## Assignment 5:

Steady States of Irreducible DTMCs and Canonical Forms of Reducible DTMCs

- Due on September 25

Do the following exercise in Chapter 4:
Problem 4.19, 4.20, 4.46, 4.49.

## Other Problems:

1. Let $\pi_{j}, j \in \mathcal{S}$, be the stationary probabilities for a DTMC.
(a) What is the interpretation of $\pi_{i} P_{i j}$ ? Prove your claim.
(b) Let $A \subset \mathcal{S}$ be a set of states and $A^{c}$ be the remaining states. Give an interpretation of the following two quantities and prove your claim.

$$
\sum_{i \in A} \sum_{j \in A^{c}} \pi_{i} P_{i j} \quad \text { and } \quad \sum_{i \in A^{c}} \sum_{j \in A} \pi_{i} P_{i j} ?
$$

(c) Let $N_{n}\left(A, A^{c}\right)$ be the total number of transitions made from a state in $A$ to one in $A^{c}$ among the first $n$ transitions; similarly, let $N_{n}\left(A^{c}, A\right)$ be the total number of transitions made from a state in $A^{c}$ to one in $A$ among the first $n$ transitions. Prove or disprove the following statement:

$$
\left|N_{n}\left(A, A^{c}\right)-N_{n}\left(A^{c}, A\right)\right| \leq 1
$$

(d) Do you think the following equality hold? If yes, prove it; otherwise, give a counterexample. (Hint: Apply your result in (c).)

$$
\sum_{j \in A^{c}} \sum_{i \in A} \pi_{i} P_{i j}=\sum_{j \in A^{c}} \sum_{i \in A} \pi_{j} P_{j i}
$$

## 2. Gamber's Ruin revisited

Consider the gambler's ruin problem with $p=0.3$ and $N=5$. Starting with 3 units, determine
(a) the probability that the gambler's fortune reaches $N$ before 0 using two approaches:
(i) the Gambler's ruin formula;
(ii) the fundamental matrix.
(b) the expected number of steps until the end of the game using two approaches:
(i) the formula in Ross 4.60 (See HW4 solution for the right formula);
(ii) the fundamental matrix.
(c) the expected amount of time the gambler has 2 units,
(d) the probability that the gambler ever has a fortune of 1 (i.e., the probability that state 1 is ever visited).

## 3. Lord Voldemort (LV) hunting Harry Potter (HP)

LV teleports between two locations: 1 and 2 according to a DTMC with transition probability matrix

$$
\mathbf{P}^{\mathrm{LV}}=\underset{(2)}{(1)}\left[\begin{array}{ll}
0.7 & 0.3 \\
0.3 & 0.7
\end{array}\right] .
$$

HP moves between 1 and 2 according to a DTMC with

$$
\mathbf{P}^{\mathrm{HP}}=\underset{(2)}{(1)}\left[\begin{array}{ll}
0.4 & 0.6 \\
0.6 & 0.4
\end{array}\right] .
$$

The hunt ends whenever they meet in the same location. (we all know that HP will win!) Suppose LV starts in location 1 and HP starts in 2 on day 0 .
(a) Show that the progress of the hunt, except for knowing the location where it ends, can be described by a 3 -state DTMC with one absorbing state and two transient states. Obtain the transition probability matrix for this DTMC.
(b) Find the probability that the hunt ends in 2 days.
(c) What is the average duration of the hunt?

## 4. General Canonical Form of A Reducible DTMC

Consider a DTMC with $\mathcal{S}=\{1,2,3,4,5\}$ and transition probability matrix

$$
\mathbf{P}=\begin{gathered}
(1) \\
(2) \\
(3) \\
(4) \\
(5)
\end{gathered}\left[\begin{array}{ccccc}
0.1 & 0 & 0 & 0.9 & 0 \\
0 & 0.4 & 0 & 0 & 0.6 \\
0.3 & 0.3 & 0 & 0.4 & 0 \\
0.3 & 0 & 0 & 0.7 & 0 \\
0 & 0.7 & 0 & 0 & 0.3
\end{array}\right] .
$$

(a) Classify the DTMC and put it in the canonical form.
(b) Do you think the following limits exist? Find these limits if yes.
(i) $\lim _{n \rightarrow \infty} P_{1,4}^{n}$;
(ii) $\lim _{n \rightarrow \infty} P_{1,2}^{n}$;
(iii) $\lim _{n \rightarrow \infty} P_{3,1}^{n}$;
(iv) $\lim _{n \rightarrow \infty} P_{3,2}^{n}$.

Reading: Read Green Ross Sections 4.4, 4.5.1, 4.6, 4.8. If you have time and want to do extra exercises, I recommend 4.27, 4.32, 4.41, 4.47 (they have answers in the back).

