Assignment 7: Due on October 11

Properties of Exponential and Definitions of Poisson Processes

From Green Ross: Do Exercise 5.4 and 5.45 in Chapter 5.

Other Problems:

0. Strong Lack of Memory Property (SLOMP) Consider 3 nonnegative r.v.'s X, Y and Z, where $Z \sim \text{Exp}(\lambda)$, $X \perp Z$, $Y \perp Z$. Show that

 $\mathbb{P}(Z > X + Y | Z > X) = \mathbb{P}(Z > Y).$

- 1. For Poisson processes, show that Definition 1 implies Definition 2.
- 2. Consider a Poisson process $\{N(t), t \ge 0\}$ with rate λ , for s < t
 - (a) Find the conditional distribution of N(s) given N(t) = n.
 - (b) Compute Cov(N(s), N(t)).

Hint: Use the property of stationary and independent increment.

3. Compound Poisson Process (CPP)

Definition: Consider a Poisson process $\{N(t), t \ge 0\}$ with rate λ , that is independent of an I.I.D. sequence X_1, X_2, \ldots with mean $\mathbb{E}[X] = \mu$ and variance $Var(X) = \sigma^2$. Let $Y(t) \equiv \sum_{i=1}^{N(t)} X_i$, then this new continuous-time stochastic process $\{Y(t), t \ge 0\}$ is called *compound* Poisson Process (CPP).

Remark: One may observe the limitation of PP due to its unit jump size. In real life, there are many cases in which you have to consider non-unit jump sizes, e.g., people arrive at restaurants in groups. Now, the random increment X_i can characterize the desired jump size. Note that a CPP $\{Y(t), t \ge 0\}$ is NOT necessarily a counting process if you intentionally make $\mathbb{P}(X_i < 0) > 0$ (the sample path may decrease in such cases since the realization of X_i 's may be negative). Here are some concrete examples for CPP:

- (i) If $X_i = 1$, then Y(t) = N(t), i.e., CPP degenerates to PP.
- (ii) Let X_i be the number of customers on bus *i* and let buses arrival ~ $PP(\lambda)$, then Y(t) counts the total number of customer arrivals by *t*.
- (iii) Let X_i be the amount of cash withdrawal of the *i*th customer and let customer arrival $\sim PP(\lambda)$, then Y(t) denotes the total amount of cash withdrawn by t.

Answer the following questions:

- (a) Does $\{Y(t), t \ge 0\}$ have independent and/or stationary increments? Prove you claim.
- (b) Find the mean $\mathbb{E}[Y(t)]$, variance Var(Y(t)), and coviance Cov(Y(s), Y(t)), for $0 \le s < t$.
- (c) Find Cov(N(t), Y(t)).

Hint: Condition on N(t) for (b) - (c). Find $\mathbb{E}[Y(t)^2]$ first to compute the variance in (b).

Reading: Read Green Ross Sections 5.1-5.3 and Exercise 5.18 which has answer in the back.