ISE/OR 762
Stochastic Simulation Techniques

Topic 0: Introduction to Discrete Event Simulation

Yunan Liu

Department of Industrial and Systems Engineering
NC State University

January 9, 2018
Why Simulation?

- Simulation is used to “simulate” the operations of various kinds of real-world systems or processes with the aid of a computer.
- We make assumptions about how a system works; these assumptions constitute a model.
- Models are used to gain some understanding of how a system behaves.
- Analysis approach based on system complexity:
 - Simple models: use analytical (mathematical) methods to obtain exact information on questions of interest.
 - Complex models: use simulation to evaluate the model numerically.
System Analysis

System: a collection of entities, e.g. people or machines, that act and interact together toward the accomplishment of some logical end.

State: collection of variables necessary to describe a system at a particular time, relative to the objectives of a study.

A system can be *discrete* or *continuous* depending on how the state variables change with respect to time.
Application of Simulation

- Designing and analyzing manufacturing and inventory systems
- Determining hardware requirements or protocols for communication networks
- Determining hardware and software requirements for computer systems
- Designing and operating transportation systems such as airports, freeways, sports and subways
- Evaluating designs for service organizations such as call centers, fast-food restaurants, hospitals and post offices
- Analyzing financial or economic systems; pricing complex financial instruments
Different Kinds of Simulation

- Static v.s. dynamic
 - Does time have a role in the model?

- Continuous-change v.s. discrete-change
 - Can “state” change continuously, or only a discrete points in time?

- Deterministic v.s. stochastic
 - Is everything for sure or is there uncertainty?

- By hand v.s. by computer
 - Is the model complicated so we need a computer?

- Most operational models:
 - Dynamic, discrete-change, stochastic, computer-based
Discrete Event Simulation

Objective: Model a system as it evolves over time by a representation in which the state variables change instantaneously at separate points in time, e.g. a queue.

Characteristics:
- Keep track of the simulated (random) time as simulation proceeds.
- Advance simulated time via a “simulation clock”.
- Simulation clock can be advanced either when an event occurs or at a fixed increment of time.
- Sample system states as time evolves to prepare for output estimators.
Example: A Single-Server Queue

- Random elements:
 - $A_i =$ time of arrival of the i^{th} customer;
 - $t_i = A_i - A_{i-1} =$ interarrival time ($t_0 = 0$);
 - $V_i =$ processing (service) time of i^{th} customer;
 - $W_i =$ waiting time of i^{th} customer (excluding service);
 - $D_i = A_i + W_i + V_i =$ departure time of i^{th} customer.

- Possible events: arrivals and departures.

- Advance simulation clock when an event occurs
 - $e_i =$ time of the i^{th} event.

- V_i’s and t_i’s distributed according to a known distribution.
Estimating Useful Performance Metrics

- Estimate the average waiting time of customers
 \[N(t) = \text{number of customers that have arrived in } [0, t] \]
 \[\hat{W}(T) = \frac{1}{N(T)} \sum_{i=1}^{N(T)} W_i \]

- Estimate the average number of customers in the system
 \[Q(t) = \text{total number of customers in the system at time } t \]
 \[\hat{Q}(T) = \frac{1}{T} \int_0^T Q(t) dt. \]

- Estimate the average utilization
 \[\hat{\rho}(T) = \frac{1}{T} \int_0^T B(t) dt, \quad B(t) = 1_{\{Q(t)>0\}}. \]
An Example with Numbers

- Set $T = 10$
- Initialize system so that there are no customers at time 0
- Generate arrivals and service times according to their distributions

 Arrival times: 1.5, 2.4, 3, 3.6, 6, 7.7, 9.2, 11

 Processing times: 1, 1.5, 1, 2, 0.5, 3.5, 1.5, 1

<table>
<thead>
<tr>
<th>Time</th>
<th>Event</th>
<th>Next event (type & time)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.5</td>
<td>A_1</td>
<td>$A_2 = 2.4$</td>
</tr>
<tr>
<td>2.4</td>
<td>A_2</td>
<td>$D_1 = 2.5$</td>
</tr>
<tr>
<td>2.5</td>
<td>D_1</td>
<td>$A_3 = 3$</td>
</tr>
<tr>
<td>3</td>
<td>A_3</td>
<td>$A_4 = 3.6$</td>
</tr>
<tr>
<td>3.6</td>
<td>A_4</td>
<td>$D_2 = 4$</td>
</tr>
<tr>
<td>4</td>
<td>D_2</td>
<td>$D_3 = 5$</td>
</tr>
<tr>
<td>5</td>
<td>D_3</td>
<td>$A_5 = 6$</td>
</tr>
<tr>
<td>6</td>
<td>A_5</td>
<td>$D_4 = 7$</td>
</tr>
<tr>
<td>7</td>
<td>D_4</td>
<td>$D_5 = 7.5$</td>
</tr>
<tr>
<td>7.5</td>
<td>D_5</td>
<td>$A_6 = 7.7$</td>
</tr>
<tr>
<td>7.7</td>
<td>A_6</td>
<td>$A_7 = 9.2$</td>
</tr>
<tr>
<td>9.2</td>
<td>A_7</td>
<td></td>
</tr>
</tbody>
</table>
Compute desired performance functions:

- $N(T) = 7$
- $\hat{W}(T) = \frac{0 + 0.1 + 1 + 1.4 + 1 + 2}{7} = 0.7857$
- $\hat{Q}(T) = \frac{1 \times (.9 + .5 + 1 + .5 + 1.5) + 2 \times (.1 + .6 + 1 + 1 + .8) + 3 \times .4}{10} = 1.26$
- $\hat{\rho}(T) = \frac{1}{10} [10 - 1.5 - .2] = 0.83$
Monte Carlo Simulation

- **Definition**: Computational algorithms that rely on repeated random sampling to obtain numerical results. (A simulation estimator based on strong law of large numbers.)
- **Named after the gambling hot spot in Monaco**: chance and random outcomes are central to the modeling technique, much as they are to games like roulette, dice and slot machines.
- **First developed by Stanislaw Ulam and John Von Neumann**.
- **Applications**: Evaluate complicated integrals (multiple dimensions), pricing complex financial instruments (options)
- **Example**: Estimate the value of

\[I \equiv \int_a^b g(x) \, dx. \]

Generate \(X \sim \text{Unif}(a, b) \), set \(Y = (b - a)g(X) \). Then

\[\frac{1}{n} \sum_{i=1}^n Y_i \approx \mathbb{E}[Y] = (b - a)\mathbb{E}[g(X)] = (b - a) \int_a^b g(x) \frac{1}{b-a} \, dx = \int_a^b g(x) \, dx. \]
Buffon is remembered in the history of probability theory for his famous needle problem - the first example of a simulation experiment.

Buffon’s Needle Problem:
If a floor has equally spaced parallel lines a distance d apart and if a needle of length l is tossed at random on the floor where $l \leq d$, then what is the probability that the needle will intersect a line?
Buffon’s Needle Problem: Precomputer Simulation in 1777

The distance from the head of a needle to a line is \(X \sim \text{Unif}(0, d) \).

Conditioning on \(\Theta \):

\[
\mathbb{P}(\text{Needle intersects a line} | \Theta = \theta) = \mathbb{P}(X \in [0, l \sin \theta]) = \int_{0}^{l \sin \theta} \frac{1}{d} \, dx = \frac{\sin \theta \cdot l}{d}.
\]

Unconditioning on \(\Theta \) yields:

\[
\mathbb{P}(\text{Needle intersects a line}) = \int_{0}^{\frac{\pi}{2}} \mathbb{P}(\text{Needle intersects a line} | \Theta = \theta) \cdot \frac{1}{\pi/2} \, d\theta
\]
\[
= \int_{0}^{\frac{\pi}{2}} \frac{\sin \theta \cdot l}{d} \cdot \frac{2}{\pi} \, d\theta = \frac{2l}{\pi d} = 0.637.
\]

When \(l = d \), \(\mathbb{P}(\text{Needle intersects a line}) = \frac{2}{\pi} = 0.637 \).
Buffon’s Needle Problem: Precomputer Simulation in 1777

Toss a needle for a large number N times. Define independent r.v.’s:

$$X_i = 1_{\{i^{th} \text{ needle crosses a line}\}} = \begin{cases} 1, & \text{if } i^{th} \text{ needle crosses a line;} \\ 0, & \text{otherwise.} \end{cases}$$

According to the strong law of large number (SLLN):

$$\lim_{N \to \infty} \frac{1}{N} \sum_{i=1}^{N} X_i = \frac{2}{\pi} \quad \text{so that} \quad \pi \approx \frac{2}{\frac{1}{N} \sum_{i=1}^{N} X_i} \quad \text{for } N \text{ large.}$$

Remarks:

- Buffon’s needle-tossing experiment can be conducted by hand.
- It is the earliest example of using independent replications of a simulation to approximate an important physical constant.
Simulations in TV Shows

British Sci-Fi TV drama on Netflix: **Black Mirror**
Season 4, Episode 4: “Hang the DJ”

- An algorithm simulating the dating outcomes of 1000 independent digital copies of the consciousness of Frank and Amy.
- The app promises a 99.8% percent “perfect” match.
Issues Arising in Monte Carlo Simulation

- How to generate needed input random objects?
- How many computer experiments do we need?
- How to compute expectations associated with limit stationary distributions?
- How to exploit problem structure to speed up the computation?
- How to efficiently compute probabilities of rare events?
- How to estimate sensitivity of a stochastic model to changes in a parameter?
- How to use simulation to optimize our choice of decision parameters?
Advantages and Disadvantages of Simulation

- **Advantages:**
 - Simulation allows to estimate the performance of complex, real-world, systems that cannot be evaluated analytically.
 - Allows us to study long time frames in compressed time.
 - Provides better control of experimental conditions.

- **Disadvantages:**
 - Lacking of insights.
 - Expensive and time-consuming to develop.
 - Produces only estimates (not exact) of a model’s true characteristics.
 - Implementation errors;
 - Sampling errors;
 - Machine errors;
 - Statistical errors.
Pitfalls of Simulation

- Lack of well defined objectives.
- Failure to collect good system data.
- Failure to account correctly for sources of randomness.
- Use of arbitrary distributions.
- Assume independence when it is not present.
- Not running enough simulations.
- Treating simulation results as “true answers”.
- Replacing random variables by their means.
Danger of Replacing Random Variables by Their Means

Example: Consider a manufacturing system consisting of a single machine.
- "Raw" parts arrive according to a Poisson process with rate $\lambda = 1$ per min.
- Processing times are exponentially distributed with mean $1/\mu = 0.99$ min.

This is an $M/M/1$ queue with traffic intensity $\rho = 0.99$ (ISE760)
- The long-run average number of customers in the system
 $$\mathbb{E}[Q(\infty)] = \lim_{t \to \infty} \frac{1}{t} \int_0^t Q(u)du = \frac{\rho}{1 - \rho} = 99.$$
- The long-run average waiting time
 $$\mathbb{E}[W_\infty] = \lim_{n \to \infty} \frac{1}{n} \sum_{i=1}^{n} W_i = \frac{1}{\mu} \frac{\rho}{1 - \rho} = 98.01 \text{ minutes}.$$

However, if we replace both distributions by their corresponding means, then
- The average number of customers in system ≈ 1;
- No part is ever delayed in the queue!

Conclusion: Ignoring randomness may result in extremely inaccurate estimates.
Rest of the Class . . .

- Review of probability theory (Topic 1).
- How to generate the random elements (variable, process, permutation, etc.) following various distributions (Topics 2–3).
- How to use Monte Carlo simulation to price path-dependent financial instruments (Topic 4).
- How to use the generated random elements to characterize the dynamics of a realistic system (Topic 5).
- Given a realization of a system, how to design effective procedures to estimate desired performance measures (Topic 6).
- When many sample paths (realizations) are needed, how to design efficient method to reduce number of samples (shortening the total computation time, Topic 7).
- How to select appropriate probability distributions (and their parameters) for the simulation algorithms (Topic 8).