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1 What is MATLAB?

Matlab is a software package that integrates computation, data visualization, and high-level program-
ming. Matlab is specifically designed for the manipulation and visualization of matrices and analysis of
large amounts of data.

2 How to use MATLAB?

Once you have started up Matlab, you will see the Command Window. Matlab commands are executed
by typing them at the >> prompt and then striking the ENTER key. This is followed by Matlab replies.
In the sequel the lines with >> are command lines and the rest are Matlab replies.

To quit Matlab, type “quit” from the command line. e.g.,

>> quit

Typing “help general” will give information on general purpose commands useful for navigating Matlab.
UNIX shell commands may also be executed by putting a ! before the command. For example, to edit
the file “words.txt” using emacs while running Matlab type “!emacs words.txt”.

3 MATLAB Variables and the Workspace

Matlab was originally written as a matrix manipulation program, and therefore tends to try to deal with
everything as a matrix. Although it is possible to input equations, assign variables, and use a lot of
mathematical functions, in the end it is necessary to understand matrices to understand Matlab. To
enter a small matrix, type

>> A = [1 2 3; 4 5 6; 7 8 9]

and Matlab responds with

A =
1 2 3
4 5 6
7 8 9

This matrix can also be entered in its usual form with carriage returns replacing the semicolons.

>> A = [1 2 3
4 5 6
7 8 9]

A =
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1 2 3
4 5 6
7 8 9

When entering a matrix, elements are separated by a space, rows are separated by a semicolon, and the
matrix is enclosed in square brackets.

The above assignment “A =” creates a variable A with the above matrix as its value.

Matlab stores variables in an initially empty workspace. Once a variable has been assigned it is stored in
the workspace and may be referred to again until redefined. To get a list of variables in the workspace
type “who”.

>> A = [1 2 3
4 5 6
7 8 9]

A =
1 2 3
4 5 6
7 8 9

>> b = [1 2 3]

b =
1 2 3

>> who

Your variables are:

A b

or “whos” for a more detailed description

>> whos
Name Size Bytes Class

A 3x3 72 double array
b 1x3 24 double array

Grand total is 12 elements using 96 bytes

4 Displaying and Suppressing Outputs (Comments)

After typing a Matlab command, the output of that command is displayed.

>> c = 5

c =
5
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To execute a command and not display the output follow the command with a semicolon, e.g., typing
“c;” at the command line does not display the value of c whereas typing c without the semicolon displays
the value of c as the following examples illustrate.

>> c;

>> c

c =
5

Use the symbol “%” to make comments. Anything after a % is not seen as a command, e.g.,

>> 5 % The rest is a comment

c =
5

5 Matrices

In Matlab, a matrix is a rectangular is a rectangular array of numbers. Special meaning is sometimes
attached to 1-by-1 matrices, which are scalars, and to matrices with only one row or column, which are
vectors. Where other programming languages work with numbers one at a time, Matlab allows you to
work with entire matrices quickly and easily.

5.1 Matrix Operations and Solving Matrix Equations

Scalar multiplication of matrices is supported. For example, if A is a matrix, then “2*A” returns the
matrix formed by multiplying each element of A by 2.

The usual matrix operations are supported, viz., +, - and *, the last being matrix multiplication.

Exponents are also supported by ˆ, e.g., 2ˆ3 = 8, 4ˆ0.5 = 2. This works for square matrices too. For
example, if A is a square matrix, Aˆ3 returns the cube of A, i.e., A*A*A, and Aˆ0.5 returns the square
root of A, i.e., the matrix whose square is A. If A is also nonsingular, this works for negative integer
powers of A too, e.g., Aˆ(-2) returns the square of the inverse of A. Alternately, the built-in function
inv(A) also returns the inverse of A.

Division is done a little differently. If A is a nonsingular matrix and B is a matrix with the same number
of rows as A, then A\b returns (inverse of A)*B. Thus, for example, the solution of the linear equations
Ax = b is x = A\b. Similarly, if B is a matrix with the same number of columns as A, then B/A returns
B*(inverse of A). Thus, the solution to the linear equations yA = b is y = b/A.

A matrix may be transposed with ’, i.e., A’ returns the transpose of the matrix A.

If A is a vector, max(A) returns the largest element of A.

If A is a matrix, M = max(A) returns the row vector M containing the maximum element in each column
of A. Also, [M, I] = max(A) returns both M and the indeces I of the maximum elements. If there are
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several such indices, the index is the smallest one. For example,

>> A = [1 3 0
0 4 0]

A =
1 3 0
0 4 0

>> [M, I] = max(A)

M =
1 4 0

I =
1 2 1

The function min(A) works analogously after replacing max by min everywhere.

Other functions of a square matrix A are built-in too (see a later section), e.g., the matrix exponential
expm(A) of A, the eigenvalues eig(A) of A, the determinant det(A) of A, etc.

5.2 Special Matrices (Identity, Zeros, Ones)

The function eye(n) returns the identity matrix of order n.

The function zeros(m, n) returns the m×n matrix of zeros.
The function zeros(n) returns the n×n matrix of zeros.

The function ones(m, n) returns the m×n matrix of ones.
The function ones(n) returns the n×n matrix of ones.

5.3 Selecting Elements and Submatrices of a Matrix

>> A = [1 2 3
4 5 6
7 8 9];

>> A(2,3)

ans =
6

Submatrices may be extracted using vectors, e.g.,

>> u = 1:2;

>> v = [1 3];

>> A(u, v)

ans =
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1 3
4 6

gives the submatrix defined by the first two rows and the first and third columns. An entire row or
column may be selected by using a colon : instead of an index or a vector, e.g.,

>> A(:, 2)

ans =
2
5
8

gives the second column of A.

5.4 More Matrix Functions

>> help matlab/matfun

Matrix functions - numerical linear algebra.

Matrix analysis.
norm - Matrix or vector norm.
normest - Estimate the matrix 2-norm.
rank - Matrix rank.
def - Determinant.
trace - Sum of diagonal elements.
null - Null space.
orth - Orthogonalization.
rref - Reduced row echelon form.
subspace - Angle between two subspaces.
...

Typing “help rank” will give information about the function rank, e.g.,

>> help rank

RANK Matrix rank.
RANK(A) provides an estimate of the number of linearly independent
rows or columns of a matrix A.
RANK(A,tol) is the number of singular values of A that are larger
than tol.
RANK(A) uses the default tol = max(size(A))*norm(A)*eps.

Overloaded methods
help sym/rank.m

In general, to find out about the predefined function “func”, type “help func”.
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6 Graphs and Plotting

Matlab supports graphing 2-D plots. Suppose y is a matrix. Then plot(y) graphs the columns of y
versus their indices.

Suppose also that x is a vector with the same number of elements that y has rows. Then plot(x, y)
graphs the columns of y versus x.

>> x = -5:5

x =
-5 -4 -3 -2 -1 0 1 2 3 4 5

>> plot(x, x.^2)

plots x on the x-axis and x squared on the y-axis.

The title, axis, axis labels, etc. of graphs can be altered with built-in functions.

Matlab also supports 3-D plots.

There are two areas matlab/graph2d and matlab/graph3d containing built-in functions for graphs.

7 M-Files

We can write Matlab “programs” using m-files. An m-file is a script of Matlab commands in a text file
with the extension “.m”. You can create m-files using a text editor, then use them as you would any
other Matlab function or command.

There are two kinds of m-files:

1. Scripts, which do not accept input arguments or return output arguments. They operate on data
in the workspace.

2. Functions, which can accept input arguments and return output arguments. Internal variables are
local to the function.

7.1 Scripts

Scripts store blocks of Matlab commands that can be applied to variables that already exist in the
workspace. For example, consider the file “twoA.m” with the single line

B = 2*A

When in Matlab, create any matrix A

>> A = [1 2; 3 4];

then run the m-file twoA.m by typing
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>> twoA

Matlab responds with

>> B

B =
2 4
6 8

In general, executing the m-file “filename.m” is done by typing “filename” in Matlab. Note that
filename.m must be in the current directory.

7.2 Functions

User-written functions are also supported by Matlab. They are similar to m-files with the following
differences:

• the first line of a function file defines the function

• they accept input and output

• they don’t affect the workspace

Consider the function “twoA” that produces the same result as the m-file twoA.m

function B = twoA(A)

B = 2*A;

The first line specifies that this file defines a function “twoA” that takes one input A and returns one
output B. The second line defines B to be 2*A. The function may then be used in Matlab. Create any
matrix A in Matlab

>> A = [1 2; 3 4];

and suppose the matrix B also exists

>> B = [1 1];

The function is called as if it were a built-in function

>> A = twoA(A);
>> A

A =
2 4
6 8

The function multiplied A by 2 as expected. Even though B is used inside the function file, B is not
affected in the workspace.
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>> B

B =
1 1

Obviously, functions provide much greater flexibility and modularity than scripts. Note that the m-file
and function names should coincide if the function is to be called from the command line (or from
another function or script).

7.3 Control Expressions and Looping

Matlab supports if, for, and while statements. The following examples show how to use these expressions:

if x == 0,
x = x + 1;

elseif x == 1,
x = x - 1;

else x = 0;
end

for i = 1:10,
j = 10*i;

end

i = 0;
while i < 10,

i = i + 1;
end

7.4 Example

The following example combines the concepts of m-files, control expressions, and loops. The function
“findMaxMinAvg” takes a vector A as input, then returns a vector containing the maximum, minimum,
and average value of the components of A.

First, the following code is saved as an m-file called “findMaxMinAvg.m”.

function [maximum, minimum, average] = findMaxMinAvg(A)

% Step 1. Initialize temporary (local) variables
maximum = A(1);
minimum = A(1);

% Step 2. Loop through the values of A and update max and min as necessary
for i = 1:length(A)
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if maximum <= A(i)
maximum = A(i);

end
if minimum >= A(i)

minimum = A(i);
end

end

% Step 3. Calculate the average of the components of A
average = sum(A)/length(A);

Now suppose we would like to use the function “findMaxMinAvg” to compute the maximum, minimum,
and average of the vector

>> myVector = [1 2 3 4 5 6 7 8 9 10];

Equivalently, you can create this input vector by entering

>> myVector = [1:10];

Next, issue the command

>> [Max, Min, Avg] = findMaxMinAvg(myVector)

Matlab will return:

Max =
10

Min =
1

Avg =
5.5000

7.5 Built-in functions

Matlab has many built-in functions that can be applied to both scalars and matrices. When applied to
a matrix, the function is applied element-wise, and the output is a matrix of the same dimensions of
the input. To get a complete list of built-in functions type:

help elfun

For more advanced functions type:

help specfun

help elmat

A few examples of built-in functions are given below:
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sin Sine
cos Cosine
tan Tangent
asin Inverse sine
acos Inverse cosine
atan Inverse tangent
exp Exponential
log Natural logarithm
sqrt Square root
abs Absolute value
floor Round towards minus infinity
ceil Round towards plus infinity
round Round towards nearest integer
gamma Gamma function
beta Beta function

8 Random Numbers

It is very easy to generate random numbers in Matlab as follows. The “rand” command produces
uniform random numbers between 0 and 1.

>> rand

ans =
0.9501

rand(5,1) produces a vector of 5 independent uniform random numbers

>> rand(5,1)

ans =
0.1987
0.6038
0.2722
0.1988
0.0153

randn produces a Normal(0,1) random variable (mean 0 and variance 1).

>> randn

ans =
-0.4626

For example, to generate a Normal random variable with mean µ and variance σ2, recall that if X is
a Normal(0,1) random variable, then Y = σX + µ has a Normal(µ, σ2) distribution, so to generate a
Normal(3,4) random variable, type
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>> 2*randn + 3

ans =
2.1349

The following example shows how to generate an exponential random variable with parameter µ (or
equivalently, with mean 1/µ). Using the inversion method, if X is uniformly distributed in (0, 1), then
Y = F−1(X) has an exponential distribution with parameter µ, where

F (x) = 1− e−µx and F−1(x) = − 1
µ

log(1− x)

Therefore,

>> -log(1-rand)/2

returns an exponential random variable with parameter 2 (mean 1/2), and

>> -log(1-rand(10,1))/2

returns a column vector of length 10 whose elements are independent exponential random variables with
parameter 2.
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