Assignment 3: Discrete-Time Markov Chain

\author{

- due September 11
}

Do Exercises 4.3, 4.7, 4.8 in Green Ross.

Other problems:

0. (Conditional Bayes' rule and law of total probability)

Consider events A, B and C and a partition of the sample space B_{1}, \ldots, B_{n}. Show:

$$
\begin{array}{lll}
\text { (a) } & \mathbb{P}(A \cap B \mid C)=\mathbb{P}(A \mid B \cap C) \mathbb{P}(B \mid C) & \text { (conditional Bayes' rule) } \\
\text { (b) } & \mathbb{P}(A \mid C)=\sum_{i=1}^{n} \mathbb{P}\left(A \mid B_{k} \cap C\right) \mathbb{P}\left(B_{k} \mid C\right) . & \text { (conditional LOTP) } \tag{2}
\end{array}
$$

Remark: Removing C, (1) and (2) will degenerate to the regular Bayes' rule and LOTP.

1. (DTMC: basic concept) Let $X_{n}=Y_{n-1}+Y_{n}, n \geq 1, X_{0}=0$, where $\left\{Y_{n}: n \geq 1\right\}$ is an I.I.D. sequence of Bernoulli random variables: $\mathbb{P}(Y=0)=\mathbb{P}(Y=1)=0.5$. Is $\left\{X_{n}: n \geq 1\right\}$ a Markov chain?
2. (DTMC: formulation) A store that stocks a certain commodity uses the following (s, S) ordering policy: if its inventory at the beginning of a day is x, then it orders

$$
\begin{aligned}
0 & \text { if } x \geq s \\
S-x & \text { if } x<s
\end{aligned}
$$

In other words, if the current inventory level is above s, do not order; if it is below s, order up to S. Assume no lead time, i.e., the order is immediately filled. The daily demands are I.I.D. random variables, with a PMF $P(j)=\alpha_{j}, j \geq 0$. We assume that all demands that cannot be immediately met are lost, i.e., there is no backlog. Let X_{n} be the inventory level at the end of day n. Is the process $\left\{X_{n}, n \geq 1\right\}$ a Markov Chain? If yes, find its state space and its transition probabilities.
3. (DTMC: advanced Markov property) Consider a DTMC $\left\{X_{n}, n \geq 0\right\}$, prove that
$\mathbb{P}\left(X_{n}=j \mid X_{n_{1}}=i_{1}, \ldots, X_{n_{k}}=i_{k}\right)=\mathbb{P}\left(X_{n}=j \mid X_{n_{k}}=i_{k}\right)$, for $0 \leq n_{1}<n_{2}<\cdots<n_{k}<n$.
Remark: When we proved the C-K equation in class, we have already used (3), which means that in order to predict the future (i.e., what happens on day n, that is X_{n}), given the latest past (i.e., information on day n_{k}, that is $X_{n_{k}}$), we don't need any older information before (i.e., from day n_{1} to day n_{k-1}).

Hint: Start with the case $n=n_{k}+1$, which is automatic by the Markov property, then generalize it to the case $n=n_{k}+j$ for all $j \geq 1$ using induction. In addition, use (1).

Reading: Read Section 4.1 in Chapter 4, do Exercises 4.1 and 4.4 in Ross, they are good examples and have answers in the back of the book.

