Assignment 3: Discrete-Time Markov Chain

- due September 11

Do Exercises 4.3, 4.7, 4.8 in Green Ross.

Other problems:

0. (Conditional Bayes' rule and law of total probability)

Consider events A, B and C and a partition of the sample space B_1, \ldots, B_n . Show:

(a)
$$\mathbb{P}(A \cap B|C) = \mathbb{P}(A|B \cap C)\mathbb{P}(B|C)$$
 (conditional Bayes' rule) (1)

(b)
$$\mathbb{P}(A|C) = \sum_{i=1} \mathbb{P}(A|B_k \cap C) \mathbb{P}(B_k|C).$$
 (conditional LOTP) (2)

Remark: Removing C, (1) and (2) will degenerate to the regular Bayes' rule and LOTP.

- 1. (DTMC: basic concept) Let $X_n = Y_{n-1} + Y_n$, $n \ge 1$, $X_0 = 0$, where $\{Y_n : n \ge 1\}$ is an I.I.D. sequence of Bernoulli random variables: $\mathbb{P}(Y = 0) = \mathbb{P}(Y = 1) = 0.5$. Is $\{X_n : n \ge 1\}$ a Markov chain?
- 2. (DTMC: formulation) A store that stocks a certain commodity uses the following (s, S) ordering policy: if its inventory at the beginning of a day is x, then it orders

$$\begin{array}{ll} 0 & \text{if } x \geq s, \\ S-x & \text{if } x < s. \end{array}$$

In other words, if the current inventory level is above s, do not order; if it is below s, order up to S. Assume no lead time, i.e., the order is immediately filled. The daily demands are I.I.D. random variables, with a PMF $P(j) = \alpha_j, j \ge 0$. We assume that all demands that cannot be immediately met are lost, i.e., there is no backlog. Let X_n be the inventory level at the end of day n. Is the process $\{X_n, n \ge 1\}$ a Markov Chain? If yes, find its state space and its transition probabilities.

3. (DTMC: advanced Markov property) Consider a DTMC $\{X_n, n \ge 0\}$, prove that

$$\mathbb{P}(X_n = j | X_{n_1} = i_1, \dots, X_{n_k} = i_k) = \mathbb{P}(X_n = j | X_{n_k} = i_k), \text{ for } 0 \le n_1 < n_2 < \dots < n_k < n.$$
(3)

Remark: When we proved the C-K equation in class, we have already used (3), which means that in order to predict the future (i.e., what happens on day n, that is X_n), given the latest past (i.e., information on day n_k , that is X_{n_k}), we don't need any older information before (i.e., from day n_1 to day n_{k-1}).

Hint: Start with the case $n = n_k + 1$, which is automatic by the Markov property, then generalize it to the case $n = n_k + j$ for all $j \ge 1$ using induction. In addition, use (1).

Reading: Read Section 4.1 in Chapter 4, do Exercises 4.1 and 4.4 in Ross, they are good examples and have answers in the back of the book.