Assignment 9: Due on October 25
Poisson Processes: $M / G I / \infty$ queues and NHPP

From Green Ross: Do Exercise 5.63, 5.70, 5.78, 5.80, 5.81, 5.83 in Chapter 5.
Notation change for 5.81: It seems that 5.81 repeats notation: the distribution F in (b) coincides with the F in (a). So Let's change the F to G in (b) (We've been using G for the service CDF in infinite-server queues).

Extra part for 5.80: (d) Find the distribution of T_{2}.
Extra part for 5.83: (b) Suppose that $\{N(t), t \geq 0\}$ is an NHPP with rate function $\lambda(t)$ and mean function $m(t) \equiv \int_{0}^{t} \lambda(s) d s$. Let $m^{-1}(u)$ be the inverse function of $m(t)$, i.e., $m^{-1}(m(t))=$ $m\left(m^{-1}(t)\right)=t$. Let $N^{*}(t) \equiv N\left(m^{-1}(t)\right)$. Show that $\left\{N^{*}(t), t \geq 0\right\}$ is a PP with rate $\lambda=1$.
Remark: Connecting this extra part with the original 5.83, we see that we can convert a PP to an NHPP (and vice versa) with nonlinear time transformation.

Other Problems:

1. (Equivalence of Two Definitions for NHPP)

Show that the first definition of NHPP (Definition 4 in the notes) implies the second definition of NHPP (Definition 5).

Reading: Read Green Ross Sections 5.3 and Exercise 5.36, 5.60 and 5.79 which have answers in the back.

Hints for Assignment 9

5.63: The hint is given in the book below 5.63.
5.70: Let the arrival time of the first customer be time 0 and let his (her) service time be T. During this customer's service time T, you want no other departures (but there can be arrivals). Conditioning on $\{T=t\}$, consider an $M / G I / \infty$ and let $D(t)$ counts the number of departures, you need $\mathbb{P}(D(t)=0)$. Let E be the desired event, then

$$
\mathbb{P}(E)=\int_{0}^{\infty} \mathbb{P}(E \mid T=t) f_{T}(t) d t=\int_{0}^{\infty} \mathbb{P}(D(t)=0) f_{T}(t) d t=\ldots
$$

5.78: Easy! No hint needed.
5.80: In (d), condition on the value of T_{1}. What did we do to get the interarrival times for PP?
5.81: In (a), mimic the way we established the conditional distribution of arrival times for PP in class (see notes).
In (b), this is an application of the $M_{t} / G I / \infty$ queue, where we let the out-of-work times be the service times that are I.I.D. r.v.'s following the CDF G. You can get (b) directly using (a) (as the problem asked you to). conditioning on $N(t)=n$, you have n I.I.D. arrival times (before ordering) following the distribution in (a). It is time to invite our best friend: indicator r.v.'s to construct the number in the system at t

$$
\begin{aligned}
(X(t) \mid N(t)=n) & =\sum_{i=1}^{n} \mathbf{1}(\text { an (unordered) injured worker } i \text { is out of work at } t) \\
& =\sum_{i=1}^{n} \mathbf{1}\left(\text { an (unordered) customer } i \text { is still in the } M_{t} / G I / \infty \text { queue at } t\right)
\end{aligned}
$$

Taking expectation of the above expression yields

$$
\mathbb{E}[X(t) \mid N(t)=n]=n \mathbb{P}(\text { an (unordered) injured worker is out of work at } t) \equiv n \mathbb{P}(E)
$$

Consider an arbitrary event in $[0, t]$. Then conditioning on the arrival time $X=s, 0<s<t$, this customer will be in the system by t w.p. $P(X>t-s)=1-G(t-s)$. So

$$
\mathbb{P}(E)=\int_{0}^{t} \mathbb{P}(E \mid X=s) f_{X}(s) d s=\int_{0}^{t} \bar{G}(t-s) f_{X}(s) d s
$$

It thus remains to plug in $f_{X}(s)$ as in (a) and uncondition on $N(t)=n \ldots \ldots$.
Alternatively, you can apply the theory of $M_{t} / G I / \infty$ introduced in class. Check if your answers coincide.
5.83: Use either Definition 4 or 5. (Try both if you can.)

OP 1: Mimic our treatment for PP (Definitions 1 and 2).

