For one example, in hospitals,

patients usually move among different units such as emergency rooms, operating rooms,

and intensive care units. For another example, in manufacturing systems, individual prod-

ucts visit different work stations one or more times. The open network fluid model has

multiple queues each of which has a time-varying arrival rate and staffing function.

The third chapter (Chapter 4) studies the large-time asymptotic dynamics of a single

fluid queue. When the model parameters are constant, convergence to the steady state

as time evolves is established. When the arrival rates are periodic functions, such as in

service systems with daily or seasonal cycles, the existence of a periodic steady state and

the convergence to that periodic steady state as time evolves are established. Conditions

are provided under which this convergence is exponentiallyfast.

The fourth chapter (Chapter 5) uses a fluid approximation to gain insight into nearly

periodic behavior seen in overloaded stationary many-server queues with customer aban-

donment and nearly deterministic service times. Deterministic service times are of applied

interest because computer-generated service times, such as automated messages, may well

be deterministic, and computer-generated service is becoming more prevalent. With de-



terministic service times, if all the servers remain busy for a long interval of time, then

the times customers enter service assumes a periodic behavior throughout that interval. In

overloaded large-scale systems, these intervals tend to persist for a long time, producing

nearly periodic behavior.

To gain insight, a heavy-traffic limit theorem is established showing that the fluid model

arises as the many-server heavy-traffic limit of a sequence of appropriately scaled queue-

ing models, all having these deterministic service times. Simulation experiments confirm

that the transient behavior of the limiting fluid model provides a useful description of the

transient performance of the queueing system. However, unlike the asymptotic loss of

memory results in the previous chapter for service times with densities, the stationary fluid

model with deterministic service times does not approach steady state as time evolves in-

dependent of the initial conditions. Since the queueing model with deterministic service

times approaches a proper steady state as time evolves, thismodel with deterministic ser-

vice times provides an example where the limit interchange (limiting steady state as time

evolves and heavy traffic as scale increases) is not valid.
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Chapter 1

Introduction

This research is motivated by the need for tools to improve the performance of large-scale

service systems, such as telephone call centers, healthcare systems, judicial and penal sys-

tems, and both front-office and back-office operations in business systems; e.g., see [1,79]

and references therein for discussion of possible applications to customer contact centers

and healthcare. Large-scale service systems tend to be quite complicated because they tend

to have the following five features: (i) time varying arrivalrates and staffing, (ii) abandon-

ment from queue of impatient waiting customers, (iii) non-Markovian probability structures

(stemming from non-exponential probability distributions), (iv) large scale (many servers

and high arrival rates), and (v) complex network structure (multiple queues with flows from

one to the other). This thesis proposes new mathematical models and tools to help analyze

(and thus manage) the congestion in large-scale service systems. The models are determin-

istic fluid models. These fluid models serve as approximations for corresponding stochastic

queueing models with all the complicating features above.
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1.1 Time-Varying Model Data

It is important that our model assumptions capture realistic features of real service systems.

One of them is the time variability of the model data, i.e., the arrival rate, the service and

abandonment distributions, the number of servers and the routing probabilities. Among all

these model elements, the most important is the arrival rate. The time-varying arrival rate

in turn causes the staffing (the number of servers) to be time varying as well. We elaborate

on these two forms of time variability below. However, othermodel parameters may be

time varying as well. For instance, surgeons intend to schedule longer operations in the

morning and shorter ones in the afternoon, which can result in an increasing service rate

over the course of a day.

1.1.1 Time-Varying Arrival Rates

Unlike most textbook queueing models, real service systemstypically have time-varying

arrival rates, usually with significant variation over the day. For instance, the arrival rate

of calls in a financial service call center might vary from 0 (during the late night) to 2000

over the course of a day, as shown in Figure 1.1, taken from [25]. Because of such time-

varying arrivals, it is difficult to analyze the system performance. It is no longer possible

to apply the steady-state analysis associated with queueing models having constant arrival

rates, commonly found in textbooks.

Consequently, the standard tool for analyzing queues with time-varying arrival rates

is computer simulation. However, in order to rapidly determine the performance conse-

quences of different staffing plans, it is very helpful to have analytical models and meth-

ods for analyzing them. Almost all successful analytical methods employ approximations;

see [26]. This thesis continues the effort to develop usefulanalytical approximations for

analyzing queueing models with time-varying arrival rates.
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Figure 1.1: The arrival rate of incoming calls of a medium-size financial services call
center.

When staffing is adequate and service times are short, as in many customer contact

centers, it is often possible to apply stationary models to analyze many-server queueing

models with time-varying arrival rates, using some variantof the pointwise-stationary ap-

proximation. The pointwise stationary approximation usesa different stationary model at

each time, acting as if the arrival rate were constant with the instantaneous arrival rate at

that time.

When staffing is occasionally inadequate or service times are longer, the pointwise

stationary approximation can perform badly. Then other methods may be needed; see [26]

for a review. To determine appropriate staffing levels and analyze performance in a many-

server system with time-varying arrivals, infinite-servermodels often can be employed, as

in [17, 50, 53] and references therein. However, the effectiveness of infinite-server models

depends largely on the assumption that ultimately the system will be adequately staffed.
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This thesis considers a different situation. This thesis focuses on systems that alternate

between periods of overloading and underloading.

1.1.2 Time-Varying Staffing

In order to cope with the time variability of the arrival pattern, appropriate time-varying

staffing functions are needed; see [26] for background. Therefore, it becomes necessary to

go beyond the scope of models with constant staffing.

It is important to note that complications arise when we consider queueing systems

with time-varying staffing. We need to carefully consider what happens when the service

capacity is scheduled to decrease when all servers are busy.Do we require that customers

in service stay in service with the same server until their service is complete? (The analysis

here applies to the case in which we allow the service in progress to be handed off to another

available server.) Even with such server-assignment switching, there are issues: Do we alter

the prescribed staffing function to avoid forcing a customerout of service? If we adhere to

the given staffing function, as assumed here, then some customers are necessarily forced

out of service in the stochastic system. (That can be prevented in the idealistic deterministic

fluid model; see Assumption 2.4.) In the stochastic system, when customers are forced out

of service, which customers are forced out and what happens to them? Are these customers

forced out of the system entirely? If so, is there service complete or do they retry? If

customers are pushed back into the queue (as implicitly assumed in [46]), then where do

they go in the queue, and what is their new abandonment behavior?

Under regularity conditions, these realistic features will be asymptotically negligible

as the system scale grows (in a many-server heavy-traffic limit, discussed in§1.3.2), but

these new considerations complicate the proofs of limit theorems. For the fluid model, we
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directly assume feasibility of the staffing function, but wealso show how to achieve it if it

is not initially present; see§2.9.

1.1.3 Alternating Periods of Overloading and Underloading

As indicated above, this thesis focuses on systems that alternate between periods of over-

loading and underloading. In particular, this thesis develops heavy-traffic fluid approxima-

tions to approximate the performance of associated complexstochastic queueing models

that experience alternating periods of overloading and underloading.

Of course, periods of overloading are not desired, because they cause large customer

delays, producing significant customer dissatisfaction. But, also, periods of underloading

(with many idle servers) are not desired, because they are inefficient, tending to produce

large staffing costs. Nevertheless, many service systems commonly experience periods of

overloading and underloading. That is so because, first, thearrival rate varies significantly

over time and, second, system managers are unwilling or unable to change the number of

servers dynamically in real time to efficiently meet demand at all times. For example, there

may be constraints on the shifts. Consequently, service systems such as hospitals and call

centers often alternate between periods of overloading andunderloading. Therefore, there

is an increasing need for better understanding of the performance of service systems that

experience alternating intervals of overloading and underloading.

By considering alternating overloaded (OL) and underloaded (UL) intervals, we con-

sider a new many-server heavy-traffic (MSHT) regime (discussed more in§1.3.1). The

vast majority of the many papers on MSHT approximations focus on systems that are

nearly critically loaded at all times. In other words, they focus on the so-called quality-and-

efficiency driven (QED) regime. In contrast, this thesis does not consider the QED regime

at all. The OL and UL intervals considered here correspond tothe efficiency-driven (ED)
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and quality-driven (QD) many-server heavy-traffic regimes, described in§1.3.1, as op-

posed to the more commonly studied quality-and-efficiency (QED) regime, also described

in §1.3.1. Thus, this thesis focuses on MSHT approximations forsystems that alternate

between ED and QD MSHT regimes.

The structure of alternating OL asnd UL intervals is strongly exploited in this thesis.

When the system is underloaded, i.e., when there are enough servers serving all customers,

the system is identical to an infinite-server model; when thesystem is overloaded, i.e., there

are customers waiting in the queue and all servers are busy, we decompose the system into

two subsystems, the queue and the service facility, and separately treat the customers that

are waiting in queue and those that are in service; see Chapter 2 for details.

1.2 Abandonment and non-Exponential Distributions

In addition to time-varying arrival rates and staffing, service systems often experience

customer abandonment and have non-exponential distributions, which makes the major

stochastic processes of interest, such as the number of customers waiting in queue, more

difficult to analyze.

1.2.1 Customer Abandonment

In service systems, customers will often leave if they cannot begin service within a reason-

able time after they arrive. For example, in call centers, customers abandon by hanging up

if they are put on hold for a long time. In hospitals emergencyrooms, patients often leave

the waiting room before being seen by a doctor (i.e., abandon) because they have had to

wait a long time; that is known as the “left without being seen” (LWBS) effect; see [79] for

discussion. Moreover, the feature of customer abandonmentis important to include in the
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model, because even a small amount of customer abandonment can significantly alter the

system performance; [20]. Thus Customer abandonment is nowrecognized as an important

feature in service systems, e.g., see [20,81].

The probability (or percentage) of customer abandonment isone of the most important

performance criteria in service systems such as call centers, it provides direct feedback to

the system managers on whether or not the offered service is worth its wait and to what

extend customers are satisfied with the service. There are other commonly used mea-

sures such as the average waiting times and the probability (or percentage) of customer

delay. However the different performance measures are all deeply connected, for instance,

a nearly linear relationship between the average waiting time and the probability of aban-

donment was established in [49].

1.2.2 The Classical Erlang Models

Traditionally, the performance of service systems, such astelecommunication systems, has

been analyzed by applying the classical Erlang models. The reference model is the Erlang

C (or delay) model, denoted byM/M/s. In this model there is an external Poisson arrival

process (the firstM), independent and identically distributed (IID) exponential service

times (the secondM), s servers and an unlimited waiting room. The service times are

assumed to be independent of the arrival process. When all servers are busy, new arrivals

join a queue and wait for a free server. Customers are served in order of arrival by the first

available server. The ErlangB (or loss) model is the variant that has no waiting room at

all; then when all servers are busy, new arrivals are blockedand lost. The ErlangB model

was especially appropriate for telephone equipment that had not provision for waiting.

Of special relevance for this thesis is the generalization of the ErlangC andB models

to the ErlangA model, denoted byM/M/s +M . Just as in the ErlangC model, there
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is an unlimited waiting room, so that when all servers are busy, new arrivals again join a

queue and wait. However, the ErlangA model accounts for customers having only limited

patience for waiting before entering service. The model assumes that each customer has a

length of time (patience time) that the customer is willing to wait before beginning service.

If the customer is unable to enter service before that time, then the customer leaves without

receiving service. These patience times are assumed to be IID exponential random variables

(the+M) with rateθ, independent of the arrival process and service times. The ErlangA

model reduces to the ErlangC model whenθ = 0; the ErlangA model reduces to the

ErlangB model whenθ = ∞. The performance in the ErlangA model approaches the

performance in the ErlangC model asθ approaches0; the performance in the ErlangA

model approaches the performance in the ErlangB model asθ approaches∞.

1.2.3 From Markov to Non-Markov Queueing Models

The Erlang models are relatively easy to analyze because thenumber of customers in the

system at timet is a birth-and-death stochastic process, a relatively simple continuous-time

Markov chain stochastic process. However, to obtain more realistic models it is important

to go beyond these Markov models. In particular, statistical analysis shows that customers’

service and patience times are typically not exponentiallydistributed in real service sys-

tems. For example, Brown et al. [7] found that the distribution of the duration of calls

(service times) in call centers is close to the lognormal distribution, while the the hazard

rate (the density divided by the complementary cdf) is far from constant (implying that the

distribution of customer patience times is far from the exponential distribution), as can be

seen from Figure 1.2 from [7].

It is thus important to determine to what extent the queueingmodels with exponential

distributions provide useful performance description forsystems where the exponential as-



9

Figure 1.2: (a) A histogram of service times and (b) an estimate of the hazard rate rate of
patience times in a medium-size call center.

sumptions are not nearly satisfied. Whitt [77] showed for themany-serverM/GI/s+ GI

model, that the steady-state system performance tends to bequite sensitive to the abandon-

ment distribution beyond its mean, but relatively insensitive to the service-time distribution

beyond its mean. However, in Chapter 2, we show that the service-time distribution beyond

the mean can have a great impact to the transient performance.

Thus, there is growing interest in developing effective methods for analyzing models

that allow the service-time and patience-time distributions to be IID random variables with

general distributions (GI). Thus, there is a need to consider theM/GI/n + GI model

instead of theM/M/n + M model. Unfortunately, however, the number of customers

in the system at timet is no longer a Markov process. Analytic formulas are available,

although complicated, for the steady-state performance oftheM/M/n+GI model, having

a general abandonment distribution but still exponential service; see [49,80,81]. However,

little in the way of explicit analytical results has been done more generally. Hence, even

for theM/GI/n+GI model, it is necessary to resort to approximations.

However, this thesis considers even more general models than the challengingM/GI/n+

GI model. In addition to non-exponential service and patiencedistributions, the queueing
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models here allow non-Poisson arrivals and time-varying arrival rate and staffing. The base

stochastic model in this thesis is theGt/GI/st + GI stochastic model, where the sub-

scriptt denotes time-varying. TheGt arrival process is a general (not necessarily Poisson)

stochastic process with a time-varying arrival rate. However, the non-homogenous Poisson

process, denoted byMt, is the primary arrival process of interest.

Since theM/GI/s+GI stochastic queueing model is not tractable by current methods,

it is evident that the more generalGt/GI/st + GI stochastic model is not tractable either.

Thus we are motivated to look for approximations. Specifically, this thesis proposes and

analyzes a deterministic fluid approximation for theGt/GI/st + GI stochastic model,

which is called theGt/GI/st + GI fluid model. In this fluid model, the general time-

varyingGt arrival process is characterized simply by the arrival ratefunction. However,

the general service-time and patience-time cumulative distribution functions (cdf’s)G and

F , respectively, play important roles in the fluid model (beyond their mean values).

We obtain Markovian structure in the more complicatedGt/GI/st + GI stochastic

model and its fluid model counterpart by focusing on two-parameter stochastic processes.

In particular, we consider the queue content (number of customers waiting in the queue) at

time t that has been in queue for adurationat mosty, denoted byQ(t, y), and the service

content (number of customers that are in service) at timet that has been in service for a

durationat mosty, denoted byB(t, y), see (2.3). HereQ andB are functions of botht and

y.

1.3 Many-Server Heavy-Traffic Fluid Approximations

Traditionally, the performance of service systems, such astelecommunication systems,

have been analyzed by applying the classical Erlang models,which we reviewed above in

§1.2. However, since real service systems typically do not have nearly Markovian proba-
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bility structure, the generalization to non-Markovian models is important. However, once

the Markovian assumption is relaxed, even for a little bit, exact analysis tends to become

intractable. Therefore, heavy-traffic fluid and diffusion approximations become helpful;

see [74] for a review.

Heavy-traffic involve a sequence of queueing systems in which the load is allowed

to increase (become heavy). The congestion (e.g., the queuelength) tends to grow in the

heavy-traffic limit, but after appropriate scaling (e.g., multiplying by an appropriate asymp-

totically negligible quantity), there may be a nondegenerate limit, which can serve as an

approximation for the pre-limit processes.

The fluid models studied here can be regarded as models of interest in their own right.

However, their justification is enhanced by heavy-traffic limit theorems, which show that

the fluid models arise as heavy-traffic limits for a sequence of queueing models. Thus

we will approximate the expected total number of customers waiting in queue,E[Q(t)],

by the deterministic number in the corresponding fluid model. A heavy-traffic fluid limit

provides theoretical support for the approximation by showing that the approximation is

asymptotically correct as the scale increases. In a refined diffusion approximation, the

diffusion term can be used to estimate the stochastic error or fluctuation around that mean

trajectory.

There are two types of heavy-traffic regimes: theconventionalheavy-traffic regime

that focuses on queues with a single server or a fixed number ofservers, and themany-

serverheavy-traffic regime that applies to queues with a large number of servers (where

the number diverges to+∞ in the limit). We review these two heavy-traffic regimes in

§§1.3.1 and 1.3.2 below. Afterward, we discuss fluid models in§1.3.3.
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1.3.1 The Conventional Heavy-Traffic Regime

The conventional heavy-traffic regime involves a sequence of queueing models with a fixed

finite number of servers in which the associated sequence of traffic intensities is allowed

to increase to the critical value for stability,1; see [74] for an extensive account. The

first conventional heavy-traffic limit (and approximation)was developed for theGI/GI/1

queue by Kingman [38]. TheGI/GI/1 queue has a single server, IID interarrival times

{Ai, i ≥ 1} with mean1/λ and squared coefficient of variation (SCV, i.e.,V ar(A)/E[A]2)

c2A, and IID service times{Si, i ≥ 1} with mean1/µ and SCVc2S. (Thus, finite variances

is assumed.) The associated sequence ofGI/GI/1 queues indexed byn is constructed

by first lettingλ = µ and then by making thenth queue have the same arrival process

but modified service times{S(n)
i ≡ ρnSi, i ≥ 1}, whereρn ↑ 1 asn → ∞ for ρn ≡

E[S(n)]/E[A] = λ/µn, with ≡ denoting ”equality by definition.” The quantityρn is the

traffic intensity in modeln.

Under those assumptions, Kingman [38] showed that

(1− ρn)W (n) ⇒W as n→∞, (1.1)

whereW (n) is the steady-state waiting time of thenth queue in that sequence,W is an

exponential random variable with mean(c2A + c2S)/2µ and⇒ denotes convergence in dis-

tribution. The limit in (1.1) can then be applied to generatethe approximation

W (n) ≈ W

(1− ρn)
for fixed n, (1.2)

which tends to be increasingly accurate (in a relative sense) asn increases.

Borovkov [5] and Iglehart and Whitt [32] later extended the conventional heavy-traffic
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limit for single-server queues to queues with multiple servers. Instead of establishing the

limiting result for the steady-state queue length, Iglehart and Whitt [32] established the

convergence of the entire queue-length process. Similar toKingman [38], they considered

a sequence ofGI/GI/s queues (as well as more general multichannel queues) indexed by

n such that thenth queue has IID interarrival times{Ai/s, i ≥}, whereAi has mean1/µ

and SCVc2A, and IID service times{ρnSi, i ≥ 1}, whereSi has mean1/µ and SCVc2S.

(Againρn is the traffic intensity in modeln.) They let the traffic intensity approach 1 in the

way that
√
n(1− ρn)→ β asn→∞, where0 < β <∞. They showed that

1√
n
Q(nt)⇒ Q̃(t) in D as n→∞, if

1√
n
Q(0)⇒ ˜Q(0),

where Q̃ is a reflected Brownian motion with a drift term−βsµ and a diffusion term

sµ(c2A + c2S), D is the space of real-valued functions that are right-continuous and have

left limits.

1.3.2 Many-Server Heavy-Traffic Regimes

Unfortunately, however, the conventional heavy-traffic limits do not yield good approxima-

tion for large-scale service systems with many agents (servers). To develop better approx-

imations for such systems, Halfin and Whitt [28] establisheda many-server heavy-traffic

(MSHT) for theGI/M/s model, including the Erlang CM/M/s model. For the ErlangC

model, there is a sequence of queues indexed byn such that thenth queue has a Poisson ar-

rival process with rateλn, IID exponential service times with rateµ, andn servers. Halfin

and Whitt [28] proposed thequality-and-efficiency driven(QED) regime (also known as
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theHalfin-Whitt regime), which is characterized by

√
n(1− ρn)→ β, for 0 < β <∞, (1.3)

whereρn ≡ λn/nµ is the traffic intensity of thenth queue. Since the number of servers in

thenth queue grows to infinity, this regime is a many-server heavy-traffic (MSHT) regime.

Halfin and Whitt [28] showed that, under condition (1.3),

√
n

(

Qn

n
− 1

)

⇒ Q̃ in D, if
√
n

(

Qn(0)

n
− 1

)

⇒ Q̃(0), as n→∞,

whereQ̃ is a diffusion process with a drift termm(x) = −µβ1{y≥0} − µ(x + β)1{y<0}

and a diffusion term2µ. In the QED MSHT regime, the steady-state probability of delay

approaches a constant strictly between0 and1.

The results in Halfin and Whitt [28] were generalized to the model with phase-type

service distributions by Puhalskii and Reiman [60] and to generalGI service-time distri-

butions by Reed [61] and Puhalskii and Reed [59]. Kaspi and Ramanan [36] proved a fluid

limit for the measure-valued process tracking the ages of customers in the system.

The MSHT regime has also been generalized by incorporating customer abandonment.

For the special case of the Erlang models, the original results of Halfin and Whitt [28] were

extended from the Erlang C model to the Erlang A model by Garnett et al. [20]. With

abandonment, the traffic intensity need not be less than 1 in order for a proper steady state

to exist. Indeed, for the ErlangC model, a proper steady-state distribution exists for all

traffic intensities.

Garnett et al. [20] introduced the names quality-driven (QD), quality-and-efficiency-

driven (QED) and efficiency-driven (ED) for the three MSHT regimes. The QED regime
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prevails when

√
n(1− ρn)→ β, for −∞ < β <∞, (1.4)

In contrast, the QD regime arises when the limit in (1.4) is+∞, whereas the ED regime

arises when the limit in (1.4) is−∞. Thus, if the traffic intensity remains fixed asn→∞,

then the system is in the QD, QED or ED MSHT regime if and only ifρ < 1, ρ = 1

andρ > 1, respectively. Whenρ > 1, the probability of delay converges to 1, but the

probability of abandonment converges to a constant strictly between 0 and1. Whenρ < 1,

both probabilities converge to 0.

Most research has focused on the QED MSHT regime. However, asemphasized in [75],

with abandonment, the ED regime is also of considerable practical importance. Indeed, the

ED regime corresponds to the OL case considered here. The fluid model is of special inter-

est only when the ED regime prevails at least part of the time.The MSHT fluid approxima-

tion for the generalG/GI/s + GI model with non-exponential service and abandonment

distributions was established by Whitt [77]. In addition, adiscrete version of the limiting

convergence theorem was also provided in [77]. Further limits for this model have been

obtained by Kang and Ramanan [37].

The paper by Whitt [77] was the original inspiration for thisentire thesis. The initial

goal of this research was to obtain corresponding results for theGt/GI/st + GI fluid

limiting model with smooth model parameters, thus extending the discrete time results in

§6 of [77] (which allowed time-varying arrival rates). In Chapter 2 we develop a complete

analysis for theGt/GI/st +GI fluid model, which provides important new results for the

G/GI/s+GI model, thus complementing [77].
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1.3.3 Deterministic Fluid Models

There is a long history of applying deterministic fluid models to approximate the perfor-

mance of queueing systems, as can be seen from Newell [54]; also see Hall [29]. They

tend to be especially useful when the congestion is primarily determined by differences in

the total arrival rate and the maximum possible service rate, as occurs when the system ex-

periences periods of substantial overloading. The fluid models can be applied directly, but

additional insight can be obtained if they can be shown to arise as the limit of a sequence of

queueing models. However, this thesis is not primarily concerned with establishing limits

for sequences of scaled queueing processes associated witha sequence of queueing models.

Instead, we are directly concerned with the fluid model itself. It is important to recognize

that the fluid model can be considered directly as a legitimate model in its own right. By

focusing on a continuous divisible quantity, which we call “fluid,” our fluid model can be

regarded as a storage or dam model, as in [57].

Even though the fluid model we consider can be directly regarded as a model of interest,

it is helpful to see how the fluid model considered here arisesin a limit of a sequence of

queueing systems. In this thesis we focus on a fluid model thatarises in the MSHT regime,

as in [20,46,55,56]. As a consequence, the MSHT fluid approximations is more appropriate

for large-scale systems, where the number of servers is100 or more, but also may be useful

for systems with fewer servers, such as5− 20.

A theoretical basis for the MSHT limits for models with time varying arrival rates and

staffing was established by Mandelbaum, Massey and Reiman [46]; see also [47,48]. They

established MSHT limits for the time-varying MarkovianMt/Mt/st+Mt queueing model.

Whitt [77] established a discrete-time generalization forthe more generalGt/GI/st +

GI model considered here. Thus, even though we do not prove limit theorems here, the

appropriate scaling is evident from these previous papers.
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Our basic queueing model is theGt/GI/st + GI queue, which has a time-varying ar-

rival rate (theGt), a non-exponential service distribution (theGI), a time-varying staffing

function (thest), and a non-exponential patience distribution (the+GI). We consider a

sequence of systems indexed byn in which both the arrival rate and the number of servers

increase linearly inn. LetQn(t, y) (Bn(t, y)) be the number of customers in queue (in ser-

vice) att that has been in queue (in service) for at mosty. We expect to see the convergence

(

Qn(t, y)

n
,
Bn(t, y)

n

)

⇒ (Q(t, y), B(t, y)), as n→∞, (1.5)

whereQ andB are deterministic fluid functions. Asn → ∞, customers are shrunk down

to atom of fluid, however their individual behavior remains unchanged. Paralleing (1.2), as

a consequence of the limit (1.5), we propose the approximation

(Qn(t, y), Bn(t, y)) ≈ n(Q(t, y), B(t, y)), for fixed n, (1.6)

where the accuracy of the approximation (again in a relativesense) improves asn increases.

For very large-scale service systems (with many servers at each queue and high arrival

rates, i.e.,n is large) such as large-scale call centers, the deterministic fluid values serve as

good direct approximations for the stochastic queueing quantities, because the stochastic

fluctuations around the mean values tend to be relatively small (essentially because of the

law of large numbers (LLN)). Whenn is small, e.g.,n = 10 such as in a hospital, this

single sample path approximations become crude since stochastic fluctuations cannot be

simply ignored. However, the fluid content can still be used to approximate the mean value

of the corresponding stochastic process in the many-serverqueueing system. See computer

simulation verifications in§2.2.
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1.4 Network Structure

In this thesis, we primarily focus on a single fluid queue. However, queueing models with

only one queue are not sufficient to represent all real service systems. In hospitals, for

instance, patients move between different units, such as the emergency rooms, intensive

care units, and operating rooms. In factories, each item mayhave to visit different work

stations through its production line. In call centers, departing customers may want to call

back later to require more service; this feedback provides network structure.

Thus we also consider fluid models with a general network structure. In particular, we

consider open networks of fluid queues with proportional routing, which we denote as the

(Gt/GI/st + GI)m/Mt fluid model. This model hasm fluid queues, each with its own

arrival process, service times and patience times. A proportion of the fluid completing

service from each queue is routed to other queues or out of thenetwork. Just as for the

single fluid queue, this network of fluid queues is intended toserve as an approximation

for the corresponding stochastic model. Each queue in the stochastic queuing model is a

Gt/GI/st +GI queueing model. In the stochastic queueing model the routing is assumed

to be Markovian, with individual customers going to one of the other queues with specified

probabilities, independent of the system history up to thattime. See Chapter 3 for details.

This stochastic queueing network is a generalization of theopen Jackson queueing

network; see [10] for a review of the Jackson network. However, the non-Markovian

structure and the time-varying arrival rates and staffing make the stochastic model ex-

tremely difficult to analyze. To find a balancing point between model applicability and

mathematical tractability, we focus on the MSHT deterministic fluid approximation of this

(Gt/GI/st + GI)m/Mt stochastic queueing network model. We provide efficient algo-

rithms to compute the standard performance measures in a finite time interval, such as a

day or a week.
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1.5 Transient and Asymptotic Performance

In standard queueing models with constant parameters attention is usually focused on the

long-run steady-state behavior. However, when the model parameters are time-varying,

as in most real service systems, that is not possible. A steady state no longer exists. For

systems with time-varying model elements, it is necessary to pay attention to the perfor-

mance as a function of time. Therefore, it is important to carefully investigate the system

performance in a relatively short time period, such as a day or a week. We intend to an-

swer questions such as: How many total customers on average do we expect at 9am? How

long does an arriving customer at 1pm have to wait before entering service? To prevent

extensive overloading, how many agents do we need at 3pm?

To analyze the transient dynamics, fluid and diffusion approximations have been widely

developed, see [46–48, 56, 58]. Consider a performance function, such as the total number

of customers waiting in queue att, Q(t). the time-dependent fluid function characterizes

its average (via sample path, not time) behavior as time evolves while the diffusion term

describes the stochastic fluctuations around that average path. Complementing [46–48,

56, 58], we provide efficient algorithms to compute performance functions for the fluid

approximations in any finite time interval.

In this thesis we also consider the steady-state behavior ofthe models when the model

parameters are not time-varying. When the model data are nottime-varying, the long-

run average or steady-state performance is of primary interest. For example, in revenue-

generating service systems such as call centers which take customer orders, these steady-

state quantities can be very helpful in evaluating the average system costs and revenue,

e.g., see [3]. Thus it is significant that we also characterize this steady-state performance

for models without time-varying model elements.

From a theoretical perspective, it is also important to knowthat the system approaches
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steady state as time evolves. In this thesis, we show that thestationary fluid model con-

verges to steady state as time evolves. In addition, how fastthe transient system perfor-

mance functions converge to the steady state may also be of applied interest. When that

convergence is rapid, we can more safely ignore any effect from the initial state and directly

use the steady state quantities as approximations. We show,under regularity conditions,

that the convergence to steady state in the fluid queues is exponentially fast.

Finally, there is another important case. Even though the arrival rate may be time-

varying, the arrival rate may be periodic or nearly periodic. Indeed, this is common for

service systems that experience daily or weekly cycles. Forinstance, call centers reveals

similar arrival patterns on every Monday, which can be quitedifferent from those on Sun-

day, so one week can be treated as a performance cycle, see [7].

In this periodic case, transient analysis is of course stillimportant, but it is natural

to expect that there would be a dynamic periodic steady state. In particular, we expect

the successive cycles to be distributed the same in the long run. That is, there would be

systematic time variation within each cycle, but the distribution of the performance over

the successive cycles would tend be the same. In this thesis we establish the existence

of a periodic steady state (PSS) for queues with periodic model parameters, and show

convergence to that PSS as time evolves. See Chapters 4-5 fordetails.

1.6 Effective Algorithms

For engineering applications, it is essential that the performance descriptions can actually

be efficiently computed. Thus it is significant that we develop efficient algorithms for the

fluid models considered here. These algorithms are based on solving ordinary differential

equations and solving fixed point equations associated withcontraction operators. They

are implemented in MatLab and solved on an ordinary personalcomputer.
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Using these algorithms, we can predict, and thus control, the real-time performance of

service systems. For example, we apply the algorithms to determine staffing functions that

stabilize the performance at target levels of congestion, for an arbitrarily given arrival rate

function; see§2.10. We now briefly describe the different algorithms developed in this

thesis.

1.6.1 Algorithm for One Fluid Queue

We first decompose the system into two subsystems: (i) thequeuewhere fluid is waiting

in line and theservice facilitywhere fluid is in service. When the system is UL, the queue

is empty so that external arrivals flow into the service facility directly; when the system

is OL, external arrivals are buffered in the queue, the oldest fluid in queue moves into the

service facility according to a first-come-first-serve (FCFS) discipline.

We next partition the desired time interval (such as a day) into disjoint OL and UL

intervals and provide the OL-UL switching criterion. Giventhe initial system status, we

recursively compute the performance measures in OL and UL intervals and locate those

OL-UL switching time points, until the end of the time horizon is reached.

Comparing with a UL interval, an OL interval is more complicated. For general non-

exponential service distributions, we have to solve a fixed-point equation (FPE) which

admits a unique solution under general conditions; for exponential service distributions, the

FPE simplifies to an easy ordinary differential equation (ODE). See Chapter 2 for details.

1.6.2 Algorithms for a Network of Fluid Queues

We next generalize the analysis from single-queue fluid models to networks. The major

difficulty for the network model is that the total arrival rate at each queue of the network is

not part of the model parameters. This rate is the sum of the external arrival rate (which is



22

part of the model data) and the rate of feedbacks from other queues. If we can obtain the

total arrival rates for all queues, each of them can then be analyzed in an identical way as

in Chapter 2 so that the single-queue fluid algorithm can be simply applied. Therefore, the

main step of this network generalization is to obtain the total arrival rates to each queue.

We provide two algorithms for the fluid networks with exponential service distributions.

In the first algorithm, we show that the vector of the total arrival rates is a fixed point in

the multi-dimensional functional space. In addition, we show that this new FPE has a

unique solution under general conditions so that we thus solve for the fixed point through a

recursion-based algorithm. In the second algorithm, we determine the total arrival rates by

solving a multi-dimensional ODE. The algorithm becomes more complicated for networks

with non-exponential distributions because the single-queue fluid algorithm can no longer

be applied, see Chapter 3 for details.

1.6.3 Algorithm for a Fluid Queue with Deterministic Service Times

The initial algorithm for one fluid queue is based on smooth model data, and thus does

not apply to deterministic service times. However, when we analyze the fluid queue with

deterministic service times in the last chapter, we modify the previous algorithm, so that it

applies to models with deterministic service times. See Chapter 5 for details.

1.7 Simulation

In this thesis, computer simulation of the stochastic queueing models is employed exten-

sively to test the accuracy of the deterministic fluid approximations of the corresponding

expected values in the stochastic queueing model. Just as for the numerical algorithms, the

simulations of the queueing models are run in MatLab on a personal computer.



23

For very large-scale models (that have a large arrival rate and a large number of servers),

there is very little variability in the content stochastic processes in the queuieng model; i.e.,

sample paths from independent replications will tend to fall on top of each other. (The

system can be said to be large when the arrival rate and the number of servers are around

1000, with the mean service time being 1.) Thus, it suffices toshow that any one of these

sample paths agrees closely with the numerical values computed by the algorithm for the

fluid model. We show that simulation estimates of single sample paths of the performance

measures, such as the time-dependent number of customers and waiting times, agree with

the fluid approximating functions closely. This is consistent with expectations, because of

the MSHT theoretical basis.

However, assuming a large arrival rate and a large number of servers is not reasonable

for systems such as hospitals where the number of doctors andnurses can be 10 or even

smaller. It is therefore important that our fluid approximation can be applied for small

service systems. In this case we should not expect the deterministic fluid approximation

to work well for each sample path because the stochastic fluctuations or errors cannot be

simply ignored. However, the mean functions of these stochastic processes can still be well

approximated by the fluid functions. See Chapters 2 and 3 for detailed examples.

We provide simulation verifications on both single-queue examples and network exam-

ples. All of these examples show that our fluid approximations are effective. Effectiveness

increases as scale increases and the extent of overloading increases.

1.8 Organization of This Thesis

There are four chapters in the rest of this thesis; these are based on four completed papers

[41–44], respectively.

In Chapter 2, we first restrict our attention to the deterministicGt/GI/st + GI fluid
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model that approximates its corresponding many-server queueing model with a single class

of customers handled by a single group of homogeneous servers, working in parallel. We

determine the time-dependent performance functions, suchas the fluid in queue and in

service, the waiting time, the abandonment and service completion rate, etc. This model

has a time-varying arrival rate and service capacity, abandonment from queue, and non-

exponential service and patience distributions. Our key assumptions are that (i) the system

alternates between OL and UL intervals, and (ii) the model functions are suitably smooth.

The results show the impact of the time-varying parameters and the model distributions

on the performance. Simulations confirm that the approximation and the algorithm are

effective.

In Chapter 3, we extend our analysis in Chapter 2 to complex network queues, allow-

ing time-dependent proportional routing among the queues.In particular, we consider the

(Gt/GI/st + GI)m/Mt model. There arem queues, each with its own external fluid in-

put, but in addition a proportionPi,j(t) of the fluid output from queuei at timet is routed

immediately to queuej, and a proportionPi,0(t) ≡ 1 −∑m
j=1 Pi,j(t) ≤ 1 is routed out of

the network (departs having successfully completed all required service). This framework

permits feedback, not only directly fromi to i, but also indirectly fromi to i after one or

more transitions to other queues. We provide efficient algorithms computing all standard

performance functions in a finite time interval. In addition, we characterize the steady-state

behavior of the stationary version of this network fluid model.

In Chapter 4, we complement the analysis in Chapters 2 and 3 byinvestigating the

large-time asymptotic behavior of theGt/Mt/st+GIt fluid model with exponential service

distributions. We establish an asymptotic loss of memory (ALOM) result which says that

the impact of the initial condition dissipates as time evolves. Using this ALOM property,

we develop the following two convergence results: For theG/M/s+GI queue, i.e., when

the model parameters are constant, we establish the convergence to the steady state (in the
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infinite future). When the arrival rates are periodic functions (such as in service systems

with daily or weakly cycles), we establish the existence of aperiodic steady state (PSS)

and the convergence to the PSS as time evolves. We also show that the convergence is

exponentially fast under general regularity conditions.

In Chapter 5 we consider a stationaryGI/D/s+GI queueing model with a stationary

general arrival process (the firstGI), deterministic service times (theD), multiple servers

(thes), and general abandonment times (the+GI). Under general conditions, the number

of customers in thisGI/D/s+GI many-server queue at timet converges to a unique sta-

tionary distribution ast→∞. However, simulations show that the sample paths routinely

exhibit nearly periodic behavior over long time intervals when the system is overloaded and

s is large, provided that the system does not start in steady state. We provide insights into

the transient behavior by studying the deterministic fluid model. The fluid model also has

a unique stationary point, but that stationary point is not approached from any other initial

state ast → ∞. Instead, the fluid model performance approaches one of its uncountably

many periodic steady states, depending on the initial conditions.

For this stationaryGI/D/s+GI queueing model, we also prove a MSHT limit, show-

ing that the performance functions in the fluid mdoel are the limits of corresponding ap-

propriately scaled performance functions in a sequence of the stochastic queueing models.

As a result, we demonstrate the invalidity of the interchange of two limits: the steady state

(obtained ast → ∞) of the HT limiting process (obtained asn → ∞) does not coincide

with the HT limit (obtained asn → ∞) of the steady state (obtained ast → ∞) of the

queueing processes.
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Chapter 2

TheGt/GI/st +GIt Fluid Queue

We begin with the study of a single-queue fluid model that has time-varying arrival rate

and staffing functions, general service and patience distributions. We provide an efficient

algorithm for computing all standard performance measures. A key idea of this algorithm

is to treat overloaded intervals and underloaded intervalsseparately.

2.1 Introduction

In this chapter, we study theGt/GI/st +GI deterministic fluid model. This model serves

as an approximation for the corresponding many-server queueing model, that has a non-

stationary general arrival process (theGt), independent and identically distributed (IID)

service times following a general distribution (the firstGI), a time-varying staffing func-

tion (thest), and allows IID patience times following a general distribution (the+GI).

We have four important goals. First, we want to carefully define theGt/GI/st + GI

fluid model. Second, we want to characterize its performance. Third, we want to develop
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an effective algorithm for computing all the performance functions. Finally, we want to

show that the resulting performance descriptions effectively approximate the performance

of the corresponding large scale stochasticGt/GI/st + GI queueing systems. We do

that by conducting simulation experiments. For very large systems, the fluid performance

will closely match individual sample paths; for smaller systems, the fluid performance will

closely match the mean values of the stochastic processes.

In order to recover important Markovian structure, in particular we focus on the two-

parameter processes,Q(t, y) andB(t, y), denoting the number of customers in queue and

in service for at mosty at t. These quantities have interesting new features not evident from

theMt/Mt/st +Mt fluid model.

By focusing on non-exponential service and patience distributions, we also extend [77],

which developed a deterministic fluid model to approximate the steady-state performance

of astationaryG/GI/s+GI queueing model. Comparisons with simulation in Tables 1-3

of [77] show that the approximations can be very useful when the system is overloaded.

Some degree of overloading is not uncommon, because even a small amount of abandon-

ment acts to keep the system stable [3,20,76,77]. The accuracy of fluid models for capacity

planning has been strongly supported by [3].

Here we consider the analogousGt/GI/st + GI fluid model, now including time-

varying arrival rate and staffing (service capacity). We develop an algorithm to calculate all

the standard performance functions. In doing so, we also provide important contributions

even for thestationaryG/GI/s+GI fluid model introduced in [77]. Here we provide for

the first time a full description of the transient behavior ofthe stationaryG/GI/s+GI fluid

model. The fundamental evolution equations, here in (2.5),are the same as in (2.14) and

(2.15) of [77], but the time-dependent performance when thesystem is overloaded actually

depends on three features introduced for the first time here:First, for non-exponential

service, the (two-parameter) fluid density in serviceb(t, x) depends on the rate fluid enters
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service,b(t, 0), which is characterized as the unique solution to a fixed point equation; see

(4.20) and Theorem A.2. Second, the fluid density in queue,q(t, x), depends on aboundary

waiting time(BWT)

w(t) ≡ inf {y ≥ 0 : q(t, x) = 0 for all x > y}, (2.1)

which is characterized here as the solution of anordinary differential equation(ODE); see

Theorem 2.3. Third, thepotential waiting time(PWT)v(t), i.e., the virtual waiting time of

an arrival at timet if that arrival would elect never to abandon, is characterized as the unique

solution of an equation involving the BWTw(t) or by yet another ODE; see Theorems 2.5

and 2.6. To the best of our knowledge, none of this structure has been exposed previously.

Even though we have had to complete the story of the dynamics of theG/GI/s + GI

fluid model in this chapter, the steady-state description in[77] is evidently correct (which

should not be surprising, since it was confirmed by simulations). For the special case of

theG/M/s + GI fluid model, in Chapter 4 we extend the results here to prove that the

time-dependent performance converges to that steady-state performance as time evolves

for any finite initial condition. Moreover, we provide bounds on the rate of convergence. In

Chapter 4, we also establish convergence to a periodic steady state for periodic models and

we establish asymptotic loss of memory (ALOM) for more general time-varying models.

We should also mention that a time-varyingGt/GI/s + GI fluid model was already

considered in§6 of [77], but that was done by considering an approximating discrete-time

model, from which the new structure exposed here is not evident. In contrast, here we

develop asmooth model; see Assumption 2.2. However, [77] provides important theoretical

support because it establishes a MSHT limit for the discrete-time model, with the usual

MSHT scaling, consistent with earlier asymptotic results in [20, 46–48]. Thus, we already

know that the fluid model we consider arises as a MSHT limit of asequence of scaled
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queueing systems. Nevertheless, we intend to provide additional theoretical support for

the fluid model with deterministic service distributions introduced here in Chapter 5 by

showing that the fluid model arises as the MSHT limit of a sequence of queueing systems,

under suitably regularity conditions. We do so by applying recent MSHT limits for infinite-

server queues in [56]. The MSHT limit for the model with general service distributions is

in progress, see [45]. The connection to infinite-server queues plays a critical role here

as well; see§2.4, §2.5 and§2.7.1. The new limits in Chapter 5 are consistent with recent

results in [36,37,56,62]. By uniquely characterizing the fluid limit here, the present chapter

can be used as a step in the proof.

The results have significant relevance for applications. First, service systems typically

have arrival rates that vary significantly over time, and theresults dramatically reveal the

consequence, e.g., showing how the peak congestion lags behind the peak arrival rate, as

discussed for theMt/GI/∞ stochastic model in [14, 15]. Second, service systems often

do have non-exponential service and patience distributions [7], and the results dramatically

reveal the consequence. From [49,76,77,81], we know that the patience distribution beyond

its mean has a significant impact. However, [76,77] show thatthe steady-state performance

in the stationaryG/GI/s+GI model is relatively insensitive to the service-time cdf beyond

its mean. In contrast, here we show that the service distribution beyond its mean can have a

dramatic impact as well for the transient performance; see§2.2. Finally, the results in this

chapter have already been applied in [31] to create new effective real-time delay predictors

for arriving customers in a service system with time-varying arrivals.

The analysis here applies to a system that is either overloaded (OL) or underloaded (UL)

for an extensive period of time, but an innovation in our approach is to consider systems

thatalternatebetween OL intervals and UL intervals. With time-varying arrival rates, such

alternating behavior commonly occurs when it is difficult todynamically adjust the staffing

level in response to changes in demand. If the staffing cannotbe changed rapidly enough,
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then system managers must choose fixed or nearly fixed staffinglevels that respond to

several levels of demand. Then it may not be cost-effective to staff at a consistently high

level in order to avoid overloading at any time. Then the fluidmodel introduced here may

capture the essential performance.

We contend that the alternating OL and UL regime (corresponding to the MSHT ED

and QD regimes [20]) can be very useful, but if staffing can be adjusted dynamically, then

the system may be nearly critically loaded at all times. In that case, we anticipate that it

would be better to use analysis techniques suitable for systems that are critically loaded or

nearly critically loaded at all times (corresponding to theMSHT QED regime). However,

it remains to develop a tractable QED approximation for theGt/GI/st + GI model. We

think that the present model may even be useful in that setting as well, if skillfully applied.

Here is how the rest of this chapter is organized: We start in§2.2 by discussing an

example, showing the results of the algorithm and how they compare to simulations of

queueing systems. Next in§2.3 we carefully define theGt/GI/st + GI fluid model and

specify key regularity conditions. In§2.4 we state important scale-proportionality results,

which provide important simplification for UL intervals. In§2.5 we characterize perfor-

mance during a UL interval.

In §2.6 we characterize the service content density during an OLinterval. Subsections

2.6.1 and 2.6.2 are devoted to the special case ofM service and non-M GI service, respec-

tively. An explicit formula is available forM service; an iterative algorithm is developed

for other cases. In§2.7 we characterize the queue performance functions: the queue content

densityq(t, x), the BWTw and the PWTv. In §2.8 we summarize the resulting algorithm.

We have indicated in§2.3 that feasibility of the staffing function is an importantissue

when the staffing function can decrease during overloaded intervals. We directly assume

feasibility, but in§2.9 we show how to detect the first violation of feasibility ofa staffing
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function and how to find the minimum feasible staffing function greater than or equal to

the initial staffing function if that one is infeasible. In§2.10 we show how to construct

a staffing function to stabilize delays at any fixed target value, contributing to prior work

in [17,35]. In§2.11 we provide three postponed longer proofs, the proofs ofTheorems 2.3,

2.5 and 2.6. Finally, in§2.12 we draw conclusions. Additional supporting material appears

in Appendix A.

2.2 An Example

We start with an example. We consider anMt/H2/s + E2 fluid model with a sinusoidal

arrival rate function:λ(t) = 1 + 0.6 sin(t), mean service time1/µ = 1, mean patience

1/θ = 1, and fixed service capacitys = 1. (We consider other examples in Appendix A.)

In choosing these values, we are not thinking of a single server and the corresponding

arrival rate. Instead, we are planning to use the MSHT scaling, as discussed in [20, 46,

56, 77], when we connect the fluid model to associated queueing models. In the queueing

model, we are thinking of the fluid staffing level and the arrival rate being scaled up by a

factorn (e.g.,n = 20 or n = 100), i.e., these models havesn = n s servers, arrival rate

functionλn(t) = nλ(t), and the same service and patience distributions. The fluid model

will serve as approximations for all such scaled queueing systems. Because of MSHT

limits, we anticipate that the fluid model will yield better approximations as the scale factor

n increases.

Specifically, we let the service distribution be a two-phasehyperexponential (H2) with

probability density function (pdf)

g(x) = p · µ1e
−µ1x + (1− p) · µ2e

−µ2x, x ≥ 0,
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with parametersp = 0.5(1 −
√
0.6), µ1 = 2pµ andµ2 = 2(1 − p)µ, which produces

squared coefficient of variation (variance divided by the square of the mean)c2 = 4. We

let the patience distribution be Erlang-2 (E2) with pdf

f(x) = 4θ2xe−2θx, x ≥ 0.

TheE2 distribution hasc2 = 1/2.
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Figure 2.1: The performance functions of theGt/H2/s + E2 fluid model with sinusoidal
arrival-rate function: (i) arrival rateλ(t); (ii) BWT w(t); (iii) fluid waiting in queueQ(t);
(iv) fluid in serviceB(t); (v) total fluid in systemX(t); (vi) rate into serviceb(t, 0).

Figure 2.1 shows plots of several key performance functionsfor 0 ≤ t ≤ T ≡ 17,

starting out empty, together with the specified arrival rateλ(t): the boundary waiting time

(BWT) w(t), the fluid content in queueQ(t), the fluid content in serviceB(t), the total
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fluid content in systemX(t) ≡ Q(t) + B(t), and the rate fluid enters serviceb(t, 0). All

performance functions are continuous except for the rate-into-service functionb(t, 0). In

underloaded intervals,b(t, 0) = λ(t); in overloaded intervals,b(t, 0) is the unique solution

of the fixed-point equation (4.20).

It is important that the fluid model provide useful approximations for stochastic queue-

ing models. We apply simulation to show that the fluid approximation indeed is effec-

tive for that purpose. For very large queueing systems, the stochastic system behaves like

the fluid model, having relatively small stochastic fluctuations. That is illustrated for an

Mt/H2/s+ E2 queueing system with2000 servers in Figure 2.2. In the plot, the queueing
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Figure 2.2: Simulation comparison for theMt/H2/s + E2 fluid model: (i) single sample
paths in the scaled queueing model based onn = 2000 (blue solid lines), (ii) fluid functions
(red dashed lines) and (iii) fluid functions assumingM service (green dashed lines).

content processes are scaled by dividing byn = 2000, so thats remains at1. For the actual

queueing system, the quantitiesλ(t), Q(t), B(t), X(t) andb(t, 0) should all be multiplied

by n = 2000. See§2.4 for a discussion of scaling.
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Figure 2.2 actually shows three plots. It also shows the fluidapproximation for the cor-

respondingMt/M/s + E2 model, having exponential service times with the same mean.

For that alternative model, there is a more elementary algorithm, because it is not necessary

to solve the fixed point equation forb(t, 0) in order to calculateb(t, x). Figure 2.2 shows

two things: First, it shows that the simulation sample path for theMt/H2/s + E2 model

agrees closely with the fluid performance. Second, Figure 2.2 shows that the service distri-

bution can make a big difference in the time-dependent performance. The performance of

the fluid model changes significantly when we change the service distribution fromH2 to

M (with the same mean); e.g., look atQ(t) at timet = 3. (We do not show a simulation

path for theMt/M/s+ E2 model, but it agrees closely with its fluid model forn = 2000.

See Appendix A.)

The impact of the service distribution may be surprising, because a major conclusion

of [76,77] was that the steady-state performance is relatively insensitive to the service dis-

tribution beyond its mean. However, there is precedent for this phenomenon: Davis et

al. [13] showed that the performance in the time-varyingMt/GI/s/0 loss model depends

quite strongly on the service distribution beyond its mean,even though the steady-state dis-

tribution of the stationaryM/GI/s/0 loss model has the well known insensitivity property,

concluding that the standard steady-state performance measures do not depend at all on the

service distribution beyond its mean.

Figure 2.2 suggests that the periodic models approach a periodic steady state as time

evolves; that is proved for the fluid model withM service in Chapter 4. (We conjecture

that is also true withGI service under minimal regularity conditions, but it has notyet

been proved.) Figure 2.2 also shows that the impact of the service cdfG beyond its mean

evidently is far greater at the beginning when the system is starting up, and then dissipates

considerably as the system approaches its periodic steady state. That is consistent with in-

tuition, because withH2 service, there will be more very short service times and unusually
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long service times than would be the case of the exponential distribution. Hence, at the be-

ginning starting empty, there are no old customers with longservice times to compensate

for many new customers with short service times in theH2 case. As a consequence, the

initial queue content is much less withH2 than withM service. However, more supporting

theory is needed.
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Figure 2.3: Simulation comparison for theMt/H2/s + E2 fluid model: (i) the averages of
200 sample paths of the scaled queueing model based onn = 30 (blue solid lines), (ii) fluid
functions (red dashed lines) and (iii) fluid functions assuming M service (green dashed
lines).

Of course, most service systems have far fewer servers than the numbern = 2000

we considered. It is thus important that the fluid approximation can still be useful with

fewer servers. With fewer servers, the stochastic fluctuations in the queueing stochastic

processes play an important role. In that case, the fluid model can still be very useful by

providing a good approximation for themean valuesof the queueing stochastic processes.

That is illustrated from the plot of the average of the scaledperformance measures of200
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independent sample paths when there are only30 servers in Figure 2.3. We also consider

the casen = 15 in Appendix A.

Work is in progress to establish MSHT limits and engineeringrefinements that will

yield good approximations for the full distributions at each time t. A rough engineering

approximation forX(t) is to act as if it is normally distributed with variance equalto the

determined mean; that is consistent with the exact Poisson distribution with theMt/GI/∞

model (and thus the stochastically equivalentMt/M/st +M model withθ = µ).

2.3 TheGt/GI/st +GI Fluid Queue

In this section we define the deterministicGt/GI/st+GI fluid model and specify important

regularity conditions. There is a service facility with finite capacity (staffing function)

s ≡ {s(t) : t ≥ 0} that is set exogenously and enforced. There also is waiting space with

unlimited capacity. There is a deterministic arrival process, with input directly entering the

service facility if there is space available; otherwise theinput flows into the waiting room.

Fluid may leave the service facility only by completing service. However, fluid may leave

the queue either by entering service or abandoning (leavingdirectly from the queue without

receiving service). These flows are deterministic as well. The total input of fluid over the

interval [0, t] is Λ(t) ≡
∫ t

0
λ(u) du, t ≥ 0. We will be working with the time-dependent

arrival-rate functionλ ≡ {λ(t) : t ≥ 0}.

There are service-time and abandon-time cdf’sG andF , respectively, with pdf’sg and

f , satisfying

G(x) =

∫ x

0

g(u)du and F (x) =

∫ x

0

f(u)du, x ≥ 0. (2.2)

Let Ḡ andF̄ denote the associated complementary cdf’s (ccdf’s), defined by Ḡ(x) ≡ 1 −
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G(x) andF̄ (x) ≡ 1 − F (x). We assume that the the random service and abandon times

are unbounded above, so thatḠ(x) > 0 andF̄ (x) > 0 for all x. We assume that the mean

service time is 1; that choice is without loss of generality,because we can measure time in

units of mean service times. In the fluid model, the cdf’s act as proportions. A proportion

G(x) of any quantity of fluid completes service and departs withintime x of the time it

starts service; a proportionF (x) of any quantity of fluid abandons and departs without

receiving service within timex of the time it arrives, providing that it has remained waiting

in queue, and has not already been admitted to service.

The key performance descriptors are the two-parameter functionsB(t, y) andQ(t, y):

B(t, y) is the quantity of fluid in service at timet that has been in service for time less than

or equal toy; Q(t, y) is the quantity of fluid waiting in queue at timet that has been in

queue for time less than or equal toy. These functions will admit representations

Q(t, y) =

∫ y

0

q(t, x) dx and B(t, y) =

∫ y

0

b(t, x) dx, y ≥ 0, (2.3)

where the fluid densitiesb andq are non-negative integrable functions. LetQ(t) ≡ Q(t,∞)

be the total fluid content in queue at timet, and letB(t) ≡ B(t,∞) be the total fluid content

in service at timet. LetX(t) ≡ B(t) +Q(t) be the total fluid content in the system at time

t.

To fully specify the model, we also need to specify the initial conditions, describing

the system state at time0. The initial conditions are specified by the two functionsB(0, y)

andQ(0, y), which are defined as above, and also satisfy (2.3) with densities b(0, x) and

q(0, x). Thus, theGt/GI/st + GI fluid model dataconsists of the six-tuple of functions

(λ, s, F,G, b(0, ·), q(0, ·)).

We make several assumptions. The first is on the initial conditions.
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Assumption 2.1 (finite initial content) B(0) <∞ andQ(0) <∞.

We develop a “smooth” model. For that purpose, letCp be the set ofpiecewise-

continuousreal-valued functions, by which we mean that the function has only finitely

many discontinuities in any finite interval, with left and right limits at each discontinu-

ity point (within the interval); moreover, we assume that the function is right-continuous.

Hence,Cp ⊆ D, whereD is the space of right-continuous functions with left limits.

Assumption 2.2 (smoothness) s,Λ, F, B(0, ·), Q(0, ·)are differentiable functions with deriva-

tivess′, λ, f, b(0, ·), q(0, ·) in Cp.

As a consequence of Assumption 2.2,Λ(t) <∞ for all t > 0. (We use the assumption

thatCp ⊂ D here; see p. 122 of [4].) Together with Assumption 2.1, that implies the

finite-content property in Assumption 2.1 holds for allt: B(t) ≤ B(0) + Λ(t) < ∞ and

Q(t) ≤ Q(0) + Λ(t) <∞ for all t ≥ 0.

WheneverQ(t) > 0, we require there is no free capacity in service, i.e.,B(t) = s(t).

Also, wheneverB(t) < s(t), then the queue is empty. These conditions are summarized in

Assumption 2.3 (fluid dynamics constraints, FDC’s) For all t ≥ 0,

(B(t)− s(t))Q(t) = 0 and B(t) ≤ s(t). (2.4)

In general, there is no guarantee that a staffing functions is feasible; i.e., having the

property that the staffing function is set exogenously and adhered to, without forcing any

fluid that has entered service to leave without completing service, because we allows to

decrease. (The fluid is assumed to be incompressible.) We directly assume that the staffing
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function we consider is feasible, but we also indicate how todetect the first violation and

then construct the minimum feasible staffing function greater than or equal to the given

staffing function; see§2.9.

Assumption 2.4 (feasible staffing) The staffing functions is feasible, allowing all fluid

that enters service to stay in service until service is completed; i.e., whens decreases, it

never forces content out of service.

We now consider the service discipline. We let the service discipline in the fluid model

be first-come first-served (FCFS). We remark that there is much less motivation for con-

sidering other service disciplines, such as processor-sharing, with many servers than with

few servers, because a few long service times can only make those few (of many) servers

unavailable to other customers.

Assumption 2.5 (FCFS service) Fluid enters service in order of arrival.

As a consequence of Assumption 2.5, at timet there will be a boundary of the waiting

time (BWT) as in (2.1). Clearly, first,w(t) ≥ 0 and, second,w(t) > 0 if and only if

Q(t) > 0. (Equation (2.1) is informal, because it is circular, withw depending onq, while

q depends onw. We will carefully define and characterize the BWTw in §2.7.)

Based on the way the queueing system operates, we assume thatq and b satisfy the

following two fundamental evolution equations. Because ofAssumption 2.5, fluid enters

service from the queue from the right boundary ofq(t, x).
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Assumption 2.6 (fundamental evolution equations) For t ≥ 0, x ≥ 0 andu ≥ 0,

b(t + u, x+ u) = b(t, x)
Ḡ(x+ u)

Ḡ(x)
,

q(t+ u, x+ u) = q(t, x)
F̄ (x+ u)

F̄ (x)
, 0 ≤ x < w(t)− u. (2.5)

The first equation in (2.5) says that the fluid in service that is not served remains in

service (which requires that the staffing function be feasible, as in Assumption 2.4). The

second equation in (2.5) says that the fluid waiting in queue that does not abandon and does

not move into service, remains in queue.

Let v(t) be the potential waiting time (PWT) att, i.e., the virtual waiting time att for

an arriving quantum of fluid that has unlimited patience. Thevirtual waiting time at timet

is the actual waiting time if there is positive input at timet; otherwise it is the waiting time

of hypothetical input if it were to occur at timet. In order to simplify the analysis of the

two waiting time functionsw andv, we make extra assumptions: These extra assumptions

will be introduced in§2.7.2 and§2.7.3.

We now turn to the flows. LetA(t) be the total quantity of fluid to abandon in[0, t]; let

E(t) be the total quantity of fluid to enter service in[0, t]; and letS(t) be the total quantity

of fluid to complete service in[0, t]. Clearly we have the basic flow conservation equations

Q(t) = Q(0) + Λ(t)−A(t)−E(t) and B(t) = B(0) + E(t)− S(t), t ≥ 0. (2.6)

These totals are determined by instantaneous rates. To define those rates, lethG(x) ≡

g(x)/Ḡ(x) = 1 andhF (x) ≡ f(x)/F̄ (x) be the hazard-rate functions of the service and

abandonment time distributions, respectively. Then
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Figure 2.4: (a) The fluid in queue, (b) The fluid in service.

A(t) ≡
∫ t

0

α(u) du, where α(t) ≡
∫ ∞

0

q(t, x)hF (x)dx, t ≥ 0. (2.7)

E(t) ≡
∫ t

0

b(u, 0) du, t ≥ 0. (2.8)

S(t) ≡
∫ t

0

σ(u) du, where σ(t) ≡
∫ ∞

0

b(t, x)hG(x) dx, t ≥ 0 (2.9)

We have now completed the definition of theGt/GI/st + GI fluid model (with the

exception of(w, q, v), for which more is given in§2.7; Figure 2.4 provides a pictorial

summary. Our goal now is to fully characterize the six-tuple(b, q, w, v, σ, α) given the

model parameters(λ, s, G, F ) and the initial conditions{(b(0, x), q(0, x)) : x ≥ 0}, where
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q(0, x) > 0 only if Q(0) > 0, which in turn, by Assumption 2.3, can hold only ifB(0) =

s(0).

In doing so, we impose another regularity condition. We alsoassume that the system

alternates between overloaded intervals and underloaded intervals, where these intervals

include what is usually regarded as critically loaded. In particular, anoverloaded interval

starts at a timet1 with (i) Q(t1) > 0 or (ii) Q(t1) = 0, B(t1) = s(t1) andλ(t1) >

s′(t1) + σ(t1), and ends at theoverload termination time

T1(t1) ≡ inf {u ≥ t1 : Q(u) = 0 and λ(u) ≤ s′(u) + σ(u)}. (2.10)

Case (ii) in whichQ(t1) = 0 andB(t1) = s(t1) is often regarded as critically loaded, but

because the arrival rateλ(t1) exceeds the rate that new service capacity becomes available,

s′(t1)+σ(t1), we must have the right limitQ(t1+) > 0, so that there existsǫ > 0 such that

Q(u) > 0 for all u ∈ (t1, t1 + ǫ). Hence, we necessarily haveT1 > t1.

An underloaded intervalstarts at a timet2 with (i) Q(t2) < 0 or (ii) Q(t2) = 0,

B(t2) = s(t2) andλ(t2) ≤ s′(t2) + σ(t2), and ends atunderload termination time

T2(t2) ≡ inf {u ≥ t2 : B(u) = s(u) and λ(u) > s′(u) + σ(u)}. (2.11)

As before, case (ii) in whichQ(t2) = 0 andB(t2) = s(t1) is often regarded as critically

loaded, but because the arrival rateλ(t2) does not exceed the rate that new service capacity

becomes available,s′(t2) + σ(t2), we must have the right limitQ(t2+) = 0. The un-

derloaded interval may contain subintervals that are conventionally regarded as critically

loaded; i.e., we may haveQ(t) = 0, B(t) = s(t) andλ(t) = s′(t) + σ(t). For the fluid

models, such critically loaded subintervals can be treatedthe same as underloaded subin-

tervals. However, unlike an overloaded interval, we cannotconclude that we necessarily
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haveT2 > t2 for an underloaded interval. Moreover, even ifT2 > t2 for each underloaded

interval, we could have infinitely many switches in a finite interval. We directly assume

that those pathological situations do not occur. LetR denote the system regime, i.e.,R =

OL or UL. Let the interval termination time (starting att0

TR(t0) ≡ T1(t0)1{R(t0} = OL + T2(t0)1{R(t0=UL}.

Assumption 2.7 (finitely many switches between intervals in finite time)Each underloaded

interval is of positive length, so that the positive half line [0,∞) can be partitioned into

overloaded and underloaded intervals. Moreover, there areonly finitely many switches

between overloaded and underloaded intervals in each finiteinterval.

For engineering applications, Assumption 2.7 is reasonable, but it is unappealing math-

ematically. We would like to have natural conditions on the model parameters under which

the conclusion does hold. For the special case ofM service and for the extension to time-

varying Markovian service (Mt), we provide sufficient conditions for Assumption 2.7 to be

satisfied in§3.3 of Chapter 3. From a practical perspective, Assumption 2.7 provides no

restriction, because we can discover violations when calculating the performance descrip-

tions, and remove any violation that we discover by negligibly modifying either the arrival

rate functionλ or the staffing functions in a neighborhood of the problem timet to remove

the problem. That is most easily done with the arrival-rate functionλ, because we only

require that it be piecewise-continuous. Fort in a short interval[a, b], we can replaceλ(t)

by λ(t)± ǫ. This will introduce new discontinuity points at the end pointsa andb (if they

were not already discontinuity points), but that leavesλ ∈ Cp.

All assumptions above are in force throughout this chapter.We will introduce additional
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regularity assumptions as needed, starting in§2.6. We now determine the performance, first

considering an underloaded interval.

2.4 Scale Proportionality

To treat an underloaded interval in the next section, we willexploit an important scale

proportionality property of theMt/GI/∞ stochastic queueing model; see Remark 5 of

[14]. For eachc > 0, letBc(t, y) be the number of customers in service in theMt/GI/∞

stochastic model at timet that have been so for a duration at mosty when the system starts

empty at time0 and the arrival-rate function isλc(t) ≡ cλ(t), for some given arrival-rate

function λ and service cdf. The following is proved like Theorem 1 of [14], using the

two-parameter framework, as in [56].

Proposition 2.1 (scale proportionality in theMt/GI/∞ stochastic model) For all c > 0,

Bc(t, y) has a Poisson distribution with mean

mc(t, y) ≡ E[Bc(t, y)] = cm1(t, y) = c

∫ t∧y

0

λ(t− x)Ḡ(x) dx. (2.12)

As a consequence of the SLLN for the Poisson distribution, wesee thatc−1Bc(t, y)→

m1(t, y) as c → ∞ for eacht and y. In addition, we have the more general FWLLN

in [56, 62], which implies thatc−1Bc(t, y) → m1(t, y), regarded as functions oft andy.

Hence, the mean functionm1(t, y) in theMt/GI/∞ stochastic queueing model directly

coincides with the limit of the scaled process; i.e.,

m1(t, y) ≡ E[B1(t, y)] = B(t, y),
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whereB(t, y) is the fluid content in service at timet that have been so for a duration at most

y in theMt/GI/∞ fluid model. Thus, aside from scale, the meanmc(t, y) ≡ E[Bc(t, y)]

in theMt/GI/∞ stochastic model coincides with the corresponding fluid content in the

deterministic fluid model.

Moreover, the conclusions above extend to the more generalGt/GI/∞ models. First,

the mean function in (2.12) above in theGt/GI/∞ stochastic model actually coincides

with the mean function in theMt/GI/∞ stochastic model, provided that the arrival rate

function is the same; this observation is made in Remark 2.3 of [50]. Second, the FWLLN

in [56, 62] actually holds for theGt/GI/∞ stochastic model, provided that the arrival

process satisfies a FWLLN. To summarize, the mean function intheMt/GI/∞ stochas-

tic model coincides with the fluid content in the corresponding Gt/GI/∞ fluid model,

assuming appropriate scale.

This scale proportionality in the infinite-server stochastic model actually extends to the

more generalGt/GI/st + GI fluid model. The following scale proportionality result is a

consequence of the results in this chapter.

Theorem 2.1 (scale proportionality in theGt/GI/st +GI fluid model)

If the vector(bc(t, x), qc(t, x), wc(t), vc(t), αc(t), σc(t)) is the performance at timet asso-

ciated with model data(cλ, cs, F,G, cb(0, ·), cq(0, ·)), then

(bc, qc, αc, σc) = c(b1, q1, α1, σ1) and (wc, vc) = (w1, v1).
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2.5 An Underloaded Interval

We will consider the system over successive intervals, during each of which it is either

underloaded or overloaded, as defined above. We start with the easier case, in which the

system is underloaded. Without loss of generality, we assume that an underloaded interval

starts at time0 and terminates at a timeT , defined in (2.11). We do not need to know in

advance the termination timeT . Instead, we can assume that the system is underloaded

over the full interval[0,∞) and then calculateT .

If the Gt/GI/st + GI fluid model is underloaded, then there is no queue, and so no

abandonment. Then the model is is equivalent to the associatedGt/GI/∞ fluid model.

We thus can obtain results for an underloaded interval directly from available results for

theMt/GI/∞ queue in [14,56] by invoking§2.4.

Sinceb(t, 0) = λ(t) when the system is underloaded, we immediately obtain an expres-

sion forb(t, x) from (2.5). Recall that we have assumed thatb(0, ·) ∈ Cp.

Proposition 2.2 (service content in an underloaded interval) For the fluid model with un-

limited service capacity(s(t) ≡ ∞ for all t ≥ 0),

b(t, x) = Ḡ(x)λ(t− x)1{x≤t} +
Ḡ(x)

Ḡ(x− t)b(0, x− t)1{x>t} (2.13)

B(t, y) =

∫ t∧y

0

Ḡ(x)λ(t− x) dx+
∫ (y−t)∨0

0

Ḡ(x+ t)

Ḡ(x)
b(0, x) dx,

B(t) =

∫ t

0

Ḡ(x)λ(t− x) dx+
∫ ∞

0

Ḡ(x+ t)

Ḡ(x)
b(0, x) dx

≤ Λ(t) +B(0) <∞, 0 ≤ t < T.

If, instead, a finite-capacity system starts underloaded, then the same formulas apply over

the interval[0, T ), where the underload termination time isT ≡ inf {t ≥ 0 : B(t) > s(t)},
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with T =∞ if the infimum is never obtained. Hence,b(t, ·), b(·, x) ∈ Cp for all t ≥ 0 and

x ≥ 0, for t in the underloaded interval.

During an underloaded interval,b(t, x) depends upon the pair(λ,G) and the initial

conditionb(0, x). There is no queue, so(q, F, w, v) play no role. The different roles of

the two regimes are summarized in Figure 2.4. Hence, Proposition 2.2 fully describes the

performance during underloaded intervals. The final piecewise-continuity conclusion en-

sures that the piecewise-continuity property assumed forb(0, ·) will pass on to subsequent

intervals when we consider successive intervals.

Remark 2.1 (discontinuity att = x) From (2.13), we see thatb inherits the smoothness

of G, λ and q(0, ·) except whent = x. That will be a persistent theme throughout our

analysis. For general initial conditions, this discontinuity is fundamental, so we cannot

expect greater smoothness. However, away from the set{(t, x) : t = x}, we can expect

smoothness of the model parameters to be reflected in our performance descriptions.

Remark 2.2 (the generic scalar transport PDE) If, in addition to the assumptions of

Proposition2.2, λ and b(0, ·) are differentiable a.e. with respect to Lebesgue measure

on [0,∞), then, for eacht andx, b(t, x) has first partial derivatives with respect tot andx

a.e. with respect to Lebesgue measure on[0,∞). Moreover,b satisfies the following PDE

a.e. with respect to Lebesgue measure on[0,∞)× [0,∞), a simple version of the generic

scalar transport equation:

bt(t, x) + bx(t, x) ≡
∂b

∂t
(t, x) +

∂b

∂x
(t, x) = −hG(x)b(t, x).
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with boundary conditions{b(t, 0) = λ(t) : t ≥ 0} and{b(0, x) : x ≥ 0}; see Appendix

§A.2.

We now give a monotonicity result comparing two underloadedfluid models. For this

result, we exploit hazard rate order, writinghG1 ≤ hG2 if hG1(x) ≤ hG2(x) for all x ≥ 0,

for cdf’s satisfying the assumptions in§2.3. It is easy to see that hazard rate order implies

ordinary stochastic order via the representation

Ḡ(x) = e−
∫ x
0 hG(u) du, x ≥ 0. (2.14)

Proposition 2.3 (comparison result forb in an underloaded model) Consider two under-

loaded fluid models. Ifλ1 ≤ λ2, b1(0, ·) ≤ b2(0, ·) and hG1 ≥ hG2 as functions, then

b1 ≤ b2, i.e., b1(t, x) ≤ b2(t, x) for all t ≥ 0 andx ≥ 0, andT1 ≤ T2, whereTi is the

underload termination time in modeli.

Proof. Apply (2.13) after applying (2.14) to write

Ḡ(x)/Ḡ(x− t) = exp {−
∫ x

x−t

hG(u) du}.

The system could be in an underloaded period for an extended period of time. If so, it is

often convenient to consider the system starting empty in the distant past. (That is done for

the corresponding infinite-server queueing models in [14, 50].) That allows us to directly

construct stationary versions, including periodic versions, if that is warranted.

Proposition 2.4 (starting empty in the distant past)Suppose the system started empty in the

distant past(at t = −∞) and has been underloaded up to timet. If
∫∞

0
Ḡ(x)λ(t−x) dx,<
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∞, then

b(t, x) = Ḡ(x)λ(t− x) ≤ λ(t− x), B(t) =

∫ ∞

0

Ḡ(x)λ(t− x) dx,

B(t, y) = B(t)−
∫ ∞

0

Ḡ(x+ y)λ(t− x− y) dx =

∫ y

0

Ḡ(x)λ(t− x) dx

for x ≥ 0 and y ≥ 0. If the arrival-rate functionλ is constant or periodic, then so are

b(t, ·), B(t) andB(t, ·).

As noted above, the expression forB(t) coincides with the mean number of busy

servers in theMt/GI/∞ model studied in [14, 50]; see these sources for additional struc-

tural results. The expressions for the two-parameter function B(t, y) andb(t, x) coincide

with the corresponding mean values in [56].

2.6 The Service Content in An Overloaded Interval

Without loss of generality, we assume that the overloaded interval begins at time0 and

ends at timeT satisfying (3.3). Again, we do not need to know the end timeT in advance,

because we can calculate it while we are calculating the performance measuresq andw.

We proceed under the assumption that the arrival rate is sufficiently large that the system

is overloaded throughout a specified interval[0, T ) (up to, but not including, timeT ), and

afterwards detect violations before timeT , if there are any, and then reduce the interval, if

necessary.
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2.6.1 The Special Case ofM Service

The service content density is easy to compute if the servicedistribution is exponential, so

we consider that case first. From (2.5), we can write down an expression forb(t, x) during

the overloaded interval:

b(t, x) = b(t− x, 0)Ḡ(x)1{x≤t} + b(0, x− t) Ḡ(x)

Ḡ(x− t)1{x>t}, (2.15)

= b(t− x, 0)e−x(x)1{x≤t} + b(0, x− t)e−t1{x>t}, (2.16)

whereb(0, x − t) is part of the initial conditions, but whereb(t − x, 0) remains to be

specified.

Since the service is exponential, the output rate,σ(t), and thus the rate fluid enters

service,b(t, 0), depend only on the staffing functions, in particular, on the valuess(t) and

s′(t). (Recall that the mean service time has been fixed at1.)

Proposition 2.5 (the service content in an overloaded interval) When the service distribu-

tion is exponential, the departure(service completion) rate satisfiesσ(t) = B(t), t ≥ 0,

and, during each overloaded interval, the departure rateσ(t) and rate fluid enters service

b(t, 0) have the simple form

σ(t) = B(t) = s(t) and b(t, 0) = s′(t) + s(t) for all t, (2.17)

depending only on the staffing functions. Thenb is fully characterized by(2.16)and(2.17)

during an overloaded interval. Alsob(t, ·), b(·, x) ∈ Cp for all x, t < T .

Proof. Apply (2.9).
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2.6.2 GeneralGI Service

We start with the general expression for the service contentdensity given in (2.16), but it

requires the rate into serviceb(t, 0), which is part of what we are trying to determine. Since

the system is assumed to be overloaded over an initial interval [0, T ), the rate into service

is determined by the rate service capacity becomes available. Thus, by (2.9), we have

b(t, 0) = s′(t) + σ(t) = s′(t) +

∫ ∞

0

b(t, x)hG(x)dx, 0 ≤ t < T. (2.18)

We now substitute equation (2.16) into equation (2.18) to obtain the following equation for

the functionb(t, 0):

b(t, 0) = â(t) +

∫ t

0

b(t− x, 0)g(x) dx, (2.19)

where

â(t) ≡ s′(t) +

∫ ∞

0

b(0, y)g(t+ y)

Ḡ(y)
dy. (2.20)

From (2.20), we see that̂a ∈ Cp ⊆ D provided that the integral in (2.20) is finite. From

(4.20), it is evident thatb(t, 0) is a fixed point of the operatorT : D→ D, where

T (u)(t) ≡ â(t) +

∫ t

0

u(t− x)g(x) dx. (2.21)

Under regularity conditions, we can show that there exists aunique solution to equation

(4.20) by applying the Banach (contraction) fixed point theorem. We will use the complete

(nonseparable) normed spaceD with the uniform norm over the interval[0, T ], i.e.,

‖u‖T ≡ sup
0≤t≤T

{|u(t)|}. (2.22)
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We will require an additional bound on the tail of the initialservice content density

b(0, ·). Recall that we have assumed thatḠ(x) > 0 for all x.

Assumption 2.8 (tail of b(0, ·)) The tail ofb(0, ·) is bounded relative to the service-time

pdfg via

τ(b, g, T ) ≡ sup
0≤s≤T

∫ ∞

0

b(0, y)g(s+ y)

Ḡ(y)
dy <∞,

Assumption 2.8 warrants discussion, because it is unappealing. At first glance, it passes

the requirement that the assumptions be on the model data, because the service densityg,

the associated cdfG and the initial fluid content in serviceb(0, ·) are all part of the model

data. However, in application we will be applying the algorithm recursively over several

UL and OL intervals. We would thus not know in advance the function b(0, ·) in all OL

intervals after an initial one. It is thus important that we provide readily available sufficient

conditions for Assumption 2.8 to hold; we do that after we state the theorem. For now,

we point out that there is a simple practical condition implying Assumption 2.8 to hold: It

suffices for the service hazard rate functionhG to be bounded. (See below.)

Theorem 2.2 (service content in the overloaded case) Consider an overloaded interval

[0, T ]. If Assumption2.8 holds, then the operatorT in (2.21) is a monotone contraction

operator onD with contraction modulusG(T ) for the norm‖·‖T defined in(A.8), so that a

finite functionb(t, 0) is uniquely characterized via equation(4.20). Hence, for anyu ∈ D,

the fixed point can be approximated by then-fold iterationT (n) of the operatorT applied

to u, with

‖T (n)(u)− b̂‖T ≤
G(T )n

1−G(T )‖T (u)− u‖T → 0 as n→∞ (2.23)
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and, ifu ≤ (≥)T (u), thenT (n−1)(u) ≤ (≥)T (n)(u) ≤ (≥)b̂ for all n ≥ 1.

Proof. Clearly, Assumption 2.8 implies that‖â‖T <∞, so thatT mapsD intoD. More-

over, the contraction property follows from

‖T (u1)− T (u2)‖T = sup
0≤t≤T

{
∫ t

0

(u1(t− x)− u2(t− x))g(x)}

≤ ‖u1 − u2‖T
∫ T

0

g(x) dx = ‖u1 − u2‖TG(T ).

Remark 2.3 Note we requireG(T ) < 1 in the proof of Theorem A.2, which holds because

we have assumed that̄G(x) > 0 for all x. However, that requirement is actually not

necessary, because we can always work in an interval[0, δ] as long asG(δ) < 1 for some

δ > 0. We can show the uniqueness ofb(·, 0) for all 0 ≤ t ≤ T by recursively considering

successive intervals of lengthδ.

We now return to Assumption 2.8, which restricts the class ofallowed service cdf’s in

a rather complicated way. We will show that it suffices for theservice hazard ratehG to

be bounded. But even that is often not necessary in practice.It is important to note that

Assumption 2.8 is always satisfied in a case of principle interest: if there existsy0 such that

b(0, y) = 0 for all y ≥ y0. That case occurs whenever the system started empty at some

(finite) time in the past. That case occurs if the overloaded interval of interest begins at time

t, 0 ≤ t < T , after the system has begun empty withb(0, y) ≡ 0 for all y; then necessarily

b(t, y) = 0 for all y > t, by virtue of Assumption 2.6. Then

τ ≤ B(0, T )g↑(2T )/Ḡ(T ) <∞, (2.24)

wherex↑(t) ≡ sup {x(s) : 0 ≤ s ≤ t}.
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Nevertheless, other initial conditions are interesting. For example, for the station-

ary model, we might start with the stationary fluid content, which has the form we have

b(0, y) = Ḡ(y), y ≥ 0, becausēG is the stationary-excess or equilibrium-residual-lifetime

density of the service-time distribution; see [77]. Thus wenow present other sufficient

conditions for Assumption 2.8.

Remark 2.4 (sufficient conditions for the bound whenB(t) − B(0, y) > 0 for all y.)

Clearly, we need to control the initial content densityb(0, y) and/or the service pdfg(y)

in order for Assumption 2.8 to hold. An easy sufficient condition directly related to the

stationary fluid content density for the stationary model isfor there to exist a constantK

such thatb(0, y) ≤ KḠ(y) for all y ≥ 0. Another easy sufficient condition for the bound

in Assumption 2.8 is to have

sup
0≤t<T

{
∫ ∞

0

b(0, y)hG(y + t) dy} <∞. (2.25)

In turn, three different sufficient conditions for (2.25) are:

(i) sup
x≥0
{hG(x)} <∞ (bounded hazard rate, usingB(0) <∞);

(ii) there existsβ > 0 andK such that
∫ ∞

0

b(0, y)eβy dy <∞ and hG(x) ≤ Keβx for all x ≥ 0.

(iii) lim sup
y→∞

{b(0, y)/Ḡ(y)} <∞

(using sup
0≤y≤t

b(0, y) <∞ and sup
0≤y≤t

hG(0, y) <∞ for all t ≥ 0)
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So far, we can only conclude that the functionb(t, 0) ∈ D. We can obtain additional

smoothness properties by imposing additional smoothness conditions on the model ele-

mentss andg. We use these properties forb(·, 0) to establish properties of the ODE to

calculate the BWTw in §3.4 of Chapter 3.

Corollary 2.1 (smoothness of service content in the overloaded case) If s′ andg are con-

tinuous, thenb(·, 0) is continuous as well. In that case,b(·, x) andb(t, x) are elements of

Cp for eachx ≥ 0 andt ≥ 0.

Proof. Under the extra smoothness conditions, we can apply the contraction fixed point

theorem on the closed subspaceC of continuous functions inD, with the same uniform

norm. Then the fixed point is necessarily inC as well.

We discuss alternative algorithms to calculateb in Appendix§A.3.

2.7 The Queue Performance Functions

We now turn to the queue during an overload interval. To do so,it is convenient to initially

ignore the flow into service.

2.7.1 The Queue Content Ignoring Flow Into Service

Let q̃(t, x) beq(t, x) during the overload interval[0, T ) under the assumption that no fluid

enters service from queue. We can once again invoke the connection to theMt/GI/∞

stochastic model, discussed in§2.4 to treat̃q(t, x) just as we treatedb in §2.5, because we

can let the general patience cdfF play the role of the general service-time cdfG. Instead
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of (2.5), we can write

q̃(t+ u, x+ u) = q̃(t, x)
F̄ (x+ u)

F̄ (x)
, x ≥ 0, (2.26)

to obtain the following proposition.

Proposition 2.6 (queue content without transfer into service in the overloaded case) In

the overloaded case,

q̃(t, x) = λ(t− x)F̄ (x)1{x≤t} + q(0, x− t) F̄ (x)

F̄ (x− t)1{t<x}. (2.27)

so thatq̃(t, ·) and q̃(·, x) belong toCp for eacht andx.

Remark 2.5 Just as we observed forb in an underloaded interval in Remark 2.2, in an

overloaded interval̃q satisfies a version of the generic scalar transport PDE.

Paralleling Proposition 2.3, we have the following comparison result, proved in the

same way.

Proposition 2.7 (comparison result for̃q) Consider two overloaded fluid models. Ifλ1 ≤

λ2, q1(0, ·) ≤ q2(0, ·) andhF1 ≥ hF2 as functions, theñq1 ≤ q̃2, i.e., q̃1(t, x) ≤ q̃2(t, x) for

all t ≥ 0 andx ≥ 0.

We now deriveq andw. The proper definition and characterization of the BWTw is

somewhat complicated. We easily get an expression forq provided that we can findw.
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Corollary 2.2 (from q̃ to q) Given the BWTw,

q(t, x) = q̃(t− x, 0)F̄ (x)1{x≤w(t)∧t} + q̃(0, x− t) F̄ (x)

F̄ (x− t)1{t<x≤w(t)}

= q(t− x, 0)F̄ (x)1{x≤w(t)∧t} + q(0, x− t) F̄ (x)

F̄ (x− t)1{t<x≤w(t)}. (2.28)

Moreover,q(t, ·) ∈ Cp for all t ≥ 0.

Proof. Combine Proposition 2.6 and (3.15) to deduce thatq(t, ·) ∈ Cp for all t, x.

2.7.2 The Boundary Waiting Time w

It now remains to define and characterize the BWTw. We candefinethe BWT w by

exploiting flow conservation, in particular, by exploitingthe fact that two expressions for

the amount of fluid to enter service over any interval[t, t + δ] coincide; i.e.,

E(t+ δ)− E(t) ≡
∫ t+δ

t

b(u, 0) du = I(t, w(t), q̃, δ)− A(t, t+ δ), (2.29)

where

I ≡ I(t, w(t), q̃, δ) ≡
∫ w(t)

w(t)−ǫ(t,δ)

q̃(t, x)dx (2.30)

is the amount of fluid removed from the right boundary ofq̃, starting atx = w(t) −

ǫ(t, δ) and ending atx = w(t), during the time interval[t, t + δ] (whereǫ(t, δ) is yet to

be determined) andA(t, t + δ) is the amount of the fluid content inI that abandons in the

interval[t, t+δ]. Wedefinethe BWTw by lettingδ ↓ 0 in (2.29). We will show in Theorem

2.3 below that, under regularity conditions, the relation in (2.29) determines an ODE forw
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that has a unique solution. Hence, we will show that the relation (2.29) serves to properly

definew and characterize it.

We need two more regularity conditions. First, we assume that the initial valuew(0)

for the interval we consider is finite. We will be representingw as the solution of an initial

value problem involving an ODE, so this is needed.

Assumption 2.9 (finite initial BWT) 0 ≤ w(0) <∞.

Second, we require that the functionsλ(t) andq(0, x) be appropriately bounded away

from 0.

Assumption 2.10 (positive arrival rate and initial queue density) For all t ≥ 0,

λinf(t) ≡ inf
0≤u≤t

{λ(u)} > 0, and

qinf(0) ≡ inf
0≤u≤w(0)

{q(0, u)} > 0 if w(0) > 0.

By equation (3.14), Assumption 2.10 forλ implies thatq̃(t, x) > ǫF̄ (x) > 0 on [0, T )

for some positiveǫ. That is useful becausẽq(t, x) appears in the denominator in an ex-

pression for the derivative ofw in (2.31) below. The BWTw can be discontinuous if these

functions are0 over subintervals; we give examples in Appendix A.5. We showthatw can

be discontinuous ifλ(t) = 0 or q(0, ·) = 0 over a subinterval, whilew can have an infinite

derivative corresponding to zeros of these functions. However, we obtain the following

positive result, proved in§2.11. Letx(t+) andx(t−) denote the right and left limits of a

functionx at t, respectively. We can obtain a more elementary statement and proof if we

assume even more regularity conditions; see Appendix§A.4.

Theorem 2.3 (the BWT ODE) Consider an overloaded interval[0, T ). If Assumptions
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2.9–2.10hold, then the BWTw is well defined being the unique solution of the initial value

problem(IVP) on [0, T ) based on the ODE

w′(t+) = Ψ(t, w(t)) ≡ 1− b(t+, 0)

q̃(t, w(t)−) (2.31)

and any initial valuew(0). In addition,w is Lipschitz continuous on[0, T ] withw(t+u) ≤

w(t) + u for all t ≥ 0 andu ≥ 0 with t + u ≤ T . Moreover,w is right differentiable

everywhere with right derivativew′(t+) given in(2.31)and left differentiable everywhere

(but not necessarily differentiable) with value

w′(t−) = Ψ̃(t, w(t)) ≡ 1− b(t−, 0)
q̃(t, w(t)+)

. (2.32)

Overall,w is continuously differentiable everywhere except for finitely manyt.

Remark 2.6 (different roles ofb(t, 0) andF in shapingq) Our use of̃q as an intermediate

step in constructingq helps show the different roles played byb(t, 0) andF in producing

q. First, the abandonment (F ) controls the shape of̃q(t, x) and thusq(t, x) only for x <

w(t). Second, the transportation rateb(t, 0) controls onlyw(t), the right boundary or the

truncation ofq̃(t, x) onx; it does not affect̃q(t, x) itself, and thusq(t, x) for any0 ≤ x <

w(t).

We give closed-form formulae for some special cases in the next corollary, proved in

Appendix§A.4.
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Corollary 2.3 Suppose the system is overloaded for0 ≤ t < T andw(0) = 0.

(a). For theGt/M/st fluid model without customer abandonment(F̄ (x) = 1 for x ≥

0),

w(t) = t− Λ−1(

∫ t

0

b(y, 0)dy), 0 ≤ t < t̄,

for Λ−1(x) ≡ inf{y > 0 : Λ(y) = x}, andt̄ ≡ inf{t > 0 : Λ(t) =
∫ t

0
b(y, 0)dy}.

(b). For theGt/M/st+M fluid model, where the abandonment-time cdf is exponential

(F̄ (x) = e−θx, x ≥ 0),

w(t) = t− Λ̃−1(

∫ t

0

b(y, 0)eθydy), 0 ≤ t < t̃, (2.33)

whereΛ̃(t) ≡
∫ t

0
λ(y)eθydy, Λ̃−1(x) ≡ inf{y > 0 : Λ̃(y) = x}, and t̃ ≡ inf{t > 0 :

Λ̃(t) =
∫ t

t1
b(y, 0)eθydy}.

2.7.3 The Potential Waiting Time

In the previous subsection, we characterized the dynamics of the BWTw. Now we want to

connectw to the PWTv, the waiting time of an arriving quantum of fluid at timet that is

infinitely patient.

As shown in [48], the PWTv can be defined as a first passage time, with abandonment

after timet computed with the input turned off; also see [68]. LetAt(u) be the total fluid



61

abandoning in the interval[t, t + u] in our fluid model, modified by having the input shut

off after timet. Paralleling (2.7),

At(u) ≡
∫ t+u

t

αt(s) ds and αt(s) ≡
∫ ∞

s−t

q(s, x)hF dx, s ≥ t, (2.34)

whereαt(s) is the abandonment rate of the fluid that arrives before timet, at times.

With (2.34), we can definev(t) as

v(t) ≡ inf {u ≥ 0 : E(t + u)− E(t) + At(u) ≥ Q(t)}, t ≥ 0, (2.35)

whereE(t) is the amount of fluid to enter service in the interval[0, t], as in (2.8), i.e.,

E(t) ≡
∫ t

0
b(u, 0) du, t ≥ 0. However, in general, so far, we have not assumed enough to

guarantee that the PWTv is finite. It is possible for fluid to arrive and never be served; we

need to rule that out.

First, we show that any initial fluid content in the system eventually must leave. Let

B0(t) be the portion of the initial fluid content in service,B(0), that is still in service at

time t; let Q0(t) be the portion of the initial fluid content in queue,Q(0), that is still in

queue at timet.

Proposition 2.8 (dissipation of initial fluid content) For t ≥ 0,

B0(t) =

∫ ∞

t

b(0, y)
Ḡ(t + y)

Ḡ(y)
dy → 0 and

Q0(t) ≤ Q̃(0) =

∫ ∞

t

q̃(0, y)
F̄ (t+ y)

F̄ (y)
dy → 0 as t→∞.
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Proof. The representation is immediate. It is elementary thatB0(t) ≤ B(0) andQ̃0(t) ≤

Q̃(0) = Q(0). By Assumption 2.1,B(0) < ∞ andQ(0) < ∞. The convergence then

follows from the Lebesgue dominated convergence theorem.

However, the queue will not dissipate in finite time by abandonment alone, because

F̄ (x) > 0 for all x ≥ 0. Hence we need to have fluid enter service from the queue. Even

if we invoke Assumption 2.9, and havew(0) <∞, so that we havew(t) ≤ w(0) + t <∞

for all t ≥ 0, we cannot guarantee thatv(0) < ∞. Indeed, we would havev(t) = ∞ for

all t ≥ 0 if no fluid from queue were ever admitted into service. That inturn would be the

case if we used the feasible staffing functions(t) ≡ B0(t), which is positive for allt when

B(0) > 0, becausēG(x) > 0 for all x ≥ 0. In order to avoid such problems, we introduce

two more regularity conditions:

Assumption 2.11 (minimum staffing level) There exists a constantsL such thats(t) ≥

sL > 0 for all t ≥ 0.

Assumption 2.12 (minimum service hazard rate) There exists a constanthG,L such that

hG(x) ≥ hG,L > 0 for all x ≥ 0.

Theorem 2.4 (finite PWT) Under Assumptions2.11and2.12, the rate of service comple-

tion is bounded below:σ(t) ≥ sLhG,L for all t ≥ 0. As a consequence,

v(t) ≤ Q(t) + s(t)− sL
sLhG,L

<∞, t ≥ 0.

We give the proof in Appendix§A.4. Given that the PWTv is indeed bounded above

as in Theorem 2.4, we can obtain it from our algorithm forw. The idea is simple: If, at

timet, the elapsed waiting time of the quantum of fluid that is entering service isw(t), then
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this quantum of fluid arrived in queuew(t) units of time ago. That implies that the PWT at

t− w(t) isw(t). We prove the following in§2.11.

Theorem 2.5 (the PWTv and the BWTw) Consider an overloaded interval with Assump-

tions2.9-2.10holding andw(0) = 0. If v(t) <∞ for all t ≥ 0 (for which Assumption2.11

is a sufficient condition, by Theorem 2.4), thenv is the unique function inD satisfying the

equation

v(t− w(t)) = w(t) or, equivalently, v(t) = w(t+ v(t)) for all t ≥ 0, (2.36)

as depicted in Figure2.5. Moreover,v is discontinuous att if and only if there existsǫ > 0

such thatw(t+ v(t) + ǫ) = w(t+ v(t)) + ǫ, which in turn holds if and only ifb(u, 0) = 0

for t + v(t) ≤ u ≤ t + v(t) + ǫ. If b(·, 0) > 0 a.e. with respect to Lebesgue measure, then

v is continuous.
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Figure 2.5: Potential waiting timev(t) and boundary waiting timew(t).

The proof of Theorem 2.5 directly gives an algorithm to compute the PWTv given the

BWT w. Similarly, the second equation in (2.36) can provide an algorithm to construct
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w givenv. We now provide an alternative characterization ofv via its own ODE, but this

alternative characterization involves an extra condition. We give the proof in§2.11.

Theorem 2.6 (right derivative and ODE forv) Under the conditions in Theorem2.5, the

right derivative ofv always exists (except possibly infinite), with value

v′(t+) ≡ lim
δ↓0

v(t+ δ)− v(t)
δ

= Φ(t, v(t)) ≡ q̃(t+ v(t), v(t)−)
b((t + v(t))+, 0)

− 1

=
λ(t+)F̄ (v(t))

b((t+ v(t))+, 0)
− 1 ≥ −1.

The right derivative att is finite if and only ifb(t+ v(t), 0) > 0. If t is a continuity point of

v, then the left derivative exists as well, with

v′(t−) = Φ̃(t, v(t)) ≡ q̃(t+ v(t), v(t)+)

b((t + v(t))−, 0) − 1 =
λ(t−)F̄ (v(t))
b((t + v(t))−, 0) − 1 ≥ −1.

If Φ is continuous att, thenv is differentiable att, and v satisfies the first ODE. If, in

addition,b(t, 0) > 0 for all t, thenv is continuous. Thenv is differentiable except at only

finitely manyt, and there exists a unique solution to the first ODE.

Remark 2.7 (algorithm forv andw) In an algorithm, it is convenient to avoid the com-

plications forw and v that occur whenb(t, 0) = 0. To do so, we can introduce anǫ-

approximation, lettingbǫ(t, 0) ≡ b(t, 0) + ǫ, 0 ≤ t ≤ T , only to be used in the calculation

of w andv. Letwǫ bew andvǫ bev with b(t, 0) replaced bybǫ(t, 0). Sincew′ ≥ w′
ǫ and

v′ ≥ v′ǫ, we havewǫ ↑ w andvǫ ↑ v asǫ ↓ 0.

We could also enforce a lower bound forb(t, 0) directly in our model by imposing a
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constraint on our staffing. We could require thatb(t, 0) ≥ b∗ > 0 for all t in order for

the staffing functions to be feasible. Sinceb(t, 0) = s′(t) + σ(t), that translates into the

staffing constraint

s′(t) ≥ b∗ − σ(t) = b∗ −
∫ ∞

0

b(t, x) dx, 0 ≤ t < T. (2.37)

In Appendix A.4 we give closed-form formulae for the PWTv in some special cases,

paralleling those for the BWTw given in Corollary 2.3.

2.8 Overview of the Total Algorithm

We now summarize the full algorithm for theGt/GI/st +GI fluid model. We alternately

consider successive underloaded and overloaded intervals(under the assumption that any

finite interval can be partitioned into finitely many of these, which can be verified in the

computation). For each underloaded interval, we start withinitial conditions as indicated

in §2.3. We can compute the single key performance measureb directly by applying Propo-

sition 2.2. We then end the underloaded interval the first timeB(t) exceedss(t). Since the

queue is empty, the functionsq, w andv do not appear.

2.8.1 An Overloaded Interval with M service

An overloaded interval is more complicated. There are two cases: (i)M service and (ii)

non-M GI service. ForM service, we do not need to solve the fixed point equation (4.20)

for the rate fluid enters service from the queue,b(t, 0). With M service (at rate1), we

know thatb(t, 0) = s′(t) + s(t), by Proposition 2.5. The algorithm starts with initial

conditions as in§2.3. The algorithm begins by calculating̃q via Proposition 2.6 andb and
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b(t, 0) via Proposition 2.5. We then calculatew by solving the ODE (2.31) and then the

functionv via the equation (2.36), as explained in the proof of Theorem2.5. We consider

terminating the overloaded interval the first time thatw(t) = 0. At that time we check

to see if the interval actually remains overloaded, by looking at the net flow rate into the

queuer(t) ≡ λ(t)− s′(t)− σ(t) (see (3.3)). Ifr(t) > 0, then we continue the overloaded

interval. Otherwise, we shift to the next underloaded interval.

2.8.2 An Overloaded Interval with GI service

With non-M service, we need to solve the fixed point equation (FPE) (4.20) for the rate

fluid enters service from the queue,b(t, 0), in addition to the other steps withM service.

We now formally state the algorithm to compute all performance functions in an overloaded

interval of theGt/GI/st+GI fluid model. Consider an interval[0, T ] and assume that the

system is overloaded att = 0, i.e.,Q(0) > 0 andB(0) = s(0). However, we typically do

not know when the overloaded interval ends in advance. The objective is to determine the

overload termination timeT1 defined in (3.3) witht1 = 0 along with the other performance

functions. Hence, we determineq(t, ·) andb(t, ·) for 0 ≤ t ≤ T ∧ T1. If T1 < T , the

system simply switches to an underloaded interval; otherwise, the system stays overloaded

in [0, T ].

Since the system performance is expressed via the basic density vectorP̂(t) ≡ (b(t, ·), q(t, ·))

given the model data vectorD ≡
(

λ, s, µ, F, P̂(0)
)

, we want to compute the associated

vector of all performance functions

P(t) ≡
(

P̂(t), w(t), v(t), B(t), Q(t), X(t), σ(t), S(t), α(t), A(t), E(t)
)

(2.38)

via the definitions in§2.3. We require thatD satisfies (i)s(0) = B(0) =
∫∞

0
b(0, y)dy and
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(ii) Q(0) =
∫ w(0)

0
q(0, y)dy > 0. Applying the fixed-point operator discussed in§2.6, we

have the following algorithm:

Algorithm 1 : An FPE based algorithm for theGt/GI/st + GI Fluid Queue, with input

D ≡
(

λ, s, G, F, P̂(0)
)

1: Initialization: UpdateR, let t := 0
2: repeat
3: for k = 1, 2, . . . , ⌈T−t

∆T
⌉ do

4: if R = UL then
5: ComputeP in interval[t + (k − 1)∆T, t + k∆T ], using Proposition 2.2
6: else
7: b(0)(t, 0) := 0 for t ∈ [t+ (k − 1)∆T, t+ k∆T ]
8: for i = 1, 2, . . . do
9: b(i) := T (b(i−1)) for T defined in (2.21)

10: if ‖b(i) − b(i−1)‖T < ǫ then
11: b := b(i)

12: BREAK inner for-loop
13: end if
14: end for
15: ComputeP in interval[t+(k−1)∆T, t+k∆T ], using Proposition 2.6, Corol-

lary 2.2, Theorem 2.3 and 2.6
16: end if
17: if TR(t) < t + k∆T then
18: t := TR(t)
19: R := {OL,UL}\R
20: BREAK outer for-loop
21: end if
22: end for
23: until t ≥ T

Note thatǫ is the (small positive) error threshold level that we specify in advance. Here

we let the contraction iteration in Step 2 end when the uniform distance between theu

functions in two consecutive iterations is small.

The algorithm above requires that the given staffing function s be feasible. However,

we can also easily modify the algorithm so that infeasibility can be detected. That extension

is discussed in Appendix A.7.



68

2.9 Feasibility of the Staffing Function

So far, we have assumed that the staffing functions is feasible, yielding

b(t, 0) ≥ s′(t) + σ(t) = s′(t) +

∫ ∞

0

b(t, x)hG(x) dx ≥ 0 (2.39)

for all t ≥ 0 such thatB(t) = s(t). This requirement is automatically satisfied in under-

loaded intervals whenB(t) = s(t), because in that case we require thats′(t)+σ(t) ≥ λ(t)

where necessarilyλ(t) ≥ 0. Feasibility is only a concern during overloaded intervals, and

then only when the staffing function is decreasing, i.e., when s′(t) < 0.

The first violation is easy to detect: Lett∗ be the time of first violation. LetIn be thenth

overloaded subinterval in[0,∞) determined under the assumption that the original staffing

function s is feasible. LetI be the union of these subintervals, i.e., the subset of[0,∞)

during which the system is overloaded. Then

t∗ ≡ inf {t ∈ I : b(t, 0) < 0}. (2.40)

Even though we require (3.11), so far we have done nothing to prevent havingt∗ < ∞

(violation). Thus, we computeb and detect the first violation.

Correcting the staffing function is not difficult either (by which we mean replacing it

with a higher feasible staffing function): We simply construct a new staffing functions∗

consistent with turning off the input into the queue (setting b(t, 0) = 0) starting at timet∗

and lasting until the first timet aftert∗ at whichs∗(t) = s(t). (By the adjustment, we will

have mades∗(t∗+) > s(t∗+).) Since the system has operated differently during the time

interval [t∗, t], we must recalculate all the performance measures after time t, but we have

now determined a feasible staffing function up to timet > t∗. By successive applications
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of this correction method (adjusting the staffing functions and recalculatingb), we can

construct the minimum feasible staffing function overall.

To make this precise, letSf,s(t) be the set of all feasible staffing functions for the system

over the time interval[0, t], t > t∗, that coincide withs over[0, t∗]; i.e., withC2
p(t) denoting

the set of twice differentiable positive real-valued functions on[0, t] with second derivatives

in Cp, let

Sf,s(t) ≡ {s̃ ∈ C2
p(t) : bs̃(u, 0)1{Bs̃(u)=s̃(u)} ≥ 0, 0 ≤ u ≤ t,

and s̃(u) = s(u), 0 ≤ u ≤ t∗}, (2.41)

for t∗ in (3.12), wherebs̃ is the functionb associated with the model with staffing function

s̃.

Theorem 2.7 (minimum feasible staffing function) Assume thats ∈ C2
p andbs̃(·, 0) exists

and is continuous for each̃s ∈ Sf,s(t)). Then there existδ > 0 ands∗ ∈ Sf,s(t∗ + δ) in

(B.13) for t∗ in (3.12)such that

s∗ = inf {s̃ ∈ Sf,s(t∗ + δ)}; (2.42)

i.e., s∗ ∈ Sf,s(t∗ + δ) and s∗(u) ≤ s̃(u), 0 ≤ u ≤ t∗ + δ, for all s̃ ∈ Sf,s(t∗ + δ). In

particular,

s∗(t∗ + u) ≡
∫ ∞

u

bs(t
∗, x− u) Ḡ(x)

Ḡ(x− u)dx, 0 ≤ u ≤ δ. (2.43)
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Moreover,δ can be chosen so that

δ = inf {u ≥ 0 : s∗(t∗ + u) = s(t∗ + u)}, (2.44)

with δ ≡ ∞ if the infimum in(B.16) is not attained.

Proof First, sincebs(·, 0) is continuous for our originals, the violation in (3.12) must

persist for a positive interval aftert∗; that ensures that a strictly positiveδ can be found.

We shall prove that̃s ≥ s∗ over[t∗, t∗ + δ] for s∗ in (3.16) and any feasible functioñs,

and we will show thats∗ itself is feasible. For0 ≤ t ≤ t∗ + δ, supposẽs is feasible. Since

the system is overloaded, system being in the overloaded regime implies that

s̃(t∗ + u) = Bs̃(t
∗ + u) =

∫ ∞

0

bs̃(t
∗ + u, x)dx

=

∫ u

0

bs̃(t
∗ + u− x, 0) Ḡ(x)dx+

∫ ∞

u

bs(t
∗, x− u) Ḡ(x)

Ḡ(x− u)dx

≥
∫ ∞

u

bs(t
∗, x− u) Ḡ(x)

Ḡ(x− u)dx = s∗(t∗ + u),

where equality on the second line holds because of the fundamental evolution equations in

Assumption 2.6 and becausebs̃(t∗, x) = bs(t
∗, x) for all x, and the inequality holds because

bs̃ ≥ 0. On the other hand, the equality holds whenbs̃(t
∗+u, 0) = 0 for all u, which yields

B(t∗ + u) = s∗(t+ u). Therefore, the proof is complete.

Corollary 2.4 (minimum feasible staffing with exponential service times) For the special

case of exponential service times, i.e., withḠ(x) ≡ e−x, (3.16)becomes simplys∗(t∗+u) =

B(t∗)e−u, 0 ≤ u ≤ δ.

We have constructed a minimal feasible staffing function by requiring that the new
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staffing function agree with the original one up until the time of the first violation. We have

shown that assumption leads to a unique minimum feasible staffing function. However, it

may be desirable to consider other approaches to feasibility, where we have the freedom to

revise the staffing function beforet∗ as well as afterwards. It is natural to frame the issue as

an optimization problem; e.g., as in productions smoothing, we might want to impose costs

for for fluctuations of the staffing function as well high values. We leave such investigations

for future work.

2.10 Staffing theGt/GI/st+GI Model to Stabilize Delays

So far, we have discussed the performance analysis of theGt/GI/st + GI fluid model

with the staffing functions regarded as a given function. In this section, we assume that

we are free to choose the staffing functions, and do so with the objective of stabilizing

the potential waiting timev at some (constant) targetv∗ > 0. This delay stabilization

problem is a variant of one considered previously for many-server queueing models with

time-varying arrival rates in [17]. In [17], the goal was to stabilize the probability an arrival

experiences any delay. in contrast, here we stabilize the delay of all fluid at precisely

v∗ > 0. Now everybody must wait, but onlyv∗.

As a consequence of Theorem 2.5, we see that, in order to stabilize v at v∗, it suffices

to stabilizew at v∗. By Theorem 2.3, we see that we will be able to do so if and only if we

can find a staffing functionss for which the resulting performance satisfies the equation

0 = w′(t) = 1− b(t, 0)

q(t, v∗)
, t ≥ 0 (2.45)

which implies that we must haveb(t, 0) = q(t, v∗) whenw(t) = v∗.

Suppose that the system is initially empty, i.e.,b(0, x) = q(0, x) = 0 for all x > 0.
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Thus, we do not start staffing the service facility until timev∗, so that no input enters

service during[0, v∗]; i.e., we letb(t, 0) = 0 for 0 ≤ t ≤ v∗, in order to letw increase from

0 tov∗. At time v∗, the input at time0 is sent to the queue, after waiting precisely timev∗.

With the initial conditionsq(t, 0) = λ(t) andq(0, x) = 0, the queue instantly becomes

overloaded at time0, and we can apply Proposition 2.6 and Corollary 2.2 (or (2.5)) to

obtain

q(t, x) = F̄ (x)λ(t− x)1{0≤x≤t}, 0 ≤ t ≤ v∗. (2.46)

Combining (2.45) and (2.46), we obtain the transportation rate aftert = v∗:

b(t, 0) = q(t, v∗) = F̄ (v∗)λ(t− v∗)1{t>v∗}.

With the explicit expression ofb(t, 0) andb(0, x) ≡ 0, x ≥ 0, (2.5) implies that

b(t, x) = Ḡ(x)F̄ (v∗)λ(t− x− v∗)1{0≤x≤t−v∗}, t ≥ 0 and x ≥ 0. (2.47)

Therefore, we can easily computeB(t), σ(t), q(t, x), Q(t) andα(t) for t > v∗. We

have just proved the following theorem.

Theorem 2.8 Consider theGt/GI/st+GI fluid model with a general arrival-rate function

λ. Suppose the system is initially empty. For any specified constantv∗ > 0, we can make

the system overloaded such that the PWT is fixed atv∗, i.e.,v(t) = v∗ for all t ≥ 0, by (i)

not allowing any input to enter service until timet = v∗, (ii) letting the service-capacity
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function be

s(v∗, t) ≡ s∗(t) = F̄ (v∗)

∫ t−v∗

0

Ḡ(x)λ(t− v∗ − x)dx · 1{t>v∗} (2.48)

and(iii) operating the queue in the usual FCFS manner after timev∗ with b(t, 0) > 0. If

we do so, thenw(t) = v∗ for t ≥ v∗ andw(t) = t for t ≤ v∗,

B(t) = s∗(t), b(t, 0) = F̄ (v∗)λ(t− v∗) · 1{t>v∗},

Q(t) =

∫ t

0

F̄ (x)λ(t− x)dx · 1{0≤t≤v∗} +

∫ v∗

0

F̄ (x)λ(t− x)dx · 1{t>v∗},

σ(t) = F̄ (v∗)

∫ t−v∗

0

λ(t− v∗ − x)g(x)dx · 1{t>v∗},

α(t) =

∫ t

0

λ(t− x)f(x)dx · 1{0≤t≤v∗} +

∫ v∗

0

λ(t− x)f(x)dx · 1{t>v∗}, t ≥ 0.

If λ is a periodic function, then so areb(·, x),B(·) = s∗(·), σ, q(·, x),Q(·) andα after time

v∗, with the same period.

Remark 2.8 (connection to the QED regime whenv∗ = 0 ) All the analysis in this section

can be extended to the delay targetv∗ = 0. In this case, the staffing function in Theorem

2.8 is just sufficient to guarantee that all fluid enters service immediately upon arrival (thus

with 0 delay in the queue) and that the system is CL for allt (the service capacity is fully

occupied, i.e.,B(t) = s(t)). This scenario corresponds to the heavy-traffic QED system

regime.

Remark 2.9 (general initial conditions or no delay) Theorem 2.8 is based on starting

empty. However, it is possible to stabilize delays with arbitrary initial conditions. We



74

present the details in Appendix A.8. We can also achieve the minimum staffing level so

that there is no delay at all by simply staffing at the fluid contentB(t) in the underloaded

regime. These two variants may involve having an atom of initial fluid content enter service

at time0, so that we leave the smooth framework.

2.11 Proofs of the Main Results

Proof of Theorem 2.3. We establish the different results in turn:

(a) (rate of growth) Consider an interval[t, t + δ] that is overloaded. If no fluid enters

service during this interval, i.e., ifb(s, 0)=0 for t ≤ s ≤ t + δ, then the waiting time of a

quantum of fluid at the front of the queue will increase with rate 1, i.e.,w(t+δ) = w(t)+δ,

provided that quantum does not abandon. Hence, we have the claimed bound on the rate

of growth:w(t + u) ≤ w(t) + u for all t ≥ 0 andu ≥ 0 with t + u ≤ T . A more formal

argument follows from (2.5) in Assumption 2.6.

(b) (characterization) However, we will havew(t+δ) < w(t)+δ if b(t, 0) > 0 because

the FCFS service discipline implies that the queue is being eaten away from the head. In

other words, fluid is being transported from the queue to the service facility from the right

boundary ofq(t, x). Therefore,

w(t+ δ) = w(t) + δ − ǫ(t, δ), (2.49)

whereǫ(t, δ) is the amount of boundary waiting timew(t) that is pushed back (eaten up)

by b(t, 0) from t to t + δ, see Figure 2.6. (Note thatδ > 0 andǫ(t, δ) ≥ 0.) To determine

ǫ(t, δ), we apply (2.29), with (2.30). We will boundǫ(t, δ) in (2.51) below.

(c) (controlling the abandonment term) We will show that the abandonment termA(t, t+
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Figure 2.6: The boundary of the waiting timew(t) under FCFS.

δ) in (2.29) is asymptotically negligible, so that it can be ignored when computing the

derivative, but we use it to establish Lipschitz continuity. Even thoughA(t, t+ δ) is some-

what complicated, we can easily bound it above. Moreover, wecan do so uniformly in

t over the entire interval[0, T ]. First letw↑ ≡ sup {w(t) : 0 ≤ t ≤ T}. We necessarily

havew↑ ≤ w(0) + T < ∞ by virtue of the bound on the growth rate growth determined

above. Next leth↑F ≡ sup {hF (x) : 0 ≤ x ≤ w↑} which necessarily is finite, sincef ∈ Cp

andF̄ (w↑) > 0; and letq̃↑ ≡ sup {q̃(t, x) : 0 ≤ x ≤ w↑}, which again necessarily is finite

becausẽq(t, ·) ∈ Cp. We thus have the bound

A(t, t+ δ) ≤ h↑F q̃
↑w↑δ = C1δ (2.50)

for 0 ≤ t ≤ t+ δ ≤ T , whereC1 ≡ h↑F q̃
↑w↑.

(d) (Lipschitz continuity) By (2.49), we can show thatw is Lipschitz continuous by
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showing thatǫ(t, δ) ≤ Cδ for some constantC. Recall thatb(·, 0) is continuous by Theo-

rem A.3. Hence,‖b(·, 0)‖T < ∞, so that there exists a constantC2 such thatE(t + δ) −

E(t) ≤ C2δ for 0 ≤ t ≤ t + δ ≤ T . Together with (2.50), that implies that the integral

I(t, w(t), q̃, δ) is bounded above byCδ for 0 ≤ t ≤ t+ δ ≤ T , whereC ≡ C1 +C2. Since

the integrand ofI is bounded below byc > 0 by virtue of Assumption 2.10,

cǫ(t, δ) ≤ I(t, w(t), q̃, δ) ≤ (E(t+ δ)− E(t)) + A(t, t + δ) ≤ Cδ (2.51)

for 0 ≤ t ≤ t+ δ ≤ T , so that indeed

|w(t+ δ)− w(t)| ≤ δ + ǫ(t, δ) ≤ (1 + (C/c))δ for 0 ≤ t ≤ t+ δ ≤ T.

as claimed.

(e) (the derivative) Sincew is Lipschitz continuous,w necessarily is differentiable a.e.,

but we will establish a stronger result. Given thatǫ(t, δ) = cδ + o(δ) asδ ↓ 0, from the

first inequality in (2.50) we see thatA(t, t+ δ) = O(δ2) + o(δ2), so that the abandonment

term can be ignored when we consider the derivative. Together with (2.29) and (2.30), that

implies that a right derivative ofw exists att with value in (2.31). The convergence asδ ↓ 0

in the definition of that right derivative will be uniform over a neighborhood oft if q̃(t, x)

is continuous function ofx atx = w(t), but not otherwise.

To show (2.32) is similar. We consider an interval[t−δ, t] that is overloaded. Similarly,

we have

w(t) = w(t− δ) + δ − ǫ(t− δ, δ), (2.52)
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and

E(t)− E(t− δ) ≡
∫ t

t−δ

b(u, 0) du = J +K − A(t, t+ δ)),

where

J ≡ J(t, w(t), q̃) ≡
∫ w(t)+ǫ(t−δ,δ)

w(t)

q̃(t, x)dx, (2.53)

and

K ≡ K(t, w(t), q̃) ≡ I(t− δ, w(t− δ), q̃, δ)− J(t, w(t), q̃)

=

∫ w(t−δ)

w(t−δ)−ǫ(t−δ,δ)

q̃(t− δ, x)dx−
∫ w(t)+ǫ(t−δ,δ)

w(t)

q̃(t, x)dx.

A closer look atK implies

K =

∫ w(t)+ǫ(t−δ,δ)−δ

w(t)−δ

q̃(t− δ, x)dx−
∫ w(t)+ǫ(t−δ,δ)

w(t)

q̃(t− δ, x− δ) F̄ (x)

F̄ (x− δ)dx

=

∫ w(t)+ǫ(t−δ,δ)−δ

w(t)−δ

q̃(t− δ, x)dx−
∫ w(t)+ǫ(t−δ,δ)−δ

w(t)−δ

q̃(t− δ, y) F̄ (y + δ)

F̄ (y)
dy

=

∫ w(t)+ǫ(t−δ,δ)−δ

w(t)−δ

q̃(t− δ, y)
(

1− F̄ (y + δ)

F̄ (y)

)

dy,

where the first equality follows from (2.52) and fundamentalevolution equations, the sec-

ond equality holds by change of variable. It is easy to see thatK = o(δ) asδ ↓ 0. Therefore,

together with (2.53), that implies that a left derivative ofw exists att with value in (2.32).

The stronger differentiability conclusion depends on the discontinuities of̃q(t, x). From

Proposition 2.6, all discontinuity points lie on finitely many 45 degree lines in the upper

right quadrant[0,∞)× [0,∞); i.e., in the set{(t, x) : x = t + c and c ∈ S} whereS

containsc = 0 and the finite set of discontinuities ofλ for c < 0 and the finite subset of

discontinuities ofq(0, ·) for c > 0. Sincew(t + u) ≤ w(t) + u for 0 ≤ t ≤ t + u ≤ T ,

the trajectory of̃q(t, w(t)) crosses over each of these lines at most once. Moreover, it stays
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on each line for at most a finite interval. If the trajectory immediately crosses over the line,

then the crossing timet constitutes the sole discontinuity point forw′ associated with that

line. If the trajectory stays on the line for an interval, then the two endpoints constitute

discontinuity points forw′ associated with that line.

(f) (existence of a solution) The solution can be constructed byconsidering the succes-

sive intervals between discontinuity points and piecing together the solutions. The function

Ψ in (2.31) is continuous in each continuity interval. Hence,existence follows from Peano’s

theorem; see§2.6 of [69]. We apply Assumption 2.9 to ensure thatw(0) <∞.

(g) (uniqueness of a solution) Under extra regularity conditions, the functionΨ in (2.31)

will be locally Lipschitz on each continuity interval ofw′, so that each piece constructed

in the existence argument above will be unique, by virtue of the classical Picard-Lindelöf

theorem; e.g., Theorem 2.2 of [69]. Specifically, it sufficesto assume thatλ andq(0, ·)

(already assumed to be inCp) are differentiable on the subintervals where they are contin-

uous with derivatives inCp over these subintervals.

However, we can actually prove uniqueness without resorting to extra assumptions. To

do so, we exploit the special structure of the ODE in (2.31). By (3.15) in Corollary 2.2,

q(t, w(t)−) in the denominator or (2.31) takes one of two forms, depending on whether

w(t) ≤ t or not. Our proof applies to both cases in the same way, so we only consider one

case: we suppose thatw(t) ≤ t. Thenq(t, w(t)−) = λ((t− w(t))−)F̄ (w(t)). Then ODE

(2.31) implies that

b(t+, 0)

F̄ (w(t))
= λ((t− w(t))−)(1− w′(t)) =

d

dt

(

∫ t−w(t)

t1

λ(y)dy

)

,

so that
∫ t

t1

b(y, 0)

F̄ (w(y))
dy =

∫ t−w(t)

t1

λ(y)dy, t1 ≤ t ≤ t2. (2.54)

Now suppose there is another functionw̃ that also satisfies ODE (2.31) with̃w(t1) = 0.
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Then, by the same reasoning, we get

∫ t

t1

b(y, 0)

F̄ (w̃(y))
dy =

∫ t−w̃(t)

t1

λ(y)dy, t1 ≤ t ≤ t2. (2.55)

Equations (2.54) and (2.55) imply that

∫ t

t1

b(y, 0)

(

1

F̄ (w(y))
− 1

F̄ (w̃(y))

)

dy =

∫ t−w(t)

t−w̃(t)

λ(y)dy, t1 ≤ t ≤ t2. (2.56)

Now suppose functionw andw̃ are different. Sincew(t1) = w̃(t1) = 0, let t̃ ≡ inf{t > t1 :

w(t) 6= w̃(t)}, which implies thatw′(t̃) 6= w̃′(t̃). Without loss of generality suppose that

w′(t̃) < w̃′(t̃), hence there exists aδ > 0 such thatw(t) < w̃(t) for all t̃ < t ≤ t̃+ δ. Then

we have1/F̄ (w(t)) < 1/F̄ (w̃(t)) for all t̃ < t ≤ t̃+δ andt̃+δ−w̃(t̃+δ) < t̃+δ−w(t̃+δ).

Therefore, (2.56) implies that

0 >

∫ t̃+δ

t̃

b(y, 0)

(

1

F̄ (w(y))
− 1

F̄ (w̃(y))

)

dy =

∫ t̃+δ−w(t̃+δ)

t̃+δ−w̃(t̃+δ)

λ(y)dy > 0,

which is a contradiction. Hence the solution to ODE (2.31) must be unique.

Proof of Theorem 2.5. To show that the two equations in (2.36) are equivalent, make

the change of variabless ≡ t − w(t). Then the first equation givesv(s) = w(t) =

w(s+ w(t)) = w(s+ v(s)), which is the second equation. The other direction is similar.

For a givenw, we shall do three things: (i) constructv given the first equation in (2.36),

(ii) show that this construction gives a functionv that is right continuous and has limits

from the left, and (iii) show that the construction in (i) is the unique one that satisfies (ii).

For an arbitraryt, we draw a 45-degree ray starting from point(t, 0): L(s) = s − t,

s ≥ t. Let v(t) be the largesttw such thatL(tw) = w(tw), as shown in Figure 2.5. We
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Figure 2.7: Potential waiting timev(t) is right continuous and has limits from the left.

first show that there necessarily exists at least one timetw ≥ t such thatL(tw) = w(tw).

If w(t) = 0, thentw = t is a solution. Otherwise, we havew(t) > 0 = L(t), andw starts

above the lineL at timet. By Theorem 2.3,w is a continuous function. In general, we

could havew(t) > L(t) for all t, but then we would havev(t) =∞. Sincev(t) <∞, there

necessarily is a timetw such thatL(tw) = w(tw).

By Theorem 2.3,w′(t) ≤ 1. Therefore, onceL(tw) = w(tw) for the first time, it either

stays there or leaves, never to return. In other words, thereare two cases: First, as always

occurs ifw′(tw) < 1, there may be a uniquetw ≥ t such thatL(tw) = w(tw). Second,

there may exist an intervalI ≡ [t1, t2] such thatL(t) = w(t) for t ∈ I, i.e.,L(t1) = w(t1)

andw′(t) = 1 for t ∈ I; see Figure 2.5. In the first case, we letv(t) ≡ tw; in the second

case, we letv(t) ≡ w(tw) wheretw ≡ inf{s > t1 : L(s) 6= w(s)}. That completes our

construction.

Next we show right continuity. For anyǫ > 0, our construction shows that it is possible

to chooseδ > 0 sufficiently small thatv(t+ δ) = w(tw + δ + ǫ) such thatw(tw + δ + ǫ)−
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w(tw) = ǫ, whereǫ ≡ ǫ(t, δ), as shown in Figure 2.7. Our construction implies that

ǫ = w(tw + δ + ǫ)− w(tw) = w′(t̂)(δ + ǫ)

for sometw ≤ t̂ ≤ tw + δ + ǫ andw′(t̂) < 1, which implies that

ǫ ≡ ǫ(t, δ) =
w′(t̂) δ

1− w′(t̂)
→ 0, as δ → 0.

Therefore, asδ → 0,

v(t+ δ)− v(t) = w(tw + δ + ǫ)− w(tw)→ 0,

by the continuity ofw. Therefore,v is right continuous. Similarly, we can show thatv has

limits from the left.

It is evident that, by this construction, we have ensured that v is right continuous with

left limits and unique. Moreover,v is discontinuous att if and only if we are in the second

case with an interval of solutions.

Proof of Theorem 2.6. For δ > 0, the second equation in (2.36) yields

v(t+ δ)− v(t)
δ

=

(

w(t+ δ + v(t+ δ))− w(t+ v(t))

v(t+ δ)− v(t) + δ

)(

v(t+ δ)− v(t) + δ

δ

)

=

(

w(t+ v(t) + ǫ(t, δ))− w(t+ v(t))

ǫ(t, δ)

)(

v(t+ δ)− v(t)
δ

+ 1

)

,
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whereǫ(t, δ) ≡ v(t+ δ)− v(t) + δ. Simple algebra implies that

v(t+ δ)− v(t)
δ

=
1

1− w(t+v(t)+ǫ(t,δ))−w(t+v(t))
ǫ(t,δ)

− 1.

Lettingδ ↓ 0, we obtain

v′(t+) = lim
δ↓0

(

v(t+ δ)− v(t)
δ

)

=
1

1− limδ↓0

(

w(t+v(t)+ǫ(t,δ))−w(t+v(t))
ǫ(t,δ)

) − 1

=
1

1− w′((t+ v(t))+)
− 1

=
q̃(t + v(t), w(t+ v(t))−)

b((t+ v(t))+, 0)
− 1

=
q̃(t + v(t), v(t)−)
b((t+ v(t), 0)

− 1

=
λ(t+)F̄ (v(t))

b(t+ v(t)+, 0)
− 1,

where the second equality holds since right continuity ofv implies thatǫ(t, δ) → 0 as

δ → 0, the third equality follows from ODE (2.31), the fourth equality follows from the

second equation in (2.36), the last equality holds because the system being overloaded at

time t + v(t) implies thatq̃(t + v(t), v(t)) = q(t, 0)F̄ (v(t)) = λ(t)F̄ (v(t)). The similar

argument applies to the left derivative with(v(t)− v(t− δ))/δ whent is a continuity point

of v.

By Theorem 2.5,v is continuous under the extra condition thatb(t, 0) > 0 for all t.

That clearly makes the right derivative finite for allt. Hence,v is differentiable wherever

Φ is continuous. We can now exploit Theorem 2.3 and its proof. Sinceb(t, 0) > 0 for all

t, there will be a one-to-one correspondence between the finitely many points whereΨ in

(2.31) is discontinuous and the points whereΦ is discontinuous. Now we have the relations
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(for the right derivatives everywhere)

v′(t) =
w′(t + v(t))

1− w′(t+ v(t))
and w′(t) =

v′(t− w(t))
v′(t− w(t)) + 1

, t ≥ 0, (2.57)

with the denominators positive in both cases. Directly, we can establish existence and

uniqueness of a solution to the ODE by the same reasoning as used for ODE (2.31) for

w.

2.12 Conclusions

In this chapter we have characterized all the standard performance functions for theGt/GI/st+

GI fluid model, having time-varying arrival rate and staffing, customer abandonment, and

non-exponential service and patience distributions. Our results were obtained under two

important regularity conditions: (i) Assumption 2.2, requiring that we have a smooth

model, and (ii) Assumption 2.7, requiring that there be onlyfinitely many switches be-

tween overloaded (OL) and underloaded (UL) intervals in finite time; see§2.3. There also

is a restriction on the service distribution in Assumption 2.8 in order to guarantee that the

fixed point equation (4.20) for the rate of flow from queue intoservice,b(t, 0), has a unique

solution that can be computed iteratively. It suffices for either (i) the service hazard func-

tion hG to be bounded or (ii) the system to have started empty at some time in the (finite)

past; see§2.6. Still other regularity conditions were imposed in§2.7.

ForM service, the relatively simple algorithm primarily requires solving the ODE for

the BWTw in Theorem 2.3 and the equation for the PWTv in Theorem 2.5. For non-

exponential service, in addition we must solve the fixed point equation (4.20) for the flow

rate into serviceb(t, 0), which is needed to determine the full service content density b(t, x).

The algorithm is summarized in§2.8. We characterized the model, as just reviewed, under
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the assumption that the staffing functions is feasible, but in Theorem 2.7 we also charac-

terized the minimum feasible staffing function greater thanor equal to any given staffing

function, provided that it is not changed prior to the first infeasibility time. In§2.10 we

showed that we can construct a staffing function to stabilizethe potential waiting timev at

any desired targetv∗ > 0.

The fluid model is well defined directly, but it is intended to serve as an approxima-

tion for large-scale many-server queueing systems. We performed extensive simulation

experiments to confirm that the fluid model can provide a useful approximation for such

stochastic queueing systems. One of these experiments is described in§2.2; others are

described in Appendix A. The simulation results show that, first, the fluid approximation

is essentially exact for very large queueing systems and, second, it can be effective as an

approximation for mean values even when the scale is not too large; e.g., the number of

servers might be only20. The approximation tends to be more accurate when the systemis

either overloaded or underloaded, rather than critically loaded, as illustrated by Figure 2.3.

There are many directions for future research. First, it remains to provide conditions

with GI service, paralleling our results forMt service in this chapter, guaranteeing that

there are only finitely many switches between OL and UL intervals in finite time, as we

assumed in Assumption 2.7. Second, it remains to further explore Assumption 2.8 guar-

anteeing that the Banach contraction theorem can be appliedto establish the existence of

a unique service content densityb in OL intervals, and develop an effective algorithm for

calculating it. Third, it remains to consider alternative approaches to obtaining feasible

staffing functions. The method in§2.9, detects any infeasibility of a candidate staffing

function and removes the problem by increasing the staffing after the violation point. Al-

ternative methods could modify the entire staffing function, aiming to achieve minimum

cost subject to constraints. Fourth, it remains to establish existence, uniqueness and algo-
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rithm results for the more general model in which many of the conditions imposed here are

relaxed.

As explained in§2.1, there already is strong theoretical support for the fluid model here

through previously established MSHT limits. Nevertheless, work is in progress to establish

MSHT limits for the smooth fluid model here, paralleling the MSHT limit for the discrete-

time model in§6 of [77]. A first goal is to obtain additional theoretical support; a second

goal is to obtain a refined stochastic approximation, paralleling the results for Markovian

models in [46–48]. It remains to develop alternative approximations and MSHT limits for

Gt/GI/st + GI systems that tend to be nearly critically loaded at all times, instead of

switching back and forth between OL and UL intervals. Finally, it remains to extend the

model to represented more complicated service systems withmultiple service pools and

multiple customer classes. A first step has been made for single-class networks of queues

with time-varying Markovian routing in Chapter 3.
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Chapter 3

A Network Generalization

We now extend our analysis in Chapter 2 to the case of a single class fluid network

with a proportional routing and time-varying model parameters. We provide algorithms to

compute time-dependent performance measures for all queues in a finite time interval. The

key step of the algorithms is to characterize the total (or aggregated) arrival rates at each

queue, which is based on solving a functional fixed-point equation. Computer simulation

experiments verify the effectiveness of the approximation.

3.1 Introduction

The main feature of the model is time-varying arrival rates,which commonly occur in appli-

cations but which make performance analysis difficult; see [26] for background. The spe-

cific model is an open network of time-varying many-server fluid queues with proportional

routing. There arem queues, each with its own external fluid input. In addition, apropor-

tionPi,j(t) of the fluid output from queuei at timet is routed immediately to queuej, and a
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Figure 3.1: The open(Gt/Mt/st +GIt)
2/Mt fluid network.

proportionPi,0(t) ≡ 1−∑m
j=1 Pi,j(t) ≤ 1 is routed out of the network (departs having suc-

cessfully completed all required service). This frameworkpermits feedback, both directly

and indirectly after one or more transitions to other queues, as shown in Figure 3.1 for the

casem = 2. Following [50], we denote the model by(Gt/Mt/st + GIt)
m/Mt, where the

subscriptt indicates time varying. The fluid model is intended to serve as an approximation

for the corresponding many-server queueing system, havingm queues, each with a gen-

eral time-varying arrival process (theGt), time-varying Markovian service (the firstMt), a

time-varying (large) number of servers (thest), a general time-varying abandonment-time

distribution (the+GIt), and a Markovian routing (the lastMt) among queues. We later

extend theMt service toGI.

This (Gt/Mt/st + GIt)
m/Mt model is a generalization of the classical Jackson open

network of queues in the following respects: (i) it allows customer abandonment while

Jackson networks do not; (ii) it has time-varying model parameters while Jackson networks

do not, and (iii) unlike Jackson networks that assume Poisson arrivals and exponential
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service times, here the arrival process need not be renewal or Poisson and service times

follow general distributions.

Since the new fluid model is tractable, we are providing the basis for creating a performance-

analysis tool for large-scale service systems (allowing many queues and many servers at

each queue) like the Queueing Network Analyzer (QNA), described in [73]; also see [8].

Algorithms based on performance formulas are appealing to supplement and complement

computer simulation, because the models can be created and solved much more quickly.

Thus they can be applied quickly in “what if” studies. They also can be efficiently embed-

ded in optimization algorithms to systematically determine design and control parameters

to meet performance objectives.

New methods are required because these large-scale servicesystems tend to be char-

acterized bymany-server queues, where a large number of homogeneous servers work in

parallel. For a many-server fluid queue with time-varying Markovian service rateµ(t),

when the system content isX(t) and the staffing iss(t), the total service completion rate

at timet is min {X(t), s(t)}µ(t). Unlike in single-server systems, when the many-server

system is not overloaded, the service completion rate isnot equal to the input rate, but is

insteadproportional to the system content, cf. [9].

This chapter extends earlier work. First, [77] described the steady-state fluid content in

a stationaryG/GI/s + GI fluid model. Second, in Chapter 2 we developed an algorithm

for describing the time-dependent behavior of the time-varying Gt/GI/st + GI model,

including the first full description of the transient behavior of the stationaryG/GI/s+GI

fluid model. We make several important contributions here: First, for the case of expo-

nential service times we extend the model from a single fluid queue to a network of fluid

queues. Second, we treat time-varying service and abandonment. By focusing onMt ser-

vice instead ofGI service, we are able to establish the existence of a unique (computable)

performance description for both one fluid queue and the network generalization without
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directly assuming that there are only finitely many switchesbetween overloaded and un-

derloaded intervals in any finite time interval. These results are based on monotonicity

and Lipschitz continuity properties of the fluid queue modelin §3.5, which are important

in their own right. Finally, we characterize the steady state performance of the stationary

network of fluid queues.

Here is how the rest of this chapter is organized: In §3.2 we introduce theGt/Mt/st+

GIt model of a single fluid queue. Even though we consider only a single queue there, the

time-dependence in the service and abandonment prevents this model from being a special

case of the model in Chapter 2. In§3.3 we show how the overloaded and underloaded times

occur in alternating intervals of positive length, under regularity conditions, and we intro-

duce a specific piecewise-polynomial framework for assuring that there are only finitely

many switches in each finite time interval. In§3.4 we present the performance formulas

for one queue. In§3.5 we extend the results to general piecewise-continuous arrival rate

functions, thus providing an essential step for extending the analysis to networks. In§3.6

we define the(Gt/Mt/st+GIt)
m/Mt fluid network, that is a network generalization of the

single fluid queue introduced in§3.2. In§3.7 We establish the existence of a unique vector

of arrival rate functions at each queue and thus the performance in the network. We pro-

vide two algorithms to compute the system performance: (i) an algorithm based on solving

a fixed-point equation (FPE) and (ii) an algorithm based on solving a multi-dimentional

ordinary differential equation (ODE). In§3.8 we make an extension from theMt service

distribution toGI and provide an algorithm based on solving a functional FPE. In §3.9

we evaluate the performance of the algorithms developed in§§3.6 and 3.8 by considering

Markovian and non-Markovian examples. In§3.10 we characterize the steady-state perfor-

mance in the stationary(G/GI/s + GI)m/M fluid queue network. Finally, in§3.11 we
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draw conclusions. In Appendix B we provide (i) some proofs, (ii) some remarks, and (iii)

an illustrative comparison with simulation of a large-scale queueing system.

3.2 TheGt/Mt/st +GIt Fluid Queue

We define theGt/Mt/st + GIt fluid model as an analog of theGt/GI/st + GI model

described in§2.3. The notation largely follows§2.3, but some modification is needed. By

Mt service, we mean that service is provided at the service facility at time-varying rateµ(t)

per quantum of fluid in the service facility; i.e., if the total fluid content in service at timet

isB(t), then the total service completion rate at timet is

σ(t) ≡ B(t)µ(t), t ≥ 0. (3.1)

Let S(t) be the total amount of fluid to complete service in the interval [0, t]; thenS(t) ≡
∫ t

0
σ(y) dy.

Fluid waiting in queue may abandon. Specifically, we assume that a proportionFt(x)

of any fluid to enter the queue at timet will abandon by timet+ x if it has not yet entered

service, whereFt is an absolutely continuous cumulative distribution function (cdf) for

eacht,−∞ < t < +∞, with

Ft(x) =

∫ x

0

ft(y) dy, x ≥ 0, and F̄t(x) ≡ 1− Ft(x), x ≥ 0. (3.2)

Let hFt(y) ≡ ft(y)/F̄t(y) be the hazard rate associated with the patience (abandonment)

cdf Ft.

Letα(t) be the abandonment rate at timet. Sinceq(t, x) is the density of fluid in queue
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at timet that arrived at timet− x, the abandonment rate at timet is

α(t) ≡
∫ ∞

0

q(t, y)hFt−y(y) dy, t ≥ 0. (3.3)

Let the following quantities be defined as in§2.3: the total inputΛ(t), staffings(t), total

fluid abandonedA(t), fluid in queue (service) that has been in queue (service) forat most

x B(t, x) (Q(t, x)), fluid density in queue (service)q(t, x) (b(t, x)), and the boundary of

waiting timew(t), in the identical way as in§2.3.

LetE(t) be the amount of fluid to enter service in[0, t]. We have

E(t) ≡
∫ t

0

γ(u) du, t ≥ 0, (3.4)

whereγ(t) ≡ b(t, 0) is the rate fluid enters service at timet. Clearly, we have theflow

conservation equations: For eacht ≥ 0,

Q(t) = Q(0) + Λ(t)−A(t)−E(t) and B(t) = B(0) + E(t)− S(t). (3.5)

The rate fluid enters service depends on whether the system isunderloaded or over-

loaded. If the system is underloaded, then the external input directly enters service; if

the system is overloaded, then the fluid to enter service is determined by the rate,η(t), that

service capacity becomes available at timet. Service capacity becomes available due to ser-

vice completion and any change in the staffing function. Hence the rate service becomes

available is

η(t) ≡ s′(t) + σ(t) = s′(t) +B(t)µ(t), t ≥ 0, (3.6)

so thatη(t) = s′(t) + s(t)µ(t) if the system is overloaded at timet.



92

We assume Assumptions 2.1-2.5 are satisfied. In addition, wemake the following as-

sumptions.

Since the service discipline is FCFS, fluid leaves the queue to enter service from the

right boundary ofq(t, x). Since the service isMt, the proportion of fluid in service at time

t that will still be in service at timet+ x is

Ḡt(x) = e−M(t,t+x) where M(t, t+x) ≡
∫ t+x

t

µ(y) dy, t ≥ 0 and x ≥ 0. (3.7)

Note thatGt coincides with the time-varying service-time cdf of a quantum of fluid that

enters service at timet. The cdfGt has densitygt(x) = µ(t + x)Ḡt(x) and hazard rate

hGt(x) = µ(t+ x), x ≥ 0.

Paralleling to Assumption 2.6, we assume thatq andb satisfy the following two funda-

mental evolution equations.

Assumption 3.1 (fundamental evolution equations) For t ≥ 0, x ≥ 0 andu ≥ 0,

q(t+ u, x+ u) = q(t, x)
F̄t−x(x+ u)

F̄t−x(x)
, 0 ≤ x < w(t), (3.8)

b(t + u, x+ u) = b(t, x)
Ḡt−x(x+ u)

Ḡt−x(x)
= b(t, x)e−M(t,t+u), (3.9)

whereM is defined in(3.7).

In addition to Assumption 2.2, we have the following assumption for the model date.

Assumption 3.2 (smoothness) s′, λ, ft, f·(x), µ, b(0, ·), q(0, ·) in Cp for eachx andt.

As a consequence,s,Λ, Ft, B(0, ·), Q(0, ·) are differentiable functions with derivatives in

Cp for eacht; we say that they are elements ofC1
p.
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In order to treat the BWTw, we need to impose a regularity condition on the arrival

rate function and the initial queue density (when the initial queue content is positive, which

never occurs after an underloaded interval). We make the following assumption.

Assumption 3.3 (positive arrival rate and initial queue density) For all t ≥ 0,

λinf(t) ≡ inf
0≤u≤t

{λ(u)} > 0 and qinf(0) ≡ inf
0≤u≤w(0)

{q(0, u)} > 0 if w(0) > 0.

In order to be sure that the PWT functionv is finite, we make two more assumptions.

Assumption 3.4 (minimum staffing level) There existssL such thats(t) ≥ sL > 0 for all

t ≥ 0.

Assumption 3.5 (minimum service rate) There existsµL such thatµ(t) ≥ µL > 0 for all

t ≥ 0.

Finally to treatA with the time-varying abandonment cdfFt, we first introduce bounds

for the time-varying pdfft and complementary cdf̄Ft. Let

f ↑ ≡ sup {ft(x) : x ≥ 0, −∞ < t ≤ T} and F̄ ↓(x) ≡ inf {F̄t(x) : −∞ ≤ t ≤ T}.

(3.10)

Assumption 3.6 (controlling the time-varying abandonment distribution) f ↑ < ∞ and

F̄ ↓(x) > 0 for all x > 0, wheref ↑ andF̄ ↓(x) is defined in(3.10).

In summary, here we have made Assumptions of Chapter 2 (with minor modifications

because ofMt service andGIt abandonment instead of both beingGI). We show how to
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relax Assumption 2.7 there in the next section. Assumption 3.6 here is new, because of the

time-varying abandonment.

3.3 Underloaded and Overloaded Intervals

In Assumption 2.7 of Chapter 2, we directly assumed that the system alternates between un-

derloaded intervals and overloaded intervals, with there being only finitely many switches

in any finite interval. In this chapter, we provide conditions under which that assumption

can be guaranteed to hold, and then show how to treat the more general case as a limit of

such systems. This extension is important to rigorously treat fluid queue networks. This

extension is facilitated by havingMt service.

We initially classify the system state as overloaded or underloaded at timet as follows.

Recall that the rate service capacity becomes available at time t is η(t) ≡ s′(t) + σ(t), as

in (3.6) above.

Definition 3.1 The system isoverloaded if either (i) Q(t) > 0 or

(ii) Q(t) = 0, B(t) = s(t) and λ(t) > η(t) = s′(t) + s(t)µ(t);

the system isunderloaded if either (i) B(t) < s(t) or

(ii) B(t) = s(t), Q(t) = 0 and λ(t) ≤ η(t) = s′(t) + s(t)µ(t).

At every timet, the system is thus either overloaded or underloaded.

We now define the set of switch times. For that purpose, letO(A) (U(A)) be the set

of overloaded (underloaded) timest in the subsetA of a designated interval[0, T ]. From

Definition 3.1,U(A) = A−O(A) for each subsetA (the complement relative toA).
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Definition 3.2 The subsetS be ofswitch times in [0, T ] is the subset oft for which

U(((t− ǫ) ∨ 0, (t+ ǫ) ∧ T )) 6= ∅ and O(((t− ǫ) ∨ 0, (t+ ǫ) ∧ T )) 6= ∅ for all ǫ > 0.(3.11)

To neatly classify the switching times, we further classifysome of the underloaded

times.

Definition 3.3 An underloaded timet is isolated if (i) either [0, t) or (a, t) is an overloaded

interval and (ii) either(t, T ] or (t, b) is an overloaded interval.

We now reclassify all isolated underloaded points as overloaded points. When we re-

classify each isolated underloaded point, we replace the two connecting overloaded in-

tervals by the common overloaded interval; e.g., whent is an isolated underloaded time

between overloaded intervals(a, t) and(t, b), we replace the two intervals by the single in-

terval(a, b). In Appendix B.1 we show that this procedure is well defined. In the remainder

of this section we present the key results allowing us to ensure thatS is finite. We present

the proofs in Appendix B.1. Our first structural result is

Theorem 3.1 (partition into intervals) After all isolated underloaded times have been re-

classified as overloaded and all overloaded intervals have been increased as specified

above, the interval[0, T ] can be partitioned into at most countably many alternating over-

loaded and underloaded intervals(of positive length). The resulting switch points are the

boundary points between overloaded intervals and underloaded intervals.

Our analysis above has shown how to partition the interval[0, T ] into alternating over-
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loaded and underloaded intervals of positive length. Then the switch points are clearly

identified as the boundary points. It is then convenient to adopt the convention that all in-

tervals be left closed and right open (e.g., of the form[a, b)), except at the interval endpoints

0 andT , so that the regime identification functionr(t) ≡ 1{O([0,T ])}(t), where1{A} is the

usual indicator function, is right continuous with left limits. This convention does not alter

the switch points.

We now relate the subsetS to the set of discontinuity points and the zero set of the

function

ζ(t) ≡ λ(t)− s′(t)− s(t)µ(t), t ≥ 0. (3.12)

Note thatζ depends only on the basic model functionsλ, s andµ. Also note thatζ = λ− η

in the overloaded case of Definition 3.1. LetDζ be the set of discontinuities ofζ in (3.12)

and letZζ ≡ {t ∈ [0, T ] : ζ(t) = 0} be the zero set.

Theorem 3.2 (relating switches to zeros and discontinuities ofζ) For any interval[0, T ],

the subsetsS, Zζ andDζ are closed subsets with|S| ≤ |Zζ| + |Dζ| − 1. Moreover, the

bound in is tight; i.e., there are examples for which the bound holds as an equality.

We now introduce a convenient subset of functions inCp to represent our model data

λ, µ ands′. The class is sufficiently general that it can represent any function inCp and, at

the same time, it allows us to control the zeros ofζ , so that we know in advance that there

are only finitely many switches between overloaded and underloaded intervals in any finite

interval.

Let Pm,n ≡ PT,m,n be the space ofpiecewise polynomialson the interval[0, T ], where

[0, T ] is partitioned inton subintervals, on each of which there is a polynomial of orderat

mostm. We start with three elementary lemmas aboutPm,n. (We do not require that the

overall function be continuous, but each function necessarily is in Cp.) The first lemma
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states that any function inCp can be approximated uniformly by a function fromPm,n, so

that there is no practical loss of generality to restrictingthe model data to be inPm,n instead

of Cp.

Lemma 3.1 (uniform approximation) For any functionh ∈ Cp over a finite interval[0, T ]

and anyǫ > 0, there exists a functioñh ∈ Pm,n for some positive integersm andn such

that‖h− h̃‖T < ǫ.

The second lemma states that we can go back and forth between the functionsλ, s′, µ

and their integralsΛ, s,M in Pm,n conveniently; i.e., the integral or derivative of a polyno-

mial is again a polynomial. In particular, we can analytically calculate the integral forM

in definition (3.7), as needed for the fundamental evolutionequation forb in (3.9).

Lemma 3.2 (representation of integrals) λ, s′, µ ∈ Pm,n ⊂ Cp if and only ifΛ,M(t, t+ ·),

M(u− ·, u), s ∈ Pm+1,n ∩ C.

The third lemma states that the functionζ inherits piecewise-polynomial structure as-

sumed for the basic model functionsλ, s′, µ.

Lemma 3.3 (preservation of piecewise-polynomial structure) If λ ∈ Pm1,n1, s
′ ∈ Pm2,n2,

andµ ∈ Pm3,n3, thenζ ∈ Pm,n, wheren ≤ n1+n2+n3 andm ≤ m1∨m2∨m3(m2+1).

The following theorem serves as the basis for our analysis.

Theorem 3.3 (finitely many switches) If ζ ∈ Pm,n for ζ in (3.12), then|S| ≤ n(m+1)−1.

Hence, we can carry out the construction of the desired performance vector(b, q, w, v, σ, α)

under the assumptions that the basic model functions(λ, s, µ) are such that there are only

finitely many switches between overloaded intervals and underloaded intervals in any given
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interval[0, T ]. It suffices to haveλ, s′, µ ∈ Pm,n for somem andn. The spacePm,n is use-

ful for the theory, but it should not be needed in applications; see Remark B.3.

3.4 The Performance at One Queue

In this section we determine the performance functions under the assumption that there are

only finitely many switches between overloaded and underloaded intervals. We have just

seen that a sufficient condition for that is to haveζ ∈ Pm,n for somem andn, for which

a sufficient condition is to haveλ, s′, µ ∈ Pm,n for somem andn. Here we can apply

the previous results in§2.3, making proper adjustments to account for the change fromGI

service and abandonment toMt service andGIt abandonment.

An underloaded interval requires modification to account for Mt service. Since the

rate fluid enters service isγ(t) = b(t, 0) = λ(t) when the system is underloaded, we

immediately obtain an expression forb(t, x) from (3.9). Recall that we have assumed that

b(0, ·) ∈ Cp.

Proposition 3.1 (service content in the underloaded case) For the fluid model with unlim-

ited service capacity(s(t) ≡ ∞ for all t ≥ 0), starting at time0,

b(t, x) = e−M(t−x,t)λ(t− x)1{x≤t} + e−M(0,t)b(0, x− t)1{x>t},

B(t) =

∫ t

0

e−M(t−x,t)λ(t− x) dx+B(0)e−M(0,t), 0 ≤ t < T, (3.13)

whereM is defined in(3.7). If, instead, a finite-capacity system starts underloaded,then

the same formulas apply over the interval[0, T ), whereT ≡ inf {t ≥ 0 : B(t) > s(t)},
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with T = ∞ if the infimum is never obtained. Hence,b(t, ·), b(·, x), B ∈ Cp for all t ≥ 0

andx ≥ 0, for t in the underloaded interval.

There is dramatic simplification in going fromGI service toMt service in an over-

loaded interval. Then we simply haveB(t) = s(t). The rate fluid enters service is equal

to the rate service capacity becomes available:γ(t) = η(t) = s′(t) + s(t)µ(t). For an

overloaded interval starting at time0, we have

Proposition 3.2 (service content in the overloaded case) For the fluid model in an over-

loaded interval,B(t) = s(t) and

b(t, x) = (s′(t− x) + s(t− x)µ(t− x))e−M(t−x,t)1{x≤t} + b(0, x− t)e−M(0,t)1{x>t},

whereM is defined in(3.7). Hence,b(t, ·), b(·, x), B ∈ Cp for all t ≥ 0 andx ≥ 0 in an

overloaded interval.

Corollary 3.1 (overall smoothness for the service content) If there are only finitely many

switches between overloaded and underloaded intervals in[0, T ], thenb(t, ·), b(·, x), B ∈

Cp for all t, 0 ≤ t ≤ T , andx ≥ 0.

We treatq, w and v just as in Chapter 2, making adjustments for the time-varying

abandonment cdfFt. Let q̃(t, x) be q(t, x) during the overload interval[0, T ] under the

assumption that no fluid enters service from queue. The next proposition is an analog of

Proposition 2.6.

Proposition 3.3 (queue content without transfer into service in the overloaded case) Dur-
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ing an overloaded interval,

q̃(t, x) = λ(t− x)F̄t−x(x)1{x≤t} + q(0, x− t) F̄t−x(x)

F̄t−x(x− t)
1{t<x}. (3.14)

so thatq̃(t, ·) and q̃(·, x) belong toCp for eacht andx.

Since BWTw and PWTv are determined by two ODEs as in Theorem 2.3 and 2.6, we

get an expression forq provided that we can findw, as an analog of Corollary 2.2.

Corollary 3.2 (from q̃ to q) Given the BWTw in an overloaded interval,

q(t, x) = q̃(t− x, 0)F̄t−x(x)1{x≤w(t)∧t} + q̃(0, x− t) F̄t−x(x)

F̄t−x(x− t)
1{t<x≤w(t)}

= λ(t− x)F̄t−x(x)1{x≤w(t)∧t} + q(0, x− t) F̄t−x(x)

F̄t−x(x− t)
1{t<x≤w(t)}. (3.15)

Moreover,q(t, ·) ∈ Cp for all t ≥ 0.

Corollary 3.3 (end of the overloaded interval) We can compute the end of an overloaded

interval asT ≡ inf {t ≥ 0 : w(t) = 0 and λ(t) ≤ s′(t) + s(t)µ(t)}.

Corollary 3.4 (smoothness ofq(t, ·)) Under the assumptions of Theorem2.3, q is given by

(3.15)with q(·, x) ∈ Cp for all x. (We have already deduced thatq(t, ·) ∈ Cp for all t in

Corollary 2.2.)

The Algorithm for One Queue. We now summarize the algorithm to compute the

performance functions in theGt/Mt/st +GIt model, assuming that there are only finitely

many switches in each finite interval. We consider the basic density vectorP̂(t), given

model data vectorD, and total performance vectorP(t), all defined in§2.8.2 of Chapter 2.
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LetR(t) denote the current system regime att, i.e.,R(t) =OL or UL. WhenR(t0) =OL,

the OL interval ends at theOL termination time

TOL(t0) ≡ inf{u ≥ t0 : Q(u) = 0 and λ(u) ≤ s′(u) + σ(u)}.

WhenR(t0) =UL, the UL interval ends at theUL termination time

TUL(t0) ≡ inf{u ≥ t0 : B(u) = s(u) and λ(u) > s′(u) + σ(u)}.

Therefore, the termination time of the current interval

TR(t0) ≡ TOL(t0)1{R(t0)=OL} + TUL(t0)1{R(t0)=UL}.

An algorithm is summarized as below.

Algorithm 2 : A Fluid Algorithm for Single Queues (FASQ) for theGt/Mt/st +GIt fluid

model, with inputD ≡
(

λ, s, G, F, P̂(0)
)

1: Initialization: UpdateR, let t := 0
2: repeat
3: for k = 0, 1, . . . , ⌈T−t

∆T
⌉ do

4: GivenR, computeP in interval[t+ (k − 1)∆T, t+ k∆T ] using Proposition 3.1
,3.2 and 3.3, Corollary 3.2, Theorem 2.3 and 2.6

5: if TR(t) < t + k∆T then
6: t := TR(t)
7: R := {OL,UL}\R
8: BREAK for-loop
9: end if

10: end for
11: until t ≥ T

Feasibility of the staffing function. The construction above has been done under the

assumption that the staffing function is feasible. As in§2.9 of Chapter 2, the algorithm
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can detect violations of feasibility whenever they occur and can then produce the minimum

feasible staffing function greater than or equal to the initial proposed staffing function. A

violation is easy to detect; it necessarily occurs in an overloaded interval inO([0, T ]) at

time t∗ ≡ inf {t ∈ O([0, T ]) : γ(t) < 0}. As in Chapter 2, letSf,s be the set of feasible

staffing functions over the interval[0, t] for t > t∗.

Theorem 3.4 (minimum feasible staffing function) There existδ > 0 ands∗ ∈ Sf,s(t∗+δ)

such thats∗ = inf {s̃ ∈ Sf,s(t∗ + δ)}; i.e., s∗ ∈ Sf,s(t∗ + δ) ands∗(u) ≤ s̃(u), 0 ≤ u ≤

t∗ + δ, for all s̃ ∈ Sf,s(t∗ + δ). In particular,

s∗(t∗ + u) ≡ B(t∗) · e−M(t∗,t∗+u), 0 ≤ u ≤ δ. (3.16)

Moreover,δ can be chosen so thatδ = inf {u ≥ 0 : s∗(t∗ + u) = s(t∗ + u)}, with δ ≡ ∞

if the infimum is not attained.

Corollary 3.5 (minimum feasible staffing withM service) For M service, i.e., with expo-

nential service times, so that̄G(x) ≡ e−µx, (3.16)becomes simplys∗(t∗+u) = B(t∗)e−µu,

0 ≤ u ≤ δ.

Theorem 3.4 shows how to construct a new staffing function that (i) agrees with the

proposed staffing functions over its interval of feasibility[0, t∗) and (ii) itself is feasible

over the longer interval[0, t∗ + δ) for someδ > 0. To construct the minimum feasible

staffing function over[0, T ], this algorithm may need to be applied several times.
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3.5 General Arrival Rate Functions

In the previous two sections we have seen that we can get a niceclean theory if we assume

thatλ, s′, µ ∈ Pm,n. In order to treat open networks of fluid queues, we would wantthe

service completion rateσ, which becomes the part of the input rate at other queues, to be

in Pm,n for somem andn as well, butσ does not inherit this property, becauseσ(t) =

B(t)µ(t) andB(t) has a complicated non-polynomial form in underloaded intervals, as

shown in (3.13). We do haveσ ∈ Cp by virtue of Corollary 3.1, but we need not have

σ ∈ Pm,n. Hence, we show how to treat the general case in which initially we only assume

thatλ ∈ Cp.

We will treat the case of generalλ ∈ Cp as the limit of a sequence of systems with

λ ∈ Pm,n. In particular, for arbitraryλ ∈ Cp, we can represent it as the limit of a sequence

of functions{λk : k ≥ 1}, whereλk ∈ Pmk ,nk
andλk ≥ 0 for eachk, and‖λk−λ‖T → 0 as

k →∞, with ‖·‖T denoting the uniform norm over[0, T ]. (Positivity is no problem because

of Assumption 3.3 and the uniform convergence.) If we also assume thats′, µ ∈ Pm,n for

somem,n, then we will necessarily haveζk ∈ Pmk ,nk
for all k, withmk <∞ andnk <∞

for all k. We will also havemk → ∞ andnk → ∞ ask → ∞ unlessλ ∈ Pm,n for some

m,n.

In this section we establish results that allow us to treat the case of general arrival rate

functionsλ ∈ Cp, without requiring thatλ ∈ Pm,n and without directly requiring that

there be only finitely many switches between overloaded and underloaded intervals in the

interval [0, T ]. To do so, we establish monotonicity and Lipschitz continuity properties,

which are of independent interest. We first establish these results assuming thatζ ∈ Pm,n,

and then we show that they extend when we allow arbitraryλ ∈ Cp. We thus start by

assuming thatζ ∈ Pm,n. The proofs of the three theorems in this section are relatively

straightforward, but long; they appear in Appendix B.3.
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TheMt service allows us to extend the elementary comparison results in Propositions

2.3 and 2.7 of Chapter 2. Recall that order of functions (vectors) is defined as pointwise

order for all arguments (coordinates). LetX(t) ≡ B(t) + Q(t) be the total system fluid

content. Let subscripts designate the model.

Theorem 3.5 (fundamental comparison theorem)Consider twoGt/Mt/st+GIt fluid mod-

els with common staffing functions and service rate functionµ. If ζ1, ζ2 ∈ Pm,n with

λ1 ≤ λ2,B1(0) ≤ B2(0), q1(0, ·) ≤ q2(0, ·) andhFt,1 ≥ hFt,2, then

(B1(·), q̃1, q1, Q1(·), X1, w1, v1, σ1) ≤ (B2(·), q̃2, q2, Q2(·), X2, w2, v2, σ2). (3.17)

In addition to monotonicity, the model has additional basicLipschitz continuity prop-

erties (beyond Proposition B.2).

Theorem 3.6 (more Lipschitz continuity) Consider aGt/Mt/st + GIt fluid model with

λ, s′, µ ∈ Pm,n for somem,n. Then the functions mapping(i) (λ,B(0)) in Pm,n × R

into (B, σ) in C2
p, (ii) (λ,B(0), Q(0)) in Pm,n × R2 into Q in Cp, and(iii) (λ,X(0)) in

Pm,n × R intoX in Cp, all over [0, T ], are Lipschitz continuous. In particular,

‖B1 − B2‖T ≤ (1 ∨ T )(‖λ1 − λ2‖T ∨ |B1(0)− B2(0)|),

‖σ1 − σ2‖T ≤ µ↑
T‖B1 − B2‖T ,

‖Q1 −Q2‖T ≤ (1 ∨ T )(‖λ1 − λ2‖T ∨ |B1(0)− B2(0)| ∨ |Q1(0)−Q2(0)|),

‖X1 −X2‖T ≤ 2(1 ∨ T )(‖λ1 − λ2‖T ∨ |X1(0)−X1(0)|). (3.18)
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If B1(0) = B2(0) andQ1(0) = Q2(0) (for Q andX), then

‖B1 − B2‖T ≤ T‖λ1 − λ2‖T , ‖Q1 −Q2‖T ≤ T‖λ1 − λ2‖T ,

‖X1 −X2‖T ≤ 2T‖λ1 − λ2‖T . (3.19)

As a consequence of Theorems 3.3–3.6, we can regard the case of a general functionλ

as the limit of a sequence{λk : k ≥ 1}, whereζk ∈ Pmk ,nk
with mk →∞ andnk →∞ as

k →∞. Hence, results for thekth system can be “lifted” to the general case; i.e., Theorems

3.5–3.6 combine to imply the following general result.

Theorem 3.7 (lifting) For aGt/Mt/st + GIt fluid model withs′, µ ∈ Pm,n andλ ∈ Cp,

the system performance via(B, q̃, w), forB ≡ {B(t) : 0 ≤ t ≤ T}, is well defined and the

conclusions of§3.3and Theorems3.5and3.6 remain valid.

3.6 The(Gt/Mt/st +GI)m/Mt Fluid Queue Network.

We now introduce the open network ofGt/Mt/st +GI fluid queues, with time-dependent

proportional routing. There arem queues, where each queue has model parameters as

already defined in§3.2, with its own external fluid input, but in addition a proportionPi,j(t)

of the fluid output from queuei at timet is routed immediately to queuej, and a proportion

Pi,0(t) ≡ 1−∑m
j=1 Pi,j(t) ≤ 1 is routed out of the network, as shown in Figure 3.1 for the

casem = 2.

Assumption 3.7 (proportional routing) The routing matrix function for proportional rout-

ing,P : [0,∞)→ [0, 1]m
2
, is inCp and

∑m
j=1 Pi,j(t) ≤ 1 for eacht ≥ 0 andi, 1 ≤ i ≤ m.
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It is elementary to treat the basic network operations of superposition and splitting: If

two input streams are combined to form a single input (superposition), then the arrival rate

functions are simply added. If one stream with arrival rate functionλ is split, such that

a proportionp(t) of that stream goes into a new split stream at timet, then the arrival-

rate function of the split stream isλp, whereλp(t) ≡ λ(t)p(t), t ≥ 0; just like λ, the

splitting proportion can be time-dependent. Similarly, ifthe departure flow from one queue

becomes input to another, then the resulting arrival-rate function isσ; (We do not let the

abandonment flow from one queue become input to another, but if we did, then the resulting

arrival-rate function would beα.) However, converting departure rate or abandonment rate

into new input rate is more complicated when feedback is allowed. We discuss that case

now, for departures only.

As is usual with open queueing networks, there is an externalexogenous arrival rate

function to each queue (from outside the network) and there is a total arrival rate function

to each queue (which we simply call the arrival rate function), taking into account the

flow from other queues. Let the external arrival rate function into queuej be denoted by

λ
(0)
j ; let the arrival rate function into queuej be denoted byλj. The model data for the

Gt/Mt/st+GIt fluid queues directly provides the external arrival rate functionsλ(0)j (with

the superscript0 now added), while the arrival rate function itself satisfiesa system of

traffic rate equations. In particular,

λj(t) = λ
(0)
j (t) +

m
∑

i=1

σi(t)Pi,j(t), where (3.20)

σi(t) = Bi(t)µi(t), t ≥ 0. (3.21)

Equations (3.20) and (3.21) produce a system of equations, with λj depending uponσi for

1 ≤ i ≤ m, while σi in turn depends onλi for eachi, becauseBi depends onλi. The

formulas forBi as a function ofλi have been given in Propositions 3.1 and 3.2, provided
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that we know whether the queue is overloaded or underloaded.That requirement is the

major source of complexity.

Since (3.20) is a linear equation, it can be written in matrixnotation asλ = λ(0) + σ P

by omitting the argumentt as below, provided that the productσP is interpreted as in

(3.20). Moreover, we can combine (3.20) and (3.21) to expressλ as the solution of a fixed

point equation mappingCm
p over [0, T ] into itself. To see this, note thatBi(t) in (3.21) is

a function ofλi(u), 0 ≤ u < t, and the model data (only needed for queuei). Hence the

vectorB(t) ≡ (B1(t), . . . , Bm(t)) is a function ofλ over[0, t) and the model data. Hence

we can express (3.20) and (3.21) abstractly as

λ = Ψ(λ), (3.22)

whereΨ(x)(t) depends on its argumentx only over[0, t] for eacht ≥ 0. Here the function

Ψ depends on all the model data(λ(0)i , si, µi, Fi,·, bi(0, ·), qi(0, ·), P ), 1 ≤ i ≤ m.

3.7 Two Algorithms for the Network with Mt Service

In this section we establish two different algorithms to compute all standard performance

measures for the(Gt/Mt/st + GIt)
m/Mt fluid network. The first algorithm is based on

solving an FPE and the second is based on solving an ODE. In§3.8 we generalize our

analysis to the network withGI service distributions.

3.7.1 An FPE Based Algorithm

This algorithm is based on solving the FPE (3.22). We first establish the following contrac-

tion property of the operatorΨ.
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Theorem 3.8 (contraction operator) If s′i, µi ∈ Pm,n for 1 ≤ i ≤ m, then the operator

Ψ in (3.22) is a monotone contraction operator on them-dimensional product spaceCm
p

over [0, T ] for all sufficiently smallT > 0. Hence there exists a unique solutionλ to the

traffic rate equations(3.20) and (3.21) over [0, T ] for any fixedT > 0. For sufficiently

short intervals, successive iteratesΨ(n)(λ̃) converge uniformly, geometrically fast, to the

fixed point for any initial point̃λ ∈ Cm
p .

Proof. We first show thatΨ actually mapsCp into itself. First, ifλ ∈ Cm
p , thenB ∈ Cm

p

by Corollary 3.1 and Theorem 3.7. By assumptionµ ∈ Cm
p , so thatσ ∈ Cm

p , so the

conclusion follows from (3.20) and (3.21). To show thatΨ is a contraction operator for

sufficiently smallT > 0, we use the norm‖λ‖T ≡
∑m

i=1 ‖λi‖T for λ ≡ (λ1, . . . , λm) ∈

(Cp)
m. For anyλ1, λ2 ∈ (Cp)

m, the traffic rate equations in (3.20) and (3.21) imply that

‖Ψ(λ1)−Ψ(λ2)‖T ≤
m
∑

j=1

sup
1≤t≤T

m
∑

i=1

µi(t)|B1
i (t)− B2

i (t)|Pi,j(t)

≤ mµ↑
T

m
∑

i=1

sup
0≤t≤T

|B1
i (t)− B2

i (t)|

≤ mµ↑
TT

m
∑

i=1

sup
0≤t≤T

|λ1i (t)− λ2i (t)| ≤ mµ↑
TT ‖λ1 − λ2‖T ,

wheremµ↑
TT < 1 for all sufficiently smallT > 0. The second inequality holds since

Pi,j(t) ≤ 1. The crucial third inequality follows from (3.19) in Theorem 3.6. To establish

uniqueness over[0, T ] for any fixedT > 0, we consider a succession of shorter intervals,

over which the contraction property holds, and apply mathematical induction. Existence,

uniqueness and geometric convergence are standard consequences of the Banach contrac-

tion fixed point theorem. Finally, monotonicity follows from Theorems 3.5 and 3.7 plus

the traffic rate equations (3.20) and (3.21).
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Remark 3.1 (starting at the external arrival rates) Theorem 3.8 implies that we can ap-

proach this system recursively. If we do so with initial vector λ̃ = λ(0), the vector of external

arrival rate functions, then the recursion has an importantpractical interpretation. Then

thekth iterateλ(k)j is the arrival rate of fluid that has previously experiencedk transitions

in the fluid network. With this notation, we can write the recursive formulas

λ
(n)
j (t) = Ψ(n)(λ(0))j(t) = λ

(0)
j (t) +

m
∑

i=1

σ
(n−1)
i (t)Pi,j(t), n ≥ 1, (3.23)

where σ
(n)
i (t) = B

(n)
i (t)µi(t) n ≥ 0. (3.24)

Since we necessarily haveλ(1)i ≥ λ
(0)
i for eachi, this recursion converges monotonically to

the fixed pointλ. By Theorems 3.5 and 3.7, all the performance measures increase toward

their limiting values as well.

The FPE based algorithm for the network of fluid queues.The algorithm consists of

two successive steps: (i) solving the traffic-rate equations (3.20) and (3.21) and (ii) solving

for the performance vector(b, q, w, v, σ, α) at each queue using the algorithm in§2.3. For

step (i), we start with an initial vector of arrival rate functions, which can a rough estimate

of the final arrival rate functions or the given external arrival rate functions. We then apply

the performance formulas in§3.4 to determine the performance functionsBi andσi at each

queue to determine a new vector of arrival rate functions. Wethen iteratively calculate

successive vectors of arrival rate functions until the difference (measured in the supremum

norm over a bounded interval) is suitably small. Then we apply step (ii).
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Given a desired durationT of an interval[0, T ], we specify the following input data: (i)

Model parameter input vector

(

λ(0), s, G, F,P(0)
)

≡
(

λ
(0)
i (t), si(t), Gi, Fi,Pi(0), 1 ≤ i ≤ m, t ∈ [0, T ]

)

, (3.25)

where the initial performance vector (at time 0) of queuei, 1 ≤ i ≤ m

Pi(0) ≡ (bi(0, ·), qi(0, ·), Bi(0), Qi(0), wi(0), vi(0), αi(0), σi(0)) ;

and (ii) algorithm accuracy parameters: the error tolerance parameter (ETP)ǫ > 0 and the

step size0 < ∆T ≤ T . We next summarize the algorithm formally as the following.

Algorithm 3 : An FPE based algorithm for the(Gt/Mt/st +GIt)
m/Mt Fluid Network

1: Initialization: λ(1) := λ(0), 0 ≤ i ≤ m
2: for k = 1, 2, . . . do
3: for i = 1, 2, . . . , m do
4: Compute σi in [0, T ] using FASQ (Algorithm 2) with input

(

λ
(k)
i , si, Gi, Fi, P̂i(0)

)

5: end for
6: Let λ(k+1) := λ(0) + P T · σ in [0, T ]
7: if ‖λ(k+1) − λ(k)‖T < ǫ then
8: λ := λ(k+1)

9: Break
10: end if
11: end for
12: Compute Pi for 1 ≤ i ≤ m using FASQ (Algorithm 2) with input
(

λi, si, Gi, Fi, P̂i(0)
)

Remark 3.2 (complexity of the FPE based algorithm with respect to the number of switch-

ing pointsS and the size of the systemm) The running time of this algorithm depends on

the number of regime switchings (between UL and OL). Supposethe number of switchings
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for each queue in[0, T ] isO(S), then in each iteration of the fixed-point recursion the com-

plexity isO(mS) because the single-queue fluid algorithm is called form times to compute

performance measures for allm queues. If the total number of iterations isn, then the total

complexity is of orderO(nmS). Thus, the running time is linear both inS and inm.

We conclude this section by establishing a network generalization of the single queue

comparison in Theorem 3.5. The proof appears in§B.4.

Theorem 3.9 (network comparison theorem) Consider two(Gt/Mt/st+GIt)
m+Mt fluid

queue networks with common staffing functionssi, service rate functionsµi, abandonment

cdf ’sF·,i and routing matrix functionP for 1 ≤ i ≤ m. If λ(0)1,i ≤ λ
(0)
2,i , B1,i(0) ≤ B2,i(0),

q1,i(0, ·) ≤ q2,i(0, ·), 1 ≤ i ≤ m, then the performance functions are ordered at each

queue:

(λ1,i, B1,i, σ1,i, q̃1,i, q1,i, Q1,i, α1,i, X1,i, w1,i, v1,i)

≤ (λ2,i, B2,i, σ2,i, q̃2,i, q2,i, Q2,i, α2,i, X2,i, w2,i, v2,i) for 1 ≤ i ≤ m. (3.26)

3.7.2 An ODE Based Algorithm

Now we consider an alternative algorithm for the(Gt/Mt/st + GIt)
m/Mt fluid queue

network. Again, the key is to compute the total arrival ratesfor all queues and then treat

them separately as single queues. This new algorithm is faster and easier to implement. In

some special cases, analytic formulas are available.

Finding the total arrival rates: Instead of solving the FPE as in Chapter 2, we hereby

solve anm-dimensional ODE. The key is to characterize and update the system regime in
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different intervals and recursively advance int. We describe the system regime att with

two sets:U(t) (the set of indices of queues that are UL) andO(t) (the set of indices of

queues that are OL). In other words,

U(t) ≡ {1 ≤ i ≤ m : Bi(t) ≤ si(t), Qi(t) = 0}

O(t) ≡ {1 ≤ i ≤ m : Bi(t) = si(t), Qi(t) > 0}.

GivenU(t) andO(t), consider1 ≤ i ≤ m. (i) If Queuei is UL, i.e., i ∈ U(t), flow

conservation implies that

B′
i(t) = λ

(0)
i (t) +

∑

j∈U(t)

µj(t)Pj,i(t)Bj(t) +
∑

k∈O(t)

µk(t)Pk,i(t)sk(t)− µi(t)Bi(t).

If i ∈ O(t),Bi(t) = si(t). We partition the indices of queues so thatB(t) ≡ [BU(t),BO(t)],

λ(t) ≡ [λU(t), λO(t)], λ(0)(t) ≡ [λ
(0)
U (t), λ

(0)
O (t)],µ(t) ≡ [µU(t), µO(t)], s(t) ≡ [sU (t), sO(t)],

ΓU(t) ≡ diag(µU(t)), ΓO(t) ≡ diag(µO(t)),

P(t) ≡







PUU(t) PUO(t)

POU(t) POO(t)






,

wherePUU(t) (POU(t), PUO(t), andPOO(t)) denotes the transition probability from a

state inU (O, U , andO) to a state inU (U , O, andO) at timet. LetPOU(t) = PUO(t) =

POO(t) = 0 whenPUU(t) = P(t) (i.e., all queues are UL) and letPOU(t) = PUO(t) =

PUU(t) = 0 whenPOO(t) = P(t) (i.e., all queues are OL) Therefore, in matrix notation,



113

we have

B
′
U(t) = C(t) ·BU(t) +D(t), (3.27)

BO(t) = sO(t), (3.28)

where

D(t) ≡ λU ,(0)(t) + ΓO(t)P
T
OU(t)sU(t)

C(t) ≡ ΓU(t)
(

P
T
UU(t)− I

)

.

If the service rates and the routing probability matrix are independent of time:µi(t) = µi

andPi,j(t) = Pi,j, i.e., the model becomes the(Gt/M/st +GIt)
m/M network, thenΓU ≡

ΓU(t) = diag(µU), C ≡ C(t) = ΓU

(

P
T
UU − I

)

, and (3.27) has the unique solution

BU(t) = e−C t

(
∫ t

0

e−C u
D(u)du+B(0)

)

.

In all cases, the total arrival rate

λ(t) = λ(0)(t) +P
T (t)Γ(t) ·B(t). (3.29)

Regime termination criterion: It is also critical to determine when the system regime

changes and to updateU(t) andO(t). Since each queue can be either UL or OL, there are

overall2m different regimes. We say that the system changes its regimeif one of the queues

changes its regime, i.e., from UL to OL or from UL to OL. We provide the following regime
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termination time

TR(t0) ≡ T1(t0) ∧ T2(t0), where (3.30)

T1(t0) ≡ inf{t ≥ t0 : somei ∈ O s.t.Qi(t) = 0, λi(t) ≤ σi(t)},

T2(t0) ≡ inf{t ≥ t0 : somej ∈ U s.t.Bj(t) = sj(t), λj(t) > σj(t)},

t0 is the starting time of the desired interval, the infimum of anempty set is understood to

be infinity. When the system regimes changes, we updateU(t) andO(t). Let k∗ be the

index of the queue that causes the regime switching. Ifk∗ ∈ O(t−), i.e.,T = T1, let

O(t)← O(t)\{k∗} and U(t)← U(t) ∪ {k∗}; (3.31)

if k∗ ∈ U(t−), i.e.,T = T2, let

U(t)← U(t)\{k∗} and O(t)← O(t) ∪ {k∗}. (3.32)

Given a desired durationT of an interval[0, T ], the vector of the model data defined

as (3.25), and a step size0 < ∆T ≤ T , we summarize the algorithm formally as the

following.

Remark 3.3 (complexity of the ODE based algorithm with respect to the number of switch-

ing pointsS and the size of the systemm) The running time of this algorithm again depends

on the number of system regime switchings (between UL and OL). Suppose the number of

switchings for each queue in[0, T ] is O(S), then the number of system regime changes is

at most the sum of the total number of regimes switches of allm queues in[0, T ] (assuming
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Algorithm 4 : An ODE based algorithm for the(Gt/Mt/st +GIt)
m/Mt Fluid Network

1: Initialization: t := 0
2: repeat
3: for k = 0, 1, . . . , ⌈T−t

∆T
⌉ do

4: Computeλ(s) andB(s) for s ∈ [t + (k − 1)∆T, t+ k∆T ], using (3.27)-(3.29)
5: ComputeP(s) for s ∈ [t + (k − 1)∆T, t + k∆T ] using Proposition 3.1 ,3.2 and

3.3, Corollary 3.2, Theorem 2.3 and 2.6
6: if TR(t) < t + k∆T for TR(t) in (3.30) then
7: t := TR(t)
8: UpdateU(t) andO(t) by (3.31)-(3.32)
9: BREAK for-loop

10: end if
11: end for
12: until t ≥ T

no two queues change their regimes at the same time). Hence the complexity of the new

algorithm is of orderO(mS). It is again linear both inS and inm.

3.8 An Extension toGI Service Distribution

In this section, we extend our analysis from theM service distribution toGI. Without the

M service distribution, neither algorithms in§3.6 is applicable. Here we provide another

algorithms that is based on solving a new FPE. Throughout this section, we make the

following assumption.

Assumption 3.8 (finitely many switches between intervals in finite time) Each interval is

of positive length, so that the positive half line[0,∞) can be partitioned into2m inter-

vals. Moreover, there are only finitely many switches between these intervals in each finite

interval.

The key is to obtain the total arrival rateλi(t) for 1 ≤ i ≤ m and0 ≤ t ≤ T . Once

λi(t) is given, the algorithm developed in Chapter 2 can be appliedto compute all other
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performance measures. If queuej (1 ≤ j ≤ m) is UL, from Chapter 2 we have that

bj(t, x) = Ḡj(x)λj(t− x)1{x≤t} +
Ḡj(x)

Ḡj(x− t)
bj(0, x− t)1{x>t},

σj(t) =

∫ ∞

0

bj(t, x)hG,j(x)dx

=

∫ t

0

gj(x)λj(t− x)dx+
∫ ∞

0

gj(x+ t)

Ḡj(x)
bj(0, x)dx. (3.33)

If queuek (1 ≤ k ≤ m) is OL, from Chapter 2, thenσk(t) = bk(t, 0)− s′k(t) and the rate

into service (RIS)bk(t, 0) satisfies the FPE

bk(·, 0) = T (bk(·, 0)), (3.34)

where

T (y)(t) ≡ âk(t) +

∫ t

0

y(t− x)gk(x)dx,

âk(t) ≡ s′k(t) +

∫ ∞

0

bk(0, y)gk(t+ y)

Ḡk(y)
dy.

Moreover, we have showed in Chapter 2 thatT is a contraction operator under mild con-

ditions, which thus implies that (3.34) has a unique solution. Havingσk(t) and bk(t, 0)

computed fork ∈ O(t), the total arrival rate at queuei

λi(t) = λ
(0)
i (t) +

∑

k∈O(t)

Pk,i(t)σk(t) +
∑

j∈U(t)

Pj,i(t)σj(t)

= γ̂i(t) +
∑

j∈U(t)

Pj,i(t)

(
∫ t

0

gj(x)λj(t− x)dx
)

, (3.35)
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where

γ̂i(t) ≡ λ
(0)
i (t) +

∑

k∈O(t)

Pk,i(t)σk(t) +
∑

j∈U(t)

Pj,i(t)

∫ ∞

0

gj(x+ t)

Ḡj(x)
bj(0, x)dx.

and the second equality holds by (3.33).

From (3.35), it is evident thatλ satisfies a FPE, i.e.,

λ = J (λ), (3.36)

of the operatorJ : Dm → Dm, where

J (u)i(t) ≡ γ̂i(t) +
∑

j∈U(t)

Pj,i(t)

(
∫ t

0

gj(x)uj(t− x)dx
)

, 1 ≤ i ≤ m. (3.37)

Under regularity conditions, we can show that there exists aunique solution to equation

(3.35) by applying the Banach contraction theorem. We will use the complete (nonsepara-

ble) normed spaceDm with the uniform norm over the interval[0, T ], i.e.,

‖u‖T ≡
m
∑

i=1

sup
0≤t≤T

|ui(t)|. (3.38)

Theorem 3.10 (the aggregated arrival rate forGI service) Assume the system regime does

not change in a small interval[0, T ]. The operatorJ in (3.37) is a monotone contraction

operator onDn with norm defined in(3.38).
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Proof. Assume thatT > 0 is small enough so that the system regime does not change, i.e.,

U(t) = U andO(t) = O for 0 ≤ t ≤ T .

‖J (u1)−J (u2)‖T =

m
∑

i=1

sup
0≤t≤T

∣

∣

∣

∣

∣

∣

∑

j∈U(t)

Pj,i(t)

[
∫ t

0

gj(x) (u1,j(t− x)− u2,j(t− x)) dx
]

∣

∣

∣

∣

∣

∣

≤
m
∑

i=1

sup
0≤t≤T

∑

j∈U

‖u1,j − u2,j‖TPj,i(t)Gj(t)

≤ m max
1≤j≤m

Gj(T ) · ‖u1 − u2‖T

≤ C̃(T ) ‖u1 − u2‖T ,

where

C̃(T ) ≡ m max
1≤j≤m

Gj(T ),

and the second inequality holds by the Lipschitz continuityassumption onPi,j(t). Note

that we can makẽC(T ) < 1 for smallT > 0 sinceGi(t)→ 0 ast→ 0 for all 1 ≤ i ≤ m.

2

Given a desired durationT of an interval[0, T ], the vector of the model data defined

as (3.25), a step size0 < ∆T ≤ T , and an error tolerance parameter (ETP)ǫ > 0, we

summarize the algorithm formally as the following.

3.9 Examples

In this section we implement the algorithms in§§3.6-3.8 on a Markovian and non-Markovian

fluid network models.
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Algorithm 5 : An FPE based algorithm for the(Gt/GI/st +GIt)
m/Mt Fluid Network

1: Initialization: t := 0
2: repeat
3: for k = 0, 1, . . . , ⌈T−t

∆T
⌉ do

4: for all i ∈ O(t) do
5: - Computebi(s, 0) solving FPE (3.34) with ETPǫ, s ∈ [t+(k−1)∆T, t+k∆T ]
6: - Let σi(s) := bi(s, 0)− s′i(s)
7: end for
8: Computeλ(s) using FPE (3.36) with ETPǫ, s ∈ [t + (k − 1)∆T, t+ k∆T ]
9: ComputeP(s) for s ∈ [t + (k − 1)∆T, t + k∆T ] using using Proposition 2.6,

Corollary 2.2, Theorem 2.3 and 2.6
10: if TR(t) < t + k∆T for TR(t) in (3.30) then
11: t := TR
12: UpdateU(t) andO(t) by (3.31)-(3.32)
13: BREAK for-loop
14: end if
15: end for
16: until t ≥ T

3.9.1 An(Mt/M/st +M)2/Mt Marvovian Example

We first consider a Markovian(Mt/M/st+M)2/Mt example (a two-queue network), with

sinusoidal external arrival rates

λ
(0)
i (t) = ai + bi sin(ci t + φi), i = 1, 2, (3.39)

exponential service and patience distributions:Ḡi(x) = e−µi x, F̄i(x) = e−θi x, i = 1, 2,

constant staffing functionssi, i = 1, 2, and a Markovian transition probability matrix

P(t) =







P1,1 P1,2

P2,1 P2,2






=







0.3 0.2

0.2 0.3






. (3.40)

Therefore, with probabilityP1,0 = P2,0 = 0.5, a customer leaves the system after finishing

service at each queue. Leta1 = a2 = 0.5, b1 = 0.25, b2 = 0.35, c1 = c2 = 1, φ1 = 0,
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Figure 3.2: The convergence to the fixed point of the total arrival rate.

φ2 = 1, µ1 = 1, µ2 = 0.5, θ1 = 0.5, θ2 = 0.3, s1 = 1, ands2 = 2. We let the network be

initially empty.

We first demonstrate how the FPE based algorithm works. Sinceit is key to obtain the

total arrival ratesλ1(t) andλ2(t) for 0 ≤ t ≤ T , we first demonstrate how fast the fixed-

point algorithm converges. We initially letλ(1)i beλ(0)i , i = 1, 2. In Figure 3.2, we plot the

total arrival rates in every iteration. The two functions atthe bottom areλ(0)1 (t) andλ(0)2 (t);

the functions at the top are theλ1(t) andλ2(t) (computed using the ODE based algorithm);

the other functions are the intermediate values (computed using the FPE based algorithm).

Recall that the FPE based algorithm terminate at stepN(ǫ) and letλi ≡ λ
(N(ǫ))
i , i = 1, 2,

for

N(ǫ) ≡ inf

{

N ≥ 0 : ET (N) ≡ max
j=1,2
‖λ(N)

j − λ(N−1)
j ‖T ≤ ǫ

}

,

where ǫ > 0 is a pre-specified error tolerance parameter (ETP). For thisexample, we

demonstrate how the number of iterationsN(ǫ) and the terminating errorET (N(ǫ)) depends
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on the EPTǫ in Table 1. Here the monotone convergence and the geometric convergence

rate are explained by the monotone contraction property of the operatorΨ.

log10(ǫ) -1 -2 -3 -4 -5 -6 -7 -8 -9
ET (N(ǫ)) 0.81 0.007 9.2E-4 4.8E-5 4.9E-6 2.8E-7 5.2E-8 8.3E-9 1.4E-10
N(ǫ) 3 6 8 11 13 15 16 17 19

Table 3.1: The number of iterationsN of the FPE algorithm, depending on the ETPǫ.
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Figure 3.3: Computing the fluid performance functions for the (Mt/M/st +M)2/Mt net-
work fluid model.

In Figure 3.3, we plot all standard performance measures of the fluid network using the

FPE based algorithm, includingλi, Qi, wi, Bi, Xi, andbi(·, 0), i = 1, 2. In Figure 3.4,

we compare the fluid approximations with results from a simulation experiment for a very

large-scale queueing system. The queueing model has nonhomogeneous Poisson external
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arrival processes with sinusoidal rate functions

λ
(0)
n,i(t) = nλ

(0)
i (t), i = 1, 2,

with n = 2000. We compare the fluid model predictions to a single sample path of the

queueing system (one simulation run). In Figure 3.4 the solid lines are the simulation

estimations of single sample paths applied with fluid scaling, and the dashed lines are the

fluid approximations. We conclude that the fluid approximation is remarkably accurate as

an approximation when the scale of the queueing model is extremely large.
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Figure 3.4: A comparison of the(Mt/M/st +M)2/Mt network fluid model with a simu-
lation run of single sample paths,n = 2000.

When the scale of the queueing model is not large (i.e.,n is small), single sample

paths of the queueing functions do not necessarily agree with the fluid functions because of



123

0 2 4 6 8 10 12 14 16 18 20
0

0.2

0.4

0.6

0.8

w
(t

)
Time t

 

 

0 2 4 6 8 10 12 14 16 18 20
0

0.2

0.4

0.6

0.8

Q
(t

)

Time t

 

 

0 2 4 6 8 10 12 14 16 18 20
0

0.5

1

1.5

2

B
(t

)

Time t

 

 

0 2 4 6 8 10 12 14 16 18 20
0

0.5

1

1.5

2

X
(t

)

Time t

 

 

w
1
(t): sim

w
2
(t): sim

w
1
(t): num

w
2
(t): num

Q
1
(t): sim

Q
2
(t): sim

Q
1
(t): num

Q
2
(t): num

B
1
(t): sim

B
2
(t): sim

B
1
(t): num

B
2
(t): num

B
1
(t): sim

B
2
(t): sim

B
1
(t): num

B
2
(t): num

Figure 3.5: A comparison of the(Mt/M/st +M)2/Mt network fluid model with a simu-
lation run averaging 50 independent sample paths,n = 100.

large stochastic fluctuations. However, the mean functionsof these processes can be well

approximated. In Figure 3.5 we estimate and means by averagine multiple independent

sample paths and compare them with the fluid functions for thecasen = 100. Therefore,

the fluid approximation is still quite accurate when the system is not in a large scale.

3.9.2 A(Gt/LN/st + E2)
2/Mt non-Marvovian Example

We now evaluate the performance of the FPE based algorithm introduced in§3.8. We

consider a non-Marvovian example: the(Gt/LN/st + E2)
2/Mt model with a Lognormal

service distribution (theLN) and an Erlang-2 patience distribution (theE2). Specifically,

we let the service time at stationi beSi ≡ eZi, whereZi is a Normal random variable with
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Figure 3.6: Computing the fluid performance functions for the (Mt/LN/st + E2)
2/Mt

network fluid model.

meanµ̂i and variancêσ2
i , i.e.,Zi ∼ N(µ̂i, σ̂

2
i ), i = 1, 2. The service pdf is

gi(x) =
1

xσ̂i
√
2π

e
−

(log x−µ̂i)
2

2σ̂2
i , x ≥ 0, i = 1, 2.

The mean service times and the variances are

1

µi
≡ E[Si] = eµ̂i+

1
2
σ̂2
i ,

σ2
i ≡ V ar(Si) = (eσ̂

2
i − 1) e2µ̂i+σ̂2

i , i = 1, 2.
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We let the patience distribution be Erlang-2 (E2) with pdf

fi(x) = 4θ2i x e
−2θi x, x ≥ 0.

LetAi be a generic patience time of a customer at queuei, we haveE[Ai] = 1/θi, i = 1, 2.
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Figure 3.7: A comparison of the(Mt/LN/st + E2)
2/Mt network fluid model with a sim-

ulation run averaging 50 independent sample paths,n = 100.

TheE2 distribution has a squared coefficient of variationc2 ≡ V ar(X)/E[X ]2 = 1/2. We

chooseµ̂1 = −0.549, σ̂1 = 1.048, µ̂2 = 0.144, σ̂2 = 1.048 such thatµ1 = 1, µ2 = 0.5,

σ2
1 = 2, σ2

2 = 8. Thus, we havec2 = 2 for the service distributions. We letθ1 = 0.5,

θ2 = 0.3. In this way both the service rates (µ1 andµ2) and the patience rates (θ1 andθ2)

remain the same as in the example in§3.9.1. For comparison purpose, we let the external
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arrival rateλ(0) be sinusoidal (as in (3.39) and the Markovian routing matrixP be constant

(as in (3.40)) with the same parameters there. We also let thesystem be initially empty.

We again plot the standard performance measures and comparethem with simulation

experiments in Figure 3.6 and 3.7 respectively, these two figures are analogs of Figure 3.3

and 3.5. In Figure 3.6, we plot and compare the fluid functionsof the(Mt/M/st+M)2/Mt

model (the solid lines: blue for Queue 1 and red for Queue2) and those of the(Mt/LN/st+

E2)
2/Mt model (the dashed lines: lightblue for Queue 1 and lightbrown for Queue2). As

we have described above, these two models have the same modelparameters (including the

service and patience ratesµ andθ) except for the service and patience distributions. Figure

3.6 delivers an important message: unlike the stationaryG/GI/s+ GI queue, the service

and patience distributions beyond their means play an important role for the fluid network

with time-varying model parameters; the transient system behavior can be significantly

different if we change the service or patience distribution. Figure 3.7 verifies the effective-

ness of the fluid approximations to the performance of the corresponding stochastic queue

networks.

Finally, we end this section with a few remarks on the performance of these algorithms.

Remark 3.4 (Performance of the algorithms with respect toT , ∆T , andǫ) (i) The com-

plexity of these algorithms is linear in the length of the intervalT . (ii ) The complexity is

almost independent of the step size∆T . The reason is intuitive: if∆T is big, the algorithm

reaches the end of the time horizon in less steps while the numerical computation in each

interval of length∆T takes more time; if∆T is small, it takes more steps for the algorithm

to advance in time while the numerical computation of each step becomes simpler.(iii ) The

way how the total number of iterationsN(ǫ) of the FPE operator depends on the ETPǫ is
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similar to the case of Table 1. Again, this is so because of thecontraction property of these

operators. In conclusion, the running timeT = O(mT log(1/ǫ)).

Remark 3.5 (Comparison of the algorithms) On the running time of these three algo-

rithms, the ordering is

Algorithm 4< Algorithm 3< Algorithm 5.

Consider the(Mt/M/st + M)2/Mt example in§3.9.1 withT = 20, ∆T = 0.5, and

ǫ = 10−5, the running times are 44 (for Algorithm 4), 72 (Algorithm 3), and 118 (Algorithm

5) seconds. On the complexity of the implementation, the ordering is

Algorithm 3< Algorithm 4< Algorithm 5.

It is clear that when treating the(Gt/Mt/st +GI)m/Mt model, Algorithm 4 runs with the

least time and Algorithm 3 is the easiest to implement. However, to analyze the(Gt/GI/st+

GI)m/Mt model, we have to use Algorithm 5 although it is the worst bothin running time

and in implementation complexity.

3.10 The Stationary(G/GI/s +GI)m/M Fluid Network

This chapter is primarily devoted to the time-varying fluid queue network, but the corre-

sponding stationary fluid queue network also is of interest.The stationary performance of

a singleGI/GI/s+GI fluid queue was characterized in [77]. (The proof is completed by

Chapter 2 because the transient dynamics are characterizedthere.) The corresponding sta-

tionary(G/GI/s+GI)m/M fluid queue network is actually quite elementary given [77].
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In particular, the stationary performance of this model is determined by a fixed point equa-

tion for the (now constant) arrival rates. We start by reviewing that stationary distribution

of theGI/GI/s+GI fluid queue.

Theorem 3.11 (steady state of theG/GI/s+GI fluid queue, from[77]). TheG/GI/s+

GI fluid model specified with model parameter vector(λ, s, µ,G, F ) has a unique steady

state described by the vector(b, q, B,Q, w, σ, α), whose character depends on whether

ρ ≡ λ/sµ ≤ 1 or ρ > 1.

(a) Underloaded and balanced cases:ρ ≤ 1. If ρ ≤ 1, then forx ≥ 0

B = sρ, b(x) = λ Ḡ(x), σ = Bµ = λ, Q = α = w = q(x) = 0,

(b) Overloaded case:ρ > 1. If ρ > 1, then forx ≥ 0

B = s, b(x) = sµ Ḡ(x), σ = sµ, α = λ− sµ = (ρ− 1)sµ = λF̄ (w),

w = F−1

(

1− 1

ρ

)

, Q = λ

∫ w

0

F̄ (x)dx and q(x) = λ F̄ (x)1{0≤x≤w}.

We now turn to the arrival rates. As can be seen from Theorem 3.11 above, unlike for

the time-varying model, for the stationary model we can easily handleGI service, because

the total service contentB is independent of the service-time distribution beyond itsmean.

The vector of constant arrival ratesλ is determined by the system of fixed point equations

λj = λ
(0)
j +

m
∑

i=1

(λi ∧ siµi)Pi,j, 1 ≤ j ≤ m, (3.41)
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whereλ, λ(0), s, µ ∈ Rm andP is anm ×m stochastic matrix. We can write (3.41) more

compactly as

λ = Φ(λ) ≡ λ(0) + (λ ∧ sµ)P. (3.42)

Equation (3.42) was already analyzed by [23] in the study of non-ergodic Jackson networks;

also see [9] and p. 168 of [10]. However, the model here is different.

Theorem 3.12 (fixed point equation for stationary arrival rates, from[23]) The arrival

rates in the stationary(G/GI/s + GI)m/M fluid queue network satisfy equation(3.41).

Hence, if the stochastic matrix has spectral radius less than 1 (which holds if and only if

P n → 0 asn → ∞), thenΦ in (3.42) is a monotonen-stage contraction operator onRm

with an appropriate norm, so that there exists a unique solution to the fixed point equation

in (3.41) and (3.42). The fixed point can be calculated by solving at mostm different

systems ofm linear equations.

Proof. Even forGI service, if fluid queuei is underloaded, then the stationary service

content isBi = λi/µi and the service completion rate isσi = Biµi = λi. On the other

hand, if queuei is overloaded, thenBi = si and the service completion rate issiµi. In all

cases, the service completion rate at queuei is λi ∧ siµi. Since there is a unique solution to

equation (3.41) or (3.42), that equation determines the stationary arrival rates at all queues

and which queues are in fact overloaded.

3.11 Conclusions

In section 3.2 we specified the singleGt/Mt/st + GIt fluid queue; it differs from Chapter

2 by havingMt service andGIt abandonment instead of both beingGI. TheMt service
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eliminates the need to solve a fixed point equation to find the service content densityb.

In §3.3 and§3.4 we showed that a single fluid queue can be analyzed by assuming that

the arrival rate functionλ, the staffing functions and the service rate functionµ are all

piecewise polynomials. However, that did not permit an extension to networks because the

departure rate function does not inherit that property. In§3.5 we used asymptotic methods

to show how to analyze the single fluid queue without having toassume either (i) that

the arrival rate function is piecewise polynomial or (ii) that there are only finitely many

switches between overloaded and underloaded intervals in each finite interval. In§3.7

we provided (i) an FPE based algorithm and (ii) an ODE based algorithm to compute

all standard performance functions for the(Gt/Mt/st + GIt)
m/Mt network in a finite

time interval. In§3.8 we extend our analysis to the fluid network withGI service. We

provided the theoretical basis and a new algorithm for the generalized model. In§3.9 we

evaluated the performance of these algorithms described in§§3.6-3.8 with Markovian and

non-Markovian examples. We conducted simulation experiments showing that the fluid

model provides very accurate approximations for very large-scale many-server queueing

systems. The approximations are also excellent for themean valuesof the corresponding

queueing random variables when the scale is quite small, e.g., when there are100 servers

or fewer In§3.10 we treated the stationary(G/GI/s + GI)m/M networks with constant

model data and proportional routing. Theorem 3.8 established the existence of unique

vector of arrival rate functions, allowing for feedback, and thus a corresponding unique

performance description for the entire network. The performance functions at each queue

are given in§3.4.

There are many directions for future research. It remains toestablish supporting many-

server heavy-traffic limits, including stochastic refinements. it remains to extend Theorem

3.8 toGI andGIt service. It remains to develop alternative approximationsfor time-

varying many-server queueing systems, where the staffing adjusts dynamically (appropri-
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ately) to the time-varying demand, so that the system tends to be critically loaded at all

times, as opposed to switching between overloaded intervals and underloaded intervals.
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Chapter 4

Large-Time Asymptotics for the

Gt/Mt/st +GIt Fluid Queue

We next focus on the fluid model with exponential service distribution. We allow all

model parameters to be time dependent. Complementing Chapters 2-3 that investigated the

transient dynamics in a finite interval, here we study the large-time asymptotic behavior of

the fluid model. When the model parameters are periodic, we show that the performance

functions converge to a periodic steady state (PSS); when the model is stationary with

constant parameters, we establish the convergence to the conventional steady state.

4.1 Introduction

In Chapters 2-3 we investigated the deterministicGt/GI/st+GI and(Gt/Mt/st+GIt)
m/Mt

fluid models with time-varying parameters. There we provided efficient algorithms to com-

pute system performance formulas in finite time intervals. Complementing Chapters 2-3,
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in this chapter we study the large time asymptotic behavior of theGt/Mt/st + GIt fluid

model. We focus on the impact of the initial conditions on thesystem performance as time

evolves. To treat the general nonstationary setting, we show that, under regularity con-

ditions, an initial difference in the state variables dissipates over time, i.e., the large-time

behavior is asymptotically independent of the initial conditions; we call this theasymptotic

loss of memory(ALOM) property. For non-stationary Markov processes, ALOM has been

calledweak ergodicity[33], Ch. V. We also quantify the rate of convergence (which is at

the magnitude of the abandonment and service rates), showing that it is exponentially fast,

again under regularity conditions. This fast convergence result also justifies the usefulness

of approximating transient dynamics with steady-state performance.

This ALOM property can be quite useful. First, we apply ALOM to establish the exis-

tence of a unique steady state instationaryfluid models (that have constant model param-

eters), and convergence to that steady state as time evolves. Although the existence and

form of this steady state were established in [77], the convergence from transient system

dynamics to this steady state (and the rate of the convergence) has never been shown before

to the best of our knowledge. We also employ ALOM to establishthe existence of a unique

periodic steady state(PSS) inperiodicfluid models (that have periodic model parameters),

and convergence to this PSS as time evolves. This PSS can be very useful to determine

system congestion in service systems with daily or weakly cycles. We use the algorithm

developed in Chapters 2-3 to compute performance functionsover initial intervals. Since

convergence is exponentially fast, that directly yields the PSS performance, but we also

develop an alternative direct algorithm to compute the PSS performance.

The specific fluid model we consider here isGt/Mt/st +GIt. That model is placed on

a firm mathematical foundation in§3.4 of Chapter 3; it is a relatively minor modification

of the correspondingGt/GI/st + GI fluid model introduced and analyzed in Chapter 2.

The performance of theGt/Mt/st + GIt model is characterized in§§3.2-3.4 of Chapter
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3, building on§§2.5-2.9 of Chapter 2. Regularity conditions were developedunder which

all the standard performance functions are characterized.Moreover, an algorithm was de-

veloped to compute these performance functions. We will draw heavily upon this previous

material.

The special case of theGt/M/st + GI fluid queue, where only the arrival rate and

staffing function (number of servers) are time-varying, should be adequate for most ap-

plications. The most useful generalization then would be toallow GI service instead of

M service. WithGI service, the fluid content density in service,b(t, x) (see (2.3) and

(3.9) below) during an overloaded interval depends on the prior values of the rate fluid en-

ters service,{b(s, 0) : 0 ≤ s ≤ t}, (see equation (2.16) of Chapter 2), and Theorem A.2 of

Chapter 2 shows thatb(t, 0) is characterized as the solution of a fixed point equation ((4.20)

in Chapter 2). Here we exploit the fact that, withMt service, the density of fluid in service

b(t, x) can be exhibited explicitly. Weconjecturethat ALOM extends toGt/GI/st + GI

models with non-exponential service times, provided that all the regularity conditions in

Chapter 2 are satisfied, including the service-time distribution having a density.

In fact, in Chapter 5 we provide a counterexample showing that ALOM doesnotextend

beyondMt service toall GI service. Indeed, we show in Chapter 5 that ALOM does not

hold even in all stationary fluid models. That is done by considering theGI/D/s + GI

fluid model with deterministic service times. Of course, thedeterministic service-time dis-

tribution does not satisfy the density condition in Chapter2 and [77]. Nevertheless, the

G/D/s + GI fluid queue has the stationary performance given in [77] and Theorem 3.11

here. However, the performance does not converge to that stationary value when the system

starts empty. Instead, it approaches a PSS. The same phenomenon occurs for two-point

service-time distributions when one point is0, but otherwise weconjecturethat ALOM

extends to all many-server fluid queues in which service-time distributions are neither de-

terministic nor exponential.
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Here is how the rest of this chapter is organized: In §4.2 we review comparison and

Lipschitz continuity results from Chapter 3 that we will apply, and we establish a new

boundedness lemma, Lemma 4.1. In§4.3 we establish ALOM. In§4.4 we show that the

transient performance of the stationaryG/M/s + GI fluid queue converges to its steady

state performance. In§4.5 we establish the existence of a unique PSS and convergence to it

in the periodicGt/Mt/st+GIt queue. We draw conclusions in§4.6. Additional supporting

material appears in Appendix C, including comparisons withsimulations of corresponding

stochastic queueing systems.

4.2 Structural Results

The model definition, assumptions, and performance formulas for theGt/Mt/st+GIt fluid

model are described in§§3.2-3.4 of Chapter 3. In this section we highlight three structural

results that we will apply here to establish the ALOM result in §4.3, two from Chapter 3

and one new.

The first structural result is thefundamental comparison resultestablished in Theorem

3.5 of Chapter 3. This result establishes an ordering of all performance functions in two

fluid queues given an assumed ordering for the model data functions λ, hF , B(0), and

q(0, ·). See Theorem 3.5 for details.

The second is theLipschitz continuity resultestablished in Theorem 3.6 of Chapter

3. This result applies to the fluid content functions (e.g.,B, Q, andX), it bounds their

absolute uniform differences (in[0, T ]) of two fluid queues by those of the two models’

data functionsλ,B(0),Q(0) andX(0). See Theorem 3.6 for details.

We now add a new structural result: boundedness. For this elementary boundedness

result and other results to follow, we make a stronger assumption on the staffing and the

rates in the model data, requiring that they be uniformly bounded above and below. Our
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conditions will involve the maximum rate fluid can enter service: γ in (5.25) as well as the

two-parameter abandonment hazard ratehFt(y) ≡ ft(y)/F̄t(y), defined after (5.25). Let

h↑FT
≡ sup

−∞<t≤T,x≥0
hFt(x), h↓FT

≡ inf
−∞<t≤T,x≥0

hFt(x),

F̄ ↑(x) ≡ sup
−∞<t<∞

F̄t(x), F̄ ↓(x) ≡ inf
−∞<t<∞

F̄t(x).

Assumption 4.1 (uniformly bounded staffing and rates) The staffing and the rates in the

model data are uniformly bounded above and below, i.e.,

λ↑∞ < ∞, µ↑
∞ <∞, s↑∞ <∞, γ↑∞ <∞, h↑F∞

<∞

λ↓∞ > 0, µ↓
∞ > 0, s↓∞ > 0, γ↓∞ > 0, h↓F∞

> 0.

Assumption 4.1 repeats Assumption 2.11 and strengthens Assumptions 2.10 and 3.6.

We also assume a further regularity condition on the abandonment cdf’s.

Assumption 4.2 (abandonment cdf tail) F̄ ↑(x)→ 0 asx→∞.

We assume that these two additional assumptions are in forcefor the remainder of the

chapter. Our boundedness result also exploits the finite initial conditions, provided by

Assumption 2.1.

Lemma 4.1 (boundedness) Under the assumptions above, all performance functions are
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uniformly bounded. In particular,

B(t) ≤ s(t) ≤ s↑∞, b(t, x) ≤ b(0, x) ∨ λ↑∞ ∨ γ↑∞,

Q(t) ≤
(

λ↑∞

h↓F∞

)

∨Q(0), q(t, x) ≤ q(0, x) ∨ λ↑∞,

w(t) ≤ (F̄ ↑)−1

(

γ↓∞

λ↑∞

)

∨
(

Q(0)

γ↓∞
+ w(0)

)

,

α(t) ≤ h↑F∞
λ↑∞

h↓F∞

, and σ(t) ≤ µ↑
∞ s↑∞.

Proof. Most are elementary; onlyQ(t) andw(t) require detailed argument. Flow conserva-

tion in (3.5) implies thatQ′(t) = λ(t)−α(t)−γ(t) ≤ λ↑∞−α(t). Sinceα(t) ≥ h↓F∞
Q(t),

we haveQ′(t) < 0 wheneverQ(t) > λ↑∞/h
↓
F∞

. The bound forw(t) follows directly from

(4.5) and the final part of the proof of Theorem 4.1 below, which does not use the present

lemma. 2

4.3 Asymptotic loss of Memory (ALOM)

In this section we establish ALOM for theGt/Mt/st + GIt fluid model. We start with an

illustrative example.

Example 4.1 (a sinusoidalGt/M/s+M example) Consider aGt/M/s+M fluid queue

that has the sinusoidal arrival rate function

λ(t) = a+ b · sin(c t), (4.1)
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with a = c = 1 andb = 0.6, exponential service distribution with rateµ = 1, constant

staffing functions = 1, and exponential abandonment time distribution with rateθ = 0.5.

Applying the algorithm in Chapter 2, we compute and compare the performance measures

w(t), Q(t), B(t), X(t) andb(t, 0) with four different (ordered) initial conditions: the sys-

tem is initially (i) empty withQ(0) = B(0) = 0 (the yellow solid lines), (ii) UL with

Q(0) = 0, B(0) = 0.5 < 1 = s (the dark dashed lines), (iii) OL withQ(0) = 0.4,

B(0) = 1 = s (the light-blue dashed lines) and (iv) OL withQ(0) = 0.8, B(0) = 1 = s

(the red dotted lines), as shown in Figure 4.1.
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Figure 4.1: The performance measures for theGt/M/s +M model in Example 4.1 with
four different (ordered) initial conditions.
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Figure 4.1 shows that the differences in these four cases converge to zero so fast that

it looks as if the distance becomes 0 after finite time (but that actually never occurs), even

though the initial conditions are dramatically different.Figure 4.1 also illustrates the com-

parison result in Theorem 3.5.

To state our ALOM result, we use∆ to denote absolute difference. Specifically, for

real-valued functionsXi on [0,∞), i = 1, 2, and0 < T ≤ ∞, let ∆X1,2(t) ≡ ∆X(t) ≡

|X1(t)−X2(t)|, t ≥ 0.

Theorem 4.1 (asymptotic loss of memory) Consider twoGt/Mt/st + GIt fluid models

with common arrival rate functionλ, service rate functionµ, staffing functions, and time-

varying abandon-time cdf’sFt, but different initial conditions(satisfying Assumption 2.1).

Then(a)

∆X(T ) ≤ C1e
−C(T ) for C(T ) ≡ T (µ↓

T ∧ h↓FT
), (4.2)

whereC1 ≡ C1(B1(0), B2(0), q1(0, ·), q2(0, ·)) is the constant

C1 ≡ ∆B(0) +

∫ ∞

0

([q1(0, x) ∨ q2(0, x)]− [q1(0, x) ∧ q2(0, x)]) dx (4.3)

≤ ∆B(0) +Q1(0) +Q2(0).

Moreover,

∆α(T ) ≤ h↑FT
C1e

−C(T ) and ∆σ(T ) ≤ µ↑
TC1e

−C(T ) (4.4)



140

for all T > 0. Hence, forC2 ≡ µ↓
∞ ∧ h↓F∞

> 0 and allT > 0,

∆X(T ) ≤ C1e
−C2T , ∆α(T ) ≤ h↑F∞

C1e
−C2T and ∆σ(T ) ≤ µ↑

∞C1e
−C2T .

In addition, for eachT > 0,

∆w(T ) ≤ ∆X(T )

λ↓T F̄
↓(w1(T ) ∨ w2(T ))

≤ C3∆X(T ) ≤ (C3C1)e
−C2T , (4.5)

where

C3 ≡ (F̄ ↑)−1(s↓∞µ
↓
∞/λ

↑
∞) ∨

(

(w1(0) ∨ w2(0)) +
Q1(0) +Q2(0)

s↓∞µ
↓
∞

)

. (4.6)

(b) If, in addition, the initial content is ordered by

X1(0) ≤ X2(0) and q1(0, x) ≤ q2(0, x) for all x ≥ 0, (4.7)

thenX1(t) ≤ X2(t) for all t ≥ 0,

∆X ′(T ) ≤ 0 and ∆X(T ) ≤ ∆X(0)

1 + C(T )
, T > 0, (4.8)
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for C(T ) in (4.2), so that

∆X(T ) ≤ e−C(T )∆X(0),

∆α(T ) ≤ h↑FT
∆X(T ) and ∆σ(T ) ≤ µ↑

T∆X(T ). (4.9)

Proof. We first show that (a) follows from (b). Without loss of generality, we haveX1(0) ≤

X2(0). ThenX1(0) ≤ X2(0) is equivalent toB1(0) ≤ B2(0) andQ1(0) ≤ Q2(0). In order

to derive (a) from (b), construct another two systems, 3 and 4, with q3(0, x) ≡ q1(0, x) ∨

q2(0, x),B3(0) ≡ B1(0)∨B2(0), q4(0, x) ≡ q1(0, x)∧q2(0, x) andB4(0) ≡ B2(0)∧B2(0).

With this construction, systems 3 and 4 are bonafide fluid models, withX4(t) ≤ X1(t) ≤

X3(t) andX4(t) ≤ X2(t) ≤ X3(t) for all t, which implies that∆X1,2(t) ≤ ∆X3,4(t) for

all t. Since∆X3,4(0) ≤ C1 for C1 in (4.3), (4.2) in (a) follows from (4.9) for∆X3,4(t).

(The final bound onC1 in (4.3) arises when the supports ofq1(0, ·) andq2(0, ·) are disjoint

sets, which actually is not allowed by Assumption 2.10, but can be approached.)

Now we prove (b). Observe that (4.9) follows (4.8) because dividing the interval[0, T ]

intoN subintervals yields

∆X(T ) ≤
(

1

1 + T
N
(µ↓

T ∧ h↓FT
)

)N

∆X(0).

LettingN →∞, we get (4.9).

We now prove (4.8). With the ordering assumed in (4.7), all functions in the two sys-

tems can be ordered according to Theorem 3.5. Hence, there are only three cases:(i) both

systems are UL;(ii) both systems are OL;(iii) system 1 is UL and system 2 is OL. We

treat the three cases separately and use mathematical induction to show (4.8).
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In case(i) we haveB1(0) ≤ B2(0) ≤ s(0) andQ1(0) = Q2(0) = 0. Let T ∗ be the

underload termination time of system 2. For0 ≤ t < T ∗, neither system changes regime.

Observe that∆X(t) = ∆B(t). Flow conservation implies that

B′
i(t) = λ(t)− µ(t)Bi(t) for i = 1, 2,

which yields

∆X ′(s) = ∆B′(s) = −µ(s)∆B(s) ≤ −µ↓
t ∆B(t) = −µ↓

t ∆X(t), 0 ≤ s ≤ t,

where the inequality follows fromµ(s) ≥ µ↓
t and∆B(s) ≥ ∆B(t) since∆B(s) has

negative derivative. Therefore, we have

∆X(t)−∆X(0) ≤ −µ↓
t t∆X(t)

and

∆X(t) ≤
(

1

1 + µ↓
t t

)

∆X(0). (4.10)

In case(ii) we haveB1(0) = B2(0) = s(0) andq1(0, ·) ≤ q2(0, ·). Let T ∗ be the

overload termination time of system 1. For0 ≤ t < T ∗, neither system changes regime.

Observe that∆X(t) = ∆Q(t). Theorem 3.5 implies thatq1(t, ·) ≤ q2(t, ·) andw1(t) ≤
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w2(t) for ≤ t ≤ T ∗. Therefore, we have

α2(t)− α1(t) =

∫ w2(t)

0

q2(t, x) hFt−x(x)dx−
∫ w1(t)

0

q1(t, x) hFt−x(x)dx

=

∫ w1(t)

0

(q2(t, x)− q1(t, x))hFt−x(x)dx+

∫ w2(t)

w1(t)

q2(t, x) hFt−x(x)dx

≥ h↓Ft

∫ w1(t)

0

(q2(t, x)− q1(t, x))dx+ h↓Ft

∫ w2(t)

w1(t)

q2(t, x)dx

= h↓Ft
(Q2(t)−Q1(t)) = h↓Ft

∆Q(t). (4.11)

Flow conservation implies that

Q′
i(t) = λ(t)− αi(t)− γ(t) for i = 1, 2,

which yields

∆X ′(s) = ∆Q′(s) = −(α2(s)− α1(s))

≤ −h↓Ft
∆Q(s) ≤ −h↓Ft

∆Q(t) = −h↓
t
∆X(t), 0 ≤ s ≤ t,

where the inequality follows from (4.11). Hence, reasoningas for (4.10) in case(i), we

have

∆X(t) ≤
(

1

1 + h↓Ft
t

)

∆X(0). (4.12)

In case(iii) we haveB1(0) ≤ s(0) = B2(0) andQ1(0) = 0 ≤ Q2(0). Let T ∗ ≡

T1 ∧ T2 whereT1 is the underload termination time of system 1 andT2 is the overload

termination time of system 2. For0 ≤ t < T ∗, neither system changes regime. Observe

that∆X(t) = ∆B(t)+∆Q(t) = s(t)−B1(t)+Q2(t). Flow conservation in (3.5) implies
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that the derivatives satisfy

Q′
2(t) = λ(t)− α2(t)− γ(t)

s′(t) = γ(t)− µ(t) s(t)

B′
1(t) = λ(t)− µ(t)B1(t),

which implies that

∆X ′(t) = s′(t)− B′
1(t) +Q′

2(t)

= −α2(t)− µ(t) (s(t)− B1(t)). (4.13)

Reasoning as in case(ii), we have

α2(t) ≥ h↓Ft
Q2(t) = h↓Ft

∆Q(t). (4.14)

Therefore, (4.13) and (4.14) imply that

∆X ′(s) ≤ −h↓Ft
∆Q(s)− µ↓

t∆B(s)

≤ −(h↓Ft
∧ µ↓

t )(∆Q(s) + ∆B(s))

≤ −(h↓Ft
∧ µ↓

t )∆X(s) ≤ −(h↓Ft
∧ µ↓

t )∆X(t), 0 < s ≤ t.

Hence, reasoning as for (4.10) in case(i), we have

∆X(t) ≤
(

1

1 + (h↓Ft
∧ µ↓

t ) t

)

∆X(0). (4.15)
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Finally, combining (4.10), (4.12) and (4.15), the desired (4.8) follows by mathematical

induction.

We directly have the second and third inequalities in (4.9),which implies (4.4) because

∆Q(T ) ≤ ∆X(T ) and∆B(T ) ≤ ∆X(T ).

Finally, we treatw(t). As above, it suffices to assume that we have the ordering in (4.7)

of (b). Then (4.5) follows from

∆X(T ) ≥ ∆Q(T ) =

∫ w2(T )

w1(T )

λ(T − x) F̄T−x(x)dx

≥ λ↓T F̄
↓(w2(T ))∆w(T ). (4.16)

We now constructw∗ such thatw2(T ) ≤ w∗ for all T ; in general,w∗ will depend on

w2(0). First note that at timeTw ≡ Q2(0)/µ
↓
∞s

↓
∞, all fluid that was in queue 2 at time

0 is gone (entered service or abandoned). Choosew̄ > 0 big enough such that̄F ↑(w̄) <

s↓∞µ
↓
∞/λ

↑
∞. ODE (2.31) implies that fort > Tw,

w′
2(t) = 1− s(t)µ(t)

λ(t− w2(t)) F̄t−w2(t)(w2(t))

≤ 1− s↓∞ µ↓
∞

λ↑∞F̄ ↑(w̄)
< 0,

if w2(t) > w̄ for somet. Hencew̄ is an upper bound forw2(t) if w2(Tw) < w̄. If

w2(Tw) ≥ w̄, it is easy to see thatw2(t) decreases until it is below̄w because we can bound

w′
2(t). This argument implies thatw2(t) ≤ w∗

2 ≡ (w̄ ∨ (w2(0) + Tw)) for all t ≥ 0. The

constantC3 in (4.5) is obtained by inserting established bounds. 2

For a real-valued functionx on [0,∞), let ‖x‖1 ≡
∫∞

0
|x(t)| dt.
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Corollary 4.1 Under the conditions of Theorem4.1(b),

‖b1(T, ·)− b2(T, ·)‖1 = ∆B(T ) ≤ ∆X(T ) ≤ ∆X(0)e−C(T ),

‖q1(T, ·)− q2(T, ·)‖1 = ∆Q(T ) ≤ ∆X(T ) ≤ ∆X(0)e−C(T ). (4.17)

Hence, there is exponential rate of convergence under the conditions in Theorem4.1(a).

Remark 4.1 ( monotonicity of the difference of two queues) Theorem 4.1 shows that except

for the densitiesq andb, the differences of all performance measures (∆X, ∆α, ∆σ, and

∆w) of the two queues go to 0 ast → ∞. However, even in case(b), only∆X(t) goes to

0 monotonically. Note that∆α(t) = 0, ∆w(t) = 0 and∆σ(t) ≥ 0 when both queues are

UL; ∆α(t) ≥ 0, ∆w(t) ≥ 0 and∆σ(t) = 0 when both queues are OL.

Remark 4.2 (Example 4.1 revisited) In Example 4.1 we haveC(T ) = µ∧ θ = 0.5 in (4.2)

of Theorem 4.1,λ↓∞ = 0.4 > 0, λ↑∞ = 1.6 < ∞, F̄ ↓(x) = e−θ x > 0 and F̄ ↑(x) → 0 as

x→∞. Moreover,ζ(t) = λ(t)−µ s(t)− s′(t) = a−µ s+ b · sin(c t) is sinusoidal so that

it has finitely many zeros in any bounded interval. Therefore, all conditions in Theorem 4.1

are satisfied, establishing the exponential rate of convergence seen in Figure 4.1.

4.4 The StationaryG/M/s +GI Fluid Queue

In this section we focus on the stationaryG/M/s+GI fluid queue. The steady-state perfor-

mance of the more generalGI/GI/s+GI fluid queue withGI service was characterized

in [77], but the transient dynamics was only characterized completely in Chapter 2. See

Theorem 3.11 of Chapter 2 and Theorem 4.4 in [77] for details.Complementing Theorem
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4.4 in [77], our next result shows that the steady state givenin Theorem 3.11 is indeed an

invariant state, i.e., if the system is initially in this state, then it stays there forever.

Theorem 4.2 (an invariant state for theG/GI/s+GI fluid queue)Consider theG/GI/s+

GI fluid queue specified with model parameter(λ, s, µ,G, F ). Then the steady state given

in Theorem 3.11 is an invariant state. In other words, if the initial condition satisfies

(b(0, ·), q(0, ·), w(0)) = (b(·), q(·), w),

that is the steady state given in Theorem 3.11, then the system stays in steady state, i.e., for

all t ≥ 0,

(b(t, ·), q(t, ·), B(t), Q(t), w(t), α(t), σ(t)) = (b(·), q(·), B,Q, w, α, σ),

that is given in Theorem 3.11.

Proof. First consider (a) withρ ≤ 1. By (2.9) of Chapter 2, the initial rate that service is

being completed withb(0, x) = λḠ(x) is

σ(0) =

∫ ∞

0

b(0, x)hG(x) dx =

∫ ∞

0

λḠ(x)
g(x)

Ḡ(x)
dx = λ. (4.18)

If ρ < 1, thenB(0) = sρ < s and there initially is spare capacity. Ifρ = 1, then

λ(0) = λ = σ. In both cases, the system remains UL. Hence we can apply (2.13) in

Proposition 2.2 of Chapter 2 to characterize the evolution of b. For suitably smallt > 0,
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we get

b(t, x) = b(t− x, 0)Ḡ(x) 1{0≤x≤t} + b(0, x− t) Ḡ(x)

Ḡ(x− t) 1{x>t}

= λ Ḡ(x) 1{0≤x≤t} + λ Ḡ(x− t) Ḡ(x)

Ḡ(x− t) 1{x>t} = λ Ḡ(x) = b(0, x),

which implies that the system stays UL withb(t, x) = b(0, x), B(t) = B(0) andσ(t) =

σ(0) for t ≥ 0. For an alternative proof under the extra condition of differentiability, we

can exploit the transport partial differential equation (PDE) from Appendix A.2 of Chapter

2. That tells us thatb(t, x) satisfies the PDE

∂b

∂t
(t, x) +

∂b

∂x
(t, x) = −hG(x) b(t, x),

which implies that

∂b

∂t
(0, x) = − ∂b

∂x
(0, x)− hG(x) b(0, x) = −

d(λ Ḡ(x))

dx
− hG(x)λḠ(x)

= λ g(x)− hG(x)Ḡ(x)λ = 0.

Next consider case (b) withρ > 1. We can apply (4.18) to see that the initial rate

of service completion, starting withb(0, x) = sµḠ(x), is σ(0) = sµ. Sinceρ > 1, we

necessarily haveλ(0) = λ > sµ = σ(0). Hence, the system necessarily remains OL

over a positive interval. Next we apply the fixed point equation for b during an overloaded

interval. Assumption 2.8 in Chapter 2 is satisfied with this initial densityb(0, x) because

τ(b, g, T ) ≡ sup
0≤s≤T

∫ ∞

0

b(0, y)g(s+ y)

Ḡ(y)
dy = sµ <∞. (4.19)
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Next we observe thatb(0, x) satisfies the fixed point equation (4.20) of Chapter 2, i.e.,

b(t, 0) = â(t) +

∫ t

0

b(t− x, 0)g(x) dx = sµḠ(t) +

∫ t

0

b(t− x, 0)g(x) dx, (4.20)

yieldingsµ = sµḠ(t)+sµG(t) = sµ. Theorem A.2 of Chapter 2 implies thatb(t, 0) = sµ,

t ≥ 0, is the unique fixed point. Next Proposition 2.6 of Chapter 2 implies that the service

density in queue satisfies

q(t, x) = λF̄ (x)1{x≤t} + q(0, x− t) F̄ (x)

F̄ (x− t)1{t<x≤w(t)}

= λF̄ (x)1{0≤x≤w(t)}. (4.21)

It remains to show thatw′(0) = 0, so thatw(t) = w(0) = F−1(1− (1/ρ)). However, ODE

(2.31) implies that

w′(0) = 1− γ(0)

q(0, w(0))
= 1− µ s

λ F̄ (w(0))
= 1− µ s

λ(1/ρ)
= 0,

where the third equality holds sincew(0) = w = F−1(1 − 1/ρ). The last equality holds

sinceρ = λ/sµ. Hence,w(t) = w in (4.21), so thatq(t, x) = q(x) and all performance

functions are constants for0 ≤ t ≤ δ for some smallδ and thus for allt ≥ 0. 2

Now we apply Theorem 4.1 to show that the transient performance in theG/M/s+GI

fluid queue with exponential service converges to the steadystate described in Theorem

3.11 for any given initial conditions. As a byproduct, this establishes uniqueness for the

steady-state performance in Theorem 3.11 in the special case ofM service. We give two

convergence results, the first obtained by directly combining Theorems 4.1 and 3.11.



150

Theorem 4.3 (direct implication of ALOM) For the stationaryG/M/s + GI fluid model,

ast→∞,

(α(t), w(t), Q(t), σ(t), B(t)) → (α,w,Q, σ, B), (4.22)

‖q(t, ·)− q(·)‖1 → 0 and ‖b(t, ·)− b(·)‖1 → 0, (4.23)

where vector(q(·), α, w,Q, b(·), σ, B) is the steady-state performance in Theorem 3.11.

Hence, the steady-state performance specified by Theorem 3.11 is unique.

Proof. Consider twoG/M/s + GI fluid queues that have identical model parameters but

different initial conditions. Let system 1 be initially in the steady state given in Theorem

3.11, let system 2 have arbitrary initial condition. Theorem 3.11 implies that system 1 stays

in steady state for allt ≥ 0. Therefore, the convergence in (4.22) and (4.23) follows from

ALOM in Theorem 4.1. 2

We next establish a stronger convergence result, whose proof does not rely on the

ALOM property in Theorem 4.1. We establish pointwise convergence of the fluid con-

tent densitiesb andq ast→∞ in addition to (4.22) and (4.23).

Theorem 4.4 (more on convergence to steady state) Consider the stationaryG/M/s+GI

fluid model. In addition to Assumption 2.1, assume that the initial service density satisfies

lim sup
x→∞

b(0, x) <∞. (4.24)
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Then, in addition to the conclusions of Theorem4.3,

(q(t, x), b(t, x))→ (q(x), b(x)) as t→∞,

for eachx ≥ 0, where the limit(q(x), b(x)) is the pair of steady-state fluid densities in

Theorem 3.11. Moreover, there is at most one switch between the OL and UL(including

critically loaded) regimes during the convergence. More precisely, the numberof switches

depends on the the model parameterρ ≡ λ/sµ and the initial conditions as shown in Table

1. If ρ > 1, there exists aT > 0 such that fort > T , w(t)→ w monotonically, ast→∞.

If, in addition,C ≡ f ↓
(Q(0)/sµ)∨w > 0 wheref ↓

t ≡ inf0≤x≤t f(x), then

∆w(t) ≡ |w(t)− w| ≤ 1

1 + (t− T )C ∆w(T ), for t > T (4.25)

so that

∆w(t) ≤ e−(t−T )C∆w(T ), t > T. (4.26)

traffic intensity initial condition number of switchings

ρ > 1
OL 0

UL(CL) 1

ρ < 1
OL 1

UL(CL) 0

ρ = 1
OL 0

UL(CL) 0

Table 4.1: How the number of switches between OL and UL intervals depends on the model
parameterρ and the initial conditions, in the setting of Theorem 4.4.
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Proof. We only give the proof for the case in which the system is initially UL, i.e.,q(0, x) =

w(0) = 0 for anyx andB(0) =
∫∞

0
b(0, x)dx < s. The other case in which the system is

initially OL or critically loaded is treated in essentiallythe same way; the details are given

in the appendix. For simplicity, we assumeµ = s = 1 and thereforeρ = λ/sµ = λ.

(i) ρ ≤ 1. Since the service is exponential at the fixed rateµ = 1 and the staffing is

fixed ats = 1, the maximum output rate of the service facility is 1. Hence,the system

always stay in the UL regime. Thus we can apply (3.13) of Chapter 3 to characterize the

density in service. By Assumption (4.24),

b(t, x) = ρe−x1{0≤x≤t} + b(0, x− t)e−t1{x>t}

→ ρe−x as t→∞, x ≥ 0.

B(t) =

∫ t

0

ρe−xdx+

∫ ∞

t

b(0, x− t)e−tdx

= ρ(1− e−t) + e−tB(0),

= ρ− (ρ− B(0)) e−t → ρ, as t→∞,

Moreover,σ(t) = B(t) → ρ, ast → ∞. If ρ = 1, then we obtain the monotone conver-

gence

B(t) = 1− (1−B(0)) e−t ↑ 1 as t→∞.

(ii) ρ > 1. As in case (i), the maximum output rate of the service facility is 1. Since

ρ > 1, λ > 1, so that the the system necessarily will switch to the OL regime in finite time.
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From (3.13), we see theb(t, x) andB(t) initially evolve as

b(t, x) = ρe−x1{x≤t} + e−tb(0, x− t)1{x>t}

B(t) = ρ− (ρ− B(0))e−t, 0 ≤ t ≤ t1. (4.27)

The total fluid content in serviceB(t) increases int until time t1 at which we first have

B(t) = B(t1) = 1. After time t1, since the arrival rateρ is greater than the maximum

departure rate which is 1, the system stays in the OL regime. After time t1, we can apply

Proposition 3.2 of Chapter 3 to describe the evolution ofb(t, x). In particular, fort > t1

and for eachx ≥ 0,

b(t− t1, x) = e−x1{x≤t−t1} + b(t1, x− t + t1)e
−(t−t1)1{x > t− t1}, (4.28)

where

b(t1, x) = ρe−x1{x≤t1} + e−t1b(0, x− t1)1{x>t1}, (4.29)

so that, by assumption (4.24), the second term in (4.28) is asymptotically negligible as

t→∞, implying thatb(t, x)→ e−x = b(x) ast→∞.

Since we start UL, we first have a queue buildup at timet1. By (3.14), we have

q(t, x) = ρF̄ (x)1{x≤w(t)∧(t−t1)}, t > t1, (4.30)

where the BWTw satisfies the ODE

w′(t) = 1− 1

ρF̄ (w(t))
≡ H(w(t)), for t ≥ t1, (4.31)
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with initial conditionw(t1) = 0. It is easy to see thatq(t, x) → q(x) = ρF̄ (x)1{x≤w(t)} if

w(t)→ w ast→∞.

Letw ≡ F−1(1−1/ρ). Since the cdfF has a positive density, the functionH is strictly

decreasing andH(w) = 0. Therefore ifw(t2) = w at somet2, w(t) will stay atw for

all t ≥ t2, sincew′(t2) = H(w) = 0. Moreover, ifw(t) < w, thenw′(t) = H(w(t)) >

H(w) = 0.

The functionw(t) starts at 0 at timet1, and is increasing (has positive derivative) as long

asw(t) < w. We also know thatw(t) will stay atw if it hits w, andw(t) is continuous.

Therefore, to show thatw(t) → w ast → ∞, it remains to show that for anyǫ > 0, there

exits atǫ such thatw(t) > w − ǫ for anyt > tǫ.

BecauseH is strictly decreasing in a neighborhood ofw, we havew′(t) = H(w(t)) ≥

H(w − ǫ) ≡ δ(ǫ) > H(w) = 0, if w(t) ≤ w − ǫ. Therefore, the derivative ofw(t) is not

only positive, but also bounded byδ(ǫ) > 0. Sow(t) will hit w−ǫ at least linearly fast with

slopeδ(ǫ), i.e., for anyt ≥ (w − ǫ)/δ(ǫ), we havew(t) ≥ w − ǫ. Therefore, we conclude

thatw(t) ↑ w ast ↑ ∞. As a consequence, we getq(t, x) → q(x) = ρF̄ (x)1{0≤x≤w} as

t→∞ from (4.30).

We now establish (4.25) and (4.26). To do so, we assume the system is initially OL

with w(0) = w0. From the above analysis, ifρ > 1, then the system stays OL for allt ≥ 0,

which implies thatγ(t) = µ s = 1 for all t ≥ 0. Hence, afterT ≡ Q(0)/µs = Q(0), all

fluid that was in queue att = 0 is gone (has entered service or abandoned). Ifw(T ) = w,

then the system is already in equilibrium. Ifw(T ) > w (the casew(T ) < w is similar),

then the above analysis implies thatw′(t) ≤ 0 for t ≥ T sinceH in (4.31) is decreasing.
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Therefore, the monotonicity ofw follows. Integrating equation (4.31) yields, fort ≥ T ,

w(t)− w(T ) = t− T − 1

ρ

∫ t

T

1

F̄ (w(s))
ds

≤ t− T − 1

ρ

∫ t

T

1

F̄ (w(t))
ds = (t− T )

(

1− 1

ρ F̄ (w(t))

)

= −(t− T ) F̄ (w)− F̄ (w(t))
F̄ (w(t))

≤ −(t− T )(w(t)− w)f ↓
w(t) ≤ −(t− T )(w(t)− w)f

↓
w(0)+T ,

where the first inequality holds becausew(s) ≥ w(t) by the monotonicity ofw, the third

equality holds becausēF (w) = 1/ρ, the second inequality holds becausew(t) ≥ w and

F̄ (w(s)) ≤ 1, the last inequality holds becausew(t) ≤ w(0) + T for 0 ≤ t ≤ T andw is

monotone non-increasing fort > T . This immediately yields

∆w(t) = w(t)− w ≤ −f ↓
w(0)+T (t− T )∆w(t) + (w(T )− w)

= −f ↓
w(0)+T (t− T )∆w(t) + ∆w(T ),

and

∆w(t) ≤ 1

1 + f ↓
w(0)+T (t− T )

∆w(T ).

Relation (4.26) follows from (4.25) by splitting interval[T, t] intoN disjoint subintervals

with equal lengths. Mathematical induction implies that

∆w(t) ≤
(

1

1 + f ↓
w(0)+T

(

t−T
N

)

)N

∆w(T ).

LettingN →∞ yields the desired (4.26). 2
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We next give explicit expressions of all performance functions in theG/M/s+M fluid

model, with exponential abandonment, when the system is initially empty.

Corollary 4.2 (theG/M/s+M fluid queue) Consider theG/M/s+M fluid queue with

model parametersλ, µ, s, θ, whereθ > 0 is the abandonment rate, starting empty.

(a) if ρ ≡ λ/sµ > 1, then

w(t) =
1

θ
log

(

ρ

1 + (ρ− 1)e−θ(t−t1)

)

1{t≥t1} ↑
1

θ
log ρ, (4.32)

q(t, x) = λ e−θ x 1{0≤x≤w(t), t≥t1} ↑ λ e−θ x 1{0≤x≤(log ρ)/θ}, (4.33)

Q(t) =
λ

θ

(

1− 1

ρ

)

(

1− e−θ(t−t1)
)

1{t≥t1} ↑
λ

θ

(

1− 1

ρ

)

, (4.34)

α(t) = θ Q(t) ↑ λ
(

1− 1

ρ

)

, (4.35)

b(t, x) = λ e−µx 1{0≤x≤t, 0≤t<t1} + µ s e−µx 1{0≤x≤t, t≥t1} → µ s e−µx, (4.36)

B(t) = ρ s(1− e−µt) · 1{0≤t<t1} + s · 1{t≥t1} ↑ s, (4.37)

σ(t) = µB(t) ↑ µ s, as t→∞, for x ≥ 0, (4.38)

wheret1 ≡ −1/µ log(1− 1/ρ).

(b) if ρ ≤ 1, then

q(t, x) = Q(t) = α(t) = w(t) = 0,

b(t, x) = µ s e−µx 1{0≤x≤t} ↑ µ s e−µx,

B(t) = ρ s(1− e−µ t) ↑ ρ s,

σ(t) = λ(1− e−µ t) ↑ λ.
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Proof. We only prove case(a) since(b) is similar. First, since the system is initially empty,

flow conservation of the service facility implies

λ = B′(t) + µB(t), B(0) = 0,

which has unique solutionB(t) = ρ s(1 − e−µ t) whent is small. The system switches to

the OL regime att1 whereρ s(1− e−µ t1) = s, and stays in that regime for allt > t1. This

yields (4.37), from which (4.38) and (4.36) follow. Fort ≥ t1, we have the ODE for BWT

w′(t) =
s µ

λ eθ w(t)
, w(t1) = 0,

which has unique solution (4.32), from which (4.33), (4.34)and (4.35) follow. 2

We give a numerical example illustrating Corollary 4.2 in Appendix C.2.

Remark 4.3 (explicit results for queues in series) We can apply Corollary 4.2 to obtain

explicit expressions for the performance functions with two or more queues in series, with

exponential abandonment, because the arrival rate of each successive queue is the depar-

ture rate from the previous queue, and the departure rate from each queue is available

explicitly.

4.5 Periodic Steady State (PSS) for Periodic Models

In this section we consider the special case of periodic fluidmodels. We provide conditions

under which (i) there exists a unique periodic steady state (PSS) for a periodic fluid model

and (ii) the time-varying performance converges to that PSSfor all (finite) initial conditions.
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4.5.1 Theory

Recall that a function of a nonnegative real variable,g, is periodicwith periodτ if g(t +

τ) = g(t) for all t ≥ 0, whereτ is the least such value, required to be strictly positive. If

the relation holds for arbitrary smallτ , then the function is constant; we exclude that case.

We say that aGt/Mt/st+GIt fluid queue is aperiodic modelif the function mappingt into

the vector(λ(t), µ(t), s(t), {Ft(x) : x ≥ 0}) in R3 × D is periodic. If the four component

functions are periodic, where there is a finite least common multiple of the periods, then

the overall function is periodic with the overall period being that least common multiple of

the component periods. Since the time-varying abandonmenttime cdf’s{Ft(x) : x ≥ 0})

are defined on the entire real line, we require that they be periodic on their entire domain.

We have not yet said anything about the initial conditions{b(0, x) : x ≥ 0} and

{q(0, x) : x ≥ 0}. If these initial conditions can be chosen so that the systemperformance

of the periodic model with periodτ , {P(t) : t ≥ 0}, where the system state vector

P(t) ≡ ({b(t, x) : x ≥ 0}, {q(t, x) : x ≥ 0}, B(t), Q(t), w(t), v(t), σ(t), α(t)) . (4.39)

is a periodic function oft with periodτ , then those initial conditions produce aperiodic

steady state(PSS) for the periodic model with periodτ . The performance functionP

constitutes the PSS. See Figure C.3 for an example. In order to discuss continuity and

convergence in the domain ofP, we use norm

‖P(t)‖ ≡ sup
t≥0
{|P(t)|}, where

|P(t)| ≡ |B(t)|+ |Q(t)|+ |α(t)|+ |σ(t)|+ |w(t)|+ |v(t)|

+

∣

∣

∣

∣

∫ ∞

0

b(t, x)dx

∣

∣

∣

∣

+

∣

∣

∣

∣

∫ ∞

0

q(t, x)dx

∣

∣

∣

∣

. (4.40)
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A common case is a periodic model that does not start in a PSS. We then want to

conclude that the performance converges to a PSS as time evolves for all finite initial con-

ditions. We say that a function of a nonnegative real variable,g, is asymptotically periodic

with periodτ > 0 if there exists a (finite) functiong∞ such thatg(nτ + t) → g∞(t) as

n → ∞ for all t with 0 ≤ t ≤ τ , for the given positive value ofτ , but no smaller value;

the limit g∞ necessarily is a periodic function with periodτ . This limit can be viewed as

an application of the shift operatorΨτ on the functiong: Ψτ (g)(t) ≡ g(τ + t), t ≥ 0. The

functiong is asymptotically periodic if and only if successive iterates of the shift operator

converge, i.e., ifΨ(n)
τ (g) ≡ Ψτ (Ψ

(n−1)
τ (g)) converges asn→∞.

Theorem 4.5 (PSS for the periodic fluid model) Consider a periodic fluid queue with pe-

riod τ > 0. If the conditions of Lemma4.1hold, then

(a) There exists a unique PSSP∗ with periodτ , but not with smaller period.

(b) For any finite initial conditions, the performanceP is asymptotically periodic with

periodτ , i.e.,

Ψ(n)(P)(t) ≡ P(nτ + t)→ P∗(t) as n→∞, 0 ≤ t ≤ τ. (4.41)

Proof. First suppose that the system starts empty. By Theorem 3.5, the shift operator

Ψτ is a monotone operator onP(nτ) for any n, because we can think of the perfor-

manceb(τ, ·) and q(τ, ·) as alternative initial conditions for the model at time0, since

the model is periodic with periodτ . Therefore, the sequence of system performance vec-

torsP(0),P(τ),P(2τ), . . . (at discrete time0, τ, 2τ, . . .) is monotonically non-decreasing.

By Lemma 4.1, the performance is bounded, so that there is a finite limit for P(nτ)

as n → ∞. By Theorem 3.6, the operator is continuous as well, which implies that
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P(t + nτ) = Ψt(P(nτ)) is convergent for all0 ≤ t ≤ τ asn → ∞. Hence the limit

is a PSS. By Theorem 4.1, we have ALOM, which implies that we get the same limit for

all initial conditions. 2

Theorem 4.1 shows that the rate of convergence to the PSS in Theorem 4.5 is exponen-

tially fast as well, under regularity conditions.

4.5.2 An Example

Example 4.2 (anGt/M/st +M example with periodic arrival rate and staffing) We now

consider a variant of Example 4.1 that has sinusoidal staffing as well as a sinusoidal arrival

rate. As before, we have the fluid queue with arrival rate function in (4.1) witha = c = 1,

b = 0.6, constant service rateµ = 1 and constant abandonment rateθ = 0.5. However,

now we also use the sinusoidal staffing function

s(t) = s̄+ u sin(γ t). (4.42)

Let s̄ = a = c = µ = 1 u = 0.3 andγ = 2. Note the period ofλ is 2π/c = 2π, while

the period ofs is 2π/γ = π. Hence the overall model has period2/pi. Figure 4.2 shows

the results after applying the algorithm in Chapter 2 to compute the performance measures

w(t),Q(t),B(t),X(t) andb(t, 0). Instead of plotting just one OL and UL interval in[0, T ]

with T = 10 as we did in Example 4.1, here we plot four OL and UL intervals in [0, T ′]

with T ′ = 23.

Figure 4.2 shows that performance measures (w(t), Q(t), B(t), X(t) andb(t, 0)) con-

verge very quickly to periodic limit functions, with periodτ = π. In Appendix C.6 we
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Figure 4.2: Performance of theGt/M/st +M model with sinusoidal arrival and staffing,
γ = 2.

compare the fluid approximation in this example to simulation results for a large-scale

queueing system. As in Chapter 2, we see that the fluid model provides a useful approx-

imation for the queueing systems. It is very accurate for very large queueing systems

(with thousands of servers) and provides a good approximation for mean values for smaller

queueing systems (with tens of servers). In the Appendix we also consider the performance

whenγ is changed from2 to0.5. Figure C.2 there shows that the period of the PSS becomes

τ = 4π.
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4.5.3 Direct Computation of PSS Performance

Given the rapid convergence, it usually is not difficult to compute the PSS by simply ap-

plying the algorithm with any convenient initial condition. However, the PSS can also be

determined in another way. We can start by observing that there are only three cases for

PSS: (i) the system is OL for all0 ≤ t ≤ τ ; (ii) the system is UL for all0 ≤ τ ; or (iii)

there is at least one switch between UL and OL regimes in[0, τ ]. We can simply check

which of these cases prevails. For each of these scenarios, we can seek a fixed point in the

performance at timesτ and0. That produces equations we can solve. One of these three

cases will yield the PSS.

Consider case (i), in which the system is OL. It suffices to characterize its performance

in one cycle[0, τ ]. We can write

B(t) = s(t) and Q(0) =

∫ w(0)

0

λ(t− x)F̄t−x(x)dx for w(0) > 0,

because in the PSS the system remains OL. Hence, we must haveq(t, 0) = λ(t) and

q(t, x) = λ(t − x)F̄t−x(x). Note thatw0 ≡ w(0) is the only unknown here. To solve

for the PSS, we do a search of the initialw0 such that during the cycle[0, τ ], the system

is always OL, i.e.,w(t) > 0, andw(τ) = w0. The uniqueness of the PSS guarantees that

there is at most one of suchw0. If the system switches to UL regime at some time, then we

know this is not the right scenario for the PSS.

Next consider case (ii), in which the system is UL in the interval [0, τ ]. Since the system

is UL, the fluid content in serviceB(t) satisfies the ODEλ(t) = B′(t) + µ(t)B(t) with

initial conditionB(0) = B0 > 0 which has a unique solution

B(t) = e−
∫ t
0
µ(s)ds

(
∫ t

0

e
∫ s
0
µ(u)duλ(s)ds+B0

)

, for 0 ≤ t ≤ τ. (4.43)
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Since we seekB(τ) = B0, it suffices to solve equation

B0 = e−
∫ τ
0
µ(s)ds

(
∫ τ

0

e
∫ s
0
µ(u)duλ(s)ds+B0

)

for B0. Again, the uniqueness of PSS guarantees that there is at most one suchB0 > 0. If

this equation does not have a solution, then we know this is not the right scenario for the

PSS.

Finally, consider case (iii), in which the system switches at least twice between UL

and OL regimes, as shown in Figure 4.2. Since system regime changes in the PSS, we

consider the interval[0, τ ] and assume that in PSS the system is critically loaded att = 0

and becomes OL att+, i.e., we can always let the beginning of the cycle of PSS be a

regime switching point from UL to OL. We assume that the phasedifference between the

PSS cycle and the model functions is0 ≤ t0 ≤ τ . Hence, we start with the BWT ODE

w′(t) = 1− µ(t+ t0) s(t+ t0) + s′(t0)

λ(t+ t0 − w(t))F̄t+t0−w(t)(w(t))
, with w(0) = 0,

and lett1 ≡ inf{t > 0 : w(t) = 0, λ(t+ t1) ≤ µ(t) s(t) + s′(t)}. If t1 > τ (e.g.,t1 =∞),

then we know this is not the right scenario. Ift1 < τ , the system switches to the UL regime

at t1. Then, just as in (4.43), we have

B(t) = e
−

∫ t
t1

µ(s+t0)ds

(
∫ t

t1

e
∫ s
0
µ(u+t0)duλ(s+ t0)ds+B(t1)

)

,

with B(t1) = s(t1 + t0). We lett2 ≡ inf{t > t1 : B(t) > s(t + t0)}. If t2 < τ , then the

system switches back to OL regime aftert2. We repeat the above procedure until we get to

time τ . If the initial phase difference variablet0 is the right one, the system should again

be critically loaded atτ . We do a search fort0 in [0, τ ].
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Since analytic expressions are available for theG/M/s +M fluid model as shown in

Corollary 4.2, we show how explicit PSS performance functions can be calculated in the

next example.

Example 4.3 (explicit PSS performance in special cases) Consider theGt/M/s+M fluid

model in Example 4.1 that has sinusoidal arrival rate as in (4.1), exponential service distri-

bution with rateµ, constant staffings and exponential patience distribution with rateθ. We

suppose that we are in case (iii) above, in which there is a switching point from UL to OL

regimes, which we can take to be at the beginning of a cycle. Weassume the arrival rate

is λ̃(t) ≡ λ(t + t0) for some0 ≤ t0 ≤ τ . At somet1 for 0 < t1 < τ ≡ 2π/c, the system

will switch to the UL regime. Hence, in order to characterizethe complete performance in

a cycle[0, τ ], it remains to determine the values oft0 andt1 for 0 ≤ t0 ≤ τ , 0 ≤ t1 ≤ τ .

Since the system is critically loaded att = 0, OL in [0, t1) and UL in [t1, τ ], we need

two equations for two unknownst0 andt1. First, the BWT ODE implies thatw(0) = 0 and

w′(t) = 1− µ s

λ̃(t− w(t)) e−θ w(t)
= 1− µ s eθ t

λ̃(t− w(t)) eθ(t−w(t))
, 0 ≤ t ≤ t1,

which yields that

µ s eθ t = λ̃(t− w(t)) eθ(t−w(t))(1− w′(t)) = λ̃(t− w(t)) eθ(t−w(t)) d(t− w(t))
dt

.

Integrating both sides and letv(t) ≡ t− w(t), we have

∫ t

0

µ s eθ udu =

∫ v(t)

0

λ̃(y)eθ ydy.
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Plugging the sinusoidal arrival ratẽλ(t) = λ(t+ t0) into the above equation yields that

µ s

θ
(eθ t − 1) =

a

θ
(eθ v(t) − 1) +

b

1 + c2/θ2

[

1

θ
eθ v(t) sin(c v(t) + c t0)

− c

θ2
(eθ v(t) cos(c v(t) + c t0)− cos(c t0))

]

.

Sincev(t1) = t1 − w(t1) = t1, lettingt = t1 in the above equation yields

µ s

θ
(eθ t1 − 1) =

a

θ
(eθ t1 − 1) +

b

1 + c2/θ2

[

1

θ
eθ t1 sin(c t1 + c t0)

− c

θ2
(eθ t1 cos(c t1 + c t0)− cos(c t0))

]

. (4.44)

Second, since the system is UL in[t1, τ ], we have

λ(t+ t0) = λ̃(t) = B′(t) + µB(t), t1 ≤ t ≤ τ,

which implies that

B(t)eµ t − B(t1)e
µ t1 =

∫ t

t1

λ(u+ t0)e
µ udu.

Since the system becomes critically loaded again att1 and at the end of the cycle, i.e.,

B(t1) = B(τ) = B(2π/c) = s, plugging the sinusoidal arrival rate into the above equation
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yields

s(e−µ 2π/c − e−µ t1) =
a

µ
(e−µ 2π/c − e−µ t1)

+
b

1 + c2/µ2

[

1

µ
(eµ 2π/c sin(2π + c t0)− eµ t1 sin(c t0 + c t1))

− c

µ2
(eµ 2π/c cos(2π + c t0)− eµ t1 cos(c t0 + c t1))

]

. (4.45)

Unfortunately, Equation (4.44) and (4.45) evidently do nothave explicit solutions in

general, but they can be solved quite easily numerically by performing a search over the

two unknowns. However, we can continue analytically in a special case with convenient

parameters: (a)a = sµ and (b)µ = θ.

Note that(a) says that the average traffic intensity isρ̄ = λ̄/sµ = a/sµ = 1 and(b)

says that this model is equivalent to an infinite-server model, becauseθ = µ.

With these extra assumptions, equations (4.44) and (4.45) simplify to

c

θ
cos(c t0) = −eθ t1 [sin(c t1 + c t0)−

c

θ
cos(c t1 + c t0)],

eµ 2π/c[sin(c t0)−
c

µ
cos(c t0)] = eµ t1 [sin(c t1 + c t0)−

c

µ
cos(c t1 + c t0)].

Adding these two equations yields

0 ≤ t0 =
1

c
arctan(1− e−µ 2π/c) ≤ π/c. (4.46)

Note that we needλ(0) = a+ b sin(c t0) ≥ µ s so that the system switches from UL to UL

regime att = 0. Similarly, we requireλ(t0+ t1) ≤ µ s, which implies thatπ/c ≤ t0+ t1 ≤



167

2π/c. Hence, plugging (4.46) into the first equation above implies thatt1 is the solution to

sin(ct1 + ψ) = −(c/θ)e
eµ 2π/c

√

x2 + y2
e−θ t1 , (4.47)

whereψ ≡ arctan(x/y), x ≡ eµ 2π/c − 1− (c/θ)eµ 2π/c, y ≡ eµ 2π/c + (c/θ)(eµ 2π/c − 1).

Givent0 andt1, we can compute analytically all performance functions of thisGt/M/s+

M example in a cycle[0, τ ] = [0, 2π/c]. For0 ≤ t < t1, the system is OL with

q(t, 0) = λ̃(t) = a+ b sin[c(t+ t0)],

q(t, x) = λ̃(t− x) e−θ x = e−θ x(a+ b sin[c(t+ t0 − x)]),

w(t) = t− Λ−1
(µ s

θ
(eθ t − 1)

)

,

Q(t) =

∫ w(t)

0

q(t, x)dx = e−θ tΛ(t)− µ s

θ
(1− e−θ t),

α(t) = θ Q(t),

B(t) = s, σ(t) = µ s,

b(t, x) = µ s e−µx 1{x∈∪∞
k=0((t+kτ−t2)+,t+kτ ]}

+λ(t− x) e−µx 1{x∈∪∞
k=0(t+kτ,t+(k+1)τ−t2]},
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whereΛ(x) ≡
∫ x

0
λ(y) eθ ydy. For t1 ≤ t ≤ τ , the system is UL with

aq(t, x) = Q(t) = w(t) = α(t) = 0,

b(t, 0) = λ̃(t) = a+ b sin[c(t + t0)],

b(t, x) = λ̃(t− x) e−µ x 1{x∈∪∞
k=0((t+(k−1)τ)+ ,t+kτ−t2]}

+µ s e−µx1{x∈∪∞
k=0(t−t2+kτ,t+kτ ]},

B(t) = s e−µ(t−t1) + e−µ t

∫ t

t1

λ̃(u)eµudu,

σ(t) = µB(t),

4.6 Conclusions

In this chapter we supplemented Chapters 2 and 3 and [77] by studying the large-time

asymptotic behavior of theGt/Mt/st + GIt many-server fluid queue with time-varying

model parameters. In§4.3 we established the asymptotic loss of memory (ALOM) prop-

erty, concluding that the difference between performance functions evaluated at timet,

with different initial conditions, dissipates exponentially fast ast → ∞, under regularity

conditions. In§4.4 we applied ALOM to establish convergence to steady statefor the sta-

tionary model. In§4.4 we also went beyond ALOM to provide additional details; e.g., we

showed that the system changes regimes (overloaded or underloaded) at most once. In§4.5

we applied ALOM, first, to establish the existence of a uniqueperiodic steady state (PSS)

and, second, to establish convergence to that PSS in the periodic model, where the period

is the least common multiple of the periods of the model functions, assumed to be some

finite value.

There are many directions for future research: First, it remains to establish ALOM
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properties for theGt/GI/st + GI fluid queue with non-exponential (GI) service that was

considered in Chapter 2 (under regularity conditions that exclude the counterexample in

Chapter 5) and the(Gt/Mt/st+GIt)
m/Mt network of fluid queues with proportional rout-

ing considered in Chapter 3. Second, it remains to establishmany-server heavy-traffic lim-

its showing that appropriately scaled stochastic processes in many-server queues converge

to the fluid queues, as discussed in Chapter 2 and [77]. It alsoremains to establish refined

stochastic approximations as a consequence of many-serverheavy-traffic limits. Third, it

remains to establish corresponding ALOM (or weak ergodicity) and PSS properties for

the corresponding stochastic queueing models and the refined stochastic approximation;

see [24, 30, 33, 78] and references therein. Fourth, it remains to exploit the deterministic

fluid models to approximately solve important control problems for the stochastic systems

and, fifth, it remains to apply the fluid models to analyze large-scale service systems, such

as hospital emergency departments. We hope to contribute tothese goals in the future.
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Chapter 5

The OverloadedG/D/s +GI Queue

We next focus on many-server queues with deterministic service times. In particu-

lar, we investigate the many-serverG/D/s + GI model with a stationary arrival process,

deterministic service times, and general abandonment times. In addition, we study its as-

sociated fluid model to gain insights and establish an MSHT convergence theorem to that

fluid model. Our main observation is that the system reveals nearly periodic behavior due

to the assumption of deterministic service times. When the model is overloaded, we also

demonstrate the invalidity of the interchange of two limits: the steady state (obtained as

t → ∞) of the limiting fluid model (obtained asn → ∞) does not coincide with the

fluid limit (obtained asn → ∞) of the steady state (obtained ast → ∞) of the queueing

processes.
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5.1 Introduction

In this chapter we continue to investigate the performance of overloaded many-server

queueing systems with customer abandonment, extending earlier work in [75, 77] and

Chapters 2-4; we focus on the special case of deterministic service times. By overloaded,

we mean thatρ > 1, whereρ is the traffic intensity.

It was shown in [77] that the steady-state performance of theoverloadedG/GI/s+GI

queueing model whens is large is well approximated by the steady-state performance of

an associated deterministicG/GI/s+GI fluid model (when the two models are connected

by many-server heavy-traffic (MSHT) scaling; see§2 of [77] and§5.3 here). Supporting

MSHT limits were established in [?,?]. In Chapter 2, as a special case of a more general

fluid model with time-varying parameters, we fully specifiedthatG/GI/s+GI fluid model

and described its transient performance. In Chapter 4 we showed for the special case of the

G/M/s + GI fluid model that the time-dependent performance functions converge to the

steady state values as time evolves. It remains to establishconvergence to steady state for

theG/GI/s+GI fluid model with other service distributions, even though the steady-state

performance is available from Theorem 3.1 of [77] and Theorem 3.11 of Chapter 3. In this

chapter we show that convergence to steady state in the fluid model does not occur for all

service distributions; some conditions are needed.

We began investigating convergence to steady state for overloaded fluid models with

non-exponential service distributions by considering thespecial case of deterministic ser-

vice times, even though the deterministic distribution does not satisfy the smoothness con-

ditions imposed on the model elements in [77] and Chapters 2-4. We began considering the

case of deterministic service times primarily because it isrelatively easy to analyze. How-

ever, deterministic service times are also of applied interest, because computer-generated

service times, such as automated messages, may well be deterministic, and computer-
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generated service is becoming more prevalent. Many messagesystems can handle multiple

requests in parallel, justifying the many-server model.

We started by considering a specific example: aG/D/s+M fluid model having arrival

rateλ, deterministic service times equal to1/µ, service capacitys and an exponential

abandonment cdfF with mean1/θ. (The model is specified in detail later in the chapter,

starting in§5.4.) We let the other parameters beλ = 2 andµ = s = 1, making the system

overloaded with traffic intensityρ ≡ λ/sµ = 2 > 1, so that the model is overloaded.
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Figure 5.1: TheG/D/s+M fluid model withs = µ = 1, λ = 2.

Figure 5.1 shows six performance functions evolving over time for theG/D/s +M

fluid model starting empty. The performance functions shownare the total fluid content in

service,B(t), the rate that fluid enters service,b(t, 0), the departure rate,σ(t), the elapsed
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waiting time for the quantum of fluid at the head of the queue,w(t), the total fluid content

waiting in queue,Q(t), and the abandonment rateα(t) over the initial time interval[0, 3.5].

There are two plots for the final three performance functions, the solid line for abandonment

rateθ = 2 and the dashed line for abandonment rateθ = 8.

We had initially expected to see convergence to the stationary point of this fluid model

(which we later show is well defined), because the fluid model is an approximation for the

M/D/s+M stochastic model, but instead we see that the performance becomes periodic

with period equal to the service-time distribution after time t = 1.0. At first, we thought

that the periodic performance was due to the special choice of the parameters, but that is

not the case. Theorem 5.11 shows that the overloadedG/D/s + GI fluid model starting

empty exhibits periodic performance after a finite time for all arrival ratesλ, service times

1/µ and staffing levelss with ρ ≡ λ/sµ > 1, for all abandonment-time cdf’sF .

In fact, the functions displayed in Figure 5.1 are easy to understand. Since the system

starts empty and the service capacity iss = 1, the arriving fluid flows directly into service

at rateb(t, 0) = λ = 2 over the interval[0, 0.5]. Hence, the total fluid content in service,

B(t) grows linearly at rate2 over the interval[0, 0.5], reaching the capacitys = 1 at time

t = 0.5, where it stays thereafter. The fluid that entered service in[0, 0.5] completes service

exactly1/µ = 1 time units later. Hence there is service completion at rateσ(t) = 2 over the

interval [1, 1.5]. Since new fluid cannot enter service until there is free capacity, new fluid

enters service only at time1. Hence, we haveb(t, 0) = 0 during the interval[0.5, 1] and

thenb(t, 0) = 2 again in the interval[1, 1.5], which leads to the periodic behavior. Since

no arriving fluid can enter service in the interval[0.5, 1], the queue content grows during

the interval[0.5, 1]. It does not grow linearly because some portion of the fluid entering

the queue is lost due to fluid abandonment. For this example, we see that all functions

exhibit periodic behavior beginning at timet = 1. Explicit expressions for the performance

functions for theG/D/s+M fluid model starting empty are given in Corollary 5.8.
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Having seen how pervasive is this periodic behavior in the fluid model, we were led to

seriously doubt the value of the fluid model as an approximation for the stochastic queueing

system. For the special case of theM/D/s +M stochastic model, it is evident that the

stochastic model has a unique stationary performance and that the performance converges

to that stationary performance as time evolves. Indeed, in§5.2 here we prove that the

stochastic processX ≡ {X(t) : t ≥ 0} representing the number of customers in the more

generalGI/D/s+GI queueing model is a regenerative stochastic process that converges

to a unique stationary distribution as time evolves, provided only that the interarrival-time

cdfG is nonlattice, has a finite mean1/λ and is unbounded above, while the abandonment-

time cdfF has finite mean1/θ.

However, when we conducted simulations of the stochasticGI/D/s + GI model, we

found that the sample paths actually agree closely with the deterministic fluid model, ex-

hibiting periodic performance over the horizon of our simulation runs. For example, we

simulated a many-serverM/D/sn +M stochastic queueing system with Poisson arrival

process approximated by theG/D/s + M fluid model, for which the periodic perfor-

mance is shown in Figure 5.1. We obtain the related stochastic model by exploiting MSHT

scaling, i.e., by letting the arrival rate beλn ≡ nλ = 2n and the number of servers be

sn ≡ ⌈ns⌉ = n, where⌈x⌉ is the least integer greater than or equal tox, while leaving the

service times and abandonment rate unchanged as1/µ = 1 andθ, respectively. We expect

to have a good approximation whenn is large.

Figure 5.2 compares the fluid approximation (the dashed lines) with simulation esti-

mates (the solid lines) for the large-scaleM/D/s +M queueing system withn = 1000.

We plot (i) the elapsed waiting time of the customer at the head of the lineWn(t), (ii) the

scaled number of customers waiting in queueQ̄n(t) ≡ Qn(t)/n and (iii) the scaled number

of customers in servicēBn(t) ≡ Bn(t)/n. We plot single sample paths of these processes.

For this large value ofn, there is little variability in the simulation sample paths. Each sim-
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Figure 5.2: A comparison of theG/D/s + M fluid model with a simulation (of single
sample paths) of the correspondingM/D/s+M stochastic model withn = 1000.

ulated sample path falls right on top of the the approximation. (The two different plots are

two different cases of the abandonment rateθ.) Figure 5.2 shows that the fluid approxima-

tion is effective in describing the performance of the stochastic system. The deterministic

periodic character is exhibited by the waiting times, whichrise linearly at the end of each

interval[k, k + 1], reaching a peak at the integer endpoint.

However, Figure 5.2 only compares the performance over a relatively short initial inter-

val of length3.5, corresponding to3.5 service times. At first, we thought that we only need

look at a somewhat longer time interval. However, repeated simulations show that the same

periodic behavior is seen in the stochastic system over timeintervals of length1000. That

is illustrated by Figure 5.3, which shows simulation estimates of the elapsed waitingWn(t)

for large timeT = 1000 (instead of smallT = 3.5 in Figure 5.2) of the sameM/D/s+M

model with the same parameters (λ = 2, s = µ = 1, θ = 2) and initial conditions (initially

empty), but with a smaller fluid scalingn = 100. The two plots in Figure 5.3 compare the

behavior of a single sample path ofWn(t) at the end ([989, 999], the blue solid curve) and
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at the beginning ([0, 10], the red dashed curve). Figure 5.3 shows that the periodic behavior

of Wn(t) remains at time1000 for n = 100. (The process̄Qn behaves the same asWn.)
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Figure 5.3: Large-time periodic behavior of an overloadedG/D/s +M queueing model:
simulation estimates of the head-of-line waiting timeWn with λ = 2, s = µ = 1, θ = 2,
n = 100, T = 1000.

Of course, the regenerative theory is not wrong. The stochastic system will eventually

approach its stationary distribution if we consider a sufficiently long time. In fact, we do

see the periodic pattern broken by1000 service times in typical simulation sample paths

if we decrease the system loadρ and the scalen sufficiently. For example, Figure D.5 in

the appendix shows that occurs if we replaceρ = 2 by ρ = 1.3 (by changingλ). By time

T = 1000, the periodic behavior ofWn is gone.

In §5.3 we will establish a many-server heavy-traffic limit showing that a sequence

of scaled stochastic processes indexed byn converges to the deterministic fluid model as

n → ∞, under regularity conditions. Since we are considering overloaded models with

ρ > 1, this is a many-server heavy-traffic limit for theG/D/s+GI model in the efficiency

driven (ED) regime [20], as in [75].

It is customary to apply HT approximations to approximate the steady-state perfor-

mance of queueing systems. HT approximations for the steady-state performance of queue-

ing processes are supported by results showing that two iterated limits coincide. For MSHT



177

fluid limits, we want

lim
t→∞

lim
n→∞

n−1Xn(t) = lim
n→∞

lim
t→∞

n−1Xn(t), (5.1)

whereXn(t) is a stochastic process or vector of stochastic processes characterizing perfor-

mance in modeln. On the left in (5.1), we have the steady-state (obtained ast → ∞) of

the HT limiting process (obtained asn→∞); on the right, we have the HT limit (obtained

asn → ∞) of the steady state (obtained ast → ∞) of the queueing process. Such limit-

interchange results have recently been obtained in [19, 27]. For MSHT approximations,

such results were obtained for exponential service times in[20,28].

Here we do not have that nice state of affairs. Indeed, after establishing the MSHT

limit asn → ∞, we show that the subsequent limit ast → ∞ fails to hold because of the

periodicity. Moreover, the form of that periodic behavior depends on the initial conditions.

Even the average over a periodic cycle depends on the initialconditions; see Remark 5.5.

We will show that the fluid performance is stationary if and only if the fluid model starts in

its unique stationary point; see Theorem 5.14.

Here we directly consider only the iterated limit on the leftin (5.1), but we can deduce

that the two iterated limits do not tell the same story. In§5.2 we show that there exists

regenerative structure implying that theGI/D/sn + GI stochastic model converges to a

steady state ast → ∞ for eachn and each finite initial condition. Moreover, we can do

so for two-parameter processes that yield a Markov process.For eachn, we can then ini-

tialize with the stationary distribution of the Markov process, so that we obtain a stationary

process (as a function oft) for eachn. Now, if we consider the limit of the sequence of

scaled stationary distributions asn → ∞, if we obtain convergence, then we necessarily

obtain convergence to a stationary process. If such a limit corresponds to the deterministic

fluid function, then it necessarily must be the unique stationary point of the fluid model.
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(We conjecture that the sequence of scaled steady-state queueing processes does indeed

converge to the unique stationary point of the fluid model.)

However, a major conclusion from our analysis is that, for the many-serverG/D/s +

GI stochastic queueing model, we should not focus on the steady-state behavior of the

queueing model at all. After much analysis of this kind, we conclude that the periodic

phenomenon associated with deterministic service is genuine for the stochastic model as

well as the fluid model. Moreover, we conclude that, when there are many servers with

deterministic service times andρ > 1, the approximating fluid model is likely to better

describe the time-dependent performance of the stochasticsystem than is the stationary

distribution of the stochastic system. The present chaptermight better deserve the title

of [72].

In retrospect, we should perhaps have anticipated this nearly periodic behavior of the

overloadedG/D/s+GI queueing model. First, when theG/GI/s+GI queueing model

is overloaded ands is large, all the servers remain busy for long intervals of time; that is

evident from the steady-state performance of the fluid modelin [77]. With deterministic

service times, when the servers remain busy, the times at which customers complete ser-

vice and thus enter service in the intervals[t + (k − 1)/µ, t + k/µ] for integerk will be

independent ofk. That gives rise to the observed periodic behavior.

Once the periodic phenomenon is recognized, it can be controlled if it is considered

undesirable. For example, the periodic behavior of an overloaded system starting empty

leads to corresponding periodic behavior in the output flow,as illustrated by the plot ofσ(t)

in Figure 5.1. Such fluctuations in the output may be deemed undesirable. For example, if

that output became input at a following queue, then the fluctuations could cause congestion

at the subsequent queue.

A simple way to avoid periodic output is to restrict the flow rate into service, allowing

flow into service to be at most at ratesµ at all times. That can be done while still respecting
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the first-come first-served service discipline. Starting empty, this control imposes extra

delay on some of the initial input, but the output rate will soon become constant atsµ.

There should be broader implications of this work, but one has to be careful about

generalizing, because closely related models behave quitedifferently. In contrast to the

overloadedM/D/s+M andGI/D/s+GI models considered here, the associated infinite-

serverM/D/∞ andGI/D/∞ models are remarkably well behaved, as shown by [22].

Indeed, the number of customers in theM/D/∞ system reaches steady state in finite time,

after just one service time. Similarly, the MSHT fluid and diffusion approximations in the

GI/D/∞ model reach steady state after one service time. Having finitely many servers

that are busy all the time is an important part of the story in this chapter.

Closer to the model we consider is theG/D/smodel without customer abandonment in

the QED MSHT regime. For this model, Reed [61] observed that the limitingG/D/s fluid

model can exhibit periodic behavior with a special initial condition in his Example 1 at the

end of§4, but the implications of that example for the queueing model were not explored.

TheG/D/s queueing model is considered further in [63, 64]. There theG/D/s queueing

model for larges is identified as an example of anearly deterministic queue. That work

establishes MSHT limits in which the traffic intensity approaches its critical value from

below, extending earlier work in [34]. The papers [63, 64] also consider the limiting be-

havior asn → ∞ in theGn/Gn/1 model in which the interarrival-time and service-time

distributions aren-fold convolutions of a given base distribution, generalizing the construc-

tion of the ErlangEk distribution fromk-fold convolutions of the exponential distribution.

As n increases, theGn/Gn/1 model approaches theD/D/1 model. Interesting limiting

behavior is obtained by letting the traffic intensity increase asn increases.

Of course, in the stochasticGI/D/s andGI/D/s + GI queueing models, only the

service times are directly deterministic; the interarrival-time and abandonment-time distri-

butions may be far from deterministic. However, whenn is large and the arrival rate is
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large, the essential behavior of the arrival process and theabandonment becomes deter-

ministic, primarily because of the law of large numbers (LLN). That can be explained by

heavy-traffic limits, such as for non-Markovian infinite-server queues [6,22,39,56,62]. (If

the system is underloaded, then the limits in [22] apply directly.) We elaborate throughout

the chapter.

Finally, we mention that oscillating behavior and bi-stability have been found in other

queueing systems [16,21,78]. Another recent example of theinvalidity of limit interchange

is [65].

Here is how the rest of this chapter is organized: In §5.2 we establish the regenerative

structure in theGI/D/s+GI stochastic model and show that the mean busy cycle increases

rapidly in s. In §5.3 we establish a MSHT limit showing that a sequence of the queueing

models indexed by the number of servers converges to the fluidmodel. In§5.4 we carefully

specify the limitingG/D/s+GI fluid model. In§5.5 we derive the performance formulas

for theG/D/s+GI fluid model, part of which are variants of those of theGt/GI/st+GI

fluid model developed in Chapter 2. In§5.6 we focus on the case in which there exists a

finite timeT ∗ after which the system remains overloaded (has no idle capacity). In §5.7

we present key structural properties of theG/D/s+GI fluid queue assuming the queue is

overloaded for allt ≥ 0. In §5.8 we analyze the periodic steady state of theG/D/s+ GI

fluid model assuming the queue is overloaded after finite time. In §5.9 we discuss the

asymptotic behavior of theG/D/s + GI fluid queue with general initial conditions. In

§5.10 we present three postponed longer proofs, namely, the proofs for Theorems 5.1, 5.2

and 5.5. Finally, in§5.11 we draw conclusions.
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5.2 Regenerative Structure in theGI/D/s +GI Model

It is well known that a regenerative processX ≡ {X(t) : t ≥ 0} with sample paths in

the function spaceD of right-continuous functions with left limits in which a generic cycle

T has a distribution that is nonlattice with finite mean has a proper limiting steady-state

distribution. In particular,X(t) ⇒ X(∞) ast → ∞, where⇒ denotes convergence in

distribution, i.e., for any continuous and bounded real-valued functionh,

E[h(X(t)]→ E[h(X(∞)] =
E0[
∫ T

0
h(X(s)) ds]

E[T ]
as t→∞, (5.2)

whereE0 denotes the expectation conditional on a regeneration point at time 0 andT

denotes the end of the first cycle; see Theorem VI.1.2 of [2]. The importance of the sample

path regularity was observed in [51]. That regularity condition allows the process to take

values in a general Polish topological space [74], but the condition is needed even with the

usual real-valued processes. That sample-path regularityis easily seen to be satisfied in our

queueing model.

Consider theGI/D/s+ GI model, having interarrival times distributed asU with cdf

G, deterministic service times of length1/µ and abandonment times distributed asA with

cdf F . Let the interarrival times and abandonment times be mutually independent. Let

X(t) represent the number of customers in theGI/D/s+GI system at timet. Let a busy

cycle be the interval between successive epochs at which an arrival comes to find an empty

system. If the system starts with an arrival to an empty system at time0, then the first busy

cycle begins at time0. Each busy cycle begins with a busy period and then is followed by

an idle period. We prove the following in§5.10.

Theorem 5.1 Consider the stochasticGI/D/s+ GI model in which an interarrival time
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U has a nonlattice cdfG with finite meanE[U ] ≡ 1/λ and support unbounded above, i.e.,

G(x) < 1 for all x > 0, and an abandonmentA that has cdfF with finite meanE[A] ≡ 1/θ

and has support unbounded above and below, i.e.,0 < F (x) < 1 for all x > 0. Then the

busy cycles for theGI/D/s + GI system constitute an embedded renewal process for the

stochastic processX for which a generic busy cycleT has a nonlattice distribution with

E[T ] < ∞, so that the the stochastic processX representing the number of customers in

the system has a proper limiting steady-state distribution, as in(A.15), for all proper initial

conditions. In addition, the meanE[T ] is bounded below by

E[T ] ≥ G(1/µ)

Ḡ(1/µ)
E[U |U ≤ 1/µ] + 1/µ. (5.3)

Theorem 5.1 provides both good news and bad news: The good news is that there exists

regenerative structure, so that a proper steady-state distribution for the stochastic process

X exists under general conditions. The bad news for large-scale systems (explained below)

is that the mean return time to0 typically grows at least exponentially ins. Of course, that

does not directly prove that the process converges to steadystate slowly, but it lends support

to that notion.

We can formalize this growth inn by considering a limit involving a sequence of models

indexed byn. We scale time in the arrival process while changingn to keep the traffic

intensityρ ≡ λ/nµ fixed. The following corollary shows thatE[T (n)] is at leastO(ecn) as

n → ∞, wherec is some constant with0 < c < ∞ when the arrival process is Poisson or

in a renewal process when the interarrival-time cdf has an exponential tail.

Corollary 5.1 Consider a sequence ofGI/D/sn +GI models indexed byn satisfying the

conditions of Theorem5.1with generic interarrival timesU (n) ≡ U (1)/n, while the service
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times and abandonment cdf ’s are independent ofn. Then

lim inf
n→∞

{λnḠ(1)(n/µ)E[T (n)]} ≥ 1, (5.4)

so thatE[T (n)] → ∞ asn → ∞. If, in addition, the arrival processes are Poisson with

E[U (1)] = 1/λ, then

lim inf
n→∞

{λne−nλ/µE[T (n)]} ≥ 1. (5.5)

Proof. First, asn → ∞, nE[U (n)|U (n) ≤ 1/µ] = E[U (1)|U (1) ≤ n/µ] → 1/λ, and

G(n)(1/µ) ≡ P (U (n) ≤ 1/µ) = G(1)(n/µ) → 1. Also, the first moment condition

E[U (1)] < ∞ implies thatyḠ(1)(y/µ) → 0 asy → ∞; e.g., see the proof of Lemma

1 on p. 150 of [18]. Therefore, (A.16) in Theorem 5.1 implies (5.4), which in turn implies,

first, thatE[T (n)]→∞ asn→∞ and, second, (5.5). 2

The situation is quite intuitive. If indeedn is large andρ > 1, then we will necessarily

haveλ >> µ and, since it is natural in applications to haveθ be the same order asµ, it

is natural to also haveλ >> θ. In that case only rarely will the queue be empty and even

more rarely will the entire system be empty, so that the regeneration we are relying on to

have a nice steady state is then a rare event.

As noted toward the end of§5.1, periodic behavior in theG/D/s+GI stochastic model

will occur over some time interval wheneverall servers remain busy over that time interval.

In §5.6 we provide conditions under which there exists a finite timeT ∗ after which the fluid

model remains overloaded (has no idle capacity). We can alsoconclude that there will be a

strictly positive queue. Combined with the MSHT limit in thenext section, we can deduce

that, under regularity conditions, there will be long finiteintervals over which no server
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is idle in the queueing model. There is no contradiction withTheorem 5.1; here the limit

interchange in (5.1) does not hold.

5.3 A Many-Server Heavy-Traffic Limit

In this section we establish a many-server heavy-traffic limit, showing that a sequence of

G/D/sn + GI stochastic queueing models indexed byn converges to theG/D/s + GI

fluid model considered in§5.4 and§5.5 in the customary many-server heavy-traffic regime,

under regularity conditions.

The sequence of models is indexed by the number of serversn. We let the arrival rate

in modeln beλn and the number of servers besn, where

λ̄n ≡
λn
n
→ λ and s̄n ≡

sn
n
→ s as n→∞. (5.6)

We let the deterministic service times take value1/µ and the abandonment times have cdf

F , independent ofn. We assume limits for the arrival process and the initial conditions. In

particular, we assume that the sequence of stochastic processes satisfies afunctional weak

law of large numbers(FWLLN). For that purpose, letD be the usual function space of real-

valued functions with limits from the left, endowed with oneof the Skorohod topologies,

which reduces to uniform convergence on bounded intervals when the limit is a continuous

function [74]. Let⇒ denote convergence in distribution.

LetBn(t, x) (Q̂n(t, x)) be the number of customers in service (queue) at timet in model

n that have been so for a duration less than or equal tox. Since modeln hasn servers,

0 ≤ Bn(t,∞) = Bn(t, 1/µ) ≤ n, n ≥ 1. LetQn(t) ≡ Q̂n(t,∞) be the total number of

customers in queue. LetAn(t), Sn(t) andEn(t) be the numbers of customers to abandon,

depart after completing service, and enter service, respectively, in [0, t] in modeln. In full
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generality, we will establish a limit for the time-scaled process

(B̄n(t, x), S̄n(t), Ēn(t)) ≡ n−1(Bn(t, x), Sn(t), En(t)), (5.7)

which characterizes the performance of the service facility. Under the additional assump-

tion of exponential abandonment, we will also establish a limit for the time scaled process

(Q̄n(t), Ān(t)) ≡ n−1(Qn(t), An(t)). (5.8)

LetNn(t) be the number of arrivals in the interval[0, t] in modeln.

Assumption 5.1 (FWLLN for the arrival process) Asn→∞,

n−1Nn ⇒ Λ in D as n→∞, where Λ(t) ≡ λt, t ≥ 0, (5.9)

for a positive constantλ.

The FWLLN in Assumption 5.1 is implied by either a functionalcentral limit theo-

rem (FCLT) or a functional strong law of large numbers (FSLLN). Most applications are

covered by simple time scaling of a fixed stationary countingprocess, i.e., whenNn(t) ≡

N(nt), t ≥ 0, n ≥ 1. An FSLLN holds for the time-scaled renewal counting process (GI)

considered in§5.2, provided only that the interrenewal time has finite mean1/λ.

We now make assumptions about the initial conditions. We restrict attention to starting

with the queue empty, but we allow customers to start in service, imposing some additional

restrictions in the theorem.
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Assumption 5.2 (an initially empty queue) For eachn ≥ 1,Qn(0) = 0.

We also assume a FWLLN for the initial fluid content in service.

Assumption 5.3 (FWLLN for the initial conditions) Asn→∞,

B̄n(0, ·)⇒ B(0, ·) in D, (5.10)

where

B(0, x) ≡
∫ x

0

b(0, u) du, x ≥ 0, (5.11)

for a deterministic functionb(0, ·) on[0,∞) inCp with b(0, x) ≥ 0 for all x andB(0, 1/µ) =

B(0,∞) ≤ 1.

We are now ready to state the many-server heavy-traffic limit. For that purpose, letDD

be the space ofD-valued functions inD, as in [?]. The limit below will be continuous, so the

topology onDD is equivalent to uniform convergence over the compact sets[0, t]× [0, 1/µ]

for t > 0. Let a superscriptk on a topological space, as withDk, indicate the associated

k-fold product space, endowed with the product topology.

Let Tn be the first time that all servers are busy in the stochastic queueing model, i.e.,

Tn ≡ inf {t ≥ 0 : Bn(t, 1/µ) = n}, n ≥ 1. (5.12)

Let T ∗
n be the first time after which all servers remain busy forever,i.e.

T ∗
n ≡ inf {t ≥ 0 : Bn(u, 1/µ) = n for all u ≥ t}, (5.13)
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with T ∗
n ≡ ∞ if there exists no such time. Similarly, lett∗ be the time that the limiting fluid

model first has no idle service capacity, defined in (5.33), and letT ∗ be the time after which

the limiting fluid model never has any idle capacity, defined in (5.31). The conditions in

(5.14) and (5.16) below will imply that the limiting fluid model never has any idle capacity

after timet∗, i.e.,T ∗ = t∗ <∞; see§5.6.

Theorem 5.2 (many-server heavy-traffic FWLLN) Suppose that Assumptions5.1–5.3hold

with λ > µ,

b(0, x) ≤ λ, 1/µ− t∗ ≤ x ≤ 1/µ, (5.14)

and, if t∗ > 0,

b(0, 1/µ− t∗) < λ and b(0, 1/µ− t) continuous at t = t∗. (5.15)

Then

(B̄n, Ēn, S̄n)⇒ (B,E, S) ∈ DD × D2, (5.16)

where

B(t, y) ≡
∫ y

0

b(t, x) dx, 0 ≤ y ≤ 1/µ, (5.17)

with b(t, x) given in(5.28)for 0 ≤ t ≤ t∗, b periodic as a function of its first argument for

t > t∗ with period1/µ and, fort ≥ t∗, b(t− t∗, x) given in(5.29). In addition,

S(t) ≡
∫ t

0

σ(y) dy where σ(k/µ+ t) ≡ b(k/µ, 1/µ− t), 0 ≤ t ≤ 1/µ, (5.18)
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for integerk with k ≥ 0,

E(t) ≡
∫ t

0

b(y, 0)dy where b(t, 0) = λ 1{0≤t≤t∗} + σ(t) 1{t>t∗}. (5.19)

If B(0, 1/µ) < 1, thenTn ⇒ t∗ = T ∗ as n → ∞. If, in addition, the abandonment

distribution is exponential, i.e., if̄F (x) = e−θ x, then

(Q̄n, Ān)⇒ (Q,A) ∈ D2, (5.20)

whereQ(t) = A(t) = 0 for 0 ≤ t ≤ t∗ and

Q(t) =

∫ t−t∗

0

F̄ (t− t∗ − s)γ(s) ds, (5.21)

=

∫ w(t)

0

λ F̄ (x)dx, t ≥ t∗, (5.22)

A(t) = Λ(t)−
∫ t−t∗

0

b(s, 0) ds−Q(t), t ≥ t∗, (5.23)

wherew satisfies ODE(2.32) withw(t∗) = 0, γ(t) ≡ λ− b(t, 0).

We now observe that in general we need not have eitherTn ⇒ t∗ or T ∗
n ⇒ T ∗.

Example 5.1 (counterexample on first passage times) Suppose thatλ > µ = 1. Let

b(0, x) = λ, 1 − (1/λ) ≤ t ≤ 1, andb(0, x) = 0, 0 ≤ x < 1 − (1/λ), so thatb(t, 0) = λ,

0 ≤ t < 1/λ, andb(t, 0) = 0, 1/λ ≤ t < 1,B(t, 1/µ) = 1 for all t ≥ 0 andT ∗ = t∗ = 0.

Forn ≥ 1, let {Bn(0, y) : 0 ≤ y ≤ 1} be deterministic. To be a legitimate sample path

for a queueing system,Bn(0, y)must be nondecreasing and integer-valued as well as satisfy
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0 ≤ Bn(0, y) ≤ n. Thus, letBn(0, y) ≡ ⌊Bf
n(0, y)⌋, where⌊x⌋ is the greatest integer

less than or equal tox andB̄f
n(0, y) ≡ n−1Bf

n(0, y) ≡
∫ y

0
bn(0, x) dx, wherebn(0, x) =

((n + 1)/n)λ, 1 − ((n − 1)/nλ) ≤ t ≤ 1, andbn(0, x) = 0, 0 ≤ x < 1 − ((n − 1)/nλ).

First, observe that̄Bf
n(0, 1/µ) = (n2 − 1)/n2 < 1 for all n ≥ 1. Second, observe that we

have0 ≤ B̄f
n(0, y)−B̄n(0, y) ≤ 1/n for all y andn. Hence,B̄n(0, 1/µ) ≤ B̄f

n(0, 1/µ) < 1

for all n ≥ 1. Nevertheless,̄Bn(0, ·) → B(0, ·) asn → ∞. On the other hand, consider a

deterministic arrival process with ratenλ, i.e., withNn(t) ≡ ⌊nλ t⌋, t ≥ 0, n ≥ 1. Then

Sn(t) = ⌊(n+ 1)λ t⌋ ≥ Nn(t) for 0 ≤ t ≤ (n− 1)/nλ. SinceBn(0, 1/µ) < n, the system

is underloaded for0 ≤ t < 1/λ. However,Nn(1/λ) = n. Hence,Tn = T ∗
n = 1/λ for all

n ≥ 1, in contrast tot∗ = T ∗ = 0. A similar example can be constructed ifB(0, 1/µ) < 1

and condition (5.15) is not imposed; see Appendix D.8.

5.4 TheG/D/s +GI Fluid Queue

We now study theG/D/s + GI fluid queue. The correspondingGt/GI/st + GI model,

having time-varying arrival rate (Gt), time-varying staffing (st) and a general service-time

distribution (GI) was studied in Chapter 2. Here we restrict attention to constant arrival

rateλ and constant staffings, although the model can easily be extended to allow these

functions to be time-varying.

Paralleling to§5.4, we define the total inputΛ(t), departure rateσ(t), total outputS(t),

total fluid abandonedA(t), fluid in queue (service) that has been in queue (service) forat

mostx B(t, x) (Q(t, x)), total quanty of fluidX(t), fluid density in queue (service)q(t, x)

(b(t, x)), and the boundary of waiting timew(t), in the identical way as in§5.4. This model

has constant staffings(t) = s.
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We assume Assumptions 2.1-2.5 are satisfied. In addition, wemake the following as-

sumptions.

Because the service time is deterministic, each quantum of fluid that enters service stays

in service for time1/µ before leaving the system. The total service completion rate at time

t is the density of fluid that has been in service for1/µ. That is also the rate into service

1/µ time units before, i.e.,

σ(t) ≡ b(t, 1/µ) = b(t− 1/µ, 0), t ≥ 0. (5.24)

LetE(t) be the amount of fluid to enter service in[0, t]; then

E(t) ≡
∫ t

0

b(u, 0) du, t ≥ 0, (5.25)

whereb(t, 0) is the rate fluid enters service at timet. The rate fluid enters service depends

on whether the system is underloaded or overloaded. If the system is underloaded, then

the external input directly enters service; if the system isoverloaded, then the fluid to enter

service is determined by the rate that service capacity becomes available at timet, which is

the departure rateσ(t), because the total fluid content in serviceB(t) = s does not change

at t.

Since the service discipline is FCFS, fluid leaves the queue to enter service from the

right boundary ofq(t, x). The fluid content densitiesq and b satisfy the following two

fundamental evolution equations. (Recall that the service-time ccdf isḠ(x) = 1{0≤x≤1/µ}.)

Paralleling (2.6), we have the following fundamental evolution equations.
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Assumption 5.4 (fundamental evolution equations) For t ≥ 0, x ≥ 0 andu ≥ 0,

q(t+ u, x+ u) = q(t, x)
F̄ (x+ u)

F̄ (x)
, 0 ≤ x < w(t), (5.26)

b(t+ u, x+ u) = b(t, x)
Ḡ(x+ u)

Ḡ(x)
= b(t, x) 1{x+u≤1/µ}. (5.27)

We assume that all assumptions in this section are in force throughout the chapter.

5.5 Performance of theG/D/s +GI Fluid Queue

In Chapter 2 we showed how the system performance expressed via the basic functions

(b, q, w, v) depends on the model data(λ, s, µ, F, b(0, ·), q(0, ·)), for the time-varying fluid

models, i.e., forGt/GI/st + GI andGt/Mt/st + GIt. From the basic performance

four-tuple(b, q, w, v), we easily compute the associated vector of performance functions

(B̂, Q̂, B,Q,X, σ, S, α, A,E) via the definitions in§5.4. We now establish similar results

for the basic functions(b, q, w, v) of theG/D/s+GI model.

The service content densityb is elementary within each interval that the system is ei-

ther entirely underloaded or entirely overloaded. The complications occur when there are

changes from one regime to the other. We state basic results in this section and others in

the next section. The results here provide the basis for an effective algorithm, assuming

that there are only finitely many changes between underloaded and overloaded regimes in

each interval[0, T ], for which we give a sufficient condition at the end of this section.

Theorem 5.3 (service content in the underloaded case) For theG/D/s+ GI fluid model
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with unlimited service capacity(s ≡ ∞), starting at time0,

b(t, x) = b(0, x− t) · 1{0≤t<x≤1/µ} + λ · 1{0≤x≤1/µ, x≤t}, (5.28)

B(t) =

(

λ t+

∫ 1/µ

t

b(0, x− t) dx
)

1{0≤t≤ 1
µ
} +

λ

µ
1{t> 1

µ
}.

If, instead, a finite-capacity system starts underloaded, then the same formulas apply over

the interval[0, T ), whereT ≡ inf {t ≥ 0 : B(t) > s}, withT =∞ if the infimum is never

obtained. Hence,b(t, ·), b(·, x), B ∈ Cp for all t ≥ 0 andx ≥ 0, for t in the underloaded

interval.

Proof. To show the first relation, note thatb(t, x) = 0 for all x > 1/µ because the service

time is exactly1/µ. If 0 ≤ t ≤ 1/µ, b(t, x) = b(0, x− t) for t < x ≤ 1/µ andb(t, x) = λ

for 0 ≤ x ≤ t. If t > 1/µ, then all fluid that was in service at time 0 is gone, hence

b(t, x) = λ if 0 ≤ x ≤ 1/µ. Simply integrating the first relation gives the second. 2

Corollary 5.2 (reaches steady state at time1/µ) If the system is entirely underloaded, then

the performance reaches steady state by time1/µ with σ(t) = b(t, x) = λ, 0 ≤ x ≤ 1/µ

andt ≥ 1/µ.

The periodic behavior observed in the overloaded numericalexamples is mostly ex-

plained by the following theorem and the subsequent Corollary 5.3.

Theorem 5.4 (service content in the overloaded case) For theG/D/s+GI fluid model in
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an overloaded interval,B(t) = s and

b(t, x) = b(0, x− t) · 1{0≤t<x≤1/µ}

+b

(

0,
1

µ
− (t− x) + ⌊(t− x)µ⌋

µ

)

· 1{0≤x≤1/µ, x≤t}, (5.29)

where⌊x⌋ is the integer part of a real numberx. Hence,b(t, ·), b(·, x), B ∈ Cp for all t ≥ 0

andx ≥ 0 in an overloaded interval.

Proof. Note b(t, x) = 0 for all x > 1/µ. If 0 ≤ t ≤ 1/µ, b(t, x) = b(0, x − t) for

t < x ≤ 1/µ; b(t, x) = b(t − x, 0) = σ(t − x) = b(0, 1/µ − (t − x)) for 0 ≤ x ≤ t. If

t > 1/µ, thent − x > 0. LetN ≡ ⌊(t − x)µ⌋, we have0 ≤ t− x − N/µ ≤ 1/µ. Hence

b(t, x) = b(t−x, 0) = σ(t−x) = σ(t−x−N/µ) = b(0, 1/µ−(t−x−N/µ)). Moreover,

simple calculation by integrating (5.29) overx verifies that indeedB(t) =
∫ 1/µ

0
b(t, x)dx =

s. 2

Corollary 5.3 (periodic performance in service starts at time0) If B(t) = s for all t ≥ 0,

then the densityb is either stationary or in a PSS starting at time0. It is stationary if

b(0, x) = sµ, 0 ≤ x ≤ 1/µ. Otherwise it is in a PSS with

b

(

k

µ
+ t, x

)

= b(t, x), σ

(

k

µ
+ t

)

= σ(t),

for 0 ≤ x ≤ 1/µ, 0 ≤ t ≤ 1/µ andk ≥ 0.

Corollary 5.4 (overall smoothness for the service content) If the system changes regimes

only finitely often in the interval[0, T ], thenb(t, ·), b(·, x), B ∈ Cp for all t, 0 ≤ t ≤ T ,

andx ≥ 0.
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TheG/D/s + GI model differs from theGt/GI/st + GI model in Chapter 2 in the

service facility, but not in the queue. Therefore, the dynamics of q, w andv are the same.

Their dynamics are described by Proposition 2.6, Corollary2.2, Theorem 2.3, 2.5 and 2.6.

Similarly, the regime termination criterion are characterized by that in Chapter 2.

We now provide a sufficient condition for there to be only finitely many switches be-

tween overloaded and underloaded intervals in any bounded interval[0, T ]. To do so, we

use a function involving the model elementsλ andb(0, x), 0 ≤ x ≤ 1/µ. In particular, let

ζ(x) ≡ σ(x)− λ = b(0, 1/µ− x)− λ.

LetDζ be the set of discontinuities ofζ in [0, 1/µ], let Z̄ζ ≡ {x ∈ [0, 1/µ] : ζ(x) = 0} be

the zero set ofζ , and letZζ , be a subset of̄Zζ , defined by

Zζ ≡ {x ∈ Z̄ζ : ∄ ǫ > 0 such thatζ(y) = 0 for all y ∈ (x− ǫ, x+ ǫ)}

The subsetZζ excludes those pointsx ∈ [0, 1/µ] such thatζ(x) = 0 for x ∈ (a, b).

LetST be the total number of regime-switching (between overloaded and underloaded)

points in[0, T ] as in Chapters 2-3. For any setA, let |A| be the cardinality ofA.

Theorem 5.5 (relating switches to zeros and discontinuities ofζ) For any interval[0, T ]

with T ≥ 1/µ,

|ST | ≤ ⌈Tµ⌉(|Zζ |+ |Dζ |+ 1), (5.30)

where⌈x⌉ is least integer greater than or equal tox.
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Remark 5.1 (tightness of the bound in Theorem 5.5) To show that the bound in Theorem

5.5 is tight, consider aG/D/s + GI fluid queue in[0, T ] = [0, 2/3µ] that is initially

critically loaded, i.e.,B(0) = s andQ(0) = 0, with b(0, x) = 2µ s · 1{1/2µ≤x≤2/3µ} and

λ = 1.5µ s. We knowσ(t) = b(0, 1/µ−t) = 2µ s ·1{0≤t≤1/2µ}. Hence,B′(t) = λ−σ(t) =

−0.5µ s · 1{0≤t≤1/2µ} + 1.5µ s · 1{1/2µ≤t≤2/3µ}, which implies thatB(t) = (s − 0.5µ s t) ·

1{0≤t≤1/2µ} +1.5µ s t · 1{1/2µ≤t≤2/3µ}. Therefore the system is underloaded in[0, 2/3µ] and

becomes critically loaded again att = 2/3µ. In this case the bound in Theorem 5.5 is tight

becauseN = ⌊2/3⌋ + 1 = 1, |Dζ | = 1, |Zζ| = 0 and|ST | = 2, where the two switching

points are0 and2/3µ.

Assumption 5.5 (controlling the number of switches) For µ > 0, |Zζ | < ∞, so that

there are only finitely many switches between overloaded andoverloaded intervals in any

bounded subinterval.

We assume that Assumption 5.5 is in force throughout the chapter.

Remark 5.2 (an algorithm) These results yield an efficient algorithm to compute the ba-

sic performance four tuple(b, q, w, v). First, we can computeb(t, x) directly via Theorems

5.3 and 5.4. We computẽq directly from Proposition 2.6. We then compute the BWTw

by solving the ODE in Theorem 2.3. The proof of Theorem 2.5 in Chapter 2 provides

an elementary algorithm to computev oncew has been computed. Theorem 6 of Chap-

ter 2 shows thatv satisfies its own ODE under additional regularity conditions. Theorem

5.3 and 5.3 specify how to switch between alternating overloaded and underloaded inter-
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vals. Assumption 5.5 ensures that the total number of switches between underloaded and

overloaded intervals is finite.

5.6 The Fluid Model Eventually Always Overloaded

For the rest of this chapter, we assume that the fluid arrival rateλ exceeds the maximum

possible long-run average service ratesµ, so thatρ ≡ λ/sµ > 1.

Assumption 5.6 (ρ > 1) λ > sµ.

We say that the service capacity (and thus the system) is overloaded at timet if B(t) =

s. In this section we describe the fluid density in service,b, in theG/D/n+GI fluid model

assuming that there exists a finite time after which the system stays overloaded; letT ∗ be

the first such time, i.e.,

T ∗ ≡ inf {t ≥ 0 : B(u) = s for all u ≥ t}, (5.31)

with T ∗ ≡ ∞ if there exists no such time.

We also provide a sufficient condition forT ∗ to be finite. We show that the service

densityb reaches a PSS at timeT ∗. In the next two sections we use this assumption to

show that the queue performance (e.g.Q(t) andα(t)) converges to a PSS after timeT ∗.

(These auxiliary performance functions typically do not reach PSS in finite time.)

Assumption 5.7 (a time after which the system remains overloaded) For T ∗ defined in

(5.31), T ∗ <∞.
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Assumption 5.7 is very useful because it identifies the time at which the service fluid

densityb reaches a PSS. The following is a consequence of Theorem 5.4 and Corollary 5.3.

Corollary 5.5 (a PSS forb starting atT ∗) Under Assumption5.7, the service fluid density

b either reaches steady state or a PSS at timeT ∗; i.e.,

b((n/µ) + t, x) = b(t, x), n ≥ 1, t ≥ T ∗, 0 ≤ x ≤ 1/µ.

A steady state is achieved if and only ifb(T ∗, x) = sµ, 0 ≤ x ≤ 1/µ.

In applications it is not necessary to identifyT ∗; it suffices to identifyany time t with

t ≥ T ∗. Corollary 5.5 implies thatb is in a PSS starting at any timet ≥ T ∗. We now

provide a sufficient condition for Assumption 5.7. To do so, let t∗ be the time that the

service facilityfirst becomes full; i.e.,

t∗ ≡ inf

{

t ≥ 0 : λt+B(0)−
∫ t

0

σ(x)dx = s

}

. (5.32)

If the system is initially overloaded, thent∗ = 0. Necessarilyt∗ < 1/µ, because no new

input during the interval[0, 1/µ] can depart in that interval andλ/µ > s, sinceρ ≡ λ/sµ >

1. Define a class of initial service densities

B∗
s,λ ≡

{

b(0, ·) : B(0) =

∫ 1/µ

0

b(0, x) = s, b(0, x− t∗) ≤ λ, t∗ ≤ x ≤ 1/µ

}

.

Theorem 5.6 (a sufficient condition for Assumption 5.7) If b(0, ·) ∈ B∗
s,λ, then Assumption

5.7 is satisfied withT ∗ = t∗ for T ∗ in (5.31)andt∗ in (5.32).
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Proof. If t∗ = 0, i.e.,B(0) = s andb(0, x) ≤ λ, 0 ≤ x ≤ 1/µ, then new fluid will arrive in

the system at least as fast as the fluid is departing, throughout the interval[0, 1/µ]. Hence,

a full service facility is maintained throughout the interval [0, 1/µ]. Hence fluid enters

service immediately replacing all departing fluid. (This fluid will enter from the head of

the queue if the queue is not empty, but that is not important for b.) Thus, the service facility

remains full forever.

If t∗ > 0, thenB(0) < s, so that new fluid will enter service from outside at rateλ until

the service facility becomes full att∗. We have

t∗ = inf {t ≥ 0 : λt +B(0, 1/µ− t) = s}, (5.33)

following from (5.32) and Theorem 5.3. Sinceb(0, x) ≤ λ for t∗ ≤ x ≤ 1/µ, the system

then reaches the first case starting att∗, so we can apply the previous analysis to this case.

2

Note that the condition of Theorem 5.6 is satisfied in the common case in which the

system starts out empty. In§5.8 we will describe the system performance in detail in that

special case. Also note that we can apply Theorem 5.6 to the state of the system at any

finite time t, not just at time0. In particular, we can apply the algorithm in Remark 5.2

over some finite interval[0, t] and then check to see if the conditions of Theorem 5.6 are

satisfied at timet.

5.7 Structural Results for the Queue Performance

In this section we focus on the performance related to the queue in an overloadedG/D/s+

GI fluid model withρ > 1, thus showing how we can exploit Assumptions 5.6 and 5.7

in the previous section. In this section we assume that the fluid queue is overloaded for
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all t ≥ 0. We present four structural results: (i) comparison, (ii) Lipschitz continuity,

(iii) asymptotic loss of memory (ALOM) and (iv) uniform boundedness. The proofs of

Theorems 5.7-5.10 are also given in Appendix D.3.)

Our comparison result establishes an ordering of the performance functions given an

assumed ordering for the model data functions.

Theorem 5.7 (comparison of fluid content in queue for the overloadedG/D/s + GI

model) Consider twoG/D/s + GI fluid models with common staffing functions, ser-

vice time1/µ, abandonment cdfF and initial fluid density in serviceb(0, ·). Assume both

queues are overloaded for allt ≥ 0 (B1(t) = B2(t) = s). If q1(0, ·) ≤ q2(0, ·) and

λ1 ≤ λ2, then

(Q1, q1, α1, w1, v1) ≤ (Q2, q2, α2, w2, v2).

For an integrable real-valued functionx on [0,∞), let ‖x‖1 ≡
∫∞

0
|x(t)|dt. Also, let

b↓ ≡ inf
0≤x≤1/µ

b(0, x), b↑ ≡ sup
0≤x≤1/µ

b(0, x),

h↓F ≡ inf
0≤x<∞

hF (x), h↑F ≡ sup
0≤x<∞

hF (x).

Our Lipschitz continuity result also applies to functions.For it, we use the uniform

norm on real-valued functions on the interval[0, T ]: ‖x‖T ≡ sup {|x(t)| : 0 ≤ t ≤ T}.

Theorem 5.8 (Lipschitz continuity of fluid content in queue for the overloadedG/D/s +

GI model) Consider aG/D/s + GI fluid model with arrival rateλ, staffing functions,

service time1/µ, abandonment cdfF . Assume the queue is overloaded for allt ≥ 0.
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Then the function mapping(λ,Q(0)) in R2 into (Q,α) in C2p all over [0, T ] is Lipschitz

continuous. In particular,

‖Q1 −Q2‖T ≤ T |λ1 − λ2|+ |Q1(0)−Q2(0)|

≤ (1 ∨ T )(|λ1 − λ2| ∨ |Q1(0)−Q2(0)|), (5.34)

‖α1 − α2‖T ≤ h↑F‖Q1 −Q2‖T , (5.35)

‖q1 − q2‖T,1 ≡
∥

∥

∥

∥

∫ ∞

0

q1(·, x)dx−
∫ ∞

0

q2(·, x)dx
∥

∥

∥

∥

T

≤ T |λ1 − λ2|+ ‖q1(0, ·)− q2(0, ·)‖1. (5.36)

Theorem 5.9 (ALOM of fluid content in queue for the overloadedG/D/s + GI model)

Consider two initially overloadedG/D/s + GI fluid models (B1(0) = B2(0) = s). Sup-

pose these two models have common arrival rateλ, staffing functions, service time1/µ,

abandonment cdfF , initial fluid densities in serviceb(0, x), but different initial fluid den-

sities in queueqi(0, ·).

(a) If both queues are overloaded for allt ≥ 0, then

∆Q(T ) = ‖q1(T, ·)− q2(T, ·)‖1 ≤ C1e
−h↓

F T , (5.37)

∆α(T ) ≤ h↑F C1 e
−h↓

F T ,
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whereC1 ≡ C1(q1(0, ·), q2(0, ·)) is the constant

C1 ≡
∫ ∞

0

([q1(0, x) ∨ q2(0, x)]− [q1(0, x) ∧ q2(0, x)])dx (5.38)

≤ Q1(0) +Q2(0).

In addition, ifb↓ > 0, then forT > T ∗,

∆w(T ) ≤ ∆Q(T )

λ F̄ (w2(T ) ∨ w1(T ))

≤ C2∆Q(t) ≤ (C2C1)e
−h↓

F T , (5.39)

where

T ∗ ≡ Q1(0) +Q2(0)

b↓
,

C2 ≡ F̄

[

b↓

λ
∨
(

w1(0) ∨ w2(0) +
Q1(0) +Q2(0)

b↓

)]−1

. (5.40)

(b) If, in addition, the initial densities in queue are ordered by

q1(0, x) ≤ q2(0, x) for all x ≥ 0, (5.41)

thenQ1(t) ≤ Q2(t) for all t ≥ 0,

∆Q′(T ) ≤ 0 and ∆Q(T ) ≤ ∆Q(0)

1 + h↓F T
, T > 0, (5.42)
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so that

∆Q(T ) ≤ e−h↓

F T ∆Q(0), ∆α(T ) ≤ h↓F∆Q(T ). (5.43)

For the following boundedness result, we make a stronger assumption on the initial

fluid density and the abandonment hazard rate in the model data, requiring that they be

uniformly bounded above and below.

Assumption 5.8 (uniformly bounded initial fluid density and hazard rate) The staffing and

the rates in the model data are uniformly bounded above and below, i.e.,

0 < b↓ ≤ b↑ <∞, 0 < h↓F ≤ h↑F <∞.

Assumption 5.8 strengthens Assumptions 2.1 and 3.6. We assume that this additional as-

sumption is in force for the remainder of the chapter.

Theorem 5.10 (boundedness) Consider theG/D/s + GI fluid queue that is overloaded

for all t ≥ 0. Under Assumption5.8 and the previous the assumptions, all performance

functions are uniformly bounded. In particular,

B(t) = s, b(t, x) ≤ b(0, x) ∨ b↑,

Q(t) ≤
(

λ

h↓F

)

∨Q(0), q(t, x) ≤ q(0, x) ∨ λ,

w(t) ≤ F̄−1

(

b↓

λ

)

∨
(

Q(0)

γ↓
+ w(0)

)

,

α(t) ≤ h↑F λ

h↓F
, and σ(t) = b(t, 0) ≤ b↑.
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5.8 The Full Performance Under Assumption 5.7

In §5.6 we saw that the fluid density in service,b, reaches steady state or a PSS at timeT ∗

if the system remains overloaded after timeT ∗, as stipulated in Assumption 5.7. We now

exploit the structural results in the previous section to describe the full queue performance,

given Assumption 5.7. In the next section we show that Assumption 5.7 is not always

satisfied.

As in §4.5 of Chapter 4, we consider the performance vector at timet P(t) defined by

(4.39). If the initial conditionP(0) can be chosen so that{P(t) : t ≥ 0} is a periodic

function of t with periodτ , then this initial condition produces a PSS. If not, we want to

show that the performance converges to a PSSP∗ as time evolves. We follow our discussion

on PSS as in§4.5 of Chapter 4. To discuss continuity and convergence in the domain ofP,

we use norm‖P(t)‖ defined by (4.40) in§4.5.

We primarily want to establish convergence to a PSS, but we also treat the case of

stationary performance, which arises whenb(T ∗, x) = sµ, 0 ≤ x ≤ 1/µ. Given that

stationaryb, the remaining stationary performance can be obtained by the reasoning in

Theorem 4.4 of Chapter 4. The remaining stationary performance measures are

B = s, α = λ− sµ, w = F̄−1(sµ/λ),

Q = λ

∫ w

0

F̄ (x) dx, and q(x) = λ F̄ (x), 0 ≤ x ≤ w. (5.44)

Theorem 5.11 (PSS for the overloadedG/D/s+ GI fluid model) Suppose that Assump-

tion 5.7 is satisfied in theG/D/s + GI fluid model withρ > 1. If b(T ∗, x) = sµ,
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0 ≤ x ≤ 1/µ, then there exists a constant functionP∗ as in(5.44)such that

‖Ψ(n)
τ (P)−P∗‖ → 0 as n→∞. (5.45)

for all τ > 0. Otherwise, the fluid performanceP is asymptotically periodic with period

1/µ, i.e., there exists a periodic functionP∗ with period1/µ such that(5.45) holds for

τ ≡ 1/µ.

Proof. We can treat the two cases together by the same argument; we only discuss the

second case. We must show that‖P((n/µ) + ·)−P∗(·)‖ → 0 asn→∞. However, since

P∗ is periodic andΨ(n)
1/µ(P) involves the shift operator, it suffices to prove that‖P((n/µ)+

·)− P∗(·)‖1/µ → 0 asn→∞, where the supremum in the norm is over the finite interval

[0, 1/µ], i.e., for‖P‖1/µ ≡ sup {|P(t)| : 0 ≤ t ≤ 1/µ}. That in turn is a form of the norm

in Theorem 3.6.

If T ∗ > 0, we can simply move the origin toT ∗. Therefore, it remains to consider the

case where the system is initially overloaded, and remains so thereafter. In that case,b(t, x)

andσ(t) = b(t, 0) are periodic with period1/µ starting fromt = 0, by Theorem 5.4 and

Corollary 5.3.

Next, suppose thatq(0, x) = 0 for x ≥ 0, i.e., the system is initially critically loaded.

By Theorem 5.7, the shift operatorΨ1/µ is a monotone operator onP((n/µ)+ ·) for anyn,

because we can think of the performanceq(1/µ, ·) as alternative initial conditions for the

model at time 0, since the model is periodic with period1/µ (λ ands are constant,b(t, 0)

is periodic with period1/µ by Theorem 5.4 and Corollary 5.3. Therefore, the sequence of

system performance functionsP(0 + ·),P((1/µ) + ·),P((2/µ) + ·), . . . (at discrete time

0, 1/µ, 2/µ, . . .) is monotonically non-decreasing. Since the performance is also bounded,

by Theorem 5.10, there is a finite limit for the sequence{P((n/µ) + ·)} asn → ∞. By
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Theorem 3.6, the operator is continuous as well, which implies thatΨ(n)
1/µ(P) is convergent

in the specified norm asn → ∞. Hence the limit is a PSS. By the ALOM property in

Theorem 5.9, we get the same limit for all other initial fluid densities in queueq(0, ·). 2

Remark 5.3 (computation) Given the rapid convergence, it usually is not difficult to com-

pute the PSS associated with any given initial condition by simply applying the algorithm

with that initial condition. We can then verify that the condition in Theorem 5.6 is satisfied

after some finite time, so that we knowT ∗ and we know the PSS for the fluid density in

serviceb. We then can observe the convergence of the other performance measures. How-

ever, the PSS for the remaining performance functions can also be determined in another

way, givenT ∗ andb. First, if the abandonment distribution is exponential, then analytic

expressions are available, see Corollary 5.8. Second, for the case of non-exponential aban-

donment, consider a cycle[0, 1/µ] of the PSS. For each candidatew̃ ≥ 0, we numerically

solve the ODE (2.31) in[0, 1/µ] with w(0) = w̃ andb(t, 0) = b(T ∗, 1/µ− t) and check if

w(1/µ) = w̃. Sincew̃ ≥ 0 is our only unknown variable, we shall do a search forw̃ ≥ 0.

Theorem 5.11 guarantees the existence and uniqueness of such aw̃ ≥ 0.

Remark 5.4 (different initial conditions) Theorems 5.6 and 5.11 provide sufficient condi-

tions for Assumption 5.7 to hold, and for the performance function to converge to a PSS.

That PSS depends strongly on the fluid density in service,b at the timeT ∗ after which the

system remains overloaded. In Appendix D.4 we show that verydifferent PSS’s can result

by considering two different initial conditions for the example in§5.1.

We now describe the time-average performance over a periodic cycle. Some average



206

performance measures are independent of the initial conditions, and thus agree with the

stationary performance, whereas others are not.

Corollary 5.6 (average performance over a cycle) Suppose that Assumption5.7holds for

aG/D/s+ GI fluid queue and consider the PSS beginning atT ∗. The average abandon-

ment rateᾱ and departure ratēσ over a cycle[0, τ ] ≡ [0, 1/µ] of the PSS are

ᾱ ≡ 1

τ

∫ τ

0

α(t)dt = α∗ ≡ λ− µ s (5.46)

σ̄ ≡ 1

τ

∫ τ

0

σ(t)dt = σ∗ ≡ µ s, (5.47)

If, in addition, the abandonment distribution is exponential, then

Q̄ ≡ 1

τ

∫ τ

0

Q(t)dt = Q∗ ≡
∫ w∗

0

λ e−θ x dx. (5.48)

whereα∗, σ∗,Q∗ andw∗ ≡ F̄−1(1/ρ) are the stationary abandonment and departure rates,

queue length and BWT given in(5.44).

Proof. First, (5.48) follows from (5.46) when̄F (x) = e−θ x, becauseα(t) = θ Q(t), which

implies

Q̄ =
1

θ
ᾱ =

1

θ
(λ− µ s),

which is equal to the right hand side of (5.48), as can be verified by simple calculation.

Since the system is overloaded for allt ≥ T ∗, thenb(t, x) andσ(t) are periodic for all

t ≥ T ∗, by Theorem 5.4 and Corollary 5.3. Therefore, consider a cycle [0, 1/µ] of the PSS,
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we must haveb(t, 0) = σ(t) = b(T ′, 1/µ − t) for someT ′ ≥ T ∗. Hence, (5.47) follows

because
∫ 1/µ

0
b(T ′, 1/µ− t)dt = B(T ′) = s.

To show (5.46), flow conservation of the queue implies that

Q′(t) = λ− α(t)− b(t, 0) = λ− α(t)− σ(t), for 0 ≤ t ≤ 1/µ.

Integrating both sides from0 to 1/µ yields that

0 = Q(1/µ)−Q(0) = λ τ −
∫ τ

0

α(t)dt−
∫ τ

0

σ(t)dt = λ τ −
∫ τ

0

α(t)dt− µ s τ,

which implies (5.46). 2

Remark 5.5 (average of other performance functions) Except forᾱ and σ̄, the average

of other performance functions in PSS typically does not agree with the corresponding

stationary values. We illustrate with an example in Appendix D.5, considering Erlang and

hyperexponential abandonment cdf’s. In our numerical examples we found that the average

BWT w̄ is consistently greater than the stationary valuew∗. In contrast the averagēQ is

greater (less) than or equal to the stationary valueQ∗ when the abandonment-time cdfF is

more (less) variable than exponential. It remains to establish supporting theorems.

A common case occurs when the system is initially empty. Obviously this initial con-

dition belongs to classB∗
s,λ. We next establish results for this special case.

Corollary 5.7 (PSS for the initially emptyG/D/s+GI fluid model)Consider theG/D/s+

GI fluid model withρ > 1. If the system is initially empty, then the performanceP is

asymptotically periodic and converges to a unique PSSP∗ with periodτ = 1/µ. In partic-
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ular,B(t) = s, b(t, x) andσ(t) are periodic afters/λ,

b(t + k/µ, x) =















λ · 1{0≤x≤t−1/µ+s/λ}∪{t≤x≤1/µ}, if s
λ
< t ≤ 1

µ
,

λ · 1{t≤x≤t+s/λ}, if 1
µ
< t ≤ 1

µ
+ s

λ
.

σ(t + k/µ) = b(t + k/µ, 0) = λ 1{1/µ<t≤1/µ+s/λ}, for k ≥ 0.

Performance functions in queue converge to a PSS with the following structure:

q(t+ k/µ, x) → λ F̄ (x) · 1{0≤x≤w∗(t)},

Q(t + k/µ) →
∫ w∗(t)

0

λ F̄ (x)dx,

α(t+ k/µ) →
∫ w∗(t)

0

λ f(x)dx,

w(t+ k/µ) → w∗(t), ask →∞, (5.49)

wherew∗(t) = w̃ + t (linear) for s/λ ≤ t ≤ 1/µ for somew̃ ≥ 0; w∗(t) solves ODE

w′(t) = 1− 1/F̄ (w(t)) for 1/µ ≤ t ≤ 1/µ+ s/λ withw(s/λ+ 1/µ) = w̃.

Proof. Since the system is initially empty, it becomes overloaded at time t∗ = s/λ < 1/µ

and stays overloaded for allt ≥ t∗ by Theorem 5.6. Hence, the formulas forb follow

from Theorem 5.4 and Corollary 5.3. The convergence of otherperformance functions

follows from (5.49). Therefore, it remains to show (5.49). Sinceσ(t) = b(t, 0) = 0 for

(k − 1)/µ+ s/λ < t ≤ k/µ, the BWT ODE (2.31) in Theorem 2.3 implies thatw′(t) = 1

so thatw(t) is linear with slope 1 for(k − 1)/µ+ s/λ < t ≤ k/µ. 2

We now give explicit expressions for the PSS of theG/D/s +M fluid queue that has

exponential abandonment and is initially empty. We give theproof in Appendix D.6.
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Corollary 5.8 (explicit expression for the PSS of theG/D/s + M fluid queue starting

empty) Consider theG/D/s+M fluid queue starting out empty, with arrival rateλ, service

time1/µ, staffings, exponential abandonment with rateθ andρ ≡ λ/sµ > 1. The system

becomes overloaded and remains so at timet∗ = T ∗ = s/λ. In the PSS (starting at time

0) the system is overloaded with performance functions givenin two parts([0, 1/µ− s/λ]

and(1/µ− s/λ, 1/µ]) of a cycle0 ≤ t ≤ 1/µ:

(a) In the first part of the PSS cycle, for0 ≤ t ≤ 1/µ− s/λ,

w(t) = t+ w̃, (5.50)

Q(t) =
λ

θ

[

1−
(

1− e−θ s/λ

1− e−θ/µ

)

e−θ t

]

, (5.51)

b(t, x) = λ · 1{t≤x≤t+s/λ},

σ(t) = b(t, 0) = 0,

where

w̃ ≡ w(0) = w(1/µ) =
1

θ
log

(

1− e−θ/µ

1− e−θ s/λ

)

≥ 0. (5.52)
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(b) In the second part of the PSS cycle, for1/µ− s/λ < t ≤ 1/µ,

w(t) = −1
θ
log

(

1 +

(

1− eθ(1/µ−s/λ)

1− e−θ/µ

)

· e−θ t

)

, (5.53)

Q(t) =
λ

θ

(

eθ(1/µ−s/λ) − 1

1− e−θ/µ

)

e−θ t, (5.54)

b(t, x) = λ · 1{0≤x≤t−1/µ+s/λ}∪{t≤x≤1/µ},

σ(t) = b(t, 0) = λ.

In addition, for0 ≤ t ≤ 1/µ,

B(t) = s, q(t, x) = λ F̄ (x) · 1{0≤x≤w(t)}, α(t) = θ Q(t),

(c) If we consider a cycle[1/µ− w̃, 2/µ− w̃], then the PWT

v(t) =
1

θ
log

(

1 +

(

eθ/µ
eθ(1/µ−s/λ) − 1

1− e−θ/µ

)

· e−θ t

)

, (5.55)

for 1/µ− w̃ ≤ t < 2/µ− w̃ andv jumps at2/µ− w̃ to

v(2/µ− w̃) = v(1/µ− w̃) = w̃ + 1/µ− s/λ.

Remark 5.6 Since we have an explicit expression forQ(t), in which it is an exponential

function in both (a) and (b), simple calculation directly verifies (5.48) in Corollary 5.6.
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5.9 General Initial Conditions

In §5.7 and§5.8, we provided a quite complete description of system performance if there

exists a finite timeT ∗ such that the system is overloaded for allt ≥ T ∗. Moreover, Theorem

5.6 provides widely applicable conditions for the timeT ∗ to coincide witht∗, the first time

t thatB(t) = s, which necessarily is less than or equal to1/µ. More generally, Theorem

5.6 can be applied to show that the timeT ∗ exists subsequently after applying the numerical

algorithm to compute the performance over an initial interval, because we can check to see

if the conditions in Theorem 5.6 hold after some finite time.

Nevertheless, we now show that in general there need not exist a finite time such that

the system remains overloaded thereafter, i.e.,T ∗ can be∞. We have seen that the system

necessarily becomes overloaded for a first timet∗ with t∗ < 1/µ. However, withρ > 1,

it is possible for the the system to switch between overloaded and underloaded regimes

infinitely often.

Theorem 5.12 There need not exist a finite timeT ∗ such thatB(t) = s for all t ≥ T ∗.

Proof. We provide an explicit counterexample. We consider aG/D/s +M fluid queue

with λ = 1.2, µ = s = 1, θ = 2. Let the queue be initially overloaded with

b(0, x) = 2 · 1{1/2≤x≤1} so thatB(0) = s = 1,

w(0) = 2 and q(0, x) = λ e−θ x · 1{0≤x≤w(0)} = 2 e−2x · 1{0≤x≤2}.

We can apply mathematical induction to show thatB(n) = s andB(n + 1/2) < B(n +

3/2) < s for all n ≥ 1. We elaborate in Appendix D.7. 2

Remark 5.7 (The influence ofq(0, x)) It is important to note that the initial queue fluid

densityq(0, ·) plays an important role, both in the counterexample above and in the system
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performance more generally. Fort ≥ T ∗, q(t, ·) plays only a minor role, because then we

have ALOM for the queue performance, by virtue of Theorem 5.9. However, the initial

queue fluid densityq(0, ·) plays an important role in determining ifT ∗ < ∞ and the form

of the PSS. In§D.7 we consider the above example with the same initial fluid density in

service but different initial fluid in queue (w(0) = 0.2 instead ofw(0) = 2). There we

show that this different value forw(0) (initial fluid in queue) completely changes both the

transient evolution of performance functions and the structure of the PSS.

We now obtain additional results for general initial conditions. To do so, letΛ(n) be the

set of time points at which the rate of fluid entering service is equal to the arrival rate in the

nth cycle[(n− 1)/µ, n/µ], i.e.,

Λ(n) ≡ {t ∈ [0, 1/µ] : b(t + (n− 1)/µ, 0) = λ}. (5.56)

For the example in the proof of Theorem 5.12,Λ(n) = [t
(n)
1 , t

(n)
2 ] (see Appendix D.7). Since

t
(n)
1 is strictly decreasing andt(n)2 is strictly increasing, we haveΛ(n) ⊆ Λ(n+1). In general

Λ(n) may not be a single closed interval as in this case, nevertheless the monotonicity still

holds in general.

Theorem 5.13 (monotone convergence of the setsΛ(n))

(a) The sequence{Λ(n) : n ≥ 1} is monotonically increasing, i.e.,

Λ(n) ⊆ Λ(n+1) for all n ≥ 1.
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(b) The sequence{Λ(n) : n ≥ 1} converges to a bounded set, i.e.,

∪∞n=1Λ
(n) ≡ Λ∞ ⊆ [0, 1/µ].

Proof. The convergence in (b) directly follows from (a) becauseΛ(n) ⊆ [0, 1/µ] and is thus

bounded for alln ≥ 1. To show (a), consider anyt ∈ Λ(n), we haveb(t+(n−1)/µ, 0) = λ,

which implies thatσ(t + n/µ) = b(t + (n − 1)/µ, 0) = λ. If the system is overloaded

at timet + n/µ, thenb(t + n/µ, 0) = σ(t + n/µ) = λ by flow conservation of fluid in

service; if the system is underloaded at timet+n/µ, then we again haveb(t+n/µ, 0) = λ

because external arrival flows into service directly. Therefore, b(t + n/µ, 0) = λ implies

thatt ∈ Λ(n+1). 2

We now show that convergence to the stationary point of the fluid density in service

occursonly if the initial fluid density is that stationary point.

Theorem 5.14 (convergence to the unique stationary point) The only initial fluid density

in serviceb(0, ·) for whichb(t, x)→ b∗(x) ≡ sµ, 0 ≤ x ≤ 1/µ, ast→∞ is the stationary

point b∗ itself.

Proof. First the conclusion is clearly true wheneverB(t) = s for all t ≥ 0, because

the densityb((n/µ), x) = b(0, x), 0 ≤ x ≤ 1/µ for all n ≥ 1. We shall show that for

anyb(0, x) that is different from the steady state, i.e.,max0≤x≤1/µ |b(0, x)−µ s| > 0, there

exists a0 ≤ t ≤ 1/µ such thatb(t+n/µ, 0) 6= µ s for all n ≥ 0 so thatb(t+n/µ, 0) 9 µ s.

In this case there must exist a0 ≤ t ≤ 1/µ such thatµ s 6= b(0, t) = b(1/µ − t, 0). If the

system is overloaded at timen/µ− t for all n ≥ 1, thenb(n/µ− t, 0) = b(1/µ− t, 0) 6= µ s

for all n ≥ 1, by Theorem 5.4 and Corollary 5.3. If the system is underloaded at time

n′/µ − t for somen′ ≥ 1, then we must haveb(n′/µ − t, 0) = λ, which implies that
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b(n/µ − t, 0) = λ for all n ≥ n′, following from Theorem 5.13 (because setΛ(n) is

increasing). Therefore, we concludeb(n/µ − t, 0) 9 µ s as n → ∞. In particular,

|b(n/µ− t, 0)− µ s| ≥ |b(0, t)− µ s| ∧ (λ− µ s). 2

We now establish convergence ofb(t, ·) to a PSS for general initial conditions.

Theorem 5.15 (PSS in service) Consider theG/D/s + GI fluid queue with arbitrary

initial conditionb(0, ·). For 0 ≤ t ≤ 1/µ, asn→∞,

b(t + n/µ, 0) → b∞(t, 0) ≡ λ · 1{t∈Λ∞} + b(0, 1− t) · 1{t/∈Λ∞},

b(t+ n/µ, x) → b∞(t− x, 0) · 1{0≤x≤t} + b∞(t− x+ 1/µ, 0) · 1{t<x≤1/µ},

σ(t + n/µ) → b∞(t, 0).

Proof. First, it is easy to see that the third relation follows from the second(lettingx = 1/µ)

and the second follows from the first. To establish the first relation, consider0 ≤ t ≤ 1/µ.

If the system is overloaded att + n/µ, 0 for all n ≥ 0, thenb(t + n/µ, 0) = b(0, 1 − t)

for all n ≥ 0 and thus converges tob(0, 1 − t) asn → ∞, following from Theorem 5.4

and Corollary 5.3. If the system is underloaded att + n′/µ, 0 for somen′ ≥ 0, then

b(t + n′/µ, 0) = λ, which impliesb(t + n/µ, 0) = λ for all n ≥ n′, by Theorem 5.13. 2

We now show that the system is fully overloaded in each PSS, even if the PSS is only

approached in the limit. For the proof, define the sets in which the system is overloaded

(including critically loaded) and underloaded in a cycle ofthe PSS as

O∞ ≡ {0 ≤ t ≤ 1/µ : B(t) = s} and U∞ ≡ {0 ≤ t ≤ 1/µ : B(t) < s}.
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Theorem 5.16 (overloaded in each PSS) Each PSS for theG/D/s + GI fluid model is

overloaded everywhere, i.e., in a cycle[0, 1/µ],O = [0, 1/µ] andU = φ.

Proof. First, it is easy to see thatO cannot be∅, becauseρ > 1. Suppose there exists a

0 ≤ t ≤ 1/µ such that the system is underloaded att, then there must exists a switching

time 0 ≤ t′ ≤ 1/µ at which the system switches from overloaded to underloadedregime,

which implies thatb(t, 0) = λ < σ(t). This will makeσ(t + 1/µ) = b(t, 0) = λ 6= σ(t).

Hence, this contradicts with our assumption that the systemis initially in PSS. 2

5.10 Proofs

In this section we present three postponed longer proofs.

Proof of Theorem 5.1 The busy cycle is a random sum of i.i.d. interarrival times, and so

necessarily has a nonlattice distribution because the interarrival time cdf is nonlattice; see

Proposition X.3.2 of [2]. Hence it suffices to focus on the mean busy cycle. We stochasti-

cally bound a busy cycle of theGI/D/n +GI system above and below by quantities that

are easier to analyze.

We start with the upper bound. For the upper bound, we use a coupling construction

to produce sample-path stochastic order, as in [2, 40, 71]. We construct both systems on a

common probability space so that the sample paths are ordered w.p.1 while each process

separately has its own proper distribution. We give both systems the same arrival process

(the same sample paths). For the upper bound, letY (t) be the number of customers in the

queue of the associated system in which no servers are working. The stochastic processY

behaves as the number in system in aGI/GI/∞ model with interarrival-time cdfG and

service-time cdfF (our abandonment cdf). Thenn+Y is our candidate sample path upper

bound forX. Start bothX andY with an arrival to an empty system at time0. Continue
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the sample path construction by assigning all customers that enter the queue in the original

“X model” abandonment times equal to the service times assigned to the corresponding

arrival in the bounding “Y model,” both according to cdfF . As a consequence, whenever a

customer completes service in the boundingY model, the matching customer in the original

X model customer will either have entered service or abandoned in the originalX model.

Hence the sample-path order is maintained. Since the abandonment times are i.i.d., this

assignment rule does not alter the distribution of the processes.

The key now is to observe that the busy cycles in both theX model and theY model

(not counting then) will end after one more interarrival time beyond the beginning of

a busy cycle of theY process if the interarrival-time and service-time pair(U,A) at the

beginning of theY busy cycle satisfiesU > 2/µ > A, which is an event, sayC, with

positive probability

p ≡ P (C) ≡ P (U > 2/µ > A) = P (U > 2/µ)P (A < 2/µ) > 0, (5.57)

by the assumptionsG(x) < 1 andF (x) > 0 for all x. In addition,p < 1 sinceP (A <

2/µ) < 1 because we have assumed thatF (x) < 1 for all x. For theY model, given

the eventC, the one customer in the system at the start of the busy cycle will depart at

timeA, which is less than the time of the next arrival,U . Hence, given eventC, theY

busy cycle isU . On the other hand, for theX model, at this same epoch, there are at

mostn + 1 customers in the system, with at most one in queue. Given event C, by time

1/µ, all customers initially in service will have completed service and departed. Again

given eventC, by time2/µ, any initially waiting customer will have entered service and

completed service if the customer did not abandon first. However, given eventC, we also

haveA ≤ 2/µ, so that the customer also would have abandoned. (We only need theA part

of the eventC for theY model.) Thus if eventC occurs at the beginning of a busy cycle in
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theY model, then the current busy cycle ends in both models after the timeU (which has

been conditioned to be greater than2/µ).

Thus the busy cycleTX for theX model is bounded above by the random sum ofN

model-Y busy cycles,TY,i, until the eventC first occurs at the beginning of a busy cycle,

plus the single specialU . For theY models, these successive trials are i.i.d. because of the

regenerative structure. The key fact we now exploit is the fact that a busy cycleTY of theY

process always has finite mean. For that, we can apply Corollary XII.2.5 of [2] or Theorem

2.2 of [70]. We can express the finite meanE[TY ] as

E[TY ] = pE[TY |C] + (1− p)E[TY |Cc]

= pE[U |U > 2/µ] + (1− p)E[TY |Cc]. (5.58)

Since,E[U ] <∞, necessarilyE[U |U > 2/µ] <∞, so that

E[TY |Cc] ≤ E[TY ]− pE[U |U > 2/µ]

1− p ≤ E[TY ]

1 − p <∞. (5.59)

(Here we use the fact thatp < 1.)

Finally, we can combine the results above to conclude that anX busy cycleTX is

stochastically bounded by a geometric random sum of i.i.d random variables, each dis-

tributed as[TY |Cc], plus one more random variable distributed as[U |U > 2/µ]. Hence, we

have the bound

E[TX ] ≤
E[TY |Cc]

p
+ E[U |U > 2/µ] ≤ E[TY ]

p(1− p) +
E[U ]

P (U > 2/µ)
<∞. (5.60)

(Here we use the fact that0 < p < 1.)

We now consider the lower bound. We obtain a simple lower bound by observing that
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the original (X) system cannot empty until at least one interarrival time exceeds the service

time 1/µ of that arrival. LetN ′ ≡ {n ≥ 1 : Un > 1/µ}, a geometric random variable

with parameterp′ ≡ P (U > 1/µ) ≡ Ḡ(1/µ). Thus the cycle timeTX is stochastically

bounded below by a sum ofN − 1 i.i.d. interarrival times that are less than1/µ plus

the last interarrival time that is greater than1/µ. Hence the expected cycle time must be

bounded below by

E[TX ] ≥
N ′−1
∑

i=1

E[U |U ≤ 1/µ] + E[U |U > 1/µ]

=
1− p′
p′

E[U |U ≤ 1/µ] + 1/µ.

Proof of Theorem 5.2 We first establish the limit for(B̄n, Ēn, S̄n) in (5.16). Since the

service times are deterministic with constant value1/µ, the departures (service comple-

tions) in the interval[0, 1/µ] are completely determined by the initial age distribution in

service, i.e.,S(t) = B(0, 1/µ)−B(0, 1/µ− t) andSn(t) = Bn(0, 1/µ)−Bn(0, 1/µ− t),

n ≥ 1. By Assumption 5.3,B̄n(0, ·) ⇒ B̄(0, ·) Hence we necessarily havēSn ⇒ S̄ in

D([0, 1/µ]), whereS̄ is nondecreasing and continuous.

For the next step, we first do the proof in the caseB(0, 1/µ) = 1, i.e., t∗ = T ∗ = 0;

afterwards we reduce the other case to this one. By Assumption 5.1, we haveN̄n ⇒

Λ. By condition (5.14), asymptotically, the instantaneous arrival rate is greater than or

equal to the instantaneous service completion rate. Hence,the fluid entering service during

[0, 1/µ] is asymptotically equivalent to the fluid completing service; i.e., we have‖Ēn −

S̄n‖1/µ ⇒ 0 asn → ∞, where‖x‖c denotes the uniform norm over the interval[0, c]. By

the convergence-together theorem, Theorem 11.4.7 of [74],Ēn ⇒ Ē in D([0, 1/µ]).

However, we can writeb(1/µ, x) = b(1/µ − x, 0), 0 ≤ x ≤ 1/µ, so thatB(1/µ, x) =

E(1/µ)−E(1/µ−x), 0 ≤ x ≤ 1/µ, and, similarly,Bn(1/µ, x) = En(1/µ)−En(1/µ−x),
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0 ≤ x ≤ 1/µ. Thus, by above, we getBn(1/µ, ·) ⇒ B(1/µ, ·) in D([0, 1/µ]). We then

see that the properties in Assumption 5.3 hold again at timet = 1/µ. Hence we can apply

mathematical indiction to conclude that(S̄n, Ēn) ⇒ (S̄, Ē) in D2 asn → ∞. Since we

can represent the two parameter processB̄n in terms ofĒn, we getB̄n ⇒ B̄ in DD as well.

Since all limits are deterministic, all the limits are jointby Theorem 11.4.5 of [74]. That

establishes (5.16) whenB(0, 1/µ) = 1.

We now consider the case in whichB(0, 1/µ) < 1. For the rest of the proof, let

V (t) ≡ B(t, 1/µ) andVn(t) ≡ Bn(t, 1/µ) with V̄n(t) ≡ n−1Vn(t). In this case, the

limiting fluid model is underloaded until timet∗ = T ∗ in (5.33). Moreover, in this case

(unlike Example 5.1) we can establish thatTn ⇒ t∗ asn→∞, exploiting condition (5.15).

We first show that, for anyδ > 0, P (Tn > t∗ − δ) → 1 asn → ∞. SinceV is

continuous, the definition oft∗ implies that, for anyδ > 0, there existsǫ > 0 such that

‖V ‖t∗−δ < 1 − ǫ. Now observe that, for allt, V̄n(t) ≤ V̄ u
n (t) ≡ V̄n(0) + N̄n(t) − S̄n(t).

However,‖V̄ u
n − V ‖t ⇒ 0 for all t > 0, whereV (t) = V (0) + λt − S(t) with V (t) < 1

for all t < t∗. Hence, for anyδ > 0 andǫ > 0, P (‖V̄ u
n − V ‖t∗−δ > ǫ) → 0 asn→ ∞. If

‖V ‖t∗−δ < 1− ǫ and‖V̄ u
n − V ‖t∗−δ ≤ ǫ, thenV̄n(t) ≤ V̄ u

n (t) < 1 for all t, 0 ≤ t ≤ t∗ − δ,

which implies thatTn ≥ t∗ − δ. Hence, we have shown that, for anyδ > 0, P (Tn >

t∗ − δ)→ 1 asn→∞.

We now show that, for anyδ > 0, P (Tn > t∗ + δ)→ 0 asn→∞. Given that we have

just shown thatP (Tn > t∗−δ)→ 1 asn→∞, we necessarily also have‖Ēn−N̄n‖t∗−δ ⇒

0, so that‖V̄n − V̄ u
n ‖t∗−δ ⇒ 0 for V̄ u

n defined above, so that‖V̄n − V ‖t∗−δ ⇒ 0 as well for

anyδ > 0. Moreover, since both̄Vn andV are bounded below by0 and above by1, we can

obtain‖V̄n − V ‖t∗ ⇒ 0, which implies that̄Vn(t∗)⇒ V̄ (t∗) = 1. asn→∞.

Since the limiting fluid model becomes overloaded at timet∗, we can apply condition

(5.15) to conclude that there must existδ > 0 andη > 0 such thatλδ > S(t∗+δ)−S(t∗)+η.
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Given thatδ andη, define the following events:

C0,n ≡ {Tn > t∗ + δ}

C1,n ≡ {V̄n(t∗) < 1− η/4}

C2,n ≡ {Sn(t
∗ + δ)− Sn(t

∗) > λδ − η/2}

C3,n ≡ {Nn(t
∗ + δ)−Nn(t

∗) < λδ − η/4}. (5.61)

Then observe thatC0,n ⊆ C1,n∪C2,n∪C3,n, so thatP (C0,n) ≤ P (C1,n)+P (C2,n)+P (C3,n).

However,P (Ci,n) → 0 asn → ∞ for eachi, 1 ≤ i ≤ 3. Hence,P (Tn > t∗ + δ) → 0 as

n→∞. Combining the two results, we obtainTn ⇒ t∗ asn→∞.

We now continue to establish (5.16) in the caseV (0) ≡ B(0, 1/µ) < 1. The asymptotic

behavior prior to timet∗ is easy, becauseEn(t) = Nn(t) for 0 ≤ t ≤ Tn, whereTn ⇒ t∗

asn→∞. Hence, we haveEn ⇒ E in D([0, t∗]) asn→∞. For the rest of the proof, we

shift t∗ to the origin and apply the first part of the proof for the caset∗ = 0.

It now remains to establish the limit (5.20) for(Q̄n, Ān), for which it suffices to consider

the system after timet∗, when the system is full, but the queue is empty. Henceforth we

assume that the system is full initially with an empty queue.For this remaining step, we

can proceed under the assumption that, asymptotically, theservice facility is always full

with an asymptotic rate of fluid entering service and departing of

b((k − 1)/µ+ t, 0) = σ(k/µ+ t) = b(k/µ, 1/µ− t) = b(0, 1/µ− t), 0 ≤ t ≤ 1/µ.

Now we will focus only on the queue and regard the queue as aG/GI/∞ model with

service times equal to the original abandonment times and a new arrival process. Service

completions in theG/GI/∞ model are to be interpreted as abandonments, while the total
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number of customers in theG/GI/∞ system is to be interpreted as the number in queue.

The arrival process for theG/GI/∞ system in modeln isNn(t)− En(t), whereEn(t) is

the number of customers to enter service in[0, t].

Note that this representation fails to faithfully capture the original FCFS service disci-

pline, because new arrivals go to the end of the queue, whereas customers enter service from

the front of the queue. Instead, this representation applies directly to the last-come first-

served (LCFS) discipline. However, that is where the exponential abandonment assumption

comes in. With exponential abandonment, the number in queueQn(t) is independent of

the service discipline.

Given theG/GI/∞ representation, we are able to directly apply FWLLN’s established

in [56]. Alternatively, we could apply [62]. SinceEn is asymptotically equivalent to the

service completion processSn, this new arrival process satisfies a FWLLN, having limit

Λ − S, which in general is not a linear function. However, sinceb(0, x) ≤ λ for all x,

0 ≤ x ≤ 1/µ, we also haveσ(t) ≤ λ for all t ≥ 0, so it has a nonnegative rate. Hence we

can prove (5.20) with (5.21) and (5.23) by applying Theorems3.1 and 7.1 of [56]. To do

so, we exploit the fact that the limit of the arrival process there is allowed to be nonlinear.

Finally, we complete the proof by showing (5.22) holds. We first exploit (5.21), which

implies that

Q(t) =

∫ t

0

e−θ (t−s)(λ− b(s, 0))ds

=
λ

θ
(1− e−θ t)− e−θ t

∫ t

0

b(s, 0) eθ sds. (5.62)

On the other hand, the ODE(2.32) implies that

w′(t) = 1− b(t, 0)

λ e−θ w(t)
, w(0) = 0,
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which has a unique solution

w(t) = t− 1

θ
log

(

θ

λ

∫ t

0

b(s, 0)eθ sds+ 1

)

. (5.63)

Combining (5.22)and (5.63), we obtain (5.62).

Proof of Theorem 5.5 First consider the interval[0, 1/µ]. The departure rate isσ(t) =

b(t, 1/µ) = b(0, 1/µ − t) for 0 ≤ t ≤ 1/µ. Since the staffing function is constants, it

is necessary to haveλ > σ(t) (λ < σ(t)) if the system switches from underloaded (over-

loaded) to overloaded (underloaded) att. Consider an underloaded interval[a, b] ⊂ [0, 1/µ]

wherea andb are switching points, we must haveζ(a) > 0 > ζ(b), which implies thatζ

changes its sign in(a, b) at least once from positive to negative. The sign changing can

be achieved in two cases: (i) crossing level 0 continuously from above to below, or (ii)

jumping from above 0 to below. Therefore,ζ has at least a zero in case (i) and a disconti-

nuity in case (ii) in interval(a, b). Similar reasoning works for an overloaded interval. This

reasoning applies to all overloaded and underloaded subintervals that begin and end in the

interior (0, 1/µ) of the interval[0, 1/µ]. In addition, there are the two intervals with the

interval endpoints. Thus the number of switches exceeds thenumber of internal intervals

by at most1. Let S[0,1/µ] be the total number of switching points in[0, 1/µ]. We have just

shown that we must have|S[0,1/µ]| ≤ |Dζ|+ |Zζ |+ 1.

We are done ifT = 1/µ; hence assume thatT > 1/µ. We continue for⌈Tµ⌉ cycles of

length1/µ. Next we consider the next interval[1/µ, 2/µ]. We will show that the number

of switching points can be no greater than in the first interval of length1/µ just considered.

Recall that the departure rate isσ(t) = b(t, 1/µ) = b(t−1/µ, 0). Let ζ2(t) ≡ σ(t+1/µ)−

λ = b(t, 0) − λ for 0 ≤ t ≤ 1/µ. Therefore,|S[1/µ,2/µ]|, the number of switching points
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in [1/µ, 2/µ], is totally determined by the number of zeros and discontinuities ofζ2, by the

same argument as above.

We now show that|Zζ2 | ≤ |Zζ|. To do so, we first observe that we haveb(t, 0) = σ(t)

when the system is overloaded. Hence the functionsζ(t) andζ2(t) differ only when the

system is underloaded during[0, 1/µ]. Consider an underloaded interval[a, b] ⊂ [0, 1/µ]

wherea andb are switching points, which implies thatσ(a) > λ > σ(b) (ζ(a) > 0 > ζ(b)).

Since the system is underloaded in[a, b], we must haveb(t, 0) = λ. In case (i),ζ changes

its sign in(a, b) with (at least) an zero at somey ∈ Zζ ∩ (a, b). However,ζ2 has no such

zeros inZζ2 ∩ (a, b) becauseζ2(y) = 0 for a < y < b (which yields thatZζ2 ∩ (a, b) = φ),

we have|Zζ2 ∩ (a, b)| = 0 ≤ |Zζ ∩ (a, b)|, which implies that|Zζ2 | ≤ |Zζ| counting all

underloaded intervals in[0, 1/µ] that are in case (i).

In case (ii),ζ changes its sign in(a, b) with (at least) a jump from positive to negative.

Howeverζ2 has at most two discontinuity points (ata andb) in (a, b) (becauseζ2(y) = 0

for a < y < b). Although the number of discontinuities ofζ2 in [a, b] may outnumber

the discontinuities ofζ by at most 1, these two jumps (ζ2(a−) > λ to ζ2(a) = λ and

ζ2(b−) = λ to ζ2(b) < λ) can at most contribute to one sign change in(a, b). In other

words,ζ2 may have more discontinuities thanζ , but those extra ones are redundant. Hence,

|S[1/µ,2/µ]| ≤ |Dζ| + |Zζ2| ≤ |Dζ| + |Zζ|. The desired bound in (5.30) is obtained by

induction on interval[n/µ, (n+ 1)/µ], continuing untilN ≡ ⌈Tµ⌉.

5.11 Conclusions

We considered the heavily loaded many-server queue with customer abandonment and de-

terministic service times, i.e., the stochasticGI/D/n + GI model. Even though the ar-

rival rate exceeds the maximum possible service rate, the customer abandonment keeps the

system stable. In§5.2 we showed that the busy cycles in the stochasticGI/D/n + GI
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queueing model constitute regeneration times, so that stochastic processes describing the

performance, such as the number of customers in the system, converge to proper steady

state distributions as time evolves for any proper initial condition.

In §5.3 we showed that a sequence ofG/D/n+GI queueing systems withρ ≡ λ/µ >

1 indexed byn satisfies a many-server heavy-traffic limit in the efficiency-driven (ED)

regime, converging to a deterministic fluid model, providedthat the arrival processes and

initial conditions obey functional weak laws of large numbers. In general, Theorem 5.2

only establishes a limit for the performance measures describing the service facility, e.g.,

Bn(t, y), but those fluid limits capture the essential periodic character. A many-server

heavy-traffic limit for the queue-length and abandonment processes was also obtained un-

der the assumption of exponential abandonment.

Like the stochastic system, we found that the limiting fluid model has a unique station-

ary point. However, unlike the stochastic model, Theorem 5.14 shows that the fluid model

never converges to that stationary point unless it starts inthat stationary point. Instead, the

fluid model tends to exhibit periodic behavior. Moreover, the specific form of the periodic

behavior depends critically on the initial conditions. As aconsequence, the asymptotic loss

of memory (ALOM) property established for theGt/Mt/st+GIt model in Chapter 4 does

not nearly hold with deterministic service times.

Moreover, as illustrated in§5.1, simulations of the stochastic system show that the time-

dependent behavior of the stochastic system is well described by the fluid model for large

n. Indeed, the fluid model tends to provide a better description of the performance in the

queueing model than the steady-state distribution of the queueing model, amplifying [73].

The rest of the chapter was devoted to a careful study of the limiting fluid model. We

obtained quite complete results for the case in which there exists a finite timeT ∗ after

which the system remains overloaded. Theorem 5.6 provides general conditions for this

to be true. That condition is in terms of the initial density of fluid in serviceb(0, ·), but
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can also be applied at later times after applying the algorithm in Remark 5.2 over some

initial interval. However,§5.9 shows that, in general, such a finite time need not exist.

Nevertheless, Theorem 5.15 shows that the fluid density in service b converges to a PSS,

In summary, the fluid content in service evolves in three different ways, depending on

the initial conditions:

1. The fluid in service is in steady state for allt ≥ 0 if it is initialized with b(0, x) = µ s

for 0 ≤ x ≤ 1/µ.

2. The system first becomes overloaded att∗ < 1/µ and remains overloaded after time

T ∗, t∗ ≤ T ∗ <∞, in which caseb(t, ·) is in a PSS determined byb(T ∗, ·).

3. The system first becomes overloaded att∗ < 1/µ, but switches between overloaded

and underloaded infinitely often. Then the fluid densityb converges to an overloaded

PSS.

In cases (ii) and (iii), if instead we initialize by redefining b(0, ·), letting it have the PSS

version, then the system is initially overloaded and the fluid density in service is periodic

with period1/µ for all t ≥ 0. The remaining queue performance then converges to a PSS as

well. In case (i), the associated queue performance converges to the unique stationary point

as well. In cases (ii) and (iii), if we start with the PSS forb, then the queue performance

converges to a PSS as well. In case (iii) it remains to determine if the queue performance

converges to the PSS associated with the limiting PSS forb when we use the given initial

conditions; we conjecture that it does.

It is natural to wonder what happens with other service-timedistributions. In Appendix

D.9 we show that the same periodic behavior is exhibited by the corresponding model

with a two-point service-time distribution, provided thatone of the points is at the origin

(in the same spirit as the corresponding special hyperexponential distribution in in [76]).
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However, in Appendix D.10 we present results from simulation experiments showing that

the periodic phenomenon ceases to hold for other two-point distributions and, more gen-

erally, if the service-time is only nearly deterministic. When the service-time distribution

is nearly deterministic, the performance is similar to the performance with D service and

the same initial conditions over suitably short time intervals, but convergence to stationary

performance is evident ast increases.

We concentrated on the stationaryG/D/n + GI fluid model, but some of the results

can be extended. First, as in Chapters 2-4, we can analyze, and obtain an algorithm for,

theGt/D/st + GI fluid model in which the arrival rate and the number of serversare

allowed to be time varying. In particular,§5.4,§5.5 and§5.7 extend to this case. In general,

we lose the periodic structure, on which most of this chapterfocuses, but that periodic

structure is retained as well if the arrival rate functionλ and the staffing functions are also

periodic with the same period1/µ. (However, the periodic structure is less surprising in

that case.) Moreover, the structural properties of the queue established in§5.7 also extend

toGI service, provided that the fluid density in serviceb is given. Of course, determining

b is more complicated forGI service that is neitherD norM . Theorem A.2 of Chapter 2

shows that it is necessary to solve a complicated fixed point equation in order to determine

b in those cases.

As stated in§5.1, we began this study in an effort to understand if ALOM holds for the

G/GI/s+GI andGt/GIt/st+GIt fluid models when the service-time distribution is nei-

therMt norM . That question remains after we stipulate that the service distribution also is

neitherD nor the two-point distribution with one mass at0. We conjecture that ALOM does

hold for the fluid model under that extra condition and the regularity conditions imposed in

Chapter 4.
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Appendix A

Appendix for Chapter 2

A.1 Overview.

This appendix contains material supplementing Chapter 2. We start with results for the

fluid model and conclude with simulation experiments.

First, §A.2 explains why the service content densityb(t, x) satisfies the transport PDE

in an underloaded (UL) interval, as noted in Remark 2.2. In§A.3 we supplement§2.6

by presenting alternative algorithms for the service content densityb during an overloaded

(OL) interval. This leads to a another PDE forb(t, x) under extra smoothness assumptions.

In §A.4 we present additional results for the BWTw and the PWTv during an OL inter-

val, thus supplementing§2.7. We begin by providing a more elementary proof of Theorem

2.3 for the ODE for the BWTw under additional smoothness regularity conditions. Then

we prove Corollary 2.3, which provides explicit formulas for the BWT in special cases. We

also state an analog of Corollary 2.3 for the PWTv. We also prove Theorem 2.4, which
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established conditions for the PWTv to be finite. In§A.5 we discuss the structure of the

BWT functionw. Theorem 2.3 requires the positivityλinf > 0 in Assumption 2.10. We

now consider cases in whichλ(t) = 0 for somet ≥ 0. We show that the BWTw can have

more complicated structure when the the zero set has zero Lebesque measure or positive

Lebesque measure.

In §A.6 we say more about the flows, i.e., the service-completion-rate function,σ,

and the abandonment-rate function,α, defined in (2.7) and (2.9). In§A.7 we supplement

§2.8, which summarizes the algorithm, by providing more discussion of the algorithm. In

particular, we specify the algorithm to adjust for an initially infeasible staffing function

s and illustrate its performance. In§A.8 we present additional material related to§2.10

on choosing staffing functions to stabilize delays. In particular, we show how to stabilize

delays with general initial conditions. (In§2.10 we assumed that the system starts empty.)

Finally, in §C.6 we supplement§2.2 in Chapter 2 by presenting additional compar-

isons of the fluid model to simulations of large-scale queueing systems. These additional

simulations confirm the observations in§2.2: First, for very large queueing systems, with

thousands of servers, the individual sample paths of the scaled queueing processes have

negligible stochastic fluctuations and agree closely with the computed fluid model perfor-

mance functions. Second, for smaller queueing systems, e.g., with about20 servers, the

fluid model performance functions still provide remarkablyaccurate approximations for

the mean values of the queueing processes.

A.2 The Transport PDE for b in a UL Interval

In Remark 2.2 we observed that the service content densityb satisfies a version of the

generic scalar transport equation in the underloaded case.We provide more details here.
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The same reasoning applies to the queue content densityq̃(t, x), during an overloaded

interval, ignoring flow into service; see§2.7.1.

Proposition A.1 (transport pde) In the underloaded region, ifb(0, ·) is differentiable inx,

then the service content functionb is differentiable fort 6= x and satisfies the the following

pde, a simple version of the generic scalar transport equation:

bt(t, x) + bx(t, x) ≡
∂b

∂t
(t, x) +

∂b

∂x
(t, x) = −hG(x)b(t, x). (A.1)

Proof. Sinceλ and b(0, ·) are both differentiable, then it is easy to see thatb(t, x) is

differentiable fort 6= x. If we let p(u) ≡ b(t + u, x+ u), we have that

bt(t, x) + bx(t, x) = p′(0) = lim
u→0

(

p(u)− p(0)
u

)

= lim
u→0

(

b(t + u, x+ u)− b(t, x)
u

)

= lim
u→0

(

Ḡ(x+ u)− Ḡ(x)
u

)(

b(t, x)

Ḡ(x)

)

= − g(x)
Ḡ(x)

b(t, x) = −hG(x)b(t, x),

where we apply the chain rule of calculus and the fundamentalevolution equation forb in

(2.5).

Solving pde (A.1) with initial conditionsλ(t) andb(0, x), yields Proposition 2.2. To

verify that, recall that the general solution to pde (A.1) isb(t, x) = e−
∫ x
0
hG(u)duφ(t −

x) = Ḡ(x)l(t − x), where functionφ is any differentiable function. Here we haveφ(t) =

λ(t)1{t≥0}. By the initial condition,b(0, x) = φ(−x)Ḡ(x) whenx ≥ 0. Therefore we see

that the claim is valid.
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A.3 Alternative Algorithms for b in an OL Interval

We now discuss alternative algorithms to calculate the service content densityb in an over-

loaded interval.

If Assumption 2.8 holds, then a finite functionb is uniquely characterized via equation

(2.16), where

b(t, x) = b̂(t, x)/hG(x), 0 ≤ x ≤ t < T, (A.2)

with b̂ being the unique solution of the equation

b̂(t, x) ≡ â(t, x) + g(x)

∫ t−x

0

b̂(t− x, y) dy, 0 ≤ x ≤ t < T, (A.3)

where

â(t, x) ≡ g(x)s′(t− x) + g(x)

∫ ∞

0

b(0, y)g(y + t− x)
Ḡ(y)

dy ∈ FT . (A.4)

We can establish the existence of a unique solution to equation (A.3) by applying the Ba-

nach fixed point theorem on an appropriate space of functionsof twovariables.

Although this new fixed-point equation is more complicated,it can lead to a PDE char-

acterization ofb. This PDE representation follows directly by differentiating in the equation

(A.3). (Convenient cancelation occurs.)

Theorem A.1 (PDE for b̂) Under the assumptions of TheoremsA.2 andA.3, wherever̂b

has first partial derivatives with respect tot andx, it satisfies the PDE

b̂t(t, x) + b̂x(t, x) = ŷ(t, x) + ẑ(x)b̂(t, x), 0 ≤ x ≤ t ≤ T, (A.5)
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where

ŷ(t, x) ≡ ât(t, x) + âx(t, x)−
g′(x)

g(x)
â(t, x) and ẑ(x) ≡ g′(x)

g(x)
(A.6)

for â(t, x) in (A.11). (The functionŝy and ẑ in (A.6) are well defined by the assumptions

in TheoremA.3.) Associated with the PDE is the boundary condition

b̂(t, t) = â(t, t) = g(t)s′(0) + g(t)

∫ ∞

0

b(0, y)hG(y) dy, 0 ≤ t ≤ T, (A.7)

which is finite by(2.25).

We now continue with the two-parameter functionsb ≡ b(t, x). To apply the Banach

fixed point theorem in this setting, we use the spaceFT,1 of measurable real-valued func-

tions of the pair of real variables(t, x) over the “triangular” domain0 ≤ x ≤ t ≤ T , for

which the norm

‖u‖T,1 ≡ sup
0≤t≤T

∫ t

0

|u(t, x)| dx. (A.8)

is finite. The norm‖ · ‖T,1 is anL1 norm in one coordinate and anL∞ norm in the other; it

makesFT,1 a Banach space.

Theorem A.2 (service content in the overloaded case) Consider an overloaded interval

[0, T ). If Assumption2.8holds, then a finite functionb is uniquely characterized via equa-

tion (2.16), where

b(t, x) = b̂(t, x)/hG(x), 0 ≤ x ≤ t < T, (A.9)
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with b̂ being the unique fixed point of the operatorT : FT,1 → FT,1 defined by

T (u)(t, x) ≡ â(t, x) + g(x)

∫ t−x

0

u(t− x, y) dy, 0 ≤ x ≤ t < T, (A.10)

where

â(t, x) ≡ g(x)s′(t− x) + g(x)

∫ ∞

0

b(0, y)g(y + t− x)
Ḡ(y)

dy ∈ FT . (A.11)

Moreover, the operatorT is a monotone contraction operator onFT,1 with contraction

modulusG(T ) for the norm‖ · ‖T,1 defined in(A.8), so that, for anyu ∈ FT,1, the fixed

point can be approximated by then-fold iterationT (n) of the operatorT applied tou, with

‖T (n)(u)− b̂‖T,1 ≤
G(T )n

1−G(T )‖T (u)− u‖T,1 → 0 as n→∞ (A.12)

and, if u ≤ (≥)T (u), thenT (n−1)(u) ≤ (≥)T (n)(u) ≤ (≥)b̂ for all n ≥ 1. Finally,

b̂(t, t) = â(t, t) = g(t)b(0, 0).

Proof. First, we show that̂b in (A.9) is a fixed point of the operatorT , i.e., thatT (b̂) = b̂.

To see that, multiply (2.16) through byhG(x), noting that (i)hG(x)Ḡ(x) = g(x) and (ii)

we are interested in the casex ≤ t. We get̂b(t, x) = b(t, x)hG(x) = b(t− x, 0)g(x). Next
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we successively apply (2.18), (2.5) and a change of variables to get

b̂(t, x) = b(t− x, 0)g(x) = s′(t− x)g(x) + g(x)

∫ ∞

0

b(t− x, y)hG(y) dy

= s′(t− x)g(x) + g(x)

∫ ∞

t−x

b(t− x, y)hG(y) dy + g(x)

∫ t−x

0

b(t− x, y)hG(y) dy

= s′(t− x)g(x) + g(x)

∫ ∞

t−x

b(0, y − (t− x)) Ḡ(y)

Ḡ(y − (t− x))hG(y) dy

+g(x)

∫ t−x

0

b̂(t− x, y) dy

= s′(t− x)g(x) + g(x)

∫ ∞

0

b(0, y)
g(y + t− x)

Ḡ(y)
dy + g(x)

∫ t−x

0

b̂(t− x, y) dy

= â(t, x) + g(x)

∫ t−x

0

b̂(t− x, y) dy = T (b̂)(t, x), (A.13)

whereâ(t, x) = ĉ(t, x) + d̂(t, x) with

ĉ(t, x) ≡ g(x)s′(t− x) and d̂(t, x) ≡ g(x)

∫ ∞

0

b(0, y)
g(y + t− x)

Ḡ(y)
dy.

We next show that‖â‖T,1 < ∞. First,‖ĉ‖T,1 ≤ G(T )‖s′‖T < ∞ becauses′ ∈ Cp ⊂ D.

Because of the factorg(x), ‖d̂‖T,1 is bounded by the integral term. Taking the supremum

overx andt with 0 ≤ x ≤ t ≤ T of the integral in the expression for̂d yields the term

τ in Assumption 2.8, which we have assumed is bounded. Hence‖d̂‖T,1 < ∞, and so

‖â‖T,1 <∞.

Next note thatT is indeed a contraction operator on(FT,1, ‖ · ‖T,1), because

‖T (u1)− T (u2)‖T,1 ≤ sup
0≤t≤T

∫ t

0

g(x)

(
∫ t−x

0

|u1 − u2|(t− x, y) dy
)

dx ≤ G(T )‖u1 − u2‖T,1,

and we have assumed thatG(T ) < 1 for all T . The geometric rate of convergence in

(A.12) is the standard conclusion from the Banach fixed pointtheorem, and the subsequent
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ordering follows from the monotonicity ofT . Finally, b̂(t, t) = â(t, t) because the subset

of u in FT,1 for whichu(t, t) = â(t) is closed, andT maps that subset into itself, because

T (u)(t, t) = â(t, t), 0 ≤ t ≤ T , for all u in FT,1. By (2.18),â(t, t) = g(t)b(0, 0).

We now provide conditions for̂b(·, x) andb(·, x) to be inCp for all x ≥ 0. (We use

these properties forb(·, 0) to establish properties of the ODE to calculate the BWTw in

§2.3 of Chapter 2.) We first introduce extra smoothness conditions.

Assumption A.1 (extra smoothness for g and s) g ands′ are differentiable with derivatives

g′ ands′′ in Cp.

We next impose additional regularity conditions on the service-time pdfg. For that

purpose, let‖g‖∞ be the uniform norm, i.e.,‖g‖∞ ≡ supx≥0 {|g(x)|}.

Assumption A.2 (extra regularity for g) The service-time pdfg satisfies:g(x) > 0 for all

x, ‖g‖∞ <∞ and there existsK such thatg(x) ≤ g(0)eKx for all x ≥ 0.

We will use the last inequality in Assumption A.2 in its equivalent form: |g′(x)| ≤

Kg(x) for all x. (To see the equivalence, Divide byg(x), integrate and take the exponen-

tial.)

Theorem A.3 (smoothness of service content in the overloaded case) If Assumptions2.8–

A.2 all hold, thenb̂(·, x) and b(·, x) are differentiable functions for eachx ≥ 0, almost

everywhere equal to their partial derivatives with respectto t, for b in (A.9) and b̂ in

(A.10). Hence,̂b(·, x), b(·, x) ∈ Cp for all x ≥ 0.

Proof. We again apply the Banach fixed point theorem, but now on a subspace ofFT,1

with a new norm. Consider the subspace of measurable real-valued functionsu of the

pair of real variables(t, x) over the same triangular domain0 ≤ x ≤ t ≤ T that are
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differentiable with respect to the variablet, and equal almost everywhere to the integral of

its partial derivativeut, with finite norm‖u‖T,2, where

‖u‖T,2 ≡ sup
0≤t≤T

{
∫ t

0

(|u(t, x)|+ |ut(t, x)|) dx, } (A.14)

which is like the Sobolev norm on the Sobolev spaceW1,∞(0, t). The functions inFT,2 are

Lipschitz continuous in the first variablet for eachx in 0 ≤ x ≤ t ≤ T . Reasoning as in

the proof of Theorem A.2, we will show that‖â‖T,2 < ∞, and then we will show thatT

mapsFT,2 into itself.

Then,

‖â‖T,2 ≤ ‖â‖T,1 +G(T )

(

‖s′′‖T +K sup
0≤s≤T

∫ ∞

0

(b(0, y)g(s+ y)/Ḡ(y)) dy

)

<∞

by the proof of Theorem A.2 and the conditions in Assumptions2.8, A.1 and A.2. (Since

Cp ⊂ D, ‖s′′‖T <∞.) Next,‖T (u)‖T,2 ≤ ‖â‖T,2 +G(T )(‖u‖T,1 + sup0≤t≤T {|u(t, t)}+

‖ut‖T,1) < ∞. Then we see thatT is again a contraction operator on(FT,2, ‖ · ‖T,2) with

modulusG(T ). We can ignore the term involving|u1(t, t)− u2(t, t)|, because, as noted at

the end of Theorem A.2, we can restrict attention to the closed subspaceFT,2 containing

onlyu for whichu(t, t) = g(t)b(0, 0); as a consequence,u1(t, t) = u2(t, t) for all t. Hence,

the fixed point̂b is an element ofFT,2, and so has the claimed smoothness properties.

A.4 More on the Performance in Overloaded Intervals

We now present additional material on the queue performancefunctions during an OL

interval.



245

A.4.1 More on the BWT w

Alternate Proof of Theorem 2.3: the ODE for the BWT w. If we assume additional

smoothness, then we can obtain a simple direct proof of Theorem 2.3. In particular, we

can obtain the expression for the ODE describing the evolution of the BWTw(t) by differ-

entiating in the basic flow conservation equation in (2.6). Consider an overloaded interval

that starts out with the queue empty, so thatQ(0) = 0. Then, when we differentiate with

respect tot in (2.6), we get

d

dt
Q(t) ≡ Q′(t) = λ(t)− α(t)− b(t, 0), (A.15)

where, from (2.7) and Corollary 2.2, by a change of variable,

α(t) ≡
∫ ∞

0

q(t, x)hF (x) dx =

∫ w(t)

0

λ(t−x)f(x) dx =

∫ t

t−w(t)

λ(x)f(t−x) dx. (A.16)

and,

Q(t) =

∫ w(t)

0

λ(t− x)F̄ (x) dx =

∫ t

t−w(t)

λ(x)F̄ (t− x) dx. (A.17)

Then, assuming thatw is differentiable (as well as̄F ), we can differentiate under the inte-

gral in (A.17) to get

Q′(t) = λ(t)− q̃(t, w(t))(1− w′(t)) +

∫ t

t−w(t)

λ(x)f(t− x) dx. (A.18)

We remark that the standard conditions to justify differentiation under the integral, i.e.,

differentiation of

I(t) ≡
∫ b(t)

a(t)

h(t, x) dx (A.19)
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is to have (i) the partial derivative ofh(t, x) with respect tot be well defined, (ii)h(t, x)

and∂h(t, x)/∂t both be continuous in the two variablest andx in some region including

{(t, x) : a(t) ≤ x ≤ b(t), t1 ≤ t ≤ t2}, and (iii) a andb to have continuous derivatives in

the region{t : t1 ≤ t ≤ t2}. Under these conditions,

I ′(t) = h(t, b(t))b′(t)− h(t, a(t))a′(t) +
∫ b(t)

a(t)

∂h(t, x)

∂t
dx. (A.20)

Equation (A.18) is an application of (A.20) to (A.17).

Inserting (A.18) into (A.15) and making appropriate cancelations (λ(t) andα(t) appear

on both sides), we get

b(t, 0) = q̃(t, w(t))(1− w′(t)), (A.21)

which yields

w′(t) = 1− b(t, 0)

q̃(t, w(t))
. (A.22)

The more complicated analysis in our main proof is needed because we do not have all the

smoothness conditions.

Proof of Corollary 2.3: explicit expressions for the BWT w. Since the proofs to (a)

and (b) are similar, we will only prove (b). ODE (2.31) implies that

b(t, 0)eθt = λ(t− w(t))eθ(t−w(t))(1− w′(t)) =
d

dt

(

∫ t−w(t)

0

λ(y)eθydy

)

,

which implies

Λ̃(t− w(t)) =

∫ t

0

b(y, 0)eθydy,
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and inverting functioñΛ(·) yields (2.33). Moreover,

t̃ ≡ inf{t > 0 : w(0) = 0} = inf{t > 0 : Λ̃(t) =

∫ t

t1

b(y, 0)eθydy}.

A.4.2 More on the PWT v

We now give closed-form formulae for the PWTv in some special cases, paralleling those

for the BWT w in Corollary 2.3. We omit the proof, which is similar to the proof of

Corollary 2.3, which is given in the next subsection.

Corollary A.1 Supposev(0) = 0, the system is overloaded for0 < t < δ, b(t, 0) > 0.

(a). If there is no abandonment, i.e., if the model isGt/M/st, then

v(t) = Γ−1(

∫ t

0

λ(y)dy)− t,

for 0 ≤ t < t̄, whereΓ(t) ≡
∫ t

0
b(y, 0)dy, Γ−1(x) ≡ inf{y > 0 : Γ(y) = x}, and

t̄ ≡ inf{t > 0 : Γ(t) =
∫ t

0
λ(y)dy}.

(b). If the abandonment-time distribution is exponential (F̄ (x) = e−θx for x ≥ 0), i.e., if

the model isGt/M/st +M , then

v(t) = Γ̃−1(

∫ t

0

λ(y)eθydy)− t,

for 0 ≤ t < t̃, whereΓ̃(t) ≡
∫ t

0
b(y, 0)eθydy, Γ̃−1(x) ≡ inf{y > 0 : Γ̃(y) = x}, and

t̃ ≡ inf{t > 0 : Γ̃(t) =
∫ t

t1
λ(y)eθydy}.
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Proof of Theorem 2.4: finiteness of PWT v. Proof.Recalling the definition ofσ(t) in

(2.9), and using Assumption 2.12, we obtain

σ(t) =

∫ ∞

0

b(t, x)hG(x) dx ≥
∫ ∞

0

b(t, x)hG,L dx = B(t)hG,L.

However, in the overloaded interval,B(t) = s(t) ands(t) ≥ slbd by Assumption 2.11.

Hence we have the claimed lower bound onσ(t). We use that lower bound to bound

E(t+ u)− E(t) below. Note that

E(t+u)−E(t) =
∫ t+u

t

b(v, 0) dv =

∫ t+u

t

(s′(v)+σ(v)) dv ≥ s(t+u)−s(t)+sLhG,Lu.

By Assumption 2.11,s(t + u) ≥ sL. Starting from the definition (2.35), we apply the

inequalities above to obtain

v(t) ≡ inf {u ≥ 0 : E(t+ u)−E(t) + At(u) ≥ Q(t)}

≤ inf {u ≥ 0 : E(t+ u)−E(t) ≥ Q(t)}

≤ inf {u ≥ 0 : (sLhG,Lu− s(t) + sL)
+ ≥ Q(t)} ≤ Q(t) + s(t)− sL

sLhG,L
<∞,

whereQ(t) ≤ Q(0) + Λ(t) <∞ for all t. 2

A.5 Structure of the Boundary Waiting Time w.

Theorem 2.3 requires the positivityλinf > 0 in Assumption 2.10. We now consider cases

in whichλ(t) = 0 for somet ≥ 0. That leads to more complicated behavior for the BWT

functionw.
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A.5.1 The Zero Set ofλ(·) Has Zero Lebesgue Measure.

First, suppose thatλ(t0) = 0 for somet0 > 0 but the zero set ofλ(·) has zero Lebesgue

measure, i.e.,
∫ T

0
1{λ(t) = 0}dt = 0, see Figure A.1(a). Again we assume that bothb(t, 0)

andλ(t) are continuous for0 ≤ t ≤ T .

We only consider the overloaded case (the underloaded case is not interesting since

w(t) = 0). For simplicity, suppose the system is initially critically loaded, i.e.,B(0) =

S(0), w(0) = 0, Q(0) = 0, andλ(0) > σ(0), then the system becomes overloaded in the

next moment.

We give a vivid example. Let the system be initially critically loaded and suppose

b(t, 0) = 1 as long as the system is overloaded. For instance, this can beachieved if

S(t) = 1 and the service-time distribution is exponential with rate1. Let the arrival-rate

functionλ(t) = t2 − 3t + 9/4 and the abandon-time distribution be exponential with rate

0.5, i.e.,F̄ (x) = 0.5 · e−0.5x for x ≥ 0.

We can see from Figure A.1(a) thatλ(3/2) = 0 and
∫ T

0
1{λ(t)=0}dt = 0 for all T > 0.

Becauseλ(0) = 9/4 > b(0) = 1 the system becomes overloaded after time 0. We plot in

Figure A.1(b) the boundary waiting timew(t), 0 ≤ t ≤ T with T = 3. One can see that

the derivative ofw(t) reaches−∞ once, and this corresponds to the fact thatλ(t) touches

0 once but does not stay at 0.

A.5.2 The Zero Set ofλ(·) Has Positive Lebesgue Measure.

In a more general setup of the arrival process,λ(t) can stay at 0 for a while meaning that

the arrival process is turned off. For instance, it is natural that the arrival process may look

like the first picture in Figure A.2.

Intuition tells us in this casew(t) cannot be continuous for allt ≥ 0, it will jump at

some times. But when willw(t) jump? What will be the heights of the jumps? To answer
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Figure A.1: An example of boundary waiting timew(t) with λ(t) = 0 once.

these questions, we simply assume thatλ(t) = 0 for 0 < t̂1 ≤ t < t̂2 < ∞. The case that

λ(t) = 0 for t in finite disjoint intervals can be easily generalized. Notethatλ(t) being

left-continuous or right-continous does not matter because it is just a rate function.

Again, we consider a vivid example. Suppose the system is initially overloaded with

w(0) = 2 andq(0, x) = e0.5x1{0≤x≤w(0)}. We chooseλ(t) large enough such that the system

stays overloaded fort ≥ 0 and fixb(t, 0) = 0.5. Letλ(t) = (9t−3t2)·1{0≤t<3}+3·1{t≥3.5}.

In other words,λ(t) is quadratic fort ∈ [0, 3), stays at 0 fort ∈ [3, 3.5), and is constant 3

for t ≥ 3.5, see Figure A.2(a). Let the abandon-time distribution be exponential with rate

0.5.

In Figure A.2(b), the red line isq(t, x) at t = 0, which is a function ofx. The blue

line on the negative half-line is the arrival-rate functionλ(t) reflected with respect to they

axis. Imagine that with the origin fixed, the blue line moves to the right at rate 1, because
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Figure A.2: The dynamics ofq(t, x) of an example withλ(t) = 0 for 0 < t1 ≤ t < t2 <∞.

new fluid keeps arriving to the system after time 0. The right boundary of the red line is

the boundary waiting timew(t) at eacht, which is being controlled by the ratio between

b(t, 0) = 1 andq(t, w(t)). So one can see that the right boundary of the red line is moving

at rate1 − b(t, 0)/q(t, w(t)) since fluid at the front of the queue is being transported into

service (eaten away) byb(t, 0).

As time evolves, for the part of the reflected arrival-rate function that exceeds the ori-

gin (that is pushed onto the positive half-line), the heightdecreases with time because

of abandonment. In Figure A.2(c), all fluid that was in queue at time 0 is just gone at

time t1, andw(t1) = t1 because the blue line travelled byt1 to the right. At timet1,
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Figure A.3: An example of the boundary waiting timew(t) with λ(t) = 0 for 0 < t1 ≤ t <
t2 <∞.

q(t1, x) = λ(t1−x) · e−0.5 ·1{0≤x≤t1} which is the red line, andq(t1, w(t1)) = q(t1, t1) = 0

implies thatw′(t1) = −∞, see Figure A.3. Althoughw′(t) has a discoutinuity att1, w(t)

itself is continuous att1.

At time t2− which is the moment right before the quadratic part ofλ(t) is eaten away,

the boundary waiting timew(t2−) = t2 − 3, where 3 is the length of the quadratic part of

λ(t). Then at timet2+, w(t) jumps fromw(t2−) = t2 − 3 tow(t2+) = t2 − 3.5, because

there is an interval of length 0.5 in whichλ(t) = 0, see Figure A.3. Att2 the left derivative

w(t2−) =∞ becauseq(t2−, w(t2−)) = 0.

This example shows that discontinuities ofλ yield discontinuities ofw′, andλ staying

at 0 over in interval yields discontinuities ofw.
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A.6 More on the Flows

We next discuss the departure functionS in (2.9) and the abandonment functionA in (2.7).

These flows are performance measures of interest in their ownright, but they are also

important because they enable us to extend the model treatedhere directly to open networks

of fluid queues, in which the departing fluid or abandoning fluid from one queue become

input to another queue; see Chapter 2.

A.6.1 Main Results

We show that the flowsS andA inherit the structure of the original inputΛ, so that the

results in Chapter 2 extend to open networks of fluid queues. The following results are

elementary. The proofs and other properties are given in thefollowing subsection.

Theorem A.4 (the departure rate) Assume that the conditions in TheoremA.3 hold. For

t ≥ 0,

σ(t) =

∫ t

0

b(t− x, 0)g(x) dx+
∫ ∞

0

b(0, y)g(t+ y)

Ḡ(y)
dy,

whereb(t, 0) = λ(t − u) in an underloaded interval, but is the solution to the fixed point

equation in Theorem A.2 during an overloaded interval. As a consequence,σ ∈ Cp.
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Theorem A.5 (abandonment rate) Assume that the conditions in Theorem 2.3 ofChapter

2 hold, so that the BWTw is well defined and continuous. Fort ≥ 0,

α(t) =

(

∫ w(t)

0

λ(t− x)f(x) dx
)

1{w(t)≤t}

+

(

∫ t

0

λ(t− x)f(x) dx+
∫ w(t)−t

0

q(0, y)f(t+ y)

F̄ (y)
dy

)

1{w(t)>t}.

As a consequence,α ∈ Cp.

A.6.2 Elaboration on the Flows

We now elaborate on the discussion about the flows in the previous subsection; i.e., we

discuss the departure processS in (2.9) and the abandonment processA in (2.7). Make the

same assumptions as above including the conditions in Theorem A.3 and Assumption 2.12.

Theorem A.6 (departure rate)

1. For t ≥ 0,

σ(t) =

∫ ∞

0

b(t, x)hG(x) dx =

∫ t

0

b(t− x, 0)g(x) dx+
∫ ∞

0

b(0, y)g(t+ y)

Ḡ(y)
dy,(A.23)

whereb(t, 0) = λ(t − u) in an underloaded interval, but is the solution to the fixed

point equation in Theorem A.2 during an overloaded interval.

2. σ ∈ Cp, as assumed forλ in Assumption2.2.

3. σ(t) ≥ B(t)hG,L > 0 for all t ≥ 0, so thatσ satisfies the requirement forλ in

Assumption 2.10 over the interval[ǫ, t] for eachǫ > 0.
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4. If there exists a constanthG,U such thathG(x) ≤ hG,U < ∞ for all x ≥ 0, then

σ(t) ≤ B(t)hG,U ≤ s(t)hG,U for all t ≥ 0.

5. If b(t, 0) is absolutely continuous with derivativeb′(u, 0) in Cp on the interval[0, t]

(as occurs in the case of exponential service) and if

τ2(b, g, t) ≡ sup
0≤s≤t

∫ ∞

0

b(0, y)|g′(s+ y)|
Ḡ(y)

dy <∞, (A.24)

thenσ is absolutely continuous with derivative(a.e.)

σ′(t) = b(0, 0)g(t) +

∫ t

0

b′(u, 0)g(x) dx+

∫ ∞

0

b(0, y)g′(s+ y)

Ḡ(y)
dy. (A.25)

Proof. We prove the properties in turn:

(i) (representation (A.23)) Apply (2.9) and Assumption 2.6.

(ii )(σ ∈ Cp) By the finiteness of the initial conditions, Assumption 2.8and the con-

tinuity of b(·, 0) from Theorem A.3,σ(t) < ∞. By Theorem A.3,b(·, 0) is in Cp. By

the Lebesgue dominated convergence theorem, the continuity of b(t, 0) andg(t+ y) in the

integrands of (A.23) is inherited byσ, soσ ∈ Cp, as claimed.

(iii ) (lower bound) By the initial relation in (A.23), we haveσ(t) ≥ B(t)hG,L. Since

s(u) ≥ sL > 0 for 0 ≤ u ≤ t, λ(t) ≥ λinf(t) > 0 and Ḡ(x) > 0 for all x, we have

B(t) ≥ tλinf (t)Ḡ(t) ∧ sL for all t ≥ 0, which implies that there exist constantsǫ > 0 and

σ{inf,η,ǫ} such thatσ(u) > σ{inf,η,ǫ} > 0 for 0 < ǫ ≤ u ≤ t.

(iv) (upper bound) By the initial relation in (A.23), we haveσ(t) ≤ B(t)hG,U , but we

always haveB(t) ≤ s(t).

(v)(derivative) We differentiate under the integral in (A.23)using Leibniz integral for-
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mula for differentiation under the integral, for which we require the finiteness ofτ2 in

(A.24).

The abandonment rate is somewhat more difficult. First, the abandonment is only pos-

itive during the overloaded intervals, so we assume that we are focusing on a single over-

loaded interval. Second, the abandonment depends onq, which in turn depends onw,

which also is more complicated, requiring more conditions.

Theorem A.7 (abandonment rate) Assume that the conditions in Theorem 2.3 hold, so that

the BWTw is well defined and continuous.

1. For t ≥ 0,

α(t) =

(

∫ w(t)

0

λ(t− x)f(x) dx
)

1{w(t)≤t}

+

(

∫ t

0

λ(t− x)f(x) dx+
∫ w(t)−t

0

q(0, y)f(t+ y)

F̄ (y)
dy

)

1{w(t)>t}.(A.26)

2. α ∈ Cp, as assumed forλ in Assumption2.2.

3. If Assumption2.12holds, thenα(t) ≥ Q(t)hG,L for all t ≥ 0.

4. If there exists a constanthG,U such thathG(x) ≤ hG,U < ∞ for all x ≥ 0, then

σ(t) ≤ Q(t)hG,U , which is bounded over finite intervals, becauseQ is continuous.
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5. If b(t, 0) > 0 a.e., thenα is absolutely continuous with derivative(a.e.)

α′(t) =

(

λ(t− w(t))f(w(t))w′(t) +

∫ w(t)

0

λ′(t− x)f(x) dx
)

1{w(t)≤t}

+

(

λ(0)f(w(t)) +

∫ t

0

λ′(t− x)f(x) dx+
(

q(0, w(t)− t)f(w(t))
F̄ (w(t)− t)

)

(w′(t)− 1))

+

∫ w(t)−t

0

q(0, y)f ′(s+ y)

F̄ (y)
dy

)

1{w(t)>t}. (A.27)

Proof. We prove the properties in turn:

(i) (representation) Applying definition (2.7) and Assumption 2.6, we have

α(t) =

∫ ∞

0

q(t, x)hF (x) dx =

∫ t

0

q(t− x, 0)f(x) dx+
∫ ∞

0

q(0, y)f(t+ y)

F̄ (y)
dy, (A.28)

from which (A.26) follows.

(ii ) (α ∈ Cp) Note thatλ, q(0, ·) ∈ Cp by Assumption 2.2,q(·, 0) ∈ Cp by Theorem

2.3 and Corollary 2.2 andw is continuous by Theorem 2.3. Hence, by the Lebesgue domi-

nated convergence theorem, the continuity ofλ(t, 0) andf(t + y) as a function oft in the

integrands of (A.23) is inherited byσ, soσ ∈ Cp, as claimed.

(iii ) (lower bound) By the initial relation in (A.26), we haveα(t) ≥ Q(t)hF,L.

(iv) (upper bound) By the initial relation in (A.26), we haveα(t) ≤ Q(t)hF,U .

(v) (derivative) We differentiate under the integral in (A.23)using Leibniz integral for-

mula for differentiation under the integral. Since the integrands are bounded over the finite

intervals, the integrals are finite.
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A.7 A Fluid Algorithm with Infeasible s.

Our main algorithm in§2.8 for theGt/GI/st + GI fluid model assumes that the staffing

functions is feasible. That algorithm is designed to stop whenever thegiven staffing func-

tion s is detected to be infeasible. Now we want to apply the resultsin §2.9 to find the

minimum feasible staffing function.

We illustrate how to do so for theGt/M/st + GI model; §2.9 shows how to do the

same for more generalGI service. In the context of theGt/M/st +GI model, a sufficient

condition for feasibility over[0, T ] is

s(t) + s′(t) ≥ 0, 0 ≤ t ≤ T. (A.29)

Here we want to generalize our algorithm. Suppose the targetstaffing functions is not

feasible for allt. Instead of stopping the algorithm, we want (i) to produce a ’best’ modified

capacity functionsf(t) and (ii) to finish the algorithm with our new targetsf (t).

We only need to modify our initial algorithm when the system is in the overloaded

regime. Flow conservation of the service facility says thatb(t, 0) = B′(t)+µB(t) which is

equal tos′(t)+s(t) if s(t) were feasible. However, if we want to makeB(t) decrease as fast

as possible, the best we can do is to setb(t, 0) = 0 and let fluid deplete with only its service

completion. Therefore, whens becomes infeasible att1, i.e., s′(t1+) + s(t1+) becomes

negative,B(t) will satisfy ODEB′(t) = −B(t) for t ∈ [t1, t1 + δ] with B(t1) = s(t1),

which implies thatB(t) = s(t1)e
−(t−t1).

We let t2 ≡ inf{t1 < t ≤ T : s(t) = B(t)} ∧ T = inf{t1 < t ≤ T : s(t) =

s(t1)e
−(t−t1)} ∧ T . Note thatb(t, 0) = 0 for t1 ≤ t ≤ t2 guarantees that the queue does

not empty out beforet2 so that the system does not switch from overloaded to underloaded

regime beforet2. This is so because withb(t, 0) = 0, abandonment becomes the only
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source that deplete the queue, and the abandonment rateα(t) goes to 0 asQ(t) goes to 0.

For instance, if the abandonment distribution is exponential with rateθ, thenα(t) = θ Q(t).

If t2 = T , the system stays overloaded untilT and we are done. Otherwise, we let

t3 ≡ inf{t2 < t ≤ T : s′(t) + S(t) < 0} ∧ T , b(t, 0) = s′(t) + µ s(t) for t2 ≤ t ≤ t3. Just

as in the original algorithm, we solve ODE (2.31) withw(t2) = 0 for t2 ≤ t ≤ t3. If tU ≡

{t > t2 : w(t) = 0} < t3, then the system switches from overloaded to underloaded regime

and we continue with the old algorithm in Chapter 2; otherwise,s becomes infeasible once

again att3 while the system is overloaded, and we shall repeat the aboveargument, and as

before, we run the algorithm dynamically until we proceed totimeT .

It is not hard to see that under the above construction, we successfully obtain the interval

Iinf in whichs is infeasible and a modified service-capacity functionsf(t) = B(t) 1t∈Iinf
+

s(t) 1t∈[0,T ]/Iinf
. Also,sf(t) is the closest feasible function to the given targets(t).

Example of the Algorithm. To evaluate the performance of the modified algorithm, we

use the example in§A.9.2, i.e., we consider the MarkovianM/M/st + M model that

has a Poisson arrival process with a constant rateλ, exponential service and abandonment

distributions with ratesµ andθ respectively, and a sinusoidal capacity function

s(t) ≡ λ+ λ̄ · sin(c · t). (A.30)

We still let λ = 1, c = 1, µ = 1, θ = 0.5. To makes infeasible, we let̄λ = 0.9λ = 0.9

instead of0.6λ = 0.6 in §A.9.2. Nows has greater fluctuation and it is easy to see that

condition (A.29) is no longer satisfied.

We plot the performance measures of the fluid model in Figure A.4. Compared with

Figure A.12, we see thatIinf ≡ [3.27, 5.05] ∪ [9.55, 11.33] ∪ [15.84, 17.62] is the interval

in whichs becomes infeasible. Fort ∈ Iinf , sf(t) (the blue dashed curve) is different from
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Figure A.4: TheM/M/st +M fluid model with infeasibles.

(above)s (the red solid curve), andB(t) follows sf instead ofs sinceB(t) cannot decrease

as fast ass(t). Moreover, sinceb(t, 0) = 0 for t ∈ Iinf , w(t) increases with slope 1. In

other words, since the system stops transporting fluid from the queue into service, whatever

is waiting at the head of the queue keeps waiting there. However,Q(t) does not increase

with rate 1 because abandonment still occurs.

Figure A.5 shows thatw(t), Q(t) andB(t) obtained from our modified algorithm (the

red dashed curves) agrees with single sample paths of simulation estimates ofwn(t), Q̂n(t)

andB̂n(t) (the blue solid curves), where we still set the fluid scaling factorn = 1000. Both
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Figure A.5: TheM/M/st +M fluid model with infeasibles compared with simulation.

B(t) andB̂n(t) are distinct from the given service-capacity functions (the dashed green

curve) inIinf .

A.8 Stabilizing Delays with General Initial Conditions

Is §2.10 we showed how to choose a staffing function to stabilize the PWTv at any de-

sired targetv∗. However, Theorem 2.8 considered a special initial condition: the system

is initially empty. We generalize Theorem 2.8 to arbitrary initial conditions in the next

theorem.

Theorem A.8 Consider theGt/GI/st + GI fluid model with a general arrival-rate func-

tionλ and initial conditionsw(0−) ≡ w0 ≥ 0, b(0−, x) ≡ ψ(x) ≥ 0 for x ≥ 0, q(0−, x) ≡

φ(x) ≥ 0 for 0 ≤ x ≤ w0, Q(0−) =
∫ w0

0
q(0−, x)dx, s(0−) = B(0−) =

∫∞

0
b(0−, x)dx.
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For any givenv∗ ≥ 0, we can make the system overloaded such that the PWT is fixed atv∗,

i.e.,v(t) = v∗ for all t ≥ 0, by letting the service-capacity function be

s(t) =

∫ ∞

t

ψ(x− t) Ḡ(x)

Ḡ(x− t)dx+ Ḡ(t)

∫ w0∨v∗

v∗
φ(x)dx

+ F̄ (v∗)

(

∫ t−(v∗−w0)+

(t−v∗)+

φ(w0 ∧ v∗ − t + x) Ḡ(x)

F̄ (w0 ∧ v∗ − t + x)
dx

)

· 1{t≥(v∗−w0)+} (A.31)

+ F̄ (v∗)

(
∫ t−v∗

0

λ(t− x− v∗)Ḡ(x)dx
)

· 1{t≥v∗}.
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If we do so, then

w(t) = v∗ · 1{t≥(v∗−w0)+},

b(t, 0) = δ0(t)

∫ w0∨v∗

v∗
φ(x)dx+

φ(w0 ∧ v∗ − t) F̄ (v∗)
F̄ (w0 ∧ v∗ − t)

· 1{(v∗−w0)+≤t<v∗} + λ(t− v∗)F̄ (v∗) · 1{t≥v∗},

B(t) = s(t),

σ(t) =

∫ ∞

t

ψ(x− t) g(x)

Ḡ(x− t)dx+ g(t)

∫ w0∨v∗

v∗
φ(x)dx

+ F̄ (v∗)

(

∫ t−(v∗−w0)+

(t−v∗)+

φ(w0 ∧ v∗ − t+ x) g(x)

F̄ (w0 ∧ v∗ − t + x)
dx

)

· 1{t≥(v∗−w0)+}

+ F̄ (v∗)

(
∫ t−v∗

0

λ(t− x− v∗)g(x)dx
)

· 1{t≥v∗},

Q(t) =

(
∫ w0∧v∗

t

φ(x− t) F̄ (x)
F̄ (x− t) dx+

∫ t

0

λ(t− x) F̄ (x)dx
)

· 1{0≤t≤(v∗−w0)+}

+

(
∫ t

0

λ(t− x) F̄ (x)dx+
∫ v∗

t

φ(x− t) F̄ (x)
F̄ (x− t) dx

)

· 1{(v∗−w0)+<t<v∗}

+

(
∫ v∗

0

λ(t− x) F̄ (x)dx
)

· 1{t≥v∗},

α(t) =

(
∫ w0∧v∗

t

φ(x− t) f(x)
F̄ (x− t) dx+

∫ t

0

λ(t− x) f(x)dx
)

· 1{0≤t≤(v∗−w0)+}

+

(
∫ t

0

λ(t− x) f(x)dx+
∫ v∗

t

φ(x− t) f(x)
F̄ (x− t) dx

)

· 1{(v∗−w0)+<t<v∗}

+

(
∫ v∗

0

λ(t− x) f(x)dx
)

· 1{t≥v∗}

whereδy(t) is the direct-delta function aty, i.e., δy(t) = 0 for t 6= y,
∫ b

a
δy(t)dt = 1 if

a ≤ y ≤ b.

Proof. (i) If the system is initially underloaded, i.e.,w(0−) = w0 = 0, q(0−, x) =

φ(x) = 0, Q(0−) = 0, B(0−) ≤ s(0−). This case is similar to Theorem 2.8 where the

system is initially empty. Note the only difference is that there is fluid in the service facility.
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LetBo(t) be the fluid in service that has been in service at0−. Then we have

Bo(t) =

∫ ∞

t

b(t, x)dx =

∫ ∞

t

b(0−, x− t) Ḡ(x)

Ḡ(x− t)dx.

Again, we do not allow any input to enter service until timet = v∗, we can let the staffing

function be

s(t) = Bo(t) + s∗(t)

=

∫ ∞

t

ψ(x− t) Ḡ(x)
Ḡ(x− t) dx+ F̄ (v∗)

∫ t−v∗

0

Ḡ(x)λ(t− v∗ − x)dx · 1{t>v∗},

wheres∗(t) is defined in (2.48). It is obvious that this expression coincides with (A.31)

whenw0 = q(0−, x) = ψ(x) = 0. When we do this, the input rate to the serviceb(t, 0) is

the same as in Theorem 2.8. The proof of other performance measures are similar.

(ii) If the system is initially overloaded, i.e.,w(0−) = w0 > 0, q(0−, x) = φ(x) ≥ 0,

Q(0−) =
∫ w0

0
φ(x)dx > 0, s(0−) = B(0−). There are two cases (a)w0 ≥ v∗, (b)

w0 < v∗.

(ii.a) If w0 > v∗, then in order forv(t) = v∗. We let all fluid that has been in queue

for x > v∗ enter service immediately at time 0. The quantity of fluid that enters service

at 0 is
∫ w0

v∗
q(0−, x)dx =

∫ w0

v∗
φ(x)dx. However, this will makeB(t) have an atom at 0.

Similar argument to Theorem 2.8 implies that it suffices to matchb(t, 0) with q(t, v∗) for all

t ≥ 0. If t ≤ v∗, q(t, v∗) = q(0−, v∗− t)F̄ (v∗)/F̄ (v∗− t). If t > v∗, then all fluid that has

been in queue at0− has entered service, which implies thatq(t, v∗) = q(t− v∗, 0)F̄ (v∗) =
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λ(t− v∗)F̄ (v∗). Therefore, we have

b(t, 0) = δ0(t)

∫ w0

v∗
φ(x)dx+ q(t, v∗)

= δ0(t)

∫ w0

v∗
φ(x)dx+

φ(v∗ − t)F̄ (v∗)
F̄ (v∗ − t) · 1{0≤t<v∗} + λ(t− v∗)F̄ (v∗) · 1{t≥v∗}.

The service capacity and fluid content in service are

s(t) = B(t) = Bo(t) +

∫ t

0

b(t− x, 0)Ḡ(x)dx.

If 0 ≤ t < v∗, we have

s(t) =

∫ ∞

t

ψ(x− t) Ḡ(x)

Ḡ(x− t)dx+
∫ w0

v∗
φ(x)dx

∫ t

0

δ0(t− x)Ḡ(x)dx

+F̄ (v∗)

∫ t

0

φ(v∗ − t + x)Ḡ(x)

F̄ (v∗ − t+ x)
dx,

=

∫ ∞

t

ψ(x− t) Ḡ(x)

Ḡ(x− t)dx+ Ḡ(t)

∫ w0

v∗
φ(x)dx+ F̄ (v∗)

∫ t

0

φ(v∗ − t+ x)Ḡ(x)

F̄ (v∗ − t + x)
dx.

If t ≥ v∗, we have

s(t) =

∫ ∞

t

ψ(x− t) Ḡ(x)

Ḡ(x− t)dx+ Ḡ(t)

∫ w0

v∗
φ(x)dx

+

∫ t

0

(

φ(v∗ − t+ x)F̄ (v∗)

F̄ (v∗ − t+ x)
· 1{0≤t−x<v∗} + λ(t− x− v∗)F̄ (v∗) · 1{t−x≥v∗}

)

Ḡ(x)dx

=

∫ ∞

t

ψ(x− t) Ḡ(x)

Ḡ(x− t)dx+ Ḡ(t)

∫ w0

v∗
φ(x)dx

+ F̄ (v∗)

(
∫ t

t−v∗

φ(v∗ − t + x)Ḡ(x)

F̄ (v∗ − t+ x)
dx+

∫ t−v∗

0

λ(t− x− v∗)Ḡ(x)dx
)

.

It is easy to see that this expression coincides with (A.31).

(ii.b) If w0 ≤ v∗, then we do not allow any input to enter service until timev∗ − w0,
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which implies

b(t, 0) =
φ(w0 − t) F̄ (v∗)
F̄ (w0 − t)

· 1{v∗−w0≤t<v∗} + λ(t− v∗)F̄ (v∗) · 1{t≥v∗}.

Therefore, if0 ≤ t ≤ v∗ − w0, no new fluid enters service,

s(t) = Bo(t) =

∫ ∞

t

ψ(x− t) Ḡ(x)

Ḡ(x− t)dx.

If v∗ − w0 < t < v∗,

s(t) = Bo(t) +

∫ t

0

φ(w0 − t+ x) F̄ (v∗)

F̄ (w0 − t + x)
· 1{v∗−w0≤t−x<v∗}Ḡ(x)dx

=

∫ ∞

t

ψ(x− t) Ḡ(x)

Ḡ(x− t)dx+ F̄ (v∗)

∫ t−(v∗−w0)

0

φ(w0 − t+ x) Ḡ(x)

F̄ (w0 − t+ x)
dx.

If t ≥ v∗,

s(t) = Bo(t)

+

∫ t

0

(

φ(w0 − t + x) F̄ (v∗)

F̄ (w0 − t + x)
· 1{v∗−w0≤t−x<v∗} + λ(t− x− v∗)F̄ (v∗) · 1{t−x≥v∗}

)

Ḡ(x)dx

=

∫ ∞

t

ψ(x− t) Ḡ(x)

Ḡ(x− t)dx

+F̄ (v∗)

(

∫ t−(v∗−w0)

t−v∗

φ(w0 − t+ x) Ḡ(x)

F̄ (w0 − t+ x)
dx+

∫ t−v∗

0

λ(t− x− v∗)Ḡ(x)dx
)

.

It is easy to see that this expression coincides with (A.31).The proof of other performance

measures is similar.
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A.9 Comparisons with Simulation

In this section we present additional results evaluating the fluid model approximations by

comparing them to simulation results for large-scale queueing models. These results com-

plement those for theMt/H2/s+ E2 example in§2.2.

We start by applying our algorithm to the special “base” caseof anMt/M/s + M

model, having only a time-varying arrival rate function. For this special case, we could also

have applied [46–48]. In§A.9.2 we present additional simulation results for allowing the

alternative features: (i) time-varying staffing function,(ii) non-exponential abandonment-

time cdf, and (iii) non-Poisson arrival process. (The fluid model does not change when we

change the arrival process fromMt, toGt, but the queueing system does.)

In §2.2 we already considered theMt/H2/s+ E2 model, which has both time-varying

arrival rate and non-exponential service and patience distributions. We consider other ex-

amples in§A.9.3.

A.9.1 A Base Example

We start by applying our algorithm to the base case of anMt/M/s +M model, having

only a time-varying arrival rate function.

For the initialMt/M/s+M model fluid example, we consider constant staffings. We

let the arrival rate functionλ be sinusoidal, i.e.,

λ(t) ≡ a+ b · sin(c · t), t ≥ 0, (A.32)

where we letb ≡ 0.6a, c ≡ 1 anda ≡ s. By making the average input ratea coincide

with the fixed staffing levels, we ensure that the system will alternate between overloaded

and underloaded. We let the service rate beµ ≡ 1 and the abandonment rateθ ≡ 0.5; i.e.,
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G(x) ≡ 1− e−x andF (x) = 1− e−θx = 1 − e−0.5x for x ≥ 0. Without loss of generality,

for the fluid model we lets ≡ 1.

Figure A.6 shows key fluid performance functions of thisMt/M/s +M example. In

Figure A.6, we plot key fluid performance measures for0 ≤ t ≤ T , whereT = 16. It is

easy to see that the system alternates between underloaded (whenQ(t) = 0 andB(t) <

s(t) = 1) and overloaded (whenQ(t) > 0 andB(t) = s(t) = 1) intervals.
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Figure A.6: The performance functions of theMt/M/s +M fluid model with sinusoidal
arrival-rate function: (i) arrival rateλ(t); (ii) waiting timew(t); (iii) fluid in buffer Q(t);
(iv) fluid in serviceB(t); (v) total fluidX(t); (vi) rate into serviceb(t, 0).

As discussed in§2.2, it is important that the fluid model provide useful approximations

for stochastic queueing models. We apply simulation to showthat the fluid approximation

indeed is effective for that purpose. For very large queueing systems, the stochastic system
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behaves like the fluid model, having relatively small stochastic fluctuations. That is illus-

trated for the same example for a queueing system with1000 servers in Figure A.7. (In the

plot, the queueing content processes are scaled by dividingby n = 1000, so thats remains

at1.)
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Figure A.7: Performance of theMt/M/s +M fluid model (dashed lines) compared with
simulation results (solid lines): one sample path of the scaled queueing model forn =
1000.

We did not plot the abandonment rateα and the service-completion rateσ, because

in the exponential case they are simple functions of the performance measures shown:

α(t) = θQ(t) = 0.5Q(t) andσ(t) = µB(t) = B(t). All performance functions are contin-

uous except for the transportation-rate functionb(·, 0), which has discontinuities when the

system alternates between underloaded and overloaded:b(t, 0) = λ(t) when the system is

underloaded;b(t, 0) = s = 1 when the system is overloaded.

With the MSHT scaling, we letn ≡ 1000. Since,s = 1, that makessn = an = 1000,

which of course is very large. The other parameters of the queueing model are the same
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as for the fluid model, e.g.,bn = 0.6an = 600. In Figure A.7 we compare the simulation

results for the queueing performance functionsWn, Q̄n andB̄n from a single simulation

run to the associated fluid model counterpartsw, Q andB. The blue solid lines represent

the queueing model performance, while the red dashed lines represent the corresponding

fluid performance. Sincen is so large, we get close agreement for individual sample paths;

we are not displaying averages over multiple simulation runs.

Of course, most service systems have fewer servers. It is thus important that the fluid

approximation can still be useful with fewer servers. With fewer servers, the stochastic

fluctuations in the queueing stochastic processes play an important role. In that case, the

fluid model can still be very useful by providing a good approximation for themean values

of the queueing stochastic processes. That is illustrated from the plot of the average of

the scaled performance measures of200 independent sample paths when there are only20

servers in Figure A.8.

In Figure A.9 below we plot the analog of Figure A.7 for the case of one sample path

of the simulation withn = 100, for the same fluid model. In Figure A.10 below we plot

the average of10 sample paths. We see that the fluid approximation provides only a rough

approximation for a single sample path, but it is remarkablyaccurate for the average over

10 sample paths. The accuracy is especially high in this example, because the extent of the

overloads and underloads are quite large.

The quality of the approximation does degrade asn decreases, for the given fluid model.

To illustrate, we plot a single sample path forn = 20 in Figure A.11 and the average

over 200 sample paths in Figure A.8. (The latter appears in Chapter 2.) The stochastic

fluctuations are so much greater for a single sample path thatwe need to average over more

sample paths to get a good estimate. Forn = 20, the fluid model clearly yields a good

approximation only for the mean values, but the mean is remarkably well approximated for

n = 20. The approximation for the mean values in Figure A.8 are so good that it is evident
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Figure A.8: Performance of theMt/M/s +M fluid model (dashed lines) compared with
simulation results (solid lines): an average of200 sample paths of the scaled queueing
model based onn = 20.

that the fluid model approximations can provide useful approximations for the mean values

for much smallern (and thus the number of servers,sn).

A.9.2 Variants of the Base Model

We now consider three variants of the base model in order to illustrate consider: (i) time-

varying staffing, (ii) non-exponential abandonment and (iii) a non-Poisson arrival process.

Time-Varying Staffing Levels

We now consider a MarkovianM/M/st+M model that has a Poisson arrival process with

a constant rateλ, exponential service and abandonment distributions with ratesµ andθ
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Figure A.9: Performance of theMt/M/s +M fluid model compared with simulation re-
sults: one sample path of the scaled queueing model forn = 100.

respectively, and a sinusoidal capacity function

s(t) ≡ λ+ λ̄ · sin(c · t). (A.33)

In the previous base example in§A.9.1, we fixed the capacity function and varied the

arrival rate around it; now we fix the arrival rateλ and varys(t) aroundλ. We letλ = 1,

λ̄ = 0.6λ = 0.6, c = 1, µ = 1 andθ = 0.5.

Before implementing the algorithm, we first verify that thiscapacity functions is fea-

sible. With exponential service distribution, we know thata sufficient condition for the
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Figure A.10: Performance of theMt/M/s + M fluid model compared with simulation
results: an average of10 sample paths of the scaled queueing model based onn = 100.

feasibility ofs is

s′(t) ≥ −µs(t), t ≥ 0. (A.34)

In this example, we requirec cos(ct) ≥ −µλ − µλ̄ sin(ct) which is equivalent tosin(ct +

θ̄) ≥ −(µ/
√

c2 + µ2)(λ/λ̄) whereθ̄ ≡ arctan(c/µ). It is easy to check that this equality

holds withλ = 1, λ̄, µ = 1 andc = 1.

We plot the performance measures of theM/M/st +M fluid model in Figure A.12

and compare them with simulation estimates in A.13, analogsto Figure A.6 and A.7. In

Figure A.13, our simulations add real system constraints. First the staffing levels must be

integer-valued, so they must be rounded. Second, when the staffing levels decrease, we do
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Figure A.11: Performance of theMt/M/s + M fluid model compared with simulation
results: one sample path of the scaled queueing model forn = 20.

not remove servers until they complete the service in progress. As in§C.6, we letn = 1000

for the sequence of scaled queueing models. Thus we haveλn = an = 1000, bn = 600,

cn = 1.

Simulation Comparisons for theMt/M/st +GI Fluid Model.

For the general abandon-time distribution, we considered two cases: Erlang-2 (E2) and

Hyperexponential-2 (H2). LetA be the generic abandonment time.A follows E2 implies

that A = X1 + X2 in distribution, whereX1 andX2 are two iid exponential random

variables. Moreover,f(x) = γ2xe−γx, whereγ is rate ofX1.

If A follows H2, thenA is a composition of two exponential random variables, i.e.,
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Figure A.12: TheM/M/st +M fluid model with sinusoidal service-capacity function.

f(x) = p ·θ1e−θ1x+(1−p) ·θ2e−θ2x, whereθ1 andθ2 are the rates of these two exponential

random variables, and0 < p < 1 is the sampling probability.

If we fix the mean ofA, i.e., letE[A] = 1/θ, E2 has squared coefficient of variation

(SCV)CSCV ≡ V ar(A)/E[A]2 less than 1; H2 hasCSCV greater than 1 ifp, θ1 andθ2 are

appropriately chosen.

For E2, we letf(x) ≡ 4θ2xe−2θx such thatCSCV = 1/2. For H2, we letf(x) =

p · θ1e−θ1x + (1− p) · θ2e−θ2x with p = 0.5(1−
√
0.6), θ1 = 2pθ, θ2 = 2(1− p)θ, such that

CSCV = 4.
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Figure A.13: TheM/M/st +M fluid model compared with simulations of the queueing
system.

We still let the arrival-rate functionλ be sinusoidal, as in (A.32). We leta = 1, b =

0.6 ∗ a = 0.6, c = 1. We let the service-capacity function be constants = 1. Let θ = 0.5

andµ = 1. We plot the dynamics of theMt/M/s+E2 andMt/M/s+H2 fluid models in

Figure A.14 and A.16 respectively fort ∈ [0, T ] with T = 16. The performance measures

shown in Figure A.14 and A.16 are the boundary waiting timew(t), the fluid in queueQ(t),

the fluid in serviceB(t), the total fluid in the systemX(t), the abandonment rateα(t), and

the transportation rateb(t, 0). We omit the departure rateσ(t) = µB(t) because of the

exponential service times.

In Figure A.15 and A.17 we compare the fluid approximations with simulation experi-

ments. The queueing model has a nonhomogeneous Poisson arrival process with sinusoidal

rate function as in (A.32), witha = s = 2000, b = 0.6a = 1200. In Figure A.15 and A.17,

the blue solid lines of the simulation estimations of singlesample paths applied with fluid
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Figure A.14: TheMt/M/s+ E2 fluid model with sinusoidal arrival-rate function.

scaling, and the red dashed lines are the fluid approximations. We conclude that the fluid

approximation is remarkably accurate.

Simulation Comparisons for theGt/M/st +M Fluid Model.

We first explain how to construct a non-Poisson arrival process that has a well-defined rate

function.

LetM ≡ {M(t) : t ≥ 0} be a delayed renewal process. In other words, letX1, X2, X3, . . .
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Figure A.15: TheMt/M/s + E2 fluid model compared with simulations of the queueing
system.

be independent random variables with finite means, such thatX1 follows cdfH,Xn follows

cdfG for n ≥ 2. LetSn ≡
∑n

k=1Xk and defineM(t) ≡ sup{n ≥ 0 : Sn ≤ t}.

In particular, if we letH(x) = Ge(x) ≡ 1/mX

∫ t

0
Ḡ(u)du for mX ≡ E[X2], which is

the equilibrium distribution ofG, thenM becomes an equilibrium renewal process and we

haveE[M(t)] = t/mX for any t ≥ 0. We callM standard equilibrium renewal process

(SERP) ifmX = 1.

For a given rate functionλ(t), let Λ(t) ≡
∫ t

0
λ(u)du. We assume thatλ(t) > 0 for

t ≥ 0, henceΛ(t) is a strictly increasing function. For a given SERPM, we construct

a process that has rate functionλ(t) by performing a change of time with respect to this

functionΛ(t). We defineN ≡ {N(t) ≡ M(Λ(t)) : t ≥ 0}. SinceE[N(t)] = Λ(t) for

t ≥ 0, processN has a well-defined rate function.

Since the cdfG is not necessarily exponential,N is just in general a non-Markovian
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Figure A.16: TheMt/M/s+H2 fluid model with sinusoidal arrival-rate function.

arrival counting process that has time-dependent rate function λ(t). Now we explain how

to simulate the point process associated withN, i.e., to simulate the times of arrivals ofM.

For a given sample path of the SERPM, let Sn = sn for n ≥ 0, we want to determine

the arrival timestn’s, wheretn is the time at which the nth arrival occurs. It is easy to

see thattn = Λ−1(sn) for n ≥ 0, whereΛ−1(·) is unique sinceΛ(·) is strictly increasing.

Therefore, to obtain a sample path ofN, we simulate a sample path ofM and do a change

of time.

In Figure A.18, we compare the fluid approximation with simulation experiments of the
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Figure A.17: TheMt/M/s +H2 fluid model compared with simulations of the queueing
system.

Gt/M/s +M model. Here the only difference from Figure A.7 is that the arrival process

(Gt) is not Poisson but has the same sinusoidal rate function as (A.32).

A.9.3 More Comparisons for the Example in§2.2 withGI Service

Here we consider theMt/H2/s+ E2 example in§C.6 with smallern. As shown in Figure

A.19, we plot the mean value functions, obtained by averaging the paths of 500 independent

simulation runs, withn = 15. Although less accurate than the casen = 30, the fluid model

serves as a much better approximation than the algorithm ofM service.
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Figure A.18: TheGt/M/s +M fluid model compared with simulations of the queueing
system.
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Figure A.19: Simulation comparison for theMt/H2/s + E2 fluid model: (i) simulation
estimates of an average of500 sample paths of the scaled queueing model based onn =
15 (blue solid lines), (ii) fluid functions forH2 service (red dashed lines) and (iii) fluid
functions assumingM service (green dashed lines).
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Figure A.20: Fluid dynamics of theGt/GI/s + E2 model with fixed mean service time
andE2 patience distribution. The service distributions are: (i)E2 (CV S = 0.5); (ii) M
(CV S = 1); (iii) H2 (CV S = 2) and (iv)H2 (CV S = 4).
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Figure A.21: Fluid dynamics of theGt/M/s + GI model with fixed mean patience time
andM service distribution. The patience distributions are: (i)E2 (CV S = 0.5); (ii) M
(CV S = 1); (iii) H2 (CV S = 2) and (iv)H2 (CV S = 4).
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Appendix B

Appendix for Chapter 3

This e-companion has six sections, presenting supporting material primarily in the order

that it relates to Chapter 3. In§B.1 we present the proofs for§3.3. In §B.2 we present

proofs for§3.4. In§B.3 we present proofs for§3.5. In§B.4 we present one proof for§3.6.

In §B.5, we make remarks about: (i) characterizing the isolatedunderloaded points in§3.3,

(ii) representation of the fluid contentB in an underloaded interval via an ODE, and (iii)

the applied significance of the space of piecewise polynomialsPm,n.

B.1 Proofs for §3.3.

We need some basic regularity properties ofQ andB, which will be valid with the assump-

tions in§3.2. For that purpose, we exploit two basicflow-conservation equations: (i) the

queue content at timet equals the initial queue content plus input minus output to either

abandonment or entering service, and (ii) the service content at timet equals the initial

service content plus input minus output. However, the inputenters the queue only when
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the system is overloaded; otherwise it directly enters service. Thus we have the following

elementary bounds and the subsequent Lipschitz continuity.

Proposition B.1 (elementary bounds) Q(t) + A(t) + E(t) ≤ Q(0) + Λ(t) <∞ and

B(t) + S(t) = B(0) + E(t) ≤ B(0) +Q(0) + Λ(t) <∞,

so thatQ, E, A, B andS are all bounded for0 ≤ t ≤ T .

Proof. The relations follow from flow conservation. The first relation is an inequality

instead of an equality because input enters the queue instead of the service facility only

when the system is overloaded.

Proposition B.2 (Lipschitz continuity) The functionsS, E, B, A andQ are Lipschitz

continuous.

Proof. For a nonnegative real-valued functionf on [0,∞), let f ↑
t ≡ sup0≤y≤t f(y). To

treatS, recall thatS is the integral ofσ, where

σ(t) = B(t)µ(t) ≤ s(t)µ(t), so that σ(t) ≤ s↑tµ
↑
t , t ≥ 0, (B.1)

and

|S(t+ u)− S(t)| =
∫ t+u

t

σ(y) dy ≤ s↑Tµ
↑
Tu, 0 ≤ t ≤ t+ u ≤ T. (B.2)

To treatE, recall that it is the integral of the rate fluid enters service, where the rate fluid

enters service is eitherγ(t) = λ(t) if the system is underloaded orγ(t) = s′(t) + σ(t) =
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s′(t) + s(t)µ(t) if the system is overloaded. Hence,

|E(t+ u)−E(t)| ≤ γ↑Tu, 0 ≤ t ≤ t+ u ≤ T, (B.3)

whereγ↑T ≡ λ↑T ∨ (|s′|↑T + s↑Tµ
↑
T ) <∞. By the second equation in Proposition B.1,

B(t+ u)−B(t) = (E(t+ u)−E(t))− (S(t+ u)− S(t)), (B.4)

so that

|B(t+ u)− B(t)| ≤ |E(t+ u)− E(t)|+ |S(t+ u)− S(t)| ≤ (e↑T + s↑Tµ
↑
T )u (B.5)

for 0 ≤ t ≤ t+ u ≤ T .

Next we combine (3.3) with (3.8) to get

α(t) =

∫ t∧w(t)

0

λ(t− x)ft−x(x) dx+

∫ t

w(t)∧t

q(0, x− t)ft−x(x)

F̄t−x(x− t)
dx, (B.6)

so that, by applying Assumption 3.6, we get

α(t) ≤ α↑
t ≡ f ↑Λ(t) +

f ↑

F̄ ↓(w(0))
Q(0) <∞ (B.7)

and

|A(t+ u)−A(t)| ≤
∫ t+u

t

α(y) dy ≤ α↑
Tu, 0 ≤ t ≤ t+ u ≤ T. (B.8)
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Finally, by the first relation in Proposition B.1,

|Q(t + u)−Q(t)| ≤ |Λ(t+ u)− λ(t)|+ |E(t+ u)−E(t)|+ |A(t+ u)− A(t)|

≤ (λ↑T + γ↑T + α↑
T )u, 0 ≤ t ≤ t+ u ≤ T. (B.9)

We now apply Proposition B.2 to relateS to the zeros ofX − s, whereX(t) ≡ Q(t) +

B(t).

Lemma B.1 (zeros ofX − s) S ⊆ ZX−s.

Proof. SinceQ andB are continuous by Proposition B.2 ands is continuous by assump-

tion,X − s is continuous. SinceX − s is continuous, ifX(t)− s(t) 6= 0, thent cannot be

an element ofS.

We now characterize the overloaded times.

Lemma B.2 (overloaded intervals) With the possible exception of0 andT , all overloaded

times appear in intervals of positive length. Hence, underloaded sets consist of either single

isolated points or intervals.

Proof. If t ∈ O([0, T ]), then either (i)X(t)−s(t) > 0 or (ii) X(t)−s(t) = 0 andζ(t) >

0. In case (i), sinceX − s is continuous by Proposition B.2, there exists a neighborhood of

t that is overloaded. In case (ii), sinceζ(t) > 0, we will haveX(t)−s(t) > 0 in an interval

(t, t + ǫ) for some positiveǫ. Since overloaded sets are necessarily intervals by Lemma

B.2, each underloaded set must fall between two overloaded intervals.

Proof of Theorem 3.1. We apply the results above. Since there can be at most countably

many overloaded intervals of positive length in[0, T ], the isolated points are well defined
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and countably infinite. Since the isolated points are at mostcountably infinite, we can

order them and reclassify them one by one. With that construction, we reduce the number

of disjoint overloaded intervals by one at each step. Finally, all underloaded times appear

in intervals too.

We now relate the zeros ofζ in (3.12) to the overloaded and underloaded intervals.

Lemma B.3 (zeros and intervals) For each interval in the partition of[0, T ] into under-

loaded and overloaded intervals, there exists at least one zero or discontinuity point of

ζ .

Proof. First, consider the closure of an overloaded interval[a, b]. If ζ has one of its finitely

many discontinuity points in[a, b], then we are done. Suppose thatζ is continuous on the

closed interval[a, b]. Necessarily, we haveX(a)− s(a) = X(b)− s(b) = 0, ζ(a+ ǫ) > 0

for all suitably smallǫ > 0 andζ(b) ≤ 0. First, we could haveζ(b) = 0 and we are done.

If insteadζ(U(t)) < 0, then there must existt∗ with a < t∗ < b such thatζ(t∗) = 0 by

the intermediate value theorem. The reasoning is essentially the same in the closure of an

underloaded interval, say[a, b]. If ζ has one of its finitely many discontinuity points in

[a, b], then we are again done. Suppose thatζ is continuous on the closed interval[a, b]. If

eitherζ(a) = 0 or ζ(b) = 0, then we are done. Hence we must haveζ(a) < 0. Sinceb is a

switch point andζ is continuous atb, we must haveζ(b) > 0. As before, there must exist

t∗ with a < t∗ < b such thatζ(t∗) = 0 by the intermediate value theorem.

Proof of Theorem 3.2 Since the interval[0, T ] can be partitioned into at most count-

ably many intervals that alternate between overloaded and underloaded after reclassifying

isolated underloaded points as overloaded, the switch points can be placed in one-to-one

correspondence with the internal boundary points (excluding0 andT ). Hence the number
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of switch points is equal ton− 1, if the number of intervals in the paritition isn for some

n <∞. Otherwise both sets are countably infinite. Next, Lemma B.3implies that there is

either a discontinuity point or a zero in every overloaded and underloaded interval. Since

the number of intervals is1 greater than the number of switches, we obtain the conclu-

sion. To see that the bound is tight, consider the common casein which ζ is differentiable

on [0, T ] andζ(t) 6= 0 at all switch times. Thenζ has a zero where it attains its maxi-

mum in each overloaded interval, whileζ has a zero where it attains its minimum in each

overloaded interval. To have the bound an equality, letζ have no other zeros.

Proof of Theorem 3.3. First, any discontinuity points ofζ must be contained in the set

of n interval boundary points. Hence,Dζ ≤ n. On each of then subintervals,ζ is a

polynomial of order at mostm. By the fundamental theorem of algebra, on each of these

intervals the zero set is either a finite set of cardinality atmostm or it is the entire subin-

terval. If ζ = 0 throughout the interval, then there can be at most a single switch in the

interval, where(Q(t), B(t)) becomes(0, s(t)), after which it will remain there throughout

the subinterval. In other words, the first subinterval is overloaded and the second is under-

loaded, so this interval produces at most a single switch. Wecan thus treat this interval just

like any of the others; we can act as if it produces at mostm zeros. Hence,Dζ ≤ n and

Zζ ≤ mn. Finally, Theorem 3.2 implies that|S| ≤ mn + n− 1, as claimed.

Proof of Lemma 3.1. The Weierstrass approximation theorem implies that continuous

functions can be approximated uniformly over bounded intervals by polynomials. That

uniform approximation extends toCp provided that the boundary points of the polynomial

pieces of the function inPm,n includes the finitely many discontinuity points of the function

in Cp.
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B.2 Proofs for §3.4.

B.2.1 Proof of Uniqueness in Theorem 2.3.

When the abandonment cdf’sFt are independent oft, the proof of uniqueness of the solu-

tion to the ODE (2.31) in Theorem 2.3 is the same as the proof ofthe corresponding part

of Theorem 5.3 in Chapter 2. However, that argument does not extend directly to time-

varying abandonment cdf’s. Hence we give a different proof under different conditions.

In particular, in Theorem 2.3 for time-varying abandonmentcdf’s we imposed additional

regularity conditions. With those extra regularity conditions, we can apply the classical

Picard-Lindelöf theorem for the uniqueuenss of a solutionto the ODEw′(t) = Ψ(t, w(t)),

which requires thatΨ(t, x) be locally Lipschitz in the argumentx uniformly in the argu-

mentt; e.g., Theorem 2.2 of [69].

One regularity condition added in Theorem 2.3 was for the rate fluid enters service to

be bounded below. We will show how to guarantee that condition in the next section. Given

that the rate fluid enters service is indeed bounded below, i.e., given thatγ(t) ≥ eL > 0 for

all t ∈ [0, T ], from (2.31), there exists a constantwL > 0 such thatw′(t) ≤ 1 − wL < 1

for all t ∈ [0, T ]. Sincew(0) <∞, by assumption, andw(t) ≤ w(0) + t for all t, we have

w(t) ≤ w(0) + T for 0 ≤ t ≤ T . Together with the fact thatλ, q(0, ·) ∈ Cp, that implies

that the denominator in (2.31) is bounded above.

Sincew′(t) ≤ 1−wL < 1 for all t, for eachx we will havet−w(t) = x for at most one

value oft. Sinceλ, q(0, ·) have been assumed to have bounded derivatives where they are

continuous, and since the partial derivative∂Ft(x)/∂t of the time-varying abandonment

cdf Ft as been assumed to be bounded, the mappingΨ in (2.31) is Lipschitz continuous

in the argumentx except at only finitely manyx, uniformly in t. Hence, we can deduce
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uniqueness of the solution of the ODE in (2.31) under these extra regularity conditions by

applying the Picard-Lindelöf theorem.

We now elaborate on the details. Here we have

Ψ(t, x) ≡ 1− γ(t)

q̃(t, x)
= 1− µ(t)s(t) + s′(t)

q̃(t, x)
, (B.10)

whereq̃(t, x) is given in (3.14). Consider the region0 ≤ x1 ≤ t, 0 ≤ x2 ≤ t. In this region

we have

|Ψ(t, x1)−Ψ(t, x2)|

=
µ(t)s(t) + s′(t)

λ(t− x1)λ(t− x2)F̄t−x1(x1)F̄t−x2(x2)
|λ(t− x1)F̄t−x1(x1)− λ(t− x2)F̄t−x2(x2)|

≤ µ↑s↑ + s′↑

(λ↓)2(F̄ ↓)2
|λ(t− x1)F̄t−x1(x1)− λ(t− x2)F̄t−x1(x1)

+ λ(t− x2)F̄t−x1(x1)− λ(t− x2)F̄t−x2(x2)|

≤ µ↑s↑ + s′↑

(λ↓)2(F̄ ↓)2
(|λ(t− x1)− λ(t− x2)|+ λ(t− x2)|F̄t−x1(x1)− F̄t−x2(x2)|)

≤ µ↑s↑ + s′↑

(λ↓)2(F̄ ↓)2
(λ′↑|x1 − x2|+ λ↑|F̄t−x1(x1)− F̄t−x1(x2) + F̄t−x1(x2)− F̄t−x2(x2)|)

≤ µ↑s↑ + s′↑

(λ↓)2(F̄ ↓)2
(λ′↑|x1 − x2|+ λ↑

∂F̄

∂t

↑

|x1 − x2|+ λ↑g↑|x1 − x2|)

≡ C |x1 − x2|,

whereC ≡ µ↑s↑+s′↑

(λ↓)2(F̄ ↓)2
(λ′↑ + λ↑ ∂F̄

∂t

↑
+ λ↑g↑). The casex1, x2 > t is similar. Hence the

regularity conditions given in Theorem 2.3 are sufficient for Ψ to be locally Lipschitz inx

uniformly in t.
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B.2.2 eL-Feasibility of the Staffing Functions.

We have two goals in this section: first, to prove Theorem 2.7,showing how to construct the

minimum feasible staffing function greater than or equal to any proposed staffing function

s and, second, to determine the minimum feasible staffing function such that the rate fluid

enters service at timet, γ(t), is bounded below. We use this stronger notion of feasibility

to provided conditions for the ODE in (2.31) in Theorem 2.3 tohave a unique solution. We

treat both problems at once by introducing the notion ofeL-feasibility: A staffing function

s is said to beeL-feasible ifγ(t) ≥ eL ≥ 0 for all t ∈ [0, T ].

So far, we have assumed that the staffing functions is eL-feasible (as one condition in

Theorem 2.3) or simply feasible (eL-feasible foreL ≡ 0), yielding

γ(t) ≥ s′(t) + σ(t) = s′(t) +

∫ ∞

0

b(t, x)hG(x) dx ≥ eL ≥ 0 when B(t) = s(t).

(B.11)

This requirement is automatically satisfied in underloadedintervals whenB(t) = s(t),

provided thatλinf (T ) ≥ eL for λinf in Assumption 2.10, because in that case we require

that s′(t) + σ(t) ≥ λ(t) where necessarilyλ(t) ≥ eL; see Definition 3.1;eL-Feasibility

is only a concern during overloaded intervals, and then onlywhen the staffing function is

decreasing, i.e., whens′(t) < 0.

A violation is easy to detect; it necessarily occurs in an overloaded interval inO([0, T ])

at timet∗ ≡ inf {t ∈ O([0, T ]) : γ(t) < eL}. Paralleling Chapter 2, letSf,s,eL be the set of

eL-feasible staffing functions over the interval[0, t] for t > t∗. Then

t∗ ≡ t∗(eL) ≡ inf {t ∈ I : γ(t) < eL}. (B.12)
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Even though we require (B.11), so far we have done nothing to prevent havingt∗ < ∞

(violation). Thus, we computeγ and detect the first violation.

Correcting the staffing function is not difficult either (by which we mean replacing it

with a higher feasible staffing function): We simply construct a new staffing functions∗

consistent with reducing the input into the queue to its minimum allowed level (setting

γ(t) = eL ≥ 0) starting at timet∗ and lasting until the first timet aftert∗ at whichs∗(t) =

s(t). (By the adjustment, we will have mades∗(t∗+) > s(t∗+).) Since the system has

operated differently during the time interval[t∗, t], we must recalculate all the performance

measures after timet, but we have now determined a feasible staffing function up totime

t > t∗. By successive applications of this correction method (adjusting the staffing function

s and recalculatingb), we can construct the minimum feasible staffing function overall.

To make this precise, letSf,s,eL(t) be the set of alleL-feasible staffing functions for the

system over the time interval[0, t], t > t∗, that coincide withs over[0, t∗]; i.e., let

Sf,s,eL(t) ≡ {s̃ ∈ C1
p (t) : γs̃(u)1{Bs̃(u)=s̃(u)} ≥ eL, 0 ≤ u ≤ t, s̃(u) = s(u), 0 ≤ u ≤ t∗},

(B.13)

for t∗ in (B.12), whereγs̃ andBs̃ are the functionsγ andB associated with the model with

staffing functioñs.

Theorem B.1 (minimum eL-feasible staffing function) For eacheL such that0 ≤ eL ≤

λinf(T ) for λinf(T ) in Assumption2.10, there existδ ≡ δ(eL) ands∗ ∈ Sf,s,eL(t∗ + δ) in

(B.13) for t∗ in (B.12)such that

s∗ ≡ s∗(eL) = inf {s̃ ∈ Sf,s,eL(t∗ + δ)}; (B.14)
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i.e.,s∗ ∈ Sf,s,eL(t∗ + δ) ands∗(u) ≤ s̃(u), 0 ≤ u ≤ t∗ + δ, for all s̃ ∈ Sf,s,eL(t∗ + δ). In

particular,

s∗(t∗ + u) = eL

∫ u

0

e−M(t∗+u−x,t∗+u) dx+B(t∗) e−M(t∗,t∗+u). (B.15)

Moreover,δ can be chosen so that

δ = inf {u ≥ 0 : s∗(t∗ + u) = s(t∗ + u)}, (B.16)

with δ ≡ ∞ if the infimum in(B.16) is not attained.

Proof. First, sinceγs is continuous for our originals, the violation in (B.12) must persist

for a positive interval aftert∗; that ensures that a strictly positiveδ can be found. We shall

prove that̃s ≥ s∗ over[t∗, t∗ + δ] for s∗ in (B.15) and any feasible functioñs, and we will

show thats∗ itself is feasible. For0 ≤ t ≤ t∗ + δ, supposẽs is feasible. Since the system

is overloaded, system being in the overloaded regime implies that

s̃(t∗ + u) = Bs̃(t
∗ + u) =

∫ ∞

0

bs̃(t
∗ + u, x)dx

=

∫ u

0

γs̃(t
∗ + u− x) Ḡt∗+u−x(x)dx+

∫ ∞

u

bs̃(t
∗, x− u) Ḡt∗+u−x(x)

Ḡt∗+u−x(x− u)
dx

=

∫ u

0

γs̃(t
∗ + u− x) e−M(t∗+u−x,t∗+u) dx+

∫ ∞

u

bs(t
∗, x− u) e−M(t∗,t∗+u)dx

≥ eL

∫ u

0

e−M(t∗+u−x,t∗+u) dx+ e−M(t∗,t∗+u)

∫ ∞

0

bs(t
∗, y)dy = s∗(t∗ + u).

where the second equality holds because of the fundamental evolution equations in As-

sumption 2.6, the third equality holds becausebs̃(t
∗, x) = bs(t

∗, x) for all x, and the in-
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equality holds becauseγs̃ ≥ eL. On the other hand, the equality holds whenγs̃(t
∗+u) = eL

for all u, which yieldsB(t∗ + u) = s∗(t+ u). Therefore, the proof is complete.

Corollary B.1 (minimumeL-feasible staffing with exponential service times) For the spe-

cial case of exponential service times, i.e., withḠ(x) ≡ e−µx, independent oft, (B.15)

becomes simplys∗(t∗ + u) = eL(1− e−µu)/µ+B(t∗)e−µu, 0 ≤ u ≤ δ.

B.3 Proofs for §3.5.

B.3.1 Proof of Theorem 3.5.

First, the assumption thatζ1, ζ2 ∈ Pm,n assures that there are only finitely many switches

between overloaded intervals and underloaded intervals inboth systems. That leads to three

cases: (i) when both systems are underloaded, (ii) when the upper system is overloaded

and the lower system is underloaded, and (iii) when both systems are overloaded. We

apply mathematical induction over the successive alternating intervals of these three kinds.

(The switch points are the union of the two separate sets of switch points.) We ensure

that the initial conditions for each succeeding interval satisfy the initial ordering assumed

in the theorem. If we start in an interval where both systems are underloaded, then the

ordering holds while both systems are underloaded by virtueof the explicit representation

in Proposition 3.1. Consequently, the underload termination times are ordered as well, by

Proposition 3.1. The orderingB1(t) ≤ B2(t) necessarily remains valid when the upper

system is overloaded and the lower system is underloaded, because then we haveB1(t) ≤

s(t) = B2(t). For an interval where both systems are overloaded, it suffices to consider

the two systems starting the first time both systems are overloaded. At that time, the initial
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conditions necessarily will be ordered properly, because the system to become overloaded

later hasQ1(t) = 0. At this initial time,B1(t) = B2(t) = s(t).

TheMt service assumption comes to the fore in an interval where both systems are

overloaded. Here we use the fact thatσ andγ(t) = b(t, 0) depend only upons andµ during

the overloaded interval, and so are the same for the two systems, because the functionss and

µ have been assumed to be fixed. The rate of service completion isσ(t) = s′(t)+ s(t)µ(t).

When the two systems are both overloaded over a common interval [t, t+ u], the total fluid

to enter service from queue,E(t+ u)−E(t) is therefore the same in the two systems.

When both systems are overloaded, we have the orderingq̃1 ≤ q̃2 directly from Propo-

sition 3.3, just as in Proposition 2.6 of Chapter 2, exploiting the representation

F̄t−x(x)

F̄t−x(x− t)
= e−

∫ x
x−t hFt−x

(y) dy.

Hence, to show thatq1 ≤ q2, it suffices to show thatw1 ≤ w2, which would imply that that

the overload termination times are ordered as well.

Suppose we start att1 with w1(t1) ≤ w2(t1). Suppose thatw1(t) > w2(t) at some

t > t1. The continuity ofw1 andw2 implies that there exists somet1 < t2 < t such

thatw1(t2) = w2(t2) ≡ w̃. However, the ordering of̃q1 and q̃2 implies thatq̃1(t2, w̃) ≤

q̃2(t2, w̃). Therefore, ODE (2.31) implies thatw′
1(t2) ≤ w′

2(t2). This contradicts with our

assumption that there exists at such thatw1(t) > w2(t).

Now we turn tov. The equation (2.36) in Theorem 2.5 implies that the ordering of

w is inherited byv. That is made clear by applying the proof of Theorem 2.5, which

shows thatv(t) is determined by the intersection of the functionw with the linear function

Lt(u) ≡ t+ u. Clearly, if we increase thew function, then that intersection point increases

as well.
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B.3.2 Proof of Theorem 3.6.

We directly prove (3.18); the corresponding results in (3.19) will be obtained along the

way. To show(i), consider two models with common model data except forλ,B(0), where

λ1, λ2, s
′, µ ∈ Pm,n for somem,n. Without loss of generality, by Theorem 3.5, it suffices

to assume thatλ1 ≤ λ2 andB1(0) ≤ B2(0). If that is not initially the case, considerλ̃1 ≡

λ1 ∧ λ2, λ̃2 ≡ λ1 ∨ λ2, B̃1(0) ≡ B1(0)∧B2(0) andB̃2(0) ≡ B1(0)∨B2(0) to getλ̃1 ≤ λ̃2

andB̃1(0) ≤ B̃2(0) with ‖λ̃1−λ̃2‖T = ‖λ1−λ2‖T and|B̃1(0)−B̃2(0)| = |B1(0)−B2(0)|.

When both systems are overloaded, we haveB1(t) = B2(t) = s(t). Hence, the overall

story depends on what happens when(a) both systems are underloaded, and(b) system 1

is underloaded and system 2 is overloaded.

For simplicity, suppose that the two systems both start underloaded at time0 with

B1(0) ≤ B2(0), λ1 ≤ λ2. If both systems remain underloaded over the interval[0, t1],

then by Proposition 3.1 we have

|B1(t)− B2(t)| ≤ ‖λ1 − λ2‖T
∫ t

0

e−M(x) dx+ |B1(0)−B2(0)|

≤ t · ‖λ1 − λ2‖T + |B1(0)− B2(0)|, 0 ≤ t ≤ t1. (B.17)

Suppose system 2 becomes overloaded att1 > 0 while system 1 remains underloaded.

For t > t1, we haveB1(t) ≤ B2(t) = s(t) ≤ X2(t) ≡ B2(t) + s(t). Hence we have

0 ≤ |B2(t) − B1(t)| = B2(t) − B1(t) ≤ X2(t) − B1(t). Flow conservations of both

systems implies thatB′
1(t) = λ1(t) − µ(t)B1(t) andX ′

2(t) = λ2(t) − α2(t) − µ(t) s(t).

Therefore,

X ′
2(t)−B′

1(t) = λ2(t)− λ1(t)− α2(t)− µ(t) (s(t)− B1(t)) ≤ λ2(t)− λ1(t),



299

which implies that

|B1(t)− B2(t)| ≤ |B1(t1)−B2(t1)|+ (t− t1) · ‖λ1 − λ2‖T

≤ t1 · ‖λ1 − λ2‖T + |B1(0)−B2(0)|+ (t− t1) · ‖λ1 − λ2‖T

≤ t · ‖λ1 − λ2‖T + |B1(0)− B2(0)|, (B.18)

where the second inequality follows from (B.17) witht = t1.

If we then later start a second underloaded interval for bothsystems at timet2, where

0 < t1 < t2 < T , then we will have inequality (B.17) holding at timet2. Thus proceed-

ing forward, applying (B.17) with initial valuesBi(t2), during the following underloaded

interval we have fort > t2

|B1(t)− B2(t)| ≤ ‖λ1 − λ2‖T
∫ t

t2

e−M(x) dx+ |B1(t2)− B2(t2)|

≤ (t− t2) · ‖λ1 − λ2‖T + t2 · ‖λ1 − λ2‖T + |B1(0)−B2(0)|

≤ t · ‖λ1 − λ2‖T + |B1(0)− B2(0)|

≤ (1 ∨ t)(‖λ1 − λ2‖T ∨ |B1(0)− B2(0)|). (B.19)

where the second inequality follows from (B.18) witht = t2. Applying mathematical

induction over successive underloaded subintervals of[0, T ], using the second to last in-

equality, we obtain the first relation in (3.18), from which the desired conclusion follows.

To show(ii), when both systems are underloaded, we haveQ1(t) = Q2(t) = 0. Hence,

the overall story depends on what happens when(a) both systems are overloaded, and(b)

system 1 is underloaded and system 2 is overloaded.
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When both systems are overloaded, flow conservation impliesthat

Q′
i(t) = λi(t)− αi(t)− γi(t) = λi(t)− αi(t)− µ(t) s(t)− s′(t).

Hence, we have

Q′
2(t)−Q′

1(t) = λ2(t)− λ1(t)− (α2(t)− α1(t)) ≤ λ2(t)− λ1(t),

where the inequality simply follows from Theorem 3.5 when the two systems have common

abandon-time distribution. This yields

|Q1(t)−Q2(t)| = Q2(t)−Q1(t) ≤ |Q1(0)−Q2(0)|+ t ‖λ1 − λ2‖T . (B.20)

When system 2 is overloaded and system 1 is underloaded. For simplicity, assume at time

0 the two system have initial conditionsB2(0) = s(0) > B1(0), Q2(0) ≥ 0 = Q1(0).

Let T ∗ ≡ T1 ∧ T2, whereT1 denotes the underload termination time of system 1 andT2

denotes the overload termination time of system 2. Hence we know that both systems will

not change regimes for0 ≤ t ≤ T ∗. For0 ≤ t ≤ T ∗, we have

Q′
2(t) = λ2(t)− α2(t)− γ2(t) ≤ λ2(t)− γ2(t)

≤ (λ2(t)− λ1(t)) + (λ1(t)− γ2(t))

≤ (λ2(t)− λ1(t)) + (λ1(t)− µ(t) s(t)− s′(t)),
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which implies that

|Q2(t)−Q1(t)| = Q2(t)

≤ Q2(0) + t ‖λ2(t)− λ1(t)‖T +

∫ t

0

λ1(u)− µ(u) s(u)− s′(u)du

≤ Q2(0) + t ‖λ2(t)− λ1(t)‖T +

∫ t

0

λ1(u)− µ(u)B1(u)du− (s(t)− s(0))

≤ Q2(0) + t ‖λ2(t)− λ1(t)‖T +

∫ t

0

B′
1(u)du− s(t) + s(0)

≤ Q2(0) + t ‖λ2(t)− λ1(t)‖T + (s(0)−B1(0))− (s(t)− B1(t))

≤ |Q2(0)−Q1(0)|+ t ‖λ2(t)− λ1(t)‖T + |B2(0)− B1(0)|, (B.21)

where the second inequality holds becauseB1(t) ≤ s(t), the third inequality holds since

B′
1(t) = λ1(t) − µ(t)B1(t), and the last inequality holds sinceQ1(0) = 0, B2(0) = s(0)

andB1(t) ≤ s(t). Again, the desired conclusion follows by mathematical induction.

Finally, to show(iii), (B.18), (B.19), (B.20), (B.21) imply that

|X1(t)−X2(t)| ≤ |B1(t)− B2(t)|+ |Q1(t)−Q2(t)|

≤ 2t ‖λ1 − λ2‖+ 2 |B1(0)− B2(0)|+ |Q1(0)−Q2(0)|

≤ 2(1 ∨ t)(‖λ1 − λ2‖T ∨ |X1(0)−X2(0)|),

where the third inequality holds because|X1(0)−X2(0)| = |B1(0)− B2(0)| + |Q1(0) −

Q2(0)| in all regimes.

B.3.3 Proof of Theorem 3.7.

Givenλ ∈ Cp, we choose an increasing sequence{λk : k ≥ 1} with λk ∈ Pmk ,nk
for

eachk ≥ 1 such that‖λk − λ‖T → 0 ask → ∞. For eachk ≥ 1, we can apply all
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the results above. By Theorem 3.6, we can define the pair(B, σ) in C2
p as the limit of the

sequence{(Bk, σk) in C2
p with the maximum/uniform norm. There is such a limit, because

the sequence is necessarily Cauchy and the space is a complete metric space. Given the

limit, the convergence holds in the space by Theorem 3.6.

To show that the monotonicity extends, we start withλ1 ≤ λ2. We then construct

sequences{λi,k : k ≥ 1} for i = 1, 2 with λ1,k ≤ λ2,k for eachk and‖λi,k − λi‖T → 0 as

k →∞. We apply Theorem 3.5 for eachk. Since the ordering is preserved in the limit, the

conclusion of Theorem 3.5 holds for the limiting pair by Lebesgue monotone convergence.

We use a similar argument to show that the Lipschitz continuity properties in Theorem 3.6

extend as well: Starting with‖λ1 − λ2‖T = c, for any ǫ > 0, we construct sequences

{λi,k : k ≥ 1} for i = 1, 2 with ‖λ1,k − λ2,k‖ ≤ c + ǫ for eachk and‖λi,k − λi‖T → 0 as

k →∞ for i = 1, 2. We then can apply Theorem 3.6 for eachk ≥ 1, and get the conclusion

there with modification byǫ. However, sinceǫ is arbitrary, we get the preservation of the

Lipschitz property to the limit.

B.4 One proof for §3.6.

Proof of Theorem 3.9. We recursively apply the monotone contraction operatorΨ in

Theorem 3.8, starting withσ(0)
j,i = 0, so thatλ(1)1,i ≤ λ

(1)
2,i for all i, becauseλ(1)j,i = λ

(0)
j,i , j =

1, 2 and the external arrival rate functions have been assumed tobe ordered:λ(0)1,i ≤ λ
(0)
2,i .

By Theorem 3.5 applied to each queue separately, using the assumed orderingB1,i(0) ≤

B2,i(0) for all i, we have firstB(1)
1,i ≤ B

(1)
2,i and thenσ(1)

1,i ≤ σ
(1)
2,i . By (3.23), we then have

λ
(2)
1,i ≤ λ

(2)
2,i . We then get the order holding for alln by applying mathematical induction.

However,λ(n)1,i → λ1,i asn → ∞. Since the order is preserved in the convergence, we

deduce thatλ1,i ≤ λ2,i for 1 ≤ i ≤ m. Finally, we can apply Theorem 3.5 to each queue

separately to get the remaining orderings.
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B.5 Remarks

Remark B.1 (characterization of isolated points)

Definition 3.3 implies thatt is an isolated point only ifQ(t) = 0, B(t) = s(t). More-

over, if t is a discontinuity point ofζ , thenζ(t− δ) < 0 andζ(t) > 0 for someδ > 0; if t

is a continuity point ofζ , thenζ(t− δ) < 0, ζ(t) = 0 andζ(t+ δ) < 0 for someδ > 0.

Remark B.2 (an ODE forB in an underloaded interval)

In an underloaded interval, the total fluid content in serviceB(t) can also be charac-

terized via the ODE

B′(t) = λ(t)− µ(t)B(t), t ≥ 0. (B.22)

The formula in Proposition 3.1 provides the solution to the initial value problem determined

by this ODE with initial conditionB(0).

Remark B.3 (applied significance ofPmn) We have provided a full algorithm whenλ, s′, µ ∈

Pm,n. An algorithm forλ ∈ Cp can be developed by considering a sequence of successive

approximations inPmn,n, but we see no motivation for doing so. We have introduced the

spacePm,n of piecewise polynomials as a device to establish mathematical results. In ap-

plications, it should suffice to useanyconvenient representations of the functionsλ ands,

andassumethat there are only finitely many switches in any finite interval. While running

the algorithm, that assumption can be verified, and the modelcan be modified if too many

switches occur. However, if we start from data, then we couldchoose to let the functions

be inPm,n without loss of generality. Lemma 3.2 shows that it is convenient to work in



304

the spacePm,n, because we can obtain closed form expressions for integrals. Moreover, if

we want to bound the number of switches in advance, then we canbound the parameters

m andn, with the understanding that there is a tradeoff between thequality of fit and the

maximum number of switches.
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Appendix C

Appendix for Chapter 4

C.1 Overview.

This appendix contains additional supplementary material. In §C.2 we give a numerical

example illustrating convergence to steady state for the stationaryG/M/s + M model

starting empty. In§C.3 we give the other half of the proof of Theorem 4.4, establishing

pointwise convergence of the fluid densitiesb(t, x) andq(t, x) ast→∞ when the system

is initially OL. In §C.4 we give another example of periodic steady state (PSS) ina model

with both sinusoidal arrival rate and staffing function, complementing Example 4.2. In

§C.5 we verify the explicit formulas for the PSS in Example 4.3. In §C.6, we compare

the fluid approximation to results from simulations of corresponding stochastic queueing

models, for the example considered in§C.2. These simulation results substantiate that

(i) the theorems are correct, (ii) the numerical algorithm is effective and (iii) the fluid

approximation for the stochastic queueing system is effective. The fluid model accurately
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describes single sample paths of very large queueing systems and accurately describes the

mean values for smaller queueing systems, e.g., with20 servers.

C.2 Convergence to Steady State in theG/M/s+M Model

In this section we give a numerical example illustrating theconvergence to steady state for

aG/M/s+M queue starting empty, as characterized by Corollary 4.2. Here we letµ = 1,

λ = 1.5, s = 1, θ = 0.5. In Figure C.1, we show how performance functions (the solid

lines) converge to their steady states (the dashed lines), applying the algorithm described

in Chapter 2. Figure C.1 shows thatw(t), Q(t), B(t) andb(t, 0) quickly converge to their

steady state values.
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Figure C.1: Performance measures of theG/M/s+M fluid queue converge to their steady
states.
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C.3 Proof of Theorem 4.4

Proof. We now complete the proof of Theorem 4.4 by proving (4.22) and(4.23) when the

system is initially OL, i.e.,q(0, x) ≥ 0 for somex, w(0) ≥ 0,Q(0) ≥ 0 andB(0) = s. As

before, for simplicity, we assumeµ = s = 1 and thereforeρ = λ/sµ = λ.

(i) ρ < 1. Since the service is exponential at the fixed rateµ = 1 and the staffing is fixed

at s = 1, the output rate of the service facility is 1. Hence,Q′(t) = λ − α(t) − b(t, 0) <

λ − b(t, 0) < 1 as long as the system is in the OL regime; moreover, the OL regime will

end after some0 < T < 1/(1 − ρ). The system will switch to the UL regime atT (i.e.,

Q(T ) = w(T ) = 0, B(T ) = s = 1) and will stay there for allt > T . Thus we can apply

(2.13) to characterize the density in service. By Assumption (4.24), fort ≥ T ,

b(t, x) = ρe−x1{0≤x≤t−T} + b(T, x− t+ T )e−(t−T )1{x>t−T}

= ρe−x1{0≤x≤t−T} + b(0, x− t)e−t1{x>t−T}

→ ρe−x as t→∞, x ≥ 0.

B(t) =

∫ t−T

0

ρe−xdx+

∫ ∞

t−T

b(T, x− t + T )e−(t−T )dx

= ρ(1− e−(t−T )) + e−(t−T )B(T )→ ρ, as t→∞,

Moreover,σ(t) = B(t)→ ρ, ast→∞.

(ii) ρ ≥ 1. As in case (i), the maximum output rate of the service facility is 1. Since

ρ ≥ 1, λ ≥ 1, so that the the system necessarily will stay in the OL or CL regime forever.

Sinceb(t, 0) = σ(t) = 1, all old fluid will leave the queue afterT ≡ Q(0)/b(t, 0) = Q(0).

Therefore, fort ≤ T , we haveq(t, x) = ρF̄ (x)1{x≤w(t)∧(t−T )} → q(x) = ρF̄ (x)1{x≤w} if

w(t)→ w ast→∞.

If w(T ) < w, the same reasoning in part (ii) of the proof in Chapter 4 implies that

w(t) ↑ w monotonically afterT . If w(T ) = w, then from (4.31) we see thatw′(T ) = 0,
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which implies that the system is already in steady state and thus will stays there forever.

If w(T ) > w, it is easy to see thatw′(t) = H(w(t)) < H(w) = 0 for t ≥ T , where

H(·) is defined in (4.31). Therefore,w(t) is decreasing (has negative derivative) as long

asw(t) > w. To show thatw(t) → w ast → ∞, it remains to show that for anyǫ > 0,

there exits atǫ such thatw(t) < w + ǫ for any t > tǫ. BecauseH is strictly decreasing

in a neighborhood ofw, we havew′(t) = H(w(t)) ≤ H(w + ǫ) ≡ δ(ǫ) < H(w) = 0,

if w(t) ≥ w + ǫ. Therefore, the derivative ofw(t) is not only negative, but also bounded

by δ(ǫ) < 0. Sow(t) will hit w + ǫ at least linearly fast with slopeδ(ǫ), i.e., for any

t ≥ T + (w(T ) − w − ǫ)/|δ(ǫ)|, we havew(t) ≤ w + ǫ. Therefore, we conclude that

w(t) ↓ w ast→∞. All the other results follow from the same reasoning as in the proof in

Chapter 4. 2

C.4 Another Example of Periodic Steady State

We complement Example 4.2 by considering another value for the parameterγ in the sinu-

soidal staffing function in (4.42). Here we letγ = 0.5 instead of2.0. That makes the model

period4π instead ofπ. Figure C.2) shows the performance functions.

C.5 Verifying the Sinusoidal PSS

We now verify the PSS for Example 4.3. To verifyt0 andt1 in (4.46) and (4.47), we let

a = s = µ = c = θ = 1, b = 0.6. For these parameters, we gett0 = 0.78 andt1 = 3.15

from (4.46) and (4.47). We apply the algorithm in Chapter 2 and plot the performance

measuresw(t),Q(t),B(t),X(t) andb(t, 0) in Figure C.3 for0 ≤ t ≤ 3 · 2π/c = 6π (three

cycles) with the system initially critically loaded and arrival rateλ(t) = a+b ·sin(c(t+t0))

(see Plot 1 in Figure C.3 for the phase difference:6.28− 5.50 = 0.78 = t0).
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Figure C.2: Performance of theGt/M/st +M model with sinusoidal arrival and staffing,
γ = 0.5.

Figure C.3 shows that the fluid performance immediately becomes stationary (a DSS

cycle starts at time 0 and ends at2π). Since theMt/M/s +M model here is equivalent

to theMt/M/∞model, we can also verify these analytical formulas by showing that they

agree with previous ones derived for theMt/M/∞model in [15].
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Figure C.3: TheGt/M/s + M model in Example 4.3 is in PSS at time 0, with period
τ = 2π = 6.28. In each cycle[nτ, (n + 1)τ ] of PSS, the system switches between UL and
OL regimes twice at timenτ andnτ + 3.15.

C.6 A Comparison with Simulation

In §C.4, we considered theGt/M/st +M fluid queue, which has a sinusoidal arrival rate

λ(t) as in (4.1) witha = c = 1, b = 0.6, sinusoidal staffing functions(t) as in (4.42)

with s̄ = 1, u = 0.3, γ = 0.5, exponential service and abandonment distributions with

rateµ = 1 andθ = 0.5. We let the system be initially UL withB(0) = 0.5 < s(0). We

now compare the fluid approximation as shown in C.2 with computer simulations of the

associatedMt/M/st +M queueing model.

This queueing model has the same service and abandonment rates, but scaled arrival

rate and number of servers:nλ(t) andn s(t). There arenB(0) customers in service at
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time 0. LetWn(t) be the elapsed waiting time of the customer at the head of the queue att,

Q̃n(t) be the number of customers in queue andB̃n be the number of customers in service.

Applying the spatial scaling, we letQn(t) ≡ Q̃n(t)/n andBn(t) ≡ B̃n(t)/n. We let

Xn(t) ≡ Qn(t)+Bn(t) be the scaled total number of customers in the system att. In Figure

C.4, C.5 and C.6, we compare the simulation results for the queue performance functions

Wn, Qn andBn from a single simulation run to the associated fluid model counterparts

w, Q andB, with n = 30, n = 100 andn = 1000. The blue solid lines represent the

queueing model performance, while the red dashed lines represent the corresponding fluid

performance. We observe that the bigger the scalingn is, the more accurate the fluid

approximation becomes. Whenn = 1000, we have a large-scale queueing model (with

arrival rate1000 + 600 sin(t) and staffing1000 + 300 sin(0.5 t) servers) and we get close

agreement for individual sample paths.

Whenn is smaller, there are bigger stochastic fluctuations as shown in Figures C.4 and

C.5, but the mean values of the queueing functions still are quite well approximated by the

fluid performance functions when the system is not nearly critically loaded. We illustrate

by considering the casesn = 100 andn = 30 in Figures C.7 and C.8, where average

sample paths of simulation estimates are compared with fluidapproximations. In Figure

C.7, we average 20 sample paths forn = 100; in Figure C.8, we average 200 sample

paths forn = 30. We need more samples for smaller scalingn, because there are bigger

fluctuations.

A careful examination of Figure C.7 and C.8 show that in both cases the total fluid

content,X(t), very accurately approximates the expected value of the scaled total number

of customers,Xn(t), in the queueing system. However, the fluid queue contentQ(t) and

the fluid service contentB(t) do not approximate the mean values of their counterparts in

the queueing system as well. In particular, the quality of these approximations degrades

when the system is nearly critically loaded. That is understandable, because only positive
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Figure C.4: Performance of theGt/M/st + M fluid model compared with simulation
results: one sample path of the scaled queueing model forn = 30.

fluctuations will be captured by the queue length, while onlynegative fluctuations will be

captures by the number of busy servers.
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Figure C.5: Performance of theGt/M/st + M fluid model compared with simulation
results: one sample path of the scaled queueing model forn = 100.
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Figure C.6: Performance of theGt/M/st + M fluid model compared with simulation
results: one sample path of the scaled queueing model forn = 1000.
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Figure C.7: Performance of theGt/M/st + M fluid model compared with simulation
results: an average of 20 sample paths of the scaled queueingmodel based onn = 100.
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Figure C.8: Performance of theGt/M/st + M fluid model compared with simulation
results: an average of 200 sample paths of the scaled queueing model based onn = 30.
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Appendix D

Appendix for Chapter 5

D.1 Overview.

This appendix contains additional supplementary material, which is presented in order of

the material to which it relates. First, in§D.2 we present additional simulation results for

the example in§5.1. Specifically, we report results of simulations with smaller scaling

n but averaged over multiple sample paths, to show the qualityof the fluid model as an

approximation for mean values in the queueing system. We also consider an example with

smaller traffic intensityρ for the example in§5.1 to show that the periodic behavior is

eventually broken.

In §D.3 we give proofs of Theorems 5.7-5.10 in§5.7. In§D.4 we return to the example

in §5.1 and show that different initial conditions can yield very different PSS’s. In§D.5 we

apply the algorithm in Remark 5.2 to numerically evaluate the average performance over

a cycle with non-exponential abandonment distributions. These examples show that the
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average boundary waiting time over a cycle tends to be strictly greater than the stationary

value, whereas the average queue length over a cycle can be either strictly greater or strictly

less than the stationary queue content in the fluid model. In§D.6 we provide a proof of

Corollary 5.7, giving explicit expressions for the performance in theG/D/s + M fluid

model with an exponential abandonment cdf. In§D.7 we provide a proof of Theorem

5.12 showing that there need not exist a finite timeT ∗ after which the system remains

overloaded. To do so, we show that the given example switchesback and forth between

overloaded and overloaded infinitely often, with two switches in each cycle. In§D.8, we

give another counterexample withB(0) < 1 that is an analog of Example 5.1 in§5.3.

We then start to consider other service distributions. In§D.9 we provide the same PSS

results for fluid models that have two-point service distributions with one of the points at

0. Simulation verification is also given there. In§D.10 we provide results of simulation

experiments for queues that have nearly deterministic service times. The simulation results

shows that the behavior forD service is not exhibited for other two-point distributions.

This supports (but of course does not prove) our conjecture that ALOM holds in all other

GI/GI/s+GI models and even in the more generalGt/GI/st +GI models.

D.2 More on the Example in§5.1

D.2.1 Smaller Scalingn

We used a very large scaling, in particularn = 1000, for the queueing model in the ex-

ample in§5.1. We used a very largen for two reasons: first, to demonstrate that the fluid

model becomes accurate in the limit asn → ∞ and, second, to provide a good test of the

numerical algorithm for the fluid model. However, in order tobe useful as approximations
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for realistic large-scale queueing systems, the approximation also should be reasonable for

smaller scaling factors. We demonstrate that now.
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Figure D.1: Performance of theG/D/s+M fluid model compared with simulation results:
one sample path of the scaled queueing model forn = 100.

We consider the same baseM/D/n + M fluid model here as in§5.1, but we only

consider the caseθ = 2. The other parameters remain unchanged:λ = 2, µ = s = 1.

However, we consider different values of the scaling factorn for the associated stochastic

queueing model, which coincides with the number of servers (since we sets = 1).

Figure D.1 below provides the analog of Figure 5.2 for the case of one sample path of

the simulation withn = 100, for the same fluid model. Figure D.2 below gives the average

of 10 sample paths for the same model. We see that the fluid approximation provides only

a rough approximation for a single sample path whenn = 100 instead ofn = 1000, but

it is remarkably accurate for the average over 10 sample paths. The accuracy is especially

high in this example, because the extent of the overloads andunderloads are quite large.

The quality of the approximation does degrade asn decreases, for the given fluid model.
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Figure D.2: Performance of theG/D/s+M fluid model compared with simulation results:
an average of 10 sample paths of the scaled queueing model based onn = 100.

To illustrate, we plot a single sample path forn = 30 in Figure D.3 and the average over

100 sample paths in Figure D.4. The stochastic fluctuations are so much greater for a

single sample path that we need to average over more sample paths to get a good estimate

of the mean values. Forn = 30, the fluid model clearly yields a good approximation

only for the mean values, but the mean is remarkably well approximated forn = 30. The

approximation for the mean values in Figure D.4 are so good that it is evident that the fluid

model approximations can provide useful approximations for the mean values for much

smallern (and thuss).

D.2.2 Smaller Traffic Intensity ρ

For the initial heavily loaded example withρ ≡ λ/sµ = 2 and scalingn = 1000 discussed

in §5.1 we were not able to detect a break in the periodic behaviorin simulations. For
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Figure D.3: Performance of theG/D/s+M fluid model compared with simulation results:
one sample path of the scaled queueing model forn = 30.

example, Figure 5.3 shows that the periodic behavior ofWn(t), the head-of-line waiting

time att, remains even for largeT (T = 1000). However, we found that a break in the

periodic behavior can be observed if we considered less heavily loaded examples.

To illustrate, we now consider the sameM/D/n + M queue in§5.1 with the same

parameters (µ = 1, θ = 2, n = 100) except for a smallerλ, now lettingλ = 1.3n, so that

the system has a lower traffic intensity,ρ = λ/nµ = 1.3 instead ofρ = 2 as in§5.1. We

repeat the same simulation experiment withρ = 1.3 and plotWn in Figure D.5. Figure D.5

shows essentially the same periodic behavior over the initial interval[0, 10], but it shows

that the periodic behavior is gone byT = 1000.
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Figure D.4: Performance of theG/D/s+M fluid model compared with simulation results:
an average of 100 sample paths of the scaled queueing model based onn = 30.

D.3 Proofs for §5.7

We omitted the proofs for the four theorems in§5.7 because they follow from the proofs of

corresponding results in Chapter 4. Nevertheless, we provide the details here.

D.3.1 Proof of Theorem 5.7

Proof. Since both queues are overloaded for allt ≥ 0 and they have the same initial fluid

densities in service, we haveb1(t, 0) = b2(t, 0) = σ1(t) = σ2(t) by Theorem 3.2. For the

fluid content in queue, we havẽq1(t, x) ≤ q̃2(t, x) for all x by Proposition 2.6 because the

two queues share the sameF .

It remains to showw1(t) ≤ w2(t) for all t ≥ 0. We will do a proof by contradiction.

Hence suppose this inequality does not hold for somet > 0. Then continuity ofw1 andw2

implies that there exists some0 < t1 < t such thatw1(t1) = w2(t1) ≡ w̃. However, the
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Figure D.5: Large-time periodic behavior of an overloadedG/D/s+M queueing model:
simulation estimates of the head-of-line waiting timeWn with λ = 1.3, s = µ = 1, θ = 2,
ρ = 1.3, n = 100, T = 1000.

ordering ofq̃1 andq̃2 implies thatq̃1(t1, w̃) ≤ q̃1(t1, w̃). Hence the BWT ODE in Theorem

2.3 of Chapter 2 implies thatw′
1(t1) = w′

2(t1) becauseb1(t, 0) = b2(t, 0). Therefore,

this contradicts our assumption that there exists at such thatw1(t) > w2(t). Hence that

establishes the desired ordering.

The ordering ofQ andα follow directly from the ordering ofq andw since

Q1(t) =

∫ w1(t)

0

q1(t, x)dx ≤
∫ w2(t)

0

q2(t, x)dx = Q2(t),

α1(t) =

∫ w1(t)

0

q1(t, x)hF (x)dx ≤
∫ w2(t)

0

q2(t, x)hFdx = α2(t).

Now we turn tov. The equation (27) in Theorem 5 implies that the ordering ofw is

inherited byv. That is made clear by applying the proof of Theorem 5, which shows that

v(t) is determined by the intersection of the functionw with the linear functionLt(u) =

t + u. Clearly, if we increase thew function, then that intersection point increases as well.

2
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D.3.2 Proof of Theorem 3.6

Proof. Without loss of generality, by Theorem 5.7, it suffices to assume thatλ1 ≤ λ2 and

q1(0, ·) ≤ q2(0, ·). If that is not initially the case, consider another two systems, system 3

and 4 withλ3 ≡ λ1∧λ2, q3(0, x) ≡ q1(0, x)∧ q2(0, x), λ4 ≡ λ1∨λ2, q4(0, x) ≡ q1(0, x)∨

q2(0, x). Therefore, it is easy to see that|λ1 − λ2| = |λ3 − λ4| and |Q1(0) − Q2(0)| ≤

|Q3(0)−Q4(0)|.

Since both queues are overloaded andb1(t, 0) = b2(t, 0), flow conservation of fluid in

queue implies that fori = 1, 2,

Q′
i(t) = λi − αi(t)− bi(t, 0).

Hence, we have

Q′
2(t)−Q′

1(t) = λ2 − λ1 − (α2 − α1) ≤ λ2 − λ1, (D.1)

where the inequality follows from Theorem 5.7. This yields

|Q1(t)−Q2(t)| = Q2(t)−Q1(t) ≤ |Q1(0)−Q2(0)|+ t |λ1 − λ2|.
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Obviously, (5.36) directly follows from (5.34). To show (5.35), we have

|α1(t)− α2(t)| = α2(t)− α1(t)

=

∫ w2(t)

0

q2(t, x)hF (x)dx−
∫ w1(t)

0

q1(t, x)hF (x)dx

=

∫ w1(t)

0

(q2(t, x)− q1(t, x))hF (x)dx+
∫ w2(t)

w1(t)

q2(t, x)hF (x)dx

≤ h↑F

(

∫ w1(t)

0

(q2(t, x)− q1(t, x))hF (x)dx+
∫ w2(t)

w1(t)

q2(t, x)hF (x)dx

)

= h↑F (Q2 −Q1) = h↑F |Q2 −Q1|,

where the first and last equality, and the inequality all follows from Theorem 5.7. 2

D.3.3 Proof of Theorem 5.9

Proof. We first show that(a) follows from (b). Without loss of generality, we assume

Q1(0) ≤ Q2(0). We construct another two systems, 3 and 4, withq3(0, x) ≡ q1(0, x) ∧

q2(0, x) andq4(0, x) ≡ q1(0, x)∨q2(0, x). With this construction, systems 3 and 4 are bona

fide fluid models, withQ3(t) ≤ Q1(t) ≤ Q4(t) andQ3(t) ≤ Q2(t) ≤ Q4(t) for all t, by

Theorem 5.7. This implies that∆Q1,2(t) ≤ ∆Q3,4(t) for all t. SinceδQ3,4(t)(0) ≤ C1

for C1 in (5.38), (5.37) in(a) follows from (5.43) for∆Q3,4(t). (The final bound onC1 in

(5.38) arises when the supports ofq1(0, ·) andq2(0, ·) are disjoint sets.)

Now we prove(b). Observe that the first inequality in (5.43) follows (5.42) because

dividing the interval[0, T ] intoN subintervals yields

∆Q(T ) ≤
(

1

1 + h↓F
T
N

)N

∆Q(0).

LettingN →∞, we get (5.42).
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We now prove (5.42). Since both queues are overloaded for allt ≥ 0 and they have

the same initial fluid densities in service, we haveb1(t, 0) = b2(t, 0) = σ1(t) = σ2(t),

following from Theorem 3.2. Sinceq1(0, x) ≤ q2(0, x), we haveq1(t, x) ≤ q2(t, x),

w1(t) ≤ w2(t) andα1(t) ≤ α2(t) for all t ≥ 0. Hence, we have

α2(t)− α1(t) =

∫ w2(t)

0

q2(t, x)hF (x)dx−
∫ w1(t)

0

q1(t, x)hF (x)dx

=

∫ w1(t)

0

(q2(t, x)− q1(t, x))hF (x)dx+
∫ w2(t)

w1(t)

q2(t, x)hF (x)dx

≥ h↓F

(

∫ w1(t)

0

(q2(t, x)− q1(t, x))dx+
∫ w2(t)

w1(t)

q2(t, x)(x)dx

)

= h↓F (Q2(t)−Q1(t)) = h↓F ∆Q(t). (D.2)

Flow conservation implies that

Q′
i(t) = λ− αi(t)− bi(t, 0) for i = 1, 2,

which yields

∆Q′(s) = −(α2(s)− α1(s)) ≤ −h↓F ∆Q(s) ≤ −h↓F ∆Q(t), 0 ≤ s ≤ t,

where the first inequality follows from (D.2) and the second inequality holds since∆Q(t)

has negative derivative. Therefore, integrating both sides with respect tos from 0 to t, we

have

∆Q(t)−∆Q(0) ≤ −h↓F t∆Q(t)
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and

∆Q(t) ≤
(

1

1 + h↓F t

)

∆Q(0).

To show the second inequality in (5.43), repeat the reasoning in (D.2) and use the face

hF (x) ≤ h↑F instead ofhF (x) ≥ h↓F .

Finally, we treatw(t). As above, it suffices to assume that we have the ordering in

(5.41). We haveb(t, 0) ≥ b↓ following from Proposition 5.4 and Corollary 5.3. First note

that at timeT ∗ = (Q1(0) +Q2(0))/b
↓, all fluid that was in queue 1 and 2 at time 0 is gone

(entered service or abandoned). Then (5.39) follows from

∆Q(T ) =

∫ w2(T )

w1(T )

λ F̄ (x)dx ≤ λ F̄ (w2(T ))∆w(T ), T ≥ T ∗.

Choosew̄ > 0 big enough such that̄F (w̄) < b↓/λ. The BWT ODE implies that fort > T ∗,

w′
2(t) = 1− b(t, 0)

λ F̄ (w2(t))
≤ 1− b↓

λ F̄ (w̄)
< 0,

if w2(t) > w̄ for somet. Hencew̄ is an upper bound forw2(t) if w2(T
∗) < w̄. If

w2(T
∗) ≥ w̄, it is easy to see thatw2(t) decreases until it is below̄w because we can bound

w′
2(t). This argument implies thatw2(t) ≤ w̄ ∨ (w2(0) + T ∗) for all t ≥ 0. The constant

C2 in (5.40) is obtained by inserting established bounds. 2

D.3.4 Proof of Theorem 4.1

Proof. Most are elementary; onlyQ(t) andw(t) require detailed argument. Flow conser-

vation implies thatQ′(t) = λ− α(t)− b(t, 0) ≤ λ− α(t). Sinceα(t) ≥ h↓F Q(t), we have
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Q′(t) < 0 wheneverQ(t) > λ/h↓F . The bound forw(t) follows directly from (5.39) and

the proof of Theorem 5.9. 2

D.4 Different Initial Conditions

Theorems 5.6 and 5.11 provide sufficient conditions for Assumption 5.7 to hold, and for

the performance function to converge to a PSS. That PSS depends strongly on the fluid

density in service,b at the timeT ∗ after which the system remains overloaded. We now

illustrate that different initial conditions can yield very different PSS’s.
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Initially CL: b(0,x) = 1.5 ⋅ 1
{0 ≤ t ≤ 1/2}

 + 0.5 ⋅ 1
{1/2 ≤ t ≤ 1}

, Q(0) = 0.

Initially empty: b(0,x) = Q(0) = 0.

Figure D.6: A comparison of the PSS performance of theG/D/s +M fluid queue with
different initial conditions: (i) critically loaded withb(0, x) = 1.5 · 1{0≤x≤1/2} + 0.5 ·
1{1/2≤x≤1},Q(0) = 0 (the blue solid lines); (ii) starting empty (the red dashed lines).

We again consider theG/D/s +M example in§5.1 withλ = 2, µ = s = 1, θ = 2.

In Figure D.6, we apply the algorithm in Remark 5.2 and plot the performance functions

B(t), b(t, 0), w(t) andQ(t) in interval [0, 3.5] for two different initial conditions: (i) The
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system is initially critically loaded (CL) withb(0, x) = 1.5 · 1{0≤x≤1/2} + 0.5 · 1{1/2≤x≤1},

Q(0) = 0 (the blue solid lines); (ii) The system is initially empty (the red dashed lines).

Both cases yield a PSS with period1/µ = 1, but the performance in these two cases differs

greatly.

D.5 The Average Performance Over a Cycle

In Remark 5.5 we noted that, unlikēα andσ̄, the averages of other performance functions

in a PSS typically do not agree with the steady-state values.We investigateQ̄ and w̄ ≡

τ−1
∫ τ

0
w(t) dt now.

We consider an initially emptyG/D/s+ GI fluid model with three types of abandon-

ment distributions: (i) Erlang-2 (E2), (ii) exponential (M) and (iii) Hyperexponential-2

(H2). We first review these distributions.

Let A be the generic abandonment time.A follows E2 implies thatA = X1 + X2

in distribution, whereX1 andX2 are two iid exponential random variables. Moreover,

f(x) = γ2 x e−γ x, whereγ is rate ofX1. If A follows H2, thenA is a mixture of two

exponential random variables, i.e.,f(x) = p · θ1 e−θ1 x + (1 − p) · θ2 e−θ2 x, whereθ1 and

θ2 are the rates of these two exponential random variables, and0 < p < 1 is the sampling

probability.

We fix the mean ofA, lettingE[A] = 1/θ. An E2 distribution has squared coefficient

of variation (SCV)C2 ≡ V ar(A)/E[A]2 = 1/2, which is less than 1. On the other hand,

all H2 distributions haveC2 greater than 1. ForE2, we let γ = 2 θ. For H2, we let

p = 0.5(1−
√
0.6), θ1 = 2p θ, θ2 = 2(1− p) θ, so thatC2 = 4.

We letλ = 2, θ = 2, µ = s = 1. In Figure D.7, we plotw,Q andα in one cycle[0, 1/µ]

of PSS for these three abandonment distributions, by applying the algorithm described in

Remark 5.2. (Here we start the system empty and compute theseperformance functions
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Figure D.7: A comparison of the PSS of theG/D/s+GI fluid queues with different aban-
donment distributions: (i)E2 (red dashed), (ii)M (blue solid) and (iii)H2 (black dashed).

in N cycles forN large.) In Table 1, we compute and comparew̄, Q̄ andᾱ, the average

of w, Q andα in one cycle tow∗, Q∗ andα∗, their steady-state values. We have three

observations: (i) As proved in Corollary 5.6,ᾱ indeed agrees withα∗ (except for a small

computation error from numerical integration); (ii)̄Q 6= Q∗ in general, in particular,̄Q <

Q∗ for E2 abandonment and̄Q > Q∗ for H2 abandonment; (iii)̄w ≥ w∗, i.e., customers’

average waiting is longer in PSS than in the steady state.

D.6 The Case of Exponential Abandonment

In this section we prove Corollary 5.7, giving explicit formulas in the case of exponential

abandonment. We give two different proofs.



331

abandonment dist.E2 (C2 = 0.5) M (C2 = 1) H2 (C2 = 4)

ᾱ (PSS average) 1.001 1 1.001
α∗ (steady state) 1 1 1
w̄ (PSS average) 0.437 0.367 0.260
w∗ (steady state) 0.420 0.347 0.226
Q̄ (PSS average) 0.649 0.5 0.330
Q∗ (steady state) 0.657 0.5 0.324

Table D.1: A comparison of the average performance of PSS of theG/D/s + GI fluid
queue with (i)E2, (ii) M and (iii)H2 abandonment distribution to the steady-state values.

D.6.1 First Proof of Corollary 5.7

First, sinceb(t, x) andσ(t) are periodic functions andQ(t) andα(t) can be written as

expressions in terms ofw(t), it remains to derive the dynamics ofw(t).

In a cycle [0, 1/µ], w(t) = w̃ + t for 0 ≤ t ≤ 1/µ − s/λ andw(t) solves ODE

w′(t) = 1 − 1/F̄ (w(t)) = 1 − 1/e−θw(t) with w(1/µ − s/λ) = w̃ + 1/µ − s/λ for

1/µ − s/λ ≤ t ≤ 1/µ, wherew̃ ≥ 0 is both the starting and the ending value ofw(t) in

each cycle. Lettingv(t) ≡ t− w(t), we have for1/µ− s/λ ≤ t ≤ 1/µ,

eθt = (1− w′(t))eθ(t−w(t)) = v′(t)eθv(t).

For1/µ− s/λ ≤ t ≤ 1/µ, integrating both sides from1/µ− s/λ to t yields

eθt − eθ(1/µ−s/λ) = θ

∫ t

1/µ−s/λ

eθudu = θ

∫ v(t)

v(1/µ−s/λ)

eθudu

= eθ(t−w(t)) − eθ(1/µ−s/λ−w(1/µ−s/λ)). (D.3)

Becausew(1/µ− s/λ) = w̃+1/µ− s/λ andw(1/µ) = w̃, lettingt = 1/µ in (D.3) yields

(5.52), from which (5.50) follows. Solving the ODE yields (5.53).

Finally, to show (c), we consider a cycle[1/µ− w̃, 2/µ− w̃] instead of[0, 1/µ]. First,
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Figure D.8: PWTv(t) and BWTw(t) of the PSS of theG/D/s+GI fluid queue.

the PWTv(t) is periodic with the same period1/µ. Moreover, it is continuous over[1/µ−

w̃, 2/µ− w̃) and it has a discontinuity att = 2/µ− w̃, as shown in Figure D.8, following

from Theorem 2.5. Also see Theorem 2.3 and 2.6 in Chapter 2 fordetails. Following

Theorem 2.6 in Chapter 2,v(t) satisfies the ODE

v′(t) =
λ F̄ (v(t))

b(t+ v(t), 0)
− 1 =

λ e−θ v(t)

λ
− 1

= e−θ v(t) − 1,
1

µ
− w̃ ≤ t <

2

µ
− w̃, (D.4)

where the second equality holds becauseb(t, 0) = λ for 2/µ − s/λ ≤ t ≤ 2/µ and

t+v(t) ≥ 2/µ−s/λ (obviously from Figure D.8). Sincev(1/µ−w̃) = w̃+1/µ−s/λ ≡ v0,

solving ODE (D.4) with(1/µ− w̃) = v0 yields (5.55).
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D.6.2 Second Proof of Corollary 5.8

We can provide an alternative proof of Corollary 5.8 by focusing onQ(t). Sinceσ(t) =

b(t, 0) = 0,Q(t) satisfies an ODE for0 ≤ t ≤ 1/µ− s/λ with

Q′(t) = λ− θ Q(t),

which has a unique solution

Q(t) =
λ

θ

(

1− e−θ t
)

+Q(0) e−θ t. (D.5)

Sinceσ(t) = b(t, 0) = λ for 1/µ− s/λ < t ≤ 1/µ,Q(t) satisfies another ODE

Q′(t) = λ− θ Q(t)− b(t, 0) = −θ Q(t),

which has a unique solution

Q(t) = Q∗ e−θ t, (D.6)

where

Q∗ ≡ Q

(

1

µ
− s

λ

)

=
λ

θ

(

1− e−θ ( 1
µ
− s

λ)
)

+Q(0) e−θ ( 1
µ
− s

λ)

is the ending value ofQ(t) in [0, 1/µ− s/λ]; i.e., lett = 1/µ− s/λ in (D.5). SinceQ(t) is

periodic in the PSS with period1/µ, we must havẽQ ≡ Q(0) = Q(1/µ). EquatingQ(0)
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toQ(t) in (D.6) with t = 1/µ yields

Q̃ =
λ

θ

(

e−θ s/λ − e−θ/µ

1− e−θ/µ

)

. (D.7)

PluggingQ(0) = Q̃ in (D.7) into (D.5) and (D.6) yields (5.51) and (5.54). To show (5.52),

we let

Q̃ =

∫ w̃

0

λ e−θ xdx =
λ

θ

(

1− e−θ w̃
)

, (D.8)

which yields (5.52).

D.7 On Theorem 9.1

Recall that Theorem 5.12 concludes that there need not exista finite timeT ∗ after which

the system remains overloaded; i.e., there need not existT ∗ < ∞ such thatB(t) = s

for all t ≥ T ∗. The proof involves a concrete counterexample. We now show that the

counterexample indeed has the claimed property.

D.7.1 Proof of Theorem 5.12

We start by giving a feel for the performance by applying the numerical algorithm in

Remark 5.2. We plot the performance functionsw(t), Q(t), B(t), b(t, 0) andσ(t) for

0 ≤ t ≤ 5 in Figure D.9. Figure D.9 clearly shows thatB(n) = s for all n and that

B(n+ (1/2)) increases towardss.

However, from the picture alone, we cannot be sure thatB(n + (1/2)) < s for all n.

To justify that, we need to consider the behavior more carefully. To show that the system
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alternates between overloaded and underloaded infinitely often, we consider successive

intervals [n, n + 1] for n ≥ 0. First, in the first unit[0, 1], we haveb(t, 0) = σ(t) =

b(0, 1 − x) = 2 · 1{0≤x≤1/2}. Sinceb(t, 0) = σ(t) whenever the system is overloaded and

the system is initially overloaded, the BWTw(t) satisfies the ODE

w′(t) = 1− b(t, 0)

λ F̄ (w(t))
= 1− 2

1.2 e−2w(t)
1{0≤t≤1/2}, (D.9)

with w(0) = 2, which has a unique solution

w(t) = t− 1

2
log

(

e2 t − 1

0.6
+ e−2w(0)

)

for 0 ≤ t ≤ 1/2.

Lettingw(t) = 0 yields that

t
(1)
1 =

1

2
log

(

1− 0.6 e−2w(0)

0.4

)

= 0.453 < 1/2, (D.10)

that is the time at which the system becomes underloaded. Note that fort(1)1 < t ≤ 1/2,

σ(t) = 2 > 1.2 = b(t, 0) = λ, therefore, the fluid content in service decreases (linearly)

with B(t) = s − (σ(t) − b(t, 0)) (t − t
(1)
1 ) = 1 − 0.8(t − t

(1)
1 ). For t > 1/2, b(t, 0) =

λ = 1.2 > 0 = σ(t), B(t) increases (liearly) withB(t) = B(1/2) + (b(t, 0) − σ(t)) (t −

1/2) = 0.96 + 1.2(t − 1/2). So the system again becomes overloaded att
(1)
2 = 0.53

sinceB(t
(1)
2 ) = 1 = s. Moreover,t(1)1 andt(1)2 satisfy1.2(t(1)2 − 1/2) = 0.8(1/2 − t(1)1 ).

For t2 ≤ t ≤ 1, by ODE (D.9),w(t) = t − t
(1)
2 , which implies thatw(1) = 1 − t

(1)
2 =

0.47 < 2 = w(0). In summary, the system is overloaded in[0, t
(1)
1 ] ∪ [t

(1)
2 , 1] and (strictly)

underloaded in(t(1)1 , t
(1)
2 ), b(1)(t, 0) ≡ b(t, 0) = 2 · 1

{0≤t<t
(1)
1 }

+ 1.2 · 1
{t

(1)
1 ≤t≤1/2}

and

w(1)(0) ≡ w(0) > w(1) ≡ w(1)(1), with 0 < t
(1)
1 < 1/2 < t

(1)
2 < 1. See Figure D.9.

Now consider the next unit interval[1, 2]. We can simply shift the origin to time 1
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Figure D.9: The counterexample providing a fluid model that does not become (and stay)
overloaded in finite time; it switches between overloaded and underloaded regimes in-
finitely often.

and again consider the interval[0, 1]. Therefore the system is initially overloaded with

w(2)(0) ≡ w(0) = w(1)(1) < w(0)(0), σ(t) = b(1)(t, 0) = 2 · 1
{0≤t<t

(1)
1 }

+ 1.2 · 1
{t

(1)
1 ≤t≤t

(1)
2 }

(which is the rate into service in the previous interval). Wewant to show that the same struc-

ture of all performance functions are preserved in the second unit interval. The switching

time (from overloaded to underloaded) is a strict monotone function ofw(0), by (D.10),

therefore the system becomes underloaded att
(2)
1 such thatt(2)1 < t

(1)
1 sincew(0) =
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w(1)(1) < w(1)(0). Becauseσ(t) = 2 · 1
{0≤t<t

(1)
1 }

+ 1.2 · 1
{t

(1)
1 ≤t≤t

(1)
2 }

, we have

B(t) = 1
{t∈[0,t

(2)
1 )∪(t

(2)
2 ,1]}

+ [1− 0.8(t− t(2)1 )]1
{t

(2)
1 ≤t<t

(1)
1 }

+[1− 0.8(t
(1)
1 − t(2)1 )]1

{t
(1)
1 ≤t≤1/2}

+[1− 0.8(t
(1)
1 − t(2)1 ) + 1.2(t− t(1)2 )]1

{t
(1)
2 ≤t≤t

(2)
2 }
,

wheret(2)2 satisfies1.2(t(2)2 −t(1)2 ) = 0.8(t
(1)
1 −t(2)1 ) so thatt(2)2 > t

(1)
2 , which implies that the

system is overloaded fort(2)2 ≤ t ≤ 1 andw(2)(1) ≡ w(1) = 1 − t(2)2 < w(0) = w(1)(1) =

w(2)(0). In summary, in the second interval, the system is overloaded in [0, t(2)1 ]∪[t(2)2 , 1] and

(strictly) underloaded in(t(2)1 , t
(2)
2 ), b(2)(t, 0) ≡ b(t, 0) = 2 · 1

{0≤t<t
(2)
1 }

+ 1.2 · 1
{t

(2)
1 ≤t≤t

(2)
2 }

,

σ(2)(t) ≡ σ(t) = b(1)(t, 0) = 2 · 1
{0≤t<t

(1)
1 }

+ 1.2 · 1
{t

(1)
1 ≤t≤t

(1)
2 }

andw(2)(0) ≡ w(0) >

w(1) ≡ w(2)(1), with 0 < t
(2)
1 < t

(1)
1 ≤ t

(1)
2 < t

(2)
2 < 1. See Figure D.9.

Using an inductive argument, we can show that in thenth unit interval[n − 1, n], the

same structure is preserved. In particular, if we move the origin to timen−1 (i.e., consider

[0, 1] instead of[n− 1, n]), then

the system is











overloaded, for t ∈ [0, t
(n)
1 ] ∪ [t

(n)
2 , 1],

(strictly) underloaded, for t ∈ (t
(n)
1 , t

(n)
2 ).

b(n)(t, 0) ≡ b(t, 0) = 2 · 1
{0≤t<t

(n)
1 }

+ 1.2 · 1
{t

(n)
1 ≤t≤t

(n)
2 }

,

σ(n)(t) ≡ σ(t) = b(n−1)(t, 0) = 2 · 1
{0≤t<t

(n−1)
1 }

+ 1.2 · 1
{t

(n−1)
1 ≤t≤t

(n−1)
2 }

,

w(n)(0) ≡ w(0) > w(1) ≡ w(n)(1),

with 0 ≤ t
(n)
1 < t

(n−1)
1 ≤ t

(n−1)
2 < t

(n)
2 ≤ 1. Therefore, the bounded sequencet

(1)
1 , t

(2)
1 , . . .

is strictly decreasing and the bounded sequencet
(1)
2 , t

(2)
2 , . . . is strictly increasing so that

we must havet(n)1 ↓ t∞1 ≥ 0 andt(n)2 ↑ t∞2 ≤ 1. We next show thatt∞1 > 0 andt∞2 < 1.
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Supposet∞1 = 0, thenw∞(0) = w∞(1) = 0, which implies thatt∞2 = 1 (the monotonicity

structure is preserved in the limit). Therefore, the systemis underloaded or critically loaded

in [0, 1]. However, since we haveρ = λ/sµ = 1.2 > 1, this cannot happen. Hence a

contradiction.

D.7.2 More On Theorem 5.12

The example in the proof of Theorem 5.12 discussed above in§D.7.1 also can illustrate the

important role played by the initial queue densityq(0, ·) on the asymptotic performance.

Indeed, we can ensure that a timeT ∗ < ∞ exists such thatB(t) = s for all t ≥ T ∗ by

changing the initial queue density. Moreover, we achieve this finiteT ∗ in this example by

reducingthe initial fluid content in queue, not by increasing it.

We consider the same example as before, as discussed in§D.7.1, with the same initial

fluid density in service butw(0) = 0.2 (instead ofw(0) = 2). Figure D.10 is the analog of

Figure D.9. As shown in Figure D.10, the system becomes overloaded in the second cycle

and stays overloaded thereafter. Moreover, the structure of the PSS is entirely different (in

this case there is no critically loaded interval as in FigureD.9).

As concluded in§5.6 - 5.8, the initial fluid density in queueq(0, x) does not play a role

in determining the system’s asymptotic behavior if the system is overloaded for allt ≥ 0,

by the ALOM property in Theorem 5.9. In this example, however, q(0, x) is also critical,

because it determines the behavior ofb as well.

By a minor modification of the reasoning used in§D.7.1, we can show that the sys-

tem is overloaded for allt ≥ 1/µ. Let 0 ≤ t1 ≤ 1/µ be the time at which the system

switches from overloaded to underloaded intervals in[0, 1/µ]. First, we can establish a sim-

ilar (strict) monotonicity result. Withw(0) = 0.2, we can show thatw(1) ≈ 0.3 > w(0),

which implies thatQ(1/µ+ t1) > 0. Sinceσ(t+ 1/µ) = b(t, 0) for 0 ≤ t ≤ 1/µ, we have
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Figure D.10: The dynamics of the system performance of the example in Theorem 5.12
that has the same initial fluid density in service butw(0) = 0.2 instead ofw(0) = 2.

b(t+ 1/µ, 0) = b(t, 0). Therefore, the system is overloaded in[1/µ, 2/µ]. Using an induc-

tive argument, we can show thatw(n+1) > w(n) andσ(t+n/µ) = b(t+n/µ, 0) = b(t, 0)

so that the system is overloaded in[n, n + 1] for all n ≥ 1.

D.8 More on First Passage Times

As an analog of Example 5.1 in§5.3, below we give another counterexample for first pas-

sage times withB(0) < 1.

Example D.1 (counterexample on first passage times withB(0) < 1 ) Suppose thatλ >

µ = 1. Let b(0, x) = λ for 1 − (1/λ) ≤ x ≤ 1 − 1/2λ andb(0, x) = 0 otherwise, so that
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B(0) = 1/2, b(t, 0) = λ, 0 ≤ t < 1/λ, andb(t, 0) = 0, 1/λ ≤ t < 1,B(t) = 1/2 + λ t for

0 ≤ t ≤ 1/2λ andB(t) = 1 for t > 1/2λ. Therefore,T ∗ = t∗ = 1/2λ.

Forn ≥ 1, let {Bn(0, y) : 0 ≤ y ≤ 1} be deterministic. To be a legitimate sample path

for a queueing system,Bn(0, y)must be nondecreasing and integer-valued as well as satisfy

0 ≤ Bn(0, y) ≤ n. Thus, letBn(0, y) ≡ ⌊Bf
n(0, y)⌋, where⌊x⌋ is the greatest integer

less than or equal tox andB̄f
n(0, y) ≡ n−1Bf

n(0, y) ≡
∫ y

0
bn(0, x) dx, wherebn(0, x) =

((n+1)/n)λ, 1−((n−1)/nλ) ≤ x ≤ 1−((n−1)/2nλ), andbn(0, x) = 0 otherwise. First,

observe that̄Bf
n(0, 1/µ) = (n2−1)/2n2 < 1/2 for all n ≥ 1. Second, observe that we have

0 ≤ B̄f
n(0, y)− B̄n(0, y) ≤ 1/n for all y andn. Hence,B̄n(0, 1/µ) ≤ B̄f

n(0, 1/µ) < 1/2

for all n ≥ 1. Nevertheless,̄Bn(0, ·) → B(0, ·) asn → ∞. On the other hand, consider

a deterministic arrival process with ratenλ. ThenBn(1/2λ) = Bn(0) + Nn(1/2λ) =

⌊(n2− 1)/2n2⌋+ ⌊(n− 1)/2⌋ = n− 1 < n (note there is no departure in[1, 1/2λ]). Also,

Sn(t)− Sn(1/2λ) = ⌊(n + 1)λ (t− 1/2λ)⌋ ≥ ⌊nλ (t− 1/2λ)⌋ = Nn(t)−Nn(1/2λ) for

(n − 1)/2nλ ≤ t ≤ (n − 1)/nλ. Therefore, the system is underloaded for0 ≤ t ≤ 1/λ.

Hence,Tn = T ∗
n = 1/λ for all n ≥ 1, in contrast tot∗ = T ∗ = 1/2λ.

D.9 A Two-Point Service Distribution

We next generalize the PSS result of theG/D/s+GI fluid queue discussed in§5.8 to the

G/GI/s + GI model with a special two-point service-time distribution,in particular, to a

two-point distribution where one of the two points is0. We also give an analog of Corol-

lary 5.8 where analytic expressions for the PSS functions are available when the system is
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initially empty and the abandonment distribution is exponential. The proofs are similar to

the proofs of Theorem 5.11 and Corollary 5.8.

Corollary D.1 (PSS for the overloadedG/D/s+GI fluid model) Consider the stationary

G/GI/s + GI fluid model with parameter(λ, µ, p, s, F ) whereρ ≡ λ/sµ > 1 and the

service distributionG is a two-point distribution withP (X = 1/pµ) = p andP (X =

0) = 1− p for 0 < p ≤ 1 such that the mean service time is1/µ. Suppose that Assumption

5.7 is satisfied. Ifb(T ∗, x) = sµ, 0 ≤ x ≤ 1/µ, then there exists a constant functionP∗

such that

‖Ψ(n)
τ (P)−P∗‖ → 0 as n→∞. (D.11)

for all τ > 0. Otherwise, the fluid performanceP is asymptotically periodic with period

1/µ, i.e., there exists a periodic functionP∗ with period1/µ such that(D.11) holds for

τ ≡ 1/µ.

Corollary D.2 (explicit expressions for the PSS with the special two-pointservice times)

Consider theG/D/s+M fluid queue with two-point service distribution given in Corollary

D.1. If ρ ≡ λ/sµ > 1 and the system is initially empty, then the system is overloaded in

the PSS with performance functions given in two parts ([0, 1/pµ − s/pλ] and (1/pµ −

s/pλ, 1/pµ]) of a cycle0 ≤ t ≤ 1/pµ:
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(a) In the first part of the PSS cycle, (i.e., for0 ≤ t ≤ 1/pµ− s/pλ),

w(t) = t + w̃,

Q(t) =
λ

θ

[

1−
(

1− e−θ s/pλ

1− e−θ/pµ

)

e−θ t

]

,

b(t, x) = λ · 1{t≤x≤t+s/pλ},

σ(t) = b(t, 0) = 0,

where

w̃ =
1

θ
log

(

1− e−θ/pµ

1− e−θ s/pλ

)

≥ 0, (D.12)

(b) In the second part of the PSS cycle, (i.e., for1/pµ− s/pλ < t ≤ 1/pµ),

w(t) = −1
θ
log

(

1 +

(

1− eθ(1/µ−s/λ)/p

1− e−θ/pµ

)

· e−θ t

)

,

Q(t) =
λ

θ

(

eθ(1/µ−s/λ)/p − 1

1− e−θ/pµ

)

e−θ t

b(t, x) = λ · 1{0≤x≤t−1/pµ+s/pλ}∪{t≤x≤1/pµ},

σ(t) = b(t, 0) = λ.

Moreover, for0 ≤ t ≤ 1/pµ,

B(t) = s, q(t, x) = λ · 1{0≤x≤w(t)}, α(t) = θ Q(t).
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Proof. In a cycle[0, 1/pλ], w(t) = w̃ + t for 0 ≤ t ≤ 1/pµ − s/pλ andw(t) solves ODE

w′(t) = 1 − 1/e−θw(t) with w(1/pµ − s/pλ) = w̃ + 1/pµ − s/pλ for 1/pµ − s/pλ ≤

t ≤ 1/pλ, wherew̃ ≥ 0 is both the starting and the ending value ofw(t) in each cycle.

Similar to the proof of Corollary 5.8, solving this ODE in[1/pµ − s/pλ, 1/pµ] and set

w(1/pµ) = w̃ yields (D.12). 2

Remark D.1 Theorem 5.11 and Corollary 5.8 in Chapter 5 arise as special cases of Corol-

lary D.1 and D.2 whenp = 1.
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Figure D.11: Performance of the fluid model with the special two-point service distribution
ands = µ = 1, p = 1/2, λ = θ = 2.
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Figure D.12: A comparison of the fluid model with the special two-point service times with
a simulation of a corresponding large-scale queue system.

We next compare the fluid performance with simulation estimations of large-scale queue-

ing systems. We consider the overloaded (ρ > 1) G/GI/s +M example with two-point

service distribution such thatP (X = 1/pµ) = p andP (X = 0) = 1 − p. Let the system

be initially empty. We plot the system performance (Q(t), B(t), w(t), b(t, 0), α(t), σ(t))

in Figure D.11. We letλ = θ = 2, p = 1/2 ands = µ = 1. We havew̃ ≈ 0.0635 when

θ = 2 from (D.12), which can be verified by Figure D.11.

In Figure D.12 we compare our fluid approximation (the dashedred lines) with sim-

ulation estimates (the solid blue lines) of a large-scaleG/GI/s + M queueing system

that has arrival ratenλ andn s servers. We plot (i) the elapsed waiting time of the cus-

tomer at the head of the lineWn(t), (ii) the scaled number of customers waiting in queue

Q̄n(t) ≡ Qn(t)/n and (iii) the scaled number of customers in serviceB̄n(t) ≡ Bn(t)/n.
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We plot single sample paths of these processes withn = 1000. Figure D.12 shows that the

fluid approximation is effective.
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Figure D.13: A comparison of simulations of large-scale queue systems with two-point
service-times distributions, all having mean1.

However, from simulation experiments of corresponding queueing models, we con-

clude that the fluid model with other kinds of two-point service distributions must not

converge to a PSS.

To illustrate, in Figure D.13, we plot single sample paths ofprocessesWn andQn of

four two-point distributions: (a)P (S = 1) = 1 (red dashed curves), (b)P (S = 0) =

P (S = 2) = 1/2 (blue dashed curves), (c)P (S = 0.2) = P (S = 1.8) = 1/2 (yellow solid

curves) and (d)P (S = 0.8) = P (S = 1.2) = 1/2 (black solid curves), withn = 1000

in interval [0, 16]. The traffic intensity isρ = λ/nµ = 2 here. Figure D.13 shows that the

periodic structure is preserved only for case (a) and (b), where he have established periodic

behavior of the associated fluid model. Cases (c) and (d) involve two-point distributions,

but the periodic structure fades away very quickly and the fluctuations decrease substan-
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tially. Thus we conclude that the corresponding fluid modelsmust not have asymptotically

periodic structure.

D.10 Nearly Deterministic Service Times

It is natural to wonder to what extent our results for deterministic service times apply to

other service-time distributions that are nearly deterministic, but not fully deterministic. We

investigated this question by conducting simulation experiments of corresponding queueing

systems with nearly deterministic service times.

For the experiments reported here, as before, we consider theM/GI/n+M queueing

model withλ = 2, µ = 1 andθ = 2, but now we let the service-time distribution be nearly

deterministic. For all examples,E[S] = 1/µ = 1 and we makeV ar[S] small, whereS is a

generic service time.

In our examples now we consider two kinds of service-time distributions, both of which

have small variance: (i) Erlang-N and (ii) a two-point distribution, taking the values1/µ±δ

with probability1/2. For the Erlang-N service times, the variance (andC2) is V ar(S) =

1/N . We plot single sample paths of processWn with N = 100 andN = 5000 in Figure

D.14, with smallern (n = 100) and largerT (T = 100). The periodic behavior is preserved

for the caseN = 5000 but not forN = 100.

For the two-point distribution at1/µ±δ with 1/2 probability, the varianceV ar(S) = δ2.

We plot single sample path of processWn with δ = 0.1 andδ = 0.01 in Figure D.15, with

n = 100, T = 100. Again, the periodic behavior is preserved for the caseδ = 0.01 but not

for δ = 0.1.

From these experiments, we conclude, first, that over suitably short finite intervals, both

the large-scale many-server queueing systems and the approximating fluid models with

nearly deterministic service-time distributions should behave much like the fluid model
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Figure D.14: Simulation estimates of the head-of-line waiting timesWn in anG/EN/s+M
many-server queue with Erlang-N service, withλ = 2, s = µ = 1, θ = 2, ρ = 2, n = 100,
T = 100 in two cases: (i)N = 100; (ii) N = 5000.

with deterministic service times and, second, that the asymptotic behavior of the approx-

imating fluid model will not be periodic. We conclude that a small amount of variability

in the service time distribution will eventually break up the periodic behavior (provided of

course we do not have the special two-point distribution considered in the previous section).

More generally, we conclude that the quality of the approximation provided by the fluid

model withD service over finite time intervals[0, T ] should improve as the service-time

distribution becomes more nearly deterministic, e.g., as the varianceV ar(S) decreases.

We conjecture that again the order of the limits cannot be interchanged: If we first let

V ar(S) ↓ 0, e.g., by lettingN ↑ ∞ in theEN distribution, and then afterwards lett→∞,

then we have the asymptotic PSS established in Chapter 5. On the other hand, if we first

let T → ∞ for any fixedN in the ErlangEN distribution, and then letN ↑ ∞, then our
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Figure D.15: Simulation estimates of the head-of-line waiting timesWn in aG/TP/s+M
many-server queue with a two-point (TP) service-time distribution taking values1/µ ± δ
with 0.5 probability, withλ = 2, s = µ = 1, θ = 2, ρ = 2, n = 100, T = 100 in two cases:
(i) δ = 0.1; (ii) δ = 0.01.

simulation experiments lead us to conjecture that the performance converges to the unique

steady state of the fluid model.

Even more generally, we conclude that when s system tends to behave in a deterministic

or nearly deterministic way, that the transient behavior over suitably short time intervals

may not be well captured by long-run stationary or steady-state descriptions.
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