Assignment 10: CTMC: Modeling, Birth-and-Death Processes Due on November 6

From Green Ross: Do Exercises 5.94, 6.9 in Chapters 5 and 6.

Extra part for 5.94 : (c) Let $R_{i}, i \geq 1$ denote the distance from an arbitrary point to the i th closest event to it. Show that, with $R_{0}=0, \pi R_{i}^{2}-\pi R_{i-1}^{2}, i \geq 1$ are independent exponential random variables each with rate λ.

Other Problems:

Definition: (Birth and Death Processes)
A birth-and-death (BAD) process is a CTMC with states $\{0,1, \ldots\}$ for which transitions from state n may go only to either state $n-1$ or state $n+1$. The rate from state n to state $n+1$ is called birth rate at state n, denoted as λ_{n}; the rate from state n to state $n-1$ is called death rate at state n, denoted as μ_{n}. A BAD is called pure birth process (PBP) if $\mu_{n}=0$ for all n; a BAD process is called pure death process (PDP) if $\lambda_{n}=0$ for all n.

Remark: For comparison purpose, think about the gambler's ruin problem or the simple random walk as discrete-time analogs.

1. (BAD) Consider a BAD process with birth rates λ_{n} and death rates μ_{n}. Stating from i, find the probability that the first k events are all births.
2. (A Markovian Population Model)

Suppose that a one-celled organism can be in one of two states - either A or B. An individual in state A will change to state B in an exponentially distributed time with rate α; an individual in state B divides into two new individuals of type A in an exponentially distributed time with rate β. Define an appropriate CTMC for a population of such organisms and determine the appropriate parameters for this model.

3. (Uniformization)

We know a CTMC can be modeled by a third approach: Uniformization. There are 3 steps:
(i) Choose a PP with a large rate $\lambda \geq \gamma_{i}=-Q_{i, i}$, for all $i \in \mathcal{S}$, to generate potential transitions including real transitions and fictitious transitions (from i back to i).
(ii) Apply sampling/thinning the PP: each of the potential transitions is a real transition w.p. $p_{1}=\gamma_{i} / \lambda$; and a fictitious transition w.p. $p_{2}=1-\gamma_{i} / \lambda$.
(iii) Modify TPM of embedded DTMC to incorporate all potential transitions

$$
\tilde{P}_{i, j}=\frac{Q_{i, j}}{\lambda}, \quad i \neq j \quad \text { and } \quad \tilde{P}_{i, i}=1-\sum_{j, j \geq i} \tilde{P}_{i, j}=1-\frac{\sum_{j \in \mathcal{S}, j \neq i} Q_{i, j}}{\lambda}=1+\frac{Q_{i, i}}{\lambda} .
$$

In matrix notation: $\tilde{\mathbf{P}}=\mathbf{I}+\frac{1}{\lambda} \mathbf{Q}$.
Prove the following results:
(a) The t-time transition probability

$$
\begin{equation*}
P_{i, j}(t)=\sum_{k=0}^{\infty} \tilde{P}_{i, j}^{(k)} e^{-\lambda t} \frac{(\lambda t)^{k}}{k!} \tag{1}
\end{equation*}
$$

(b) Using (1) to show that

$$
P_{i, j}^{\prime}(0)=Q_{i, j} \quad \text { and } \quad P_{i, i}^{\prime}(0)=Q_{i, i} \quad \text { for } \quad i \neq j, \quad i, j \in \mathcal{S}
$$

Reading: Read Green Ross Sections 6.1-6.5 and Exercise 6.2, 6.4, 6.7 and 6.11 which have answers in the back.

Hints for Assignment 10

5.94: This is a generalization for PP: two-dimensional PP (2DPP).
6.9: Easy! Consider each death as an event and connect to $P P(\mu)$.

OP 1: Easy! Use the lack-of-memory property of exponential distribution.
OP 2: Easy! Note that only keep track of the population of one type is not enough.

