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This appendix supplements the main paper [1] by providing additional materials. In §1 we

review the Gronwall’s inequality. In §2 we provide simulation results to confirm the effectiveness

of the FCLT-based performance formulas. In §3 we extend our results to queues having positive

initial queue content (with existing initial customers waiting in line at time 0).

1 Gronwall’s Inequality

Gronwall’s inequality is used in the proofs of the main results (See §5). We review Gronwall’s

inequality below.

Lemma 1.1 (Gronwall’s Inequality). Consider measurable functions x, h ≥ 0 : [0, T ]→ [0,∞) and

a locally-finite nonnegative measure µ on [0, T ]. If

x(t) ≤ h(t) +

∫ t

0
x(u)µ(u)du with

∫ T

0
h(u)µ(u)du <∞,

then

x(t) ≤ h(t) +

∫ t

0
h(u)e(

∫ t
u µ(r) dr)µ(u)du. (1.1)

See [9] for a reference. Also see [5].
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2 Numerical Examples

In this section, we provide numerical examples to demonstrate the effectiveness of the engineering

formulas (based on the variance and covariance formulae) given in §4.3 of [1]. We provide simulation

comparisons for the steady-state performance of the G/GI/n+GI model.

Specifically, we consider the H2(λ−1, c2
λ)/GI/n+GI model having H2 interarrival times, n = 100

servers, phase-type (PH) service times and PH abandonment times. Our PH distributions include

H2, M and E2 distributions, representing high variability (with SCV 4), medium variability (with

SCV 1) and low variability (with SCV 0.5). In Tables 1 and 2, we report simulation estimations of

the means and variances of the steady-state waiting time W and queue length Q.

We observe that the service-time and abandonment-time distributions do not have an impact

on the steady-state mean values. However, they do have a significant impact on the steady-state

variances (and distributions) of W and Q. Our results show that our FCLT-based performance

formulas provide accurate approximations for the desired performance.

Table 1: H2(λ−1, c2
λ)/GI/100 +H2(θ−1, c2

a) with (λ, ρ, θ, c2
λ, c

2
a) = (120, 1.2, 0.5, 4, 4)

E2 service (c2s = 0.5) M service (c2s = 1) H2 service (c2s = 4)

Perf. Sim Num Sim Num Sim Num

E[W ] 0.237 0.240 0.239 0.237 0.240 0.240
rel. err. ±1.4E-3 1.4% ±1.5E-3 1% ±2E-3 0.8%

Var(W ) 0.022 0.022 0.024 0.0245 0.0286 0.0288
rel. err. ±7.5E-4 0.9% ±8.3E-4 2.1% ±1.1E-3 0.7%

E[Q] 26.21 25.84 26.33 26.12 26.40 26.41
rel. err. ±0.168 1.4% ±0.177 0.7% ±0.215 0.0%

Var(Q) 302.78 305.02 320.97 316.83 360.78 343.67
rel. err. ±10.31 4.6% ±12.12 4.7% ±13.65 4.7%

3 The GI/GI/n+GI Queue with Positive Initial Queue Content

In the main paper [1], we have developed the heavy-traffic fluid and diffusion limits for the

GI/GI/n + GI queue having special initial conditions. Specifically, in [1], we assume that the

queue is initially empty, i.e., Qn(0) = Wn(0) = Vn(0) = 0, and all servers are initially busy with

equilibrium service times. We advocate that was adequate because our focus there is to develop

steady state performance as t→∞ (where initial condition becomes asymptotically negligible).
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Table 2: H2(λ−1, c2
λ)/GI/100 + E2(θ−1) with (λ, ρ, θ, c2

λ) = (120, 1.2, 0.5, 4)

E2 service (c2s = 0.5) M service (c2s = 1) H2 service (c2s = 4)

Perf. Sim Num Sim Num Sim Num

E[W ] 0.705 0.732 0.7046 0.732 0.700 0.732
rel. err. ±3.4E-3 3.7% ±3.7E-3 3.9% ±4.2E-3 4.6%

Var(W ) 0.051 0.047 0.0576 0.0532 0.0712 0.0659
rel. err. ±4.5E-3 7.8% ±4.9E-3 7.6% ±5.7E-3 7.5%

E[Q] 79.84 82.32 79.65 82.32 78.83 82.32
rel. err. ±0.427 3.0% ±0.454 3.3% ±0.492 4.4%

Var(Q) 818.86 785.86 883.42 847.02 1070.8 976.20
rel. err. ±67.60 4.0% ±71.62 4.1% ±77.01 8.8%

In this appendix, we give heavy-traffic fluid and diffusion limits for the overloaded Gt/GI/n+GI

model having (i) a time-varying arrival rate λ(t) and (ii) a positive initial queue content (e.g.,

Qn(0) > 0, Wn(0) > 0). Our focus here is to study the dynamics of initial queue content and its

impact on the transient system performance. In §3.1 we give preliminary results for key system

performance processes. In §3.2, we develop the heavy-traffic fluid and diffusion limits for the

Gt/GI/n+GI queue with positive initial queue content. We provide the proofs in §4.

3.1 Prelimit Processes for Models with Positive Initial Queue Content

In [2], the authors developed the heavy-traffic limits for the Gt/GI
o, GIν/∞ infinite-server queue.

Hereby, our performance representations for the Gt/GI/n + GI queue with positive initial queue

content build on results in [2]. The key idea is that we model the initial queue content (i.e., number

of customers waiting in line) as a “trancated” infinite-server queue with “service times” that are

customers’ patience times. Paralleling [1], we first discuss the enter-service process.

Enter-service process. First, we give an expression for the En(t), the total number of customers

who enter service from queue in an OL interval by t. Let Eon(t) be the number of initial customers,

who were waiting in line at time 0, have entered service in the interval [0, t], and let Eνn(t) be the

number of customers who has arrived after time 0 and entered service in the interval [0, t]. Then

En(t) = Eon(t) + Eνn(t) (3.1)
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Figure 1: Graphic demonstration of En(t).

where Eνn(t) is discussed in (3.3) in the main paper [1], which can be decomposed into 3 asymptot-

ically independent terms given in (3.4)–(3.6) in [1], and

Eon(t) ≡
Qn(0,Wn(0))∑

i=Qn(0,(Wn(t)−t)+)+1

1(ζi(ηn,i) > Vn(−ηn,i)− ηn,i) (3.2)

= n

∫ Wn(0)

(Wn(t)−t)+

∫ 1

0
1(y > Hu(Vn(−u)− u)) dŪon(Q̄n(0, u), y), (3.3)

where Uon is an independent sequential empirical processes defined as in §3.1. The random variables

0 ≤ ηn,1 ≤ ηn,2 ≤ · · · are the ordered ages (elapsed waiting times) of the initial customers in line,

and ζi(ηn,i) is the remaining patience time of customer i who has elapsed waiting time ηn,i.

Remark 3.1 (Understanding the physics of representations (3.3)). We now carefully explain why

Equations (3.2)–(3.3) hold. Note if there are old customers waiting in line, it must hold that

Wn(t) > t. To understand (3.2), we note that all initial customers with ages greater than Wn(t)− t

at time 0 have already entered service by time t provided that such a customer does not abandon;

hence the upper and lower limits of the sum in (3.2). In order for such a customer not to abandon,

we require its “full” patience time ζi(ηn,i) + ηn,i (sum of the remaining patience time and the age)

to be greater than Vn(−ηn,i), because this initial customer with age ηn,i, satisfying 0 < Wn(t)− t <

ηn,i ≤ Wn(0), can intuitively be treated as an arrival at the negative arrival time −ηn,i, satisfying

−Wn(0) ≤ −ηn,i < t −Wn(t) < 0. See the blue shaded area in the left-hand figure of Figure 1 for

an illustration.

4



Paralleling the decomposition for Eνn(t) in (3.3) of [1], we have

Eon(t) = Eon,1(t) + Eon,2(t) + Eon,3(t), (3.4)

where

Eon,1(t) ≡
√
n

∫ Wn(0)

(Wn(t)−t)+
Hc
u(Vn(−u)− u) dQ̂n(0, u) (3.5)

Eon,2(t) ≡
√
n

∫ Wn(0)

(Wn(t)−t)+

∫ 1

0
1(y > Hu(Vn(−u)− u)) dÛon(Q̄n(0, u), y) (3.6)

Eon,3(t) ≡ n
∫ Wn(0)

(Wn(t)−t)+
Hc
u(Vn(−u)− u) dQn(0, u). (3.7)

Queue-length process. The number of customer waiting in line at time t can be represented as

Qn(t) = Qon(t) +Qνn(t) (3.8)

where Qνn(t) is the number of customers waiting in line at time t who arrived after time 0 (already

discussed in (3.7) in [1], Qon(t) is the number of customers waiting in line at time t who were present

at time 0:

Qon(t) =

Qn(0,(Wn(t)−t)+)∑
i=1

1(ζi(ηn,i) > t) = n

∫ (Wn(t)−t)+

0

∫ 1

0
1(y > Hu(t)) dŪon(Q̄n(0, u), y), (3.9)

Similar to Qνn(t), (3.9) can be represented as sum of three terms, i.e,

Qon(t) ≡ Qon,1(t) +Qon,2(t) +Qon,3(t)

where

Qon,1(t) ≡
√
n

∫ (Wn(t)−t)+

0
Hc
u(t) dQ̂n(0, u) (3.10)

Qon,2(t) ≡
√
n

∫ (Wn(t)−t)+

0

∫ 1

0
1(y > Hu(t)) dÛon(Q̄n(0, u), y) (3.11)

Qon,3(t) ≡ n
∫ (Wn(t)−t)+

0
Hc
u(t) dQ(0, u). (3.12)

Remark 3.2 (Understanding the queue-length decomposition). We now provide insights into the

decompositions of Qon. The first term (3.10) captures the randomness of the number of initial

customers Q̂n(0, ·) and its age distribution, the second term (3.11) captures the randomness of the

remaining service times of these old customers given that Qn(0, y) ≈ nQ(0, y), and the last term

(3.12) involves the randomness in Wn.
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3.2 Main Results

In this section, we give many-server heavy-traffic FWLLN and FCLT results for the overloaded

Gt/GI/n+GI queue with a positive initial queue content, namely, there may be customers initially

waiting in line at time 0. To establish convergence we need appropriate assumptions on initial

conditions. Therefore, we require the following conditions to hold. The proofs are given in §4 of

the appendix.

Assumption 1 (FCLT for initial ages in queue and initial HOL waiting time). There are customers

waiting in line at time 0 in the nth system with positive elapsed waiting times, that is, Bn(0) = n,

Qn(0) > 0 and Wn(0) > 0. Moreover, the sequences {Q̂n(0, ·)} and {Ŵn(0)} satisfy a joint FCLT,

i.e.,

(Q̂n(0, ·), Q̄n(0, ·), Ŵn(0),Wn(0))⇒ (Q̂(0, ·), Q(0, ·), Ŵ (0), w(0))

in D2 × R2 as n→∞ where the two limits Q̂(0, ·) and Ŵ (0) are independent, and

Q(0, y) =

∫ w(0)∧y

0
q(0, x) dx and w(0) ≥ 0.

Remark 3.3 (Understanding Assumption 1). Assumption 1 says that given Wn(0) ≈ w(0) and

ignoring the fluctuation Ŵn(0) when n is large, the limit Q̂(0, y) estimates the stochastic fluctuations

of the initial age process Qn(0, y). Therefore, it is not restrictive to assume Q̂n(0, y), 0 ≤ y ≤Wn(0),

is asymptotically independent with Ŵn(0) (which estimates the stochastic fluctuation of the upper

bound Wn(0) for the ages of initial customers).

Theorem 3.1 (FWLLN for Gt/GI/n+GI with positive initial queue content). Suppose Assump-

tion 1 and all assumptions in Theorem 4.1 of [1] hold. Then, as n→∞,

(N̄n, Q̄n(0, ·),Wn(0), W̄n, V̄n, D̄n, Ēn, B̄n, Q̄n, X̄n, Ān)⇒ (Λ, Q(0, ·), w(0), w, v,D,E,1, Q,X,A)

in D9([0, T ];R)×D([0,∞);R)× R where

Λ(t) =

∫ t

0
λ(u) du and Q(0, y) =

∫ y

0
q(0, u) du, t ≥ 0, 0 ≤ y ≤ w(0).

The deterministic limits w and v satisfy

w(t) = w(0) +

∫ t

0

(
1− µ

q(u,w(u))

)
du, v(t) = w(t+ v(t)), t ≥ 0. (3.13)

where the function q(·, ·) is defined in Theorem 4.1 in [1].
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Moreover, for t ≥ 0, D(t) = E(t) = µt,

Q(t) =


∫ w(t)−t

0 Hc
u(t) dQ(0, u), for t < t∗∫ t

t−w(t) F
c(t− s)λ(s) ds, for t ≥ t∗

,

where t∗ is the boundary point for which the conditions (i) t∗ = w(t∗), (ii) w(t) > t for t < t∗, and

(iii) w(t) < t for t > t∗ are satisfied. Moreover, X(t) = Q(t) + 1 and A(t) = Λ(t)−E(t)−X(t) +

X(0).

Theorem 3.2 (FCLT for Gt/GI/n+GI with positive initial queue content). Suppose Assumption

1 and all assumptions in Theorem 4.1 of [1] hold. Then, as n→∞,

(N̂n, Q̂n(0, ·), Ŵn(0), Ŵn, V̂n, D̂n, Ên, B̂n, Q̂n, X̂n, Ân)

⇒ (N̂ , Q̂(0, ·), Ŵ (0), Ŵ , V̂ , Ê, Ê,0, Q̂, Q̂, Â) in D9([0, T ];R)×D([0,∞);R)× R

where N̂ , Q̂(0, ·) and Ŵ (0) are given in Assumption 1, respectively. Moreover, Â(t) = N̂(t) −

Q̂(t)− Ê(t) + Q̂(0), and D̂(t) = Ê(t) for all t ≥ 0.

The limit enter-service process (Ê(t) : t ≥ 0) is a zero-mean Gaussian process given in Theorem

4.2 of [1].

The limit of head-of-line waiting time (Ŵ (t) : t ≥ 0) uniquely solves the piecewise stochastic

differential equation (PSIE)

Ŵ (t) = − 1

λ∗(t− w(t))F̃ ct−w(t)(w(t))

∫ t

0
f̃s(w(s))λ∗(s− w(s))Ŵ (s) ds

+
1

λ∗(t− w(t))F̃ ct−w(t)(w(t))
Ĝ(t) +

λ∗(−w(0))

λ∗(t− w(t))F̃ ct−w(t)(w(t))
Ŵ (0),

where w is as in (3.13), f̃s(x) ≡ (∂/∂x)F̃s(x),

F̃ cs (x) =

{
F c(x)
F c(−s) if s ≤ 0

F c(x) if s > 0
,

Ĝ(t) ≡

{∫ w(0)
w(t)−t

F c(v(−s))
F c(s) dQ̂(0, s) + Bo (T o(t))− Ê(t) for t < t∗

Zo +
∫ t

0 F
c(w(s)) dN̂(s− w(s)) + Bν (T ν(t))− Ê(t) for t ≥ t∗

, (3.14)

T o(t) ≡
∫ w(0)

w(t)−t

F c(v(−u))

F c(u)

(
1− F c(v(−u))

F c(u)

)
q(0, u) du, t ≥ 0,

T ν(t) ≡
∫ t

0
F c(v(u))F (v(u))λ(u) du, t ≥ 0,

Zo ≡
∫ w(0)

0

F c(v(−u))

F c(u)
dQ̂(0, u) + Bo (T o(0))
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with (Bν(t) : t ≥ 0) and (Bo(t) : t ≥ 0) being two independent standard Brownian motions. The

deterministic function v in (3.14) is characterized by (3.13). The boundary point t∗ satisfies the

following conditions: (i) t∗ = w(t∗), (ii) w(t) > t for t < t∗, and (iii) w(t) < t for t > t∗. The

integrals in (3.14) are interpreted as the form after integration by parts.

The limit virtual waiting time process V̂ uniquely solves

V̂ (t) =
Ŵ (t+ v(t))

1− ẇ(t+ v(t))
, t ≥ 0

where ẇ is the derivative of w, and v is as in (3.13).

The limit queue-length process Q̂ is the sum of three independent terms, specifically,

Q̂(t) ≡ Q̂1(t) + Q̂2(t) + Q̂3(t),

with

Q̂1(t) ≡
∫ t

(t−w(t))+
F c(t− s) dN̂(s) +

∫ (w(t)−t)+

0
Hc
s(t) dQ̂(0, s), t ≥ 0,

Q̂2(t) ≡
∫ t

t−w(t)

∫ 1

0
1(x > F (t− s)) dÛν(Λ(s), y)

+

∫ (w(t)−t)+

0

∫ 1

0
1(x > Hc

s(t)) dÛ
o(Q(0, s), y), t ≥ 0,

Q̂3(t) ≡ q(t, w(t))Ŵ (t), t ≥ 0

where Ûν and Ûo are two independent standard Kiefer processes, and

Hc
s(t) ≡

F c(t+ s)

F c(s)
, s, t ≥ 0

4 Proofs of Theorems 3.1 and 3.2

In §4.1, we first provide a proof for FWLLN by using compactness approach. The key step in

our proof of FWLLN for all processes is to establish convergence for the sequence of head-of-line

waiting times {Wn : n ≥ 1}. Given the convergence of {Wn : n ≥ 1}, convergence of the other

sequences follows by continuous mapping theorem. The limit processes obtained in §4.1 are used

as centering terms in §4.2 to define the CLT-scaled processes. Then, in the same section, we prove

a FCLT for these processes using a different approach. The key step is to use Gronwall’s inequality

to first prove stochastic boundedness of and then convergence for the sequence of scaled processes

{Ŵn : n ≥ 1} in D([0, T ];R).
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4.1 Proof of Theorem 3.1

We first establish a FWLLN for {Wn : n ≥ 1} by using compactness approach, i.e., (i) we show the

sequence {Wn : n ≥ 1} is tight in D([0, T ];R) which implies every subsequence has a convergent

subsequence (see §4.1.1); (ii) every convergent subsequence converges to the same limit which

uniquely solves the ODE in Theorem 3 of [6] (see §4.1.2). Finally, in §4.1.3, we establish convergence

for the other processes and characterize their limits.

4.1.1 Tightness of the sequence {Wn}

We prove tightness in two steps: First we show that {Wn : n ≥ 1} is stochastically bounded in

D([0, T ];R) and then show that the following criterion involving modulus of continuity is satisfied:

For each T > 0 and ε > 0,

lim
δ↓0

lim sup
n→∞

P(w(Wn, δ, T ) > ε) = 0 (4.1)

where w(Wn, δ, T ) is the modulus of continuity of Wn, i.e., sup{w(Wn, [t1, t2] : 0 ≤ t1 < t2 ≤

(t1 + δ) ∧ T )} with w(Wn, A) ≡ sup{Wn(s1)−Wn(s2) : s1, s2 ∈ A}.

Stochastic boundedness. Since we consider the system in the interval [0, T ], we immediately see

that the HOL waiting time for new customers satisfies 0 ≤Wn(t) ≤ T for all n ≥ 1, t ∈ [0, T ]. For

initial customers, on the other hand, we make use of the assumed convergenceWn(0)⇒ w(0) <∞ in

R. In particular, we can bound from above HOL waiting time of an initial customer by Wn(0)+T for

all n ≥ 1 thanks to FCFS service discipline. The upper bound Wn(0) +T is stochastically bounded

due to the assumed convergence. Therefore, the sequence of HOL waiting time for initial customers

is stochastically bounded. Hence we conclude that {Wn : n ≥ 1} is stochastically bounded.

Modulus of continuity. Wn(t+δ)−Wn(t) ≤ δ for δ > 0 and t ≥ 0 holds because the HOL waiting

time can increase at most at rate 1. Therefore, it remains to find a bound on Wn(t)−Wn(t+ δ) to

conclude that the criterion involving modulus of continuity of Wn(t) is satisfied.

To this end, let us define the δ-increment of Ēn,3(t),

Ēn,3(t, δ) ≡ Ēνn,3(t, δ) + Ēon,3(t, δ) ≡ Ēνn,3(t+ δ)− Ēνn,3(t) + Ēon,3(t+ δ)− Ēon,3(t)

=

∫ (t+δ−Wn(t+δ))+

(t−Wn(t))+
F c(Vn(s))λ(s) ds+

∫ (Wn(t+δ)−t−δ)+

(Wn(t)−t)+
Hc
u(Vn(−u)− u)q(0, u) du. (4.2)

Because F c is continuous and F c(x) > 0 for all x ≥ 0, it holds that infx∈[0,T ]{F c(x)} = c1 > 0

for any T > 0. Similarly, infx∈[0,T ]{Hc
x(Vn(−x) − x)} = c2 > 0 for any T > 0. Without loss of

generality, we assume that λ(x) > 0 for all x ∈ [t−Wn(t), t+ δ−Wn(t+ δ)] and q(0, x) > 0 for all
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x ∈ [Wn(t)− t,Wn(t+ δ)− t− δ] so that both integrands in (4.2) are bounded below by a constant

c > 0. Then replacing both integrands with the constant c yields a lower bound on Ēn,3(t, δ). In

particular, we have

(Wn(t)−Wn(t+ δ) + δ)1{t>Wn(t)} + (Wn(t+ δ)−Wn(t)− δ)1{t<Wn(t)} ≤
Ēn,3(t, δ)

c

and by the convergence D̄n ⇒ D in D([0, T ];R) and that E(t) = D(t), we have

lim
n→∞

{Wn(t)−Wn(t+ δ)} ≤ D(t, δ)

c

which implies the modulus of continuity condition (4.1). Hence, {Wn : n ≥ 1} is tight inD([0, T ];R).

More specifically, {Wn : n ≥ 1} is C-tight because (4.1) is sufficient for C-tightness together with

stochastic boundedness.

4.1.2 Characterizing the limit of the sequence {Wn}.

Due to C-tightness, we know that (i) every subsequence of {Wn : n ≥ 1} has a convergent sub-

sequence. Let {W ∗n : n ≥ 1} be such a convergent subsequence with the limit w∗, i.e., W ∗n ⇒ w∗

in D([0, T ];R). The convergence of the subsequence {W ∗n : n ≥ 1} implies that there exists a

corresponding subsequence {V ∗n : n ≥ 1} that converges to some v∗ satisfying the fluid equations

v∗(t) = w∗(t+ v∗(t)) and v∗(t− w∗(t)) = w∗(t), t ≥ 0. (4.3)

Next we derive an ordinary differential equation for w∗ using the LLN-scaled enter-service

process Ēn(t). First, from the FCLT in Theorem 2 of [12], we deduce that D̂ ⇒ D in D([0, T ];R)

which, together with the assumption that the fluid model is OL throughout entire time interval

[0, T ], implies supt∈[0,T ]{|En(t)−Dn(t)|} = o(
√
n) and

Ēn(t)⇒ E(t) =

∫ t

0
b(u, 0) du = µt in D as n→∞. (4.4)

On the other hand, from (3.4) and that (W ∗n , V
∗
n ) ⇒ (w∗, v∗) in D2([0, T ];R), the sequence

{Ēn : n ≥ 1} along the subsequence associated with {W ∗n} and {V ∗n } converges to a limit E∗

satisfying

Ē∗n(t) ⇒ E∗(t) = Eo,∗3 (t) + Eν,∗3 (t)

≡
∫ (t−w∗(t))+

0
F c(v∗(s))λ(s) ds+

∫ w∗(0)

(w∗(t)−t)+
Hc
u(v∗(−u)− u)q(0, u) du (4.5)

with

Ē∗n,1(t) ≡ Ēo,∗n,1(t) + Ēν,∗n,1(t)⇒ (0e)(t) and Ē∗n,2(t) ≡ Ēo,∗n,2(t) + Ēν,∗n,2(t)⇒ (0e)(t)
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in D([0, T ];R) as n → ∞. From [10], we know that LLN-scaled versions of (3.5) and (3.6) vanish

in the limit if Wn and Vn are replaced by the deterministic fixed (independent of n) functions w

and v, respectively. Therefore, we conclude that {Ē∗n,1} and {Ē∗n,2} vanish because the limits w∗

and v∗ are deterministic.

We now derive an ODE for the limit w∗. Equating (4.4) and (4.5), and taking the derivative of

both sides yield

b(t, 0) = (1− ẇ∗(t))F c(v∗(t− w∗(t))λ(t− w∗(t))1(t ≥ w∗(t))

+ (1− ẇ∗(t))Hc
w∗(t)−t (v∗(t− w∗(t))− w∗(t) + t) q(0, w∗(t)− t)1(t < w∗(t))

= (1− ẇ∗(t))
(
F c(w∗(t))λ(t− w∗(t))1(t ≥ w∗(t)) +Hc

w∗(t)−t (t) q(0, w∗(t)− t)1(t < w∗(t))
)
,

(4.6)

where the second equality holds by (4.3). Equation (4.6) implies that

ẇ∗(t) = 1− b(t, 0)

F c(w∗(t))λ(t− w∗(t))1(t ≥ w∗(t)) +Hc
w∗(t)−t (t) q(0, w∗(t)− t)1(t < w∗(t))

= 1− b(t, 0)

q(t, w∗(t))
,

which coincides with the ODE (3.13) which has a unique solution. This implies that any convergent

subsequence {W ∗n} must converge to the same limit and hence full convergence of {Wn : n ≥ 1}.

4.1.3 FWLLN of the other processes.

First, we prove full convergence of {Vn : n ≥ 1}. In particular, for t ≥ 0,

|Vn(t−Wn(t))− v(t− w(t))| ≤ |Vn(t−Wn(t))− Vn(t− w(t))|+ |Vn(t− w(t))− v(t− w(t))|

= |Wn(t)− w(t) +O(1/n)|+ |w(t) +O(1/n)− w(t)|

≤ |Wn(t)− w(t)|+O(1/n) (4.7)

where the equality follows from (2.3) and (2.4) in [1]. This implies convergence of Vn ⇒ v in

D([0, T ];R) thanks to Wn ⇒ w in D([0, T ];R).

We further obtain (4.8) by applying change of variable to (4.7) with un ≡ t − Wn(t) and

u ≡ t− w(t), i.e., for a constant γ > 0,

‖Vn − v‖ ≤
‖Wn − w‖

γ
+O(1/n) = O(1/n) (4.8)

where the equality holds because un = u + o(1). We will make use of (4.8) establishing an FCLT

limit for {V̂n : n ≥ 1} in §4.2.
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We readily have the limit for the enter-service process {Ēn : n ≥ 1} along the convergent

subsequence in (4.5). Full convergence of enter-service follows from full convergence of {Wn}

and {Vn} established above. Therefore, we can now drop the superscripts in (4.5). The limit of

the sequence of departure processes must coincide with the limit of the sequence of enter-service

processes because, in the limit, the system will be overloaded over the entire interval [0, T ].

The limit of the sequences of processes (3.8) and (3.9) in [1] can be obtained the same way it is

done in [8]. which make use of Theorem 3.1. of [10] and then apply continuous mapping theorem

given Wn ⇒ w. From (6.17) of [8], we immediately write

Q̄νn,i ⇒ 0e for i = 1, 2; Q̄νn,3 ⇒ Qν3(t) ≡
∫ t

(t−w(t))+
F c(t− s)λ(s) ds

in D([0, T ];R) as n→∞.

The limit of the sequences of processes (3.10)–(3.12) can be obtained in a similar. Although

not treated in [8], we can use similar arguments because they have similar mathematical forms as

(3.8)–(3.9) in [1]. Therefore, we obtain

Q̄νn,i ⇒ 0e for i = 1, 2; Q̄νn,3 ⇒ Qν3(t) ≡
∫ (w(t)−t)+

0
Hc
u(t) dQ(0, u)

in D([0, T ];R) as n→∞ where Q(0, ·) is the limit of the sequence {Q̄n(0, ·)} implied by the FCLT

Q̂n(0, ·) ⇒ Q̂(0, ·) in Assumption 1. Hence convergence of (3.8) follows from continuous mapping

theorem with addition.

4.2 Proof of Theorem 3.2.

In §4.2.1, we first establish an FCLT for the sequences {Ŵn : n ≥ 1} and {V̂n : n ≥ 1}. Then, in

§4.2.2, we establish FCLT for the other processes given the FCLT in §4.2.1.

4.2.1 FCLT for Ŵn and V̂n

To prove the FCLTs for Ŵn and V̂n, one could do the compactness approach ((i) C-tightness and

(ii) characterization of the limit of convergent subsequence). This could be done by mimicking

the approach here in §4.1 and the approach in [8]. However, we hereby adopt a new approach:

we establish the convergence Ŵn ⇒ Ŵ and V̂n ⇒ V̂ using the continuous mapping theorem and

Gronwall’s inequality. We show that the limit process Ŵ uniquely solves a stochastic differential

equation (SDE). Our SDE here generalizes the SDE given in (6.64) of [8] in two ways. First,

our generalization from M service to GI will replace the Brownian motion Bs there by a general
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Gaussian process. Second, our general initial condition here will generate a piecewise structure

both in the drift term and in the volatility term.

By definition of En(t), the number of customers entered service by time t

En(t) ≡ Eνn(t) + Eon(t)

≡
Nn((t−Wn(t))+)∑

i=1

1(γni > Vn(τni −)) +

Qn(0,Wn(0))∑
i=Qn(0,(Wn(t)−t)+)+1

1(γn−i > Vn(−ηn−i)− ηn−i)

= n

∫ (t−Wn(t))+

0

∫ 1

0
1(y > F (Vn(s))) dŪνn(N̄n(s), y) (4.9)

+ n

∫ Wn(0)

(Wn(t)−t)+

∫ 1

0
1(y > Hu(Vn(−u)− u)) dŪon(Q̄n(0, u), y). (4.10)

We use the representation in [10] to rewrite (4.9) and (4.10) as

n

∫ (t−Wn(t))+

0

∫ 1

0
1(y > F (Vn(s))) dŪνn(N̄n(s), y)

=
√
n

∫ (t−Wn(t))+

0
F c(Vn(s)) dN̂n(s) + n

∫ (t−Wn(t))+

0
F c(Vn(s))λ(s) ds+

Nn((t−Wn(t))+)∑
i=1

(1(γni > wni )− F c(wni )) ,

and

n

∫ Wn(0)

(Wn(t)−t)+

∫ 1

0
1(y > Hu(Vn(−u)− u)) dŪon(Q̄n(0, u), y)

=
√
n

∫ Wn(0)

(Wn(t)−t)+
Hc
u(Vn(−u)− u) dQ̂n(0, u) + n

∫ Wn(0)

(Wn(t)−t)+
Hc
u(Vn(−u)− u)q(0, u) du

+

Qn(0,Wn(0))∑
i=Qn(0,(t−Wn(t))+)+1

(
1(γn−i > wn−i)−

F c(wn−i + ηn−i)

F c(ηn−i)

)
(4.11)

We now introduce new notation to simplify the expressions in (4.11). Define

Λn(s) ≡

{
Qn(0,−s) for s ≤ 0

Nn(s) for s > 0
, Λ∗(s) ≡

∫ s

0
λ∗(u) du and F̃ cs (x) ≡

{
F c(x)
F c(−s) for s ≤ 0

F c(x) for s > 0

(4.12)

where

λ∗(s) ≡

{
q(0,−s) if s ≤ 0

λ(s) if s > 0
.

We now decompose En(t) into sum of three terms, i.e.,

En(t) = En,1(t) + En,2(t) + En,3(t)
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where

En,1(t) =
√
n

∫ t−Wn(t)

−Wn(0)
F̃ cs (Vn(s)) dΛ̂n(s), (4.13)

En,2(t) =

Qn(0,Wn(0))∑
i=Qn(0,(Wn(t)−t)+)+1

(
1(γn−i > wn−i)−

F c(wn−i + ηn−i)

F c(ηn−i)

)
(4.14)

+

Nn((t−Wn(t))+)∑
i=1

(1(γni > wni )− F c(wni )) , (4.15)

En,3(t) = n

∫ t−Wn(t)

−Wn(0)
F̃ cs (Vn(s))λ∗(s) ds. (4.16)

From (4.5) and the discussion in §4.1.3, we deduce that

Ēn,1(t)⇒ (0e)(t), Ēn,2(t)⇒ (0e)(t) in D([0, T ];R),

Ēn,3(t)⇒ E3(t) ≡
∫ t−w(t)

−w(0)
F̃ cs (v(s)) dΛ∗(s) in D([0, T ];R).

Then, by definition, it follows that

Ên(t) =
1√
n
En,1(t) +

1√
n
En,2(t) +

1√
n

(En,3(t)− nE3(t)). (4.17)

Overview of proof. The key step of our proof is establishing convergence and characterizing

the limit of scaled head-of-line waiting-time processes {Ŵn(t) : n ≥ 1}. To do so, we first obtain

an SDE for the scaled prelimit head-of-line waiting-time process Ŵn(t) (see (4.39)). Then using

Gronwall’s inequality (Lemma 1.1), we show that the sequence {Ŵn(t) : n ≥ 1} is stochastically

bounded in D([0, T ];R). Next, we show that Ŵn converges uniformly to a limit process Ŵ as

n→∞ where the limit Ŵ is given in (4.43). Given convergence Ŵn ⇒ Ŵ , we establish FCLT for

the other processes and characterize their limits in §4.2.2.

The following lemmas will help deriving an SDE for the process Ŵn for all n ≥ 1 and characterize

the limit. In Lemma 4.1 and Lemma 4.2, we respectively establish convergence of the first and the

second component on the right-hand side of the equality in (4.17).

Lemma 4.1. For T > 0, if

(N̂n, Q̂n(0, ·))⇒ (N̂ , Q̂(0, ·)) in D([0, T ];R)×D([0,∞);R)

as n→∞, then

1√
n
En,1(t)⇒

∫ t

0
F̃ cs−w(s)(w(s)) dΛ̂(s− w(s)) in D([0, T ];R). (4.18)
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Proof. We consider the modified processes n−1/2Ẽn,1(t) given below. We first prove conver-

gence for the sequence {n−1/2Ẽn,1(t) : n ≥ 1} and then show that the difference between the

modified sequences {n−1/2Ẽn,1 : n ≥ 1} and the desired sequence {n−1/2En,1(t) : n ≥ 1} is asymp-

totically negligible which proves the desired convergence of n−1/2Ẽn,1.

Now consider for t ≥ 0 the processes

1√
n
Ẽn,1(t) =

∫ t−w(t)

−w(0)
F̃ cs (v(s)) dΛ̂n(s)

= F̃ ct−w(t)(v(t− w(t)))Λ̂n(t− w(t))− F̃ c−w(0)(v(−w(0)))Λ̂n(−w(0))

−
∫ t−w(t)

−w(0)
Λ̂n(s−) dF̃ cs (v(s))

= F̃ ct−w(t)(w(t))Λ̂n(t− w(t))− Λ̂n(−w(0))−
∫ t

0
Λ̂n(s− w(s)) dF̃ cs−w(s)(w(s)). (4.19)

The second equality holds since Λ̂n(s) is of bounded variation and therefore the integral can be

represented as the form after integration by parts. The last equality follows from the fluid equation

v(t− w(t)) = w(t), for t ≥ 0, and that F̃ c−w(0)(w(0)) = 1 by definition. Next we define a mapping

ψ : D([0, T ];R)→ D([0, T ];R) such that for z ∈ D([0, T ];R),

ψ(z)(t) ≡ F̃ ct−w(t)(w(t))z(t)− z(0)−
∫ t

0
z(s) dF̃ cs−w(s)(w(s)), 0 ≤ t ≤ T.

We now prove that the mapping ψ is continuous in D([0, T ];R). Let {xn} be a sequence in

D([0, T ];R) such that ‖xn − x‖T → 0. Then

|ψ(xn)(t)− ψ(x)(t)|

=

∣∣∣∣F̃ ct−w(t)(w(t))xn(t)− xn(0)−
∫ t

0
xn(s) dF̃ cs−w(s)(w(s))

− F̃ ct−w(t)(w(t))x(t) + x(0) +

∫ t

0
x(s) dF̃ cs−w(s)(w(s))

∣∣∣∣
≤ F̃ ct−w(t)(w(t))|xn(t)− x(t)|+ |xn(0)− x(0)|+ ‖xn − x‖T

∣∣∣∣ ∫ t

0
dF̃ cs−w(s)(w(s))

∣∣∣∣ ≤ 4 ‖xn − x‖.

Hence the mapping ψ is continuous. In general, proving convergence in the uniform topology

does not necessarily imply J1 convergence because there may be measurability issues (see e.g.

[13, 3]). However, we will be interested in the case where the limit x is continuous, i.e., x ∈

C([0, T ];R). Therefore, we will not have any measurability issues and obtain the desired convergence

in D([0, T ];R) with respect to Skorokhod’s J1 metric.

Convergence of the modified process in (4.19) follows by continuous mapping theorem with

composition. In particular, let Zn(·) ≡ Λ̂n( · −Wn(·)). Then Zn : D([0, T ];R) → D([0, T ];R) and
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Zn ⇒ Z in D([0, T ];R) where Z(·) ≡ Λ̂( · − w(·)). Convergence of {Zn} follows from continuous

mapping theorem with composition. In particular, we apply Theorem 13.2.2 of [13] with sequences

t−Wn(t) and Λ̂n converging to the continuous limits t−w(t) and Λ̂(t), respectively. Then we have

n−1/2Ẽn,1(·) = ψ(Zn)(·)⇒ ψ(Z)(·) in D([0, T ];R). We denote the limit ψ(Z) as∫ t

0
F̃ cs−w(s)(w(s)) dΛ̂(s− w(s)) ≡ F̃ ct−w(t)(w(t))Λ̂(t− w(t))− Λ̂(−w(0))−

∫ t

0
Λ̂(s− w(s)) dF̃ cs−w(s)(w(s))

for 0 ≤ t ≤ T where Λ̂(s) ≡ N̂(s) for s > 0 and Λ̂(s) ≡ Q̂(0, s) for s ≤ 0.

Finally, we show that the difference between the processes n−1/2En,1(t) and n−1/2Ẽn,1(t) is

asymptotically negligible. In particular,

1√
n
|En,1(t)− Ẽn,1(t)| = 1√

n

∣∣∣∣∣
∫ t−Wn(t)

−Wn(0)
F̃ cs (Vn(s)) dΛ̂n(s)−

∫ t−w(t)

−w(0)
F̃ cs (v(s)) dΛ̂n(s)

∣∣∣∣∣
=

1√
n

∣∣∣∣∣
∫ −w(0)

−Wn(0)
F̃ cs (Vn(s)) dΛ̂n(s) +

∫ t−w(t)

t−Wn(t)
F̃ cs (v(s)) dΛ̂n(s)

∣∣∣∣∣
≤ 1√

n

∣∣∣Λ̂n(−w(0))− Λ̂n(−Wn(0))
∣∣∣+

1√
n

∣∣∣Λ̂n(t− w(t))− Λ̂n(t−Wn(t))
∣∣∣

which converges to 0 due to Wn ⇒ w and Λ̂n( · −Wn(·))⇒ Λ̂( · −w(·)) in D([0, T ];R). Hence this

completes the proof.

We next present a convergence result for the second component in (4.17).

Lemma 4.2. For T > 0, if

(N̂n, Q̂n(0, ·))⇒ (N̂ , Q̂(0, ·)) in D([0, T ];R)×D([0,∞);R)

as n→∞, then

1√
n
En,2(t)⇒ Bo(T o(t)) + Bν(T ν(t)) in D([0, T ];R) as n→∞ (4.20)

where Bo and Bν are independent standard Brownian motions with time transforms,

T o(t) =

∫ w(0)

(w(t)−t)+
F̃ cu(v(−u))F̃u(v(−u))q(0, u) du,

T ν(t) =

∫ t

0
F c(v(u))F (v(u))λ(u) du.

Proof. We prove that the first component of the process n−1/2En,2(t) weakly converges in

D([0, T ];R) to a Brownian motion. We apply continuous mapping to conclude that the sum of the

two processes converges to the sum of the limits.
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Proof of convergence of the first component. Our ultimate goal is to use martingale FCLT to

prove convergence for (4.14) which is the CLT-scaled total number of initial customers entered

service. First we define a sequence of discrete-time processes (see (4.21)) and argue that it is

a sequence of martingales adapted to a specific filtration H n
k as defined below. Next, we define

continuous-time martingales using the discrete-time martingales in (4.21). Then we invoke Theorem

7.1.4. on p.339 in [5] to establish convergence and characterize the limit.

Consider the discrete-time processes

Ĥn
k ≡

1√
n

k∑
i=1

(
1(γn−i > wn−i)−

F c(wn−i + ηn−i)

F c(ηn−i)

)
for k = 1, 2, . . . (4.21)

where the sequence {γ−i : i ≥ 1} depends on elapsed times of customers in queue. This process is

different than (4.14) in upper bound of the summation. Recall that, for given ages {ηn−1, η
n
−2, . . . },

{γ−i : i ≥ 1} have the complementary cdf

P(γ−i > s | ηn−i = xn−i) =
F c(s+ xn−i)

F c(xn−i)

for xn−i ∈ R. Also consider the filtration H n
k ≡ σ{γ−i, wn−i−1, η

n
−i−1 : 1 ≤ i ≤ k}. Then E[|Ĥn

k |] ≤

k/
√
n and

E[Hn
k −Hn

k−1|H n
k−1] =

1√
n

(
E[1(γn−k > wn−k)|H n

k−1]−
F c(wn−k + ηn−k)

F c(ηn−k)

)
= 0.

which implies that the process {(Ĥn
k ,H

n
k ) : k ≥ 1} is a discrete-time martingale for each n ≥ 1.

Our next step is to replace k with bnyc and extend the above result to continuous-time setting.

To do so we invoke Lemma 4.2 of [4] (also see Theorem 2.26 of [11]). By a direct application of

that lemma, we deduce that the continuous-time process (Ĥn(y),H n(y) : y ≥ 0) ≡ (Ĥn
bnyc,H

n
bnyc :

y ≥ 0) is a martingale with quadratic variation

〈Ĥn〉(y) =
1

n

bnyc∑
i=1

(
1(γn−i > wn−i)−

F c(wn−i + ηn−i)

F c(ηn−i)

)2

≡ 1

n

bnyc∑
i=1

(
1(γn−i > wn−i)−Hc

ηn−i
(wn−i)

)2
.

(4.22)

We next show that the sequence of martingales (Ĥn(y),H n(y) : y ≥ 0) satisfies the conditions

of Theorem 7.1.4. of [5]. It particular, it is required that (i) jumps of the processes Ĥn(y) are

asymptotically negligible and (ii) quadratic variation of the processes converges in probability to a

limit characterized in Theorem 7.1.1. of [5].
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(i) Negligibility of jumps. We show that condition (a) of Theorem 7.1.4. holds. For each T > 0,

we have sup0≤t≤T |Ĥn(t)− Ĥn(t−)| ≤ 1/
√
n and hence

lim
n→∞

E

[
sup

0≤t≤T
|Ĥn(t)− Ĥn(t−)|

]
= 0.

which is the desired condition.

(ii) Convergence of quadratic variations. We prove that the quadratic variation processes given

in (4.22) converges in L2 sense as n→∞. In particular,

E

 1

n

bnyc∑
i=1

(
1(γn−i > wn−i)−Hc

ηn−i
(wn−i)

)2
−
∫ Q−1(0,y)

0
Hc
u(v(−u)− u)Hu(v(−u)− u) dQ(0, u)

2
≤ 2E

 1

n

bnyc∑
i=1

[(
1(γn−i > wn−i)−Hc

ηn−i
(wn−i)

)2
−Hc

ηn−i
(wn−i)Hηn−i

(wn−i)

]2
+ 4E

 1

n

bnyc∑
i=1

[
Hc
ηn−i

(wn−i)Hηn−i
(wn−i)−Hc

ηn−i
(v(−ηn−i)− ηn−i)Hηn−i

(v(−ηn−i)− ηn−i)
]2

+ 4E

 1

n

bnyc∑
i=1

Hc
ηn−i

(v(−ηn−i)− ηn−i)Hηn−i
(v(−ηn−i)− ηn−i)

−
∫ Q−1(0,y)

0
Hc
u(v(−u)− u)Hu(v(−u)− u) dQ(0, u)

)2


≤ 2

n2

bnyc∑
i=1

E
[(

1(γn−i > wn−i)−Hc
ηn−i

(wn−i)
)2 (

Hηn−i
(wn−i)−Hc

ηn−i
(wn−i)

)2
]

+
2

n2
E
∑
i 6=j

[(
1(γn−i > wn−i)−Hc

ηn−i
(wn−i)

)(
1(γn−j > wn−j)−Hc

ηn−j
(wn−j)

)
(
Hηn−i

(wn−i)−Hc
ηn−i

(wn−i)
)(
Hηn−j

(wn−j)−Hc
ηn−j

(wn−j)
)]

+ 4E

 1

n

bnyc∑
i=1

[
Hc
ηn−i

(wn−i)Hηn−i
(wn−i)−Hc

ηn−i
(v(−ηn−i)− ηn−i)Hηn−i

(v(−ηn−i)− ηn−i)
]2 (4.23)

+ 4E

 1

n

bnyc∑
i=1

Hc
ηn−i

(v(−ηn−i)− ηn−i)Hηn−i
(v(−ηn−i)− ηn−i)

−
∫ Q−1(0,y)

0
Hc
u(v(−u)− u)Hu(v(−u)− u) dQ(0, u)

)2
 (4.24)

The first sum vanishes as n→∞ because the summands are bounded by 1 and hence the first term

is bounded by 2bntc/n2 ≤ 2t/n → 0 as n → ∞. Summands of the second sum are independent
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conditioned on the sequences {ηn−i} and {wn−i}. Therefore, the conditional expectation of each

summand is zero. Hence, the second term is equal to 0.

To prove convergence of (4.23), we first rewrite the summands of (4.23) as

Hc
ηn−i

(wn−i)(1−Hc
ηn−i

(wn−i))−Hc
ηn−i

(v(−ηn−i)− ηn−i)(1−Hc
ηn−i

(v(−ηn−i)− ηn−i))

= Hc
ηn−i

(wn−i)−Hc
ηn−i

(v(−ηn−i)− ηn−i)−
(
Hc
ηn−i

(wn−i)
2 −Hc

ηn−i
(v(−ηn−i)− ηn−i)2

)
(4.25)

Next we make use of fluid scale convergence of virtual waiting time process Vn(t), i.e., Vn ⇒ v in

D, and continuity of the function · 7→ Hηn−i
(·) to show that (4.23) converges to 0. In particular, for

all i ≥ 1,

Hc
ηn−i

(wn−i) = Hc
ηn−i

(Vn(−ηn−i)− ηn−i) = Hc
ηn−i

(v(−ηn−i)− ηn−i + o(1)) for n ≥ 1

due to the fact that Vn ⇒ v in D. Combined with (4.25), this implies that summands in (4.23) can

be bounded above by

|Hc
ηn−i

(v(−ηn−i)− ηn−i + o(1))−Hc
ηn−i

(v(−ηn−i)− ηn−i)|+ |Hc
ηn−i

(v(−ηn−i)− ηn−i + o(1))2 −Hc
ηn−i

(v(−ηn−i)− ηn−i)2|

=

∣∣∣∣F c(v(−ηn−i) + o(1))− F c(v(−ηn−i))
F c(ηn−i)

∣∣∣∣+

∣∣∣∣F c(v(−ηn−i) + o(1))2 − F c(v(−ηn−i))2

F c(ηn−i)
2

∣∣∣∣
≤ K1 |o(1)|

F c(ηn−i)
+
K2 |o(1)|
F c(ηn−i)

2
≤ K|o(1)|

where a candidate K = 2 max{K1/m,K2/m} and m = min{F c(ηn−i)2 : i ≥ 1} > 0. The equality

holds by definition and the inequality holds by differentiability (Lipschitz continuity) of the service-

time cdf F . This implies that the squared sum inside expectation in (4.23) is bounded above by

(K|o(1)|bnyc/n)2 ≤ (Ky)2|o(1)| = o(1) for all y ≥ 0. Hence convergence of (4.23) to 0 by dominated

convergence theorem.

The summation in (4.24) can be alternatively represented as

1

n

bnyc∑
i=0

Hc
ηn−i

(v(−ηn−i)− ηn−i)Hηn−i
(v(−ηn−i)− ηn−i) =

∫ Q̄−1
n (0,y)

0
Hc
u(v(−u)− u)Hu(v(−u)− u) dQ̄n(0, u)

⇒
∫ Q−1(0,y)

0
Hc
u(v(−u)− u)Hu(v(−u)− u) dQ(0, u)

(4.26)

where the convergence in (4.26) follows from [7]. Having established the convergence in (4.26),

convergence in mean square is obtained by first applying continuous mapping theorem with the

function f(x) = x2 and then applying dominated convergence theorem by using the fact that both
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the summation and the limit integral in (4.26) are bounded by y. Hence (4.24) converges to 0.

That completes the proof of convergence of the quadratic variation (4.22).

Having proved conditions (i) and (ii) are indeed satisfied, by Theorem 7.1.4 of [5], we deduce

that Ĥn ⇒ Ĥ in D where Ĥ is a Gaussian process with independent increments and sample paths in

C. Moreover, as implied by the proof of Theorem 7.1.1. of [5], the limit Ĥ is indeed a time-changed

Brownian motion where time-change is the limit of the quadratic variation, i.e.,

Ĥ(y) = B(〈Ĥ〉(y)) = B

(∫ Q−1(0,y)

0
Hc
u(v(−u)− u)Hu(v(−u)− u)q(0, u) du

)
, y ≥ 0.

where B is the standard Brownian motion.

Finally, to prove the convergence of (4.14) we consider the compositions Ĥn(Q̄n(0,Wn(0)))

and Ĥn(Q̄n(0, (Wn(t) − t)+)). By continuous mapping theorem, we have Ĥn(Q̄n(0,Wn(0))) ⇒

Ĥ(Q(0, w(0))) in D and Ĥn(Q̄n(0, (Wn(t)−t)+))⇒ Ĥ(Q(0, (w(t)−t)+)) in D. The limit is obtained

by writing (4.14) as Ĥn(Q̄n(0,Wn(0)))−Ĥn(Q̄n(0, (Wn(t)−t)+)) and applying continuous mapping

theorem once again. Hence

1√
n

Qn(0,Wn(0))∑
i=Qn(0,(Wn(t)−t)+)+1

(
1(γn−i > wn−i)−

F c(wn−i) + ηn−i
F c(ηn−i)

)

⇒ Bo
(∫ w(0)

(w(t)−t)+
Hc
u(v(−u)− u)Hu(v(−u)− u)q(0, u) du

)
. (4.27)

due to stationary increments of the standard Brownian motion.

Application of continuous mapping theorem. The fact that the processes Ĥn(t) and L̂n(t) are

independent for all n ≥ 1 and that respective filtrations Fn
k and G n

k are orthogonal for all n ≥ 1

implies that

(Ĥn, L̂n, Ĥn + L̂n, N̄n, Q̄n(0, ·),Wn)⇒ (Ĥ, L̂, Ĥ + L̂,Λ, Q(0, ·), w) in D6([0, T ];R) (4.28)

where joint convergence of last three processes directly follows because the limits are deterministic.

Having established (4.28), the desired result follows from continuous mapping theorem.
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We now consider the third term in (4.17) without the scaling factor 1/
√
n, i.e.,

En,3(t)− nE3(t)

= n

∫ t−Wn(t)

−Wn(0)
F̃ cs (Vn(s))λ∗(s) ds− n

∫ t−w(t)

−w(0)
F̃ cs (v(s))λ∗(s) ds

= n

∫ t−Wn(t)

−Wn(0)
F̃ cs (Vn(s))λ∗(s) ds− n

∫ t−w(t)

−w(0)
F̃ cs (Vn(s))λ∗(s) ds+ n

∫ t−w(t)

−w(0)
F̃ cs (Vn(s))λ∗(s) ds

− n
∫ t−w(t)

−w(0)
F̃ cs (v(s))λ∗(s) ds

= n

∫ −w(0)

−Wn(0)
F̃ cs (Vn(s))λ∗(s) ds+ n

∫ t−w(t)

t−Wn(t)
F̃ cs (Vn(s))λ∗(s) ds

+ n

∫ t−w(t)

−w(0)
[F̃ cs (Vn(s))− F̃ cs (v(s))]λ∗(s) ds

=
√
nF̃ c−w(0)(θ1,n)λ∗(−w(0))Ŵn(0) +

√
nF̃ ct−w(t)(θ2,n(t))λ∗(t− w(t))Ŵn(t)

−
√
n

∫ t−w(t)

−w(0)
f̃s(θ3,n(s))V̂n(s)λ∗(s) ds (4.29)

where f̃s(u) ≡ ∂
∂u F̃s(u),

Vn(−Wn(0)) ∧ Vn(−w(0)) ≤ θ1,n ≤ Vn(−Wn(0)) ∨ Vn(−w(0)), (4.30)

Vn(t−Wn(t)) ∧ Vn(t− w(t)) ≤ θ2,n(t) ≤ Vn(t−Wn(t)) ∨ Vn(t− w(t)), (4.31)

Vn(t) ∧ v(t) ≤ θ3,n(t) ≤ Vn(t) ∨ v(t). (4.32)

Having treated all the terms in (4.17), we next derive an SDE for the prelimit processes Wn(t)

by using two representations of the process En(t). Then we will obtain an integral equation for

Ŵn(t) for each n ≥ 1 and use Gronwall’s inequality to prove that {Ŵn(t) : n ≥ 1} is stochastically

bounded in D([0, T ];R). Gronwall’s inequality will also be used for establishing the convergence

Ŵn ⇒ Ŵ in D([0, T ];R).

From Lemma 4.1, Lemma 4.2 and (4.29), we have

En(t) = En,1(t) + En,2(t) + En,3(t)

=
√
n

∫ t

0
F̃ cs−w(s)(w(s)) dΛ̂(s− w(s)) +

√
nBo

(∫ w(0)

(w(t)−t)+
F̃ cu(v(−u))F̃u(v(−u))q(0, u) du

)

+
√
nBν

(∫ t

0
F c(v(u))F (v(u))λ(u) du

)
+
√
nF̃ c−w(0)(θ1,n)λ∗(−w(0))Ŵn(0)

+
√
nF̃ ct−w(t)(θ2,n(t))λ∗(t− w(t))Ŵn(t)−

√
n

∫ t−w(t)

−w(0)
f̃s(θ3,n(s))V̂n(s)λ∗(s) ds

+ nE(t) + o(
√
n) (4.33)
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We want to rewrite the last integral term in (4.33) as a function of Wn instead of Vn so that

we will be able to apply Gronwall’s inequality to prove stochastic boundedness of the sequence

{Ŵn : n ≥ 1} in D([0, T ];R). To rewrite the integral term as a function of Wn, we will apply

change of variable. However, first, we present some results on the relation between Ŵn(t) and V̂n(t)

that will be useful as we will be applying change of variable.

Let ∆Vn(t) ≡ Vn(t)− v(t) and ∆Wn(t) ≡Wn(t)− w(t). We write

∆Vn(t) = ∆Wn(t+ Vn(t) +O(1/n)) + w(t+ Vn(t))− w(t+ v(t)) +O(1/n)

= ∆Wn(t+ Vn(t) +O(1/n)) + ẇ(t+ v(t))∆Vn(t) + o(∆Vn(t)) +O(1/n)

which implies

∆Vn(t) =
∆Wn(t+ Vn(t) +O(1/n))

1− ẇ(t+ v(t))
+ o(∆Vn(t)) +O(1/n). (4.34)

Combining (4.34) with (4.8), we deduce that o(∆Vn(t)) = o(1/n) since ∆Vn(t) is of O(1/n). Hence

we have

sup
0≤t≤T

∣∣∣∣∣V̂n(t)− Ŵn(t+ v(t))

1− ẇ(t+ v(t))

∣∣∣∣∣ =
√
n o(1/n) = o(1/

√
n) (4.35)

which concludes discussion of the relation between V̂n(t) and Ŵn(t).

We next move on to apply change of variable in the last integral term of (4.33). By using (4.35)

and the fluid equations w(t) = v(t− w(t)) and v(t) = w(t+ v(t)), we write

√
n

∫ t−w(t)

−w(0)
f̃s(θ3,n(s))V̂n(s) dΛ∗(s)

=
√
n

∫ t−w(t)

−w(0)
f̃s(θ3,n(s))

(
Ŵn(s+ v(s))

1− ẇ(s+ v(s))
+ o(1/

√
n)

)
dΛ∗(s)

=
√
n

∫ t

0
f̃s−w(s)(θ

′
3,n(s))

(
Ŵn(s)

1− ẇ(s)
+ o(1/

√
n)

)
(1− ẇ(s))λ∗(s− w(s)) ds

=
√
n

∫ t

0
f̃s−w(s)(θ

′
3,n(s)) Ŵn(s)λ∗(s− w(s)) ds+ o(1) (4.36)

for some sequence {θ′3,n(t) : n ≥ 1} satisfying

Vn(t− w(t)) ∧ v(t− w(t)) ≤ θ′3,n(t) ≤ Vn(t− w(t)) ∨ v(t− w(t)) (4.37)

where ẇ(t) ≡ (d/dt)w(t). The second inequality in (4.36) holds since ‖λ∗‖t <∞ for any 0 < t <∞

and f̃ is a probability density function, and hence, the integral over any subset of its domain is at

most 1.

22



On the other hand, we write

En(t) = nE(t) +
√
nÊ(t) + o(

√
n). (4.38)

by the implied convergence Ên ⇒ Ê in D([0, T ];R) due to Theorem 2 of [12]. In particular, the

service completion process at each of n servers is asymptotically identical to an equilibrium renewal

process since we assume that the system is asymptotically overloaded. We know from the FCLT for

equilibrium process in Theorem 2 of [12] that D̂n ⇒ D̂ in D([0, T ];R). Consequently, this implies

that sup0≤t≤T |Ê(t) − D̂(t)| = o(
√
n). Then plugging (4.36) in (4.33) and equating (4.33) with

(4.38) yields

Ŵn(t) = − 1

gn(t)

∫ t

0
f̃s−w(s)(θ

′
3,n(s)) Ŵn(s)λ∗(s− w(s)) ds+

1

gn(t)
Ĝ(t)

+
F̃ c−w(0)(θ1,n)λ∗(−w(0))

gn(t)
Ŵn(0) + o(1), (4.39)

where gn(t) ≡ −F̃ ct−w(t)(θ2,n(t))λ∗(t− w(t)) and

Ĝ(t) ≡
∫ t

0
F̃ cs−w(s)(w(s)) dΛ̂(s− w(s)) + Bo

(∫ w(0)

(w(t)−t)+
F̃ cu(v(−u))F̃u(v(−u))q(0, u) du

)

+ Bν
(∫ t

0
F c(v(u))F (v(u))λ(u) du

)
− Ê(t).

Then, equation (4.39) implies that∣∣∣Ŵn(t)
∣∣∣ ≤ 1

gn(t)

∫ t

0
f̃s−w(s)(θ

′
3,n(s)) |Ŵn(s)|λ∗(s− w(s)) ds+

1

gn(t)
|Ĝ(t)|

+
F̃ c−w(0)(θ1,n)λ∗(−w(0))

gn(t)
|Ŵn(0)|+ o(1). (4.40)

For fixed n, we apply Gronwall’s inequality in §1 to (4.40) with

hn(t) =
1

gn(t)
|Ĝ(t)|+

F̃ c−w(0)(θ1,n)λ∗(−w(0))

gn(t)
|Ŵn(0)|+ o(1),

µn(t) =
1

gn(t)
f̃t−w(t)(θ

′
3,n(t))λ∗(t− w(t)).

Then we have ∣∣∣Ŵn(t)
∣∣∣ ≤ hn(t) +

∫ t

0
hn(u) exp

(
‖λ∗/gn‖[u,t]

)
dµn(u)

≤ hn(t) + exp (‖λ∗/gn‖t)
∫ t

0
hn(u)µn(u) du. (4.41)
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The exponential term in (4.41) is bounded because λ∗ is bounded over any closed finite interval

with λ∗(t) > 0 for all t ≥ 0. Furthermore, since F̃ c(t) > 0 for all t ≥ 0, ‖gn‖t > 0 for all t ≥ 0. This

implies that the norm in (4.41) bounded by a constant different than 0 over all bounded intervals.

Hence the second term in (4.41) is bounded since the integral on the right-hand side is bounded.

The fact that the sequences {Ĝn : n ≥ 1} and {Ŵn(0) : n ≥ 1} are stochastically bounded

in D([0, T ];R) and in R, respectively, and that the second term in (4.41) is finite for all n ≥ 1.

Together with the discussion in the above paragraph, this implies that the sequence {Ŵn : n ≥ 1}

is stochastically bounded in D([0, T ];R).

Stochastic boundedness of {Ŵn : n ≥ 1} plays a key role because we want the error caused

by replacing θ1,n by w(0), θ2,n(t) by w(t), θ3,n(t) by v(t) and θ′3,n(t) by w(t) to be asymptotically

negligible. More specifically, from (4.30)-(4.32), (4.37) and Wn ⇒ w, Vn ⇒ v in D([0, T ];R), we

deduce that θ1,n = w(0) + o(1), θ2,n(t) = v(t−w(t)) + o(1) = w(t) + o(1), θ3,n(t) = v(t) + o(1) and

θ′3,n(t) = v(t − w(t)) + o(1) = w(t) + o(1). When θ1,n, θ2,n(t), θ3,n(t), θ′3,n(t) are to be replaced by

respective expressions on the right-hand side of the equalities, we end up with extra terms where

o(1) terms are multiplied by Ŵn(·). To guarantee that such terms are not too irregular, we need

stochastic boundedness of {Ŵn : n ≥ 1}. Once stochastic boundedness is proved, such extra terms

can be treated as o(1).

In light of the above discussion, (4.39) can be rewritten as

Ŵn(t) =
1

F̃ ct−w(t)(w(t))λ∗(t− w(t))

∫ t

0
f̃s−w(s)(w(s)) Ŵn(s)λ∗(s− w(s)) ds

− 1

F̃ ct−w(t)(w(t))λ∗(t− w(t))
Ĝ(t)−

F̃ c−w(0)(w(0))λ∗(−w(0))

F̃ ct−w(t)(w(t))λ∗(t− w(t))
Ŵn(0) + o(1). (4.42)

In order to show that Ŵn ⇒ Ŵ , where Ŵ satisfies

Ŵ (t) =
1

F̃ ct−w(t)(w(t))λ∗(t− w(t))

∫ t

0
f̃s−w(s)(w(s)) Ŵ (s)λ∗(s− w(s)) ds

− 1

F̃ ct−w(t)(w(t))λ∗(t− w(t))
Ĝ(t)−

F̃ c−w(0)(w(0))λ∗(−w(0))

F̃ ct−w(t)(w(t))λ∗(t− w(t))
Ŵ (0), (4.43)

it suffices to show that ‖Ŵn − Ŵ‖T → 0 for Ŵn and Ŵ satisfying (4.42) and (4.43). Equations
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(4.42) and (4.43) imply that∣∣∣Ŵn(t)− Ŵ (t)
∣∣∣ ≤ 1

F̃ ct−w(t)(w(t))λ∗(t− w(t))

∫ t

0
f̃s−w(s)(w(s)) |Ŵn(s)− Ŵ (s)|λ∗(s− w(s)) ds

+
F̃ c−w(0)(w(0))λ∗(−w(0))

F̃ ct−w(t)(w(t))λ∗(t− w(t))
|Ŵn(0)− Ŵ (0)|+ o(1)

≡ 1

g̃n(t)

∫ t

0
|Ŵn(s)− Ŵ (s)| µ̃(s) ds+ h̃n(t).

Once again a direct application of Gronwall’s inequality similar to (4.41) yields

sup
0≤t≤T

∣∣∣Ŵn(t)− Ŵ (t)
∣∣∣ ≤ h̃n(t) + exp (‖λ∗/gn‖t)

∫ t

0
h̃n(u)µ̃n(u) du. (4.44)

for all n ≥ 1. This concludes the convergence ‖Ŵn− Ŵ‖T → 0 since the exponential term is finite,

h̃n ⇒ 0 in R, thanks to Ŵn(0)⇒ Ŵ (0) in R, and the integral is continuous in the sense of Theorem

11.5.1. of [13].

4.2.2 FCLT for Other Processes

If b(t, 0) > b↓ > 0 for all t, then we know from [6] that the fluid HWT w(t), with w(0) > 0, will

eventually cross over the 45 degree line. See Figure 5 there. Let t∗ ≡ inf{t ≥ 0 : w(t) ≤ t} be the

time of the crossover. Therefore, we have (i) w(t) > t for t ∈ Io ≡ [0, t∗), (ii) w(t∗) = t∗ and (iii)

w(t) < t for t ∈ Iν ≡ (t∗,∞). We remark that all old contents (i.e., customers that were in the

system at time 0) will either abandon or enter service for t > t∗, asymptotically when n is large.

FCLT limits for queue length Q̂n. We next prove the FCLTs for the queue lengths using the

FCLT of Ŵn and continuous mapping theorem. Let Qn(t) be the number of customers entered

service in the interval [0, t], let Qon(t) be the number of old customers (who were initial in queue)

entered service in the interval [0, t], and let Qνn(t) be the number of new customers (arriving after

time 0) entered service in the interval [0, t]. Then we have Letting n→∞, we have

Q̂n,1(t) ≡ 1√
n

(
Qνn,1(t) +Qon,1(t)

)
⇒ Q̂1(t) ≡

∫ t

(t−w(t))+
F c(t− s) dN̂(s) +

∫ (w(t)−t)+

0
Hc
u(t) dQ̂(0, u)

=

∫ Γ−1(t)

t∨t∗
F c(t− u+ w(u)) dN̂(u− w(u))−

∫ t∗

t∧t∗
Hc
w(u)−u(t) dQ̂(0, w(u)− u)

=

∫ Γ−1(t)

t
Jλ(t, u) dỸ (u), (4.45)

where the convergence holds by the FWLLN and FCLT of Wn, along with the continuous mapping

theorem. Here Γ(t) ≡ t−w(t), Jλ(t, u) ≡ −Hc
w(u)−u(t)1{u≤t∗}+F c(t− u+w(u))1{u>t∗}. Next, we
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have,

Q̂n,2(t) ≡ 1√
n

(
Qνn,2(t) +Qon,2(t)

)
⇒ Q̂2(t)

≡
∫ t

(t−w(t))+

∫ ∞
0

1(x > F (t− s)) dÛν(Λ(s), y) +

∫ (w(t)−t)+

0

∫ 1

0
1(y > Hu(t)) dÛo(Q̄(0, u), y),

d
= −

∫ t

(t−w(t))+

√
F (t− s)F c(t− s) dB̃ν(Λ(s))−

∫ (w(t)−t)+

0

√
Hu(t)Hc

u(t) dB̃o(Q(0, u))

= −
∫ Γ−1(t)

t∨t∗

√
F (t− u+ w(u))F c(t− u+ w(u)) dB̃ν(Λ(u− w(u)))

−
∫ t∧t∗

t∗

√
Hw(u)−u(t)Hc

w(u)−u(t) dB̃o(Q(0, w(u)− u))

= −
∫ Γ−1(t)

t∨t∗

√
F (t− u+ w(u))F c(t− u+ w(u))λ(u− w(u))(1− ẇ(u)) dBν(u)

−
∫ t∗

t∧t∗

√
Hw(u)−u(t)Hc

w(u)−u(t)q(0, w(u)− u)(1− ẇ(u)) dBo(u)

=

∫ Γ−1(t)

t
Ja(t, u) dB(u), (4.46)

where

Ja(t, u) ≡ −
√
Hw(u)−u(t)Hc

w(u)−u(t)q(0, w(u)− u)(1− ẇ(u))1{u≤t∗}

−
√
F (t− u+ w(u))F c(t− u+ w(u))λ(u− w(u))(1− ẇ(u))1{u>t∗}.

Next, let

Q(t) ≡
∫ t

(t−Wn(t))+
F c(t− s)λ(s) ds+

∫ (Wn(t)−t)+

0
Hc
u(t) dQ(0, u),

we have

Q̂n,3(t) ≡ 1√
n

(
Qνn,3(t) +Qon,3(t)− nQ(t)

)
=
√
n

∫ t−w(t)

(t−Wn(t))+
F c(t− s)λ(s) ds+

√
n

∫ (Wn(t)−t)+

w(t)−t
Hc
u(t) dQ(0, u)

= Ŵn(t)F c(w(t))λ(t− w(t))1{Wn(t)≤t} + Ŵn(t)Hc
w(t)−t(t)q(0, w(t)− t)1{Wn(t)>t}

⇒ Ŵ (t)F c(w(t))λ(t− w(t))1{w(t)≤t} + Ŵ (t)Hc
w(t)−t(t)q(0, w(t)− t)1{w(t)>t}

= Ŵ (t)q(t, w(t)) ≡ Q̂3(t). (4.47)

Although Q̂3 involves Ŵ , which involves N̂ , Q̂(0, ·), Bνa and Boa, Q̂3 and Q̂2 are independent because

Bνa and Boa have independent increments and the intervals of integrals do not overlap. However,

Q̂3 and Q̂1 may not be independent (although the intervals of integrals do not overlap), because
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the process Q̂(0, ·) may not have independent increments. After all, we have the joint convergence:

Combining (4.45), (4.46) and (4.47), we have

Q̂n(t)⇒ Q̂(t) ≡ Q̂0(t) + Q̂1(t) + Q̂2(t) + Q̂3(t) ≡ Q̂0(t) + Q̂ν,∗1 (t) + Q̂o,∗1 (t) + Q̂ν,∗2 (t) + Q̂o,∗2 (t) + Q̂3(t),

where the six terms Q̂0(t), Q̂ν,∗1 (t), Q̂o,∗1 (t), Q̂ν,∗2 (t), Q̂o,∗2 (t) and Q̂3(t) are independent with

Q̂0(t) ≡ Ŵ (0)H(t, 0)q(t, w(t))

Q̂1(t) ≡
∫ t

0
q(t, w(t))

H(t, u)Kλ(u)

q(u,w(u))
dỸ (u) +

∫ Γ−1(t)

t
Jλ(t, u) dỸ (u)

=

∫ Γ−1(t)

0
Lλ(t, u) dỸ (u)

≡ Q̂ν,∗1 (t) + Q̂o,∗1 (t) ≡
∫ Γ−1(t)

t∗
Lνλ(t, u) dN̂(u− w(u)) +

∫ t∗

0
Loλ(t, u) dQ̂(0, w(u)− u)

where Lλ(t, u) ≡ q(t, w(t))
H(t, u)Kλ(u)

q(u,w(u))
1{u≤t} + Jλ(t, u)1{u>t},

Lνλ(t, u) ≡ q(t, w(t))H(t, u)F c(w(u))

q(u,w(u))
1{u≤t} + F c(t− u+ w(u))1{u>t},

Loλ(t, u) ≡
q(t, w(t))H(t, u)Hw(u)−u(u)

q(u,w(u))
1{u≤t} −Hc

w(u)−u(t)1{u>t},

Q̂2(t) ≡
∫ t

0
q(t, w(t))

H(t, u)Ka(u)

q(u,w(u))
dBa(u) +

∫ Γ−1(t)

t
Ja(t, u) dBa(u)

=

∫ Γ−1(t)

0
La(t, u) dBa(u)

≡ Q̂ν,∗2 (t) + Q̂o,∗2 (t) ≡
∫ Γ−1(t)

t∗
Lνa(t, u) dBνa(u) +

∫ t∗

0
Loa(t, u) dBoa(u)

where La(t, u) ≡ q(t, w(t))
H(t, u)Ka(u)

q(u,w(u))
1{u≤t} + Ja(t, u)1{u>t},

Lνa(t, u) ≡ −
q(t, w(t))H(t, u)

√
F (w(u))b(u, 0)

q(u,w(u))
1{u≤t}

−
√
F (t− u+ w(u))F c(t− u+ w(u))λ(u− w(u))(1− ẇ(u))1{u>t},

Loa(t, u) ≡ −
q(t, w(t))H(t, u)

√
Hw(u)−u(u)b(u, 0)

q(u,w(u))
1{u≤t}

−
√
Hw(u)−u(t)Hc

w(u)−u(t)q(0, w(u)− u)(1− ẇ(u))1{u>t},

Q̂3(t) ≡ −q(t, w(t))

∫ t

0

H(t, u)

q(u,w(u))
dÊ(u).

Remark 4.1 (Separation of variability for Q̂(t)). We now explain the meaning of the six terms:

(i) Q̂0(t) captures the randomness of the initial HWT (as a function of Ŵ (0); (ii) Q̂ν,∗1 (t) captures

the randomness of the new arrivals after time 0 (as a function of N̂); (iii) Q̂o,∗1 (t) captures the
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randomness of the ages of customers in queue at time 0 (as a function of Q̂(0, ·); (iv) Q̂ν,∗2 (t)

captures the randomness of the remaining patience times of customers in queue at time 0; (v)

Q̂o,∗2 (t) captures the randomness of the patience times of new arrivals after time 0; (vi) Q̂3(t)

captures the randomness of the service times of all customers (as a function of Ê).

References

[1] A. K. Aras, X. Chen, and Y. Liu. Many-server gaussian limits for overloaded non-markovian

queues with customer abandonment. Queueing Systems, 2017.

[2] A. K. Aras, Y. Liu, and W. Whitt. Heavy-traffic limit for the initial content process. Stochastic

Systems, 1:95–142, 2017.

[3] P. Billingsley. Convergence of Probability Measures. Wiley-Interscience, second edition, 1999.

[4] J. G. Dai and S. He. Customer abandonment in many-server queues. Mathematics of Opera-

tions Research, 35(2):347–362, May 2010.

[5] S. N. Ethier and T. G. Kurtz. Markov Processes: Characterization and Convergence. Wiley,

1986.

[6] Y. Liu and W. Whitt. The Gt/GI/st + GI many-server fluid queue. Queueing Systems,

71:405–444, 2012.

[7] Y. Liu and W. Whitt. A many-server fluid limit for the Gt/GI/st + GI queueing model

experiencing periods of overloading. Operations Research Letters, 40:307–312, 2012.

[8] Y. Liu and W. Whitt. Many-server heavy-traffic limits for queues with time-varing parameters.

The Annals of Applied Probability, 24:378–421, 2014.

[9] A. Mandelbaum, W. A. Massey, and Reiman. Strong approximations for markovian service

networks. Queueing Systems, 30:149–201, 1998.

[10] G. Pang and W. Whitt. Two-parameter heavy-traffic limits for infinite-server queues. Queueing

Systems, 65:325–364, 2010.

[11] P. Protter. Stochastic Integration and Differential Equations. Springer, 2005.

[12] W. Whitt. Queues with superposition arrival process in heavy traffic. Stochastic Processes

and their Applications, 21:81 – 91, 1985.

28



[13] W. Whitt. Stochastic-Process Limits: An Introduction to Stochastic-Process Limits and Ther

Application to Queues. Springer, 2002.

29


