Assignment 4: DTMC: state classification and gambler's ruin problem

- Due on September 18

From Green Ross: Do Exercise 4.14, 4.17, 4.57, 4.59 11 ed. (4.60 10 ed.) in Chapter 4.

Other Problems:

- 1. (Gambler's Ruin) Consider the Gambler's ruin DTMC $\{X_n, n \ge 0\}$ on $S = \{0, 1, ..., N\}$. $P_{0,0} = 1 = P_{N,N}$, while otherwise $P_{i,i+1} = p$, $P_{i,i-1} = 1 - p$, 1 < i < N. Suppose that $X_0 = i$, for 1 < i < N. Show that X_n converges to some limiting random variable $X_{\infty}^{(i)}$ almost surely and find its PMF: $p_k = \mathbb{P}(X_{\infty}^{(i)} = k), k \in S$.
- 2. (State-dependent Gambler's Ruin) Consider the gambler's ruin problem when N = 3, except now we allow the probability p (of winning a dollar) to depend on the present state. Whenever $X_n = 1$, the probability that the gambler wins a dollar is p_1 (and $1 p_1$ for losing a dollar). Similarly, Whenever $X_n = 2$, the probability that the gambler wins a dollar is p_2 (and $1 p_2$ for losing a dollar). Find P_1 and P_2 , the probabilities that that gambler's fortune reaches 3 before getting ruined, starting with 1 and 2 respectively. Compute for the case when $p_1 = 0.7$ and $p_2 = 0.3$.
- 3. Consider an ergodic (i.e., irreducible, positive recurrent, and aperiodic) DTMC $\{X_n, n \ge 0\}$ with a finite state space $S = \{1, 2, ..., N\}$ and a transition probability matrix $P \in \mathbb{R}^{N \times N}$. Consider a row vector $\pi \equiv (\pi_1, ..., \pi_N)$ satisfying the following balance equation:

$$\pi P = \pi$$

$$\pi_1 + \dots + \pi_N = 1.$$

Note that there are N + 1 equations (note $\pi P = \pi$ has N equations) but only N unknowns. Show that the last equation of $\pi P = \pi$:

$$\sum_{i=1}^{N} \pi_i P_{i,N} = \pi_N \tag{1}$$

is redundant, i.e., show that (1) can be derived from the other N equations. Remark: In fact, any equation, not necessarily the last one, in $\pi P = \pi$ is redundant.

Reading: Read Green Ross Sections 4.4, 4.5.1, 4.6.