
ISE 760 Assignment 12

Stochastic Models in Industrial Engineering Yunan Liu

Assignment 12: Due on November 20
CTMC: Time Reversibility and Markovian queueing networks, Renewal Counting Processes

From Green Ross: Do Exercise 6.26 in Chapter 6, and 7.1, 7.4, in Chapter 7.

Other Problems:

1. (Jackson Queueing Networks)
We now extend our analysis from the M/M/1 queue (which has only one queue, so too easy
and not challenging) to the so-called Jackson Queueing Network (JQN):

• Consider a system consisting of two M/M/1 queues in parallel.

• Each queue has an external Poisson arrival process with rate λ
(0)
i , one server, and I.I.D.

exponential service times with rate µi, i = 1, 2.

• This network has an internal Markovian routing structure. For example, when a cus-
tomer finishes service at server 1, with probability P1,2 ≥ 0, he or she is routed to the end
of the 2nd queue; with probability P1,1, the customer goes back to the same queue, and
with probability P1,0 ≡ 1 −

∑2
j=1 P1,j ≥ 0, he (she) leaves the system without coming

back.

• A JQN is denoted with notation (M/M/1)2/M in queueing theory, where the last /M
denotes the Markovian (i.e., probabilistic) routing policy. The model parameters for a

JQN are the vector of external arrival rate λ(0) ≡ (λ
(0)
1 , λ

(0)
2 ), the vector of service rate

µ ≡ (µ1, µ2) and the Markovian routing matrix P. See Figure 1.

Figure 1: A Two-Queue Example of the Jackson Queueing Network (JQN).

Because of the assumptions on exponential service distribution and Poisson arrivals, it is obvi-
ous that we can model the system dynamics with a CTMC. We consider the two-dimensional
queue-length process Q(t) ≡ (Q1(t), Q2(t)), where Qi(t) is the number of customers in queue
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i at time t, including the customer in service and those waiting in line (if any), i = 1, 2. There
is no doubt that the two-dimensional process {Q(t), t ≥ 0} is a CTMC.

Remark: This network queueing model was first identified and analyzed by the famous queue-
ing theorist James R. Jackson (1924-2011). Here are some references:

[1] Jackson, J. Networks of waiting lines. Operations Research 4 518–521. 1957.

[2] Jackson, J. Jobshop-like Queueing Systems. Management Science 10 131–142. 1963.

Answer the following questions:

(a) What is the state space S of this CTMC? Is it a BAD process?

(b) Note that a state for this CTMC is an two-dimensional vector. Consider a state n̄ ≡
(n1, n2), meaning that Qi(t) = ni, ni = 0, 1, 2, . . ., i = 1, 2. Which states are accessible
from state (n1, n2) in one transition? From which states is state (n1, n2) accessible in
one transition?

(c) Construct the transition rate matrix (TRM) Q for this CTMC.

(d) We now want to determine the stationary distribution for this CTMC. In steady state,
all queues are in equilibrium. Therefore, consider queue i, flow conservation implies
that the steady-state total arrival rate λi at queue i (i.e., the sum of the external arrival

rate λ
(0)
i and the rate of feedbacks from other queues) must satisfy one of the following

traffic-rate equations (TRE’s):

(i) λi = λ
(0)
i +

N∑
j=1

λj Pji, i = 1, 2;

(ii) λi = λ
(0)
i +

N∑
j=1

µj Pji, i = 1, 2.

So, which one is correct? Why?

(e) Recall that the stationary distribution vector ᾱ ≡
(
α(n1,n2), (n1, n2) ∈ S

)
uniquely solves

the balance equation ᾱQ = 0 and
∑

(n1,n2)∈S α(n1,n2) = 1. Show that the stationary
distribution is given by:

α(n1,n2) ≡ P(Q1(∞) = n1, Q2(∞) = n2) = (1− ρ1)ρn1
1 × (1− ρ2)ρn2

2 , (1)

where ρi ≡ λi/µi is the traffic intensity for queue i = 1, 2, and λi satisfies the correct
TRE in (d).

Remark: Equation (1) has very intuitive implications:

(1) The steady-state queue length Qi(∞) for each queue i is Geometric with parameter
pi = 1 − ρi (think about Problem 2 of IC-PS-12). Why? Think about how to get
the marginal PMF from the joint PMF.

(2) The stationary distribution for JQN is the product of the stationary distribution for
two M/M/1 queues.

(3) The steady-state queue-length for these 2 queues are 2 independent r.v.’s, i.e.

P(Q1(∞) = n1, Q2(∞) = n2) = P(Q1(∞) = n1)× P(Q2(∞) = n2),

which implies that the r.v.’s Q1(∞) and Q2(∞) are independent.
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2. Two applications of JQN

• (The Y2 workshop)
Tasks arrive at a workshop in accordance with a Poisson process with rate 8. Each task
will independently be routed to machine 1 operated by Yu-Ting (server 1) w.p. 5/8 and
to machine 2 operated by Yi (server 2) w.p. 3/8. Each machine can only process one
task at a time and the processing times of the two machines are independent exponential
random variables with rate µ1 = 25 and µ2 = 25, respectively. However, 70% of the
products processed by Yu-Ting and 90% of the products by Yi have flaws so that re-
processing is needed. The defective products, once flow out of the machine, will equally
likely be sent to either of the two machines.

(a) After a long time, what is probability that Yu-Ting’s machine has 2 tasks (one
waiting and one being processed) and Yi’s has 3 tasks?

(b) What is the steady-state mean number of busy machines in the workshop?

(c) What is the steady-state mean number of tasks in the workshop?

• (The K2 Barbershop revisited)

Treat Problem 2 of ICPS-12 as a special case of the JQN, with λ
(0)
1 = λ, λ

(0)
2 = 0,

P1,2 = 1 and P2,0 = 1. Find the steady state distribution using part (e). Compare your
result with the result introduced in class (based on time reversibility).
Remark: the general structure of JQN can be used to represent all kinds of desired
examples: tandem queues, parallel queues, queues with feedback, etc.

3. (Joint CTMC with Independent Components) If two CTMC’s {X(t), t ≥ 0} and
{Y (t), t ≥ 0} are independent and time reversible with state spaces SX and SY , transition
rate matrices QX and QY , stationary distributions αX and αY , respectively.

(a) Find the transition rates for the two-dimensional processes {(X(t), Y (t)), t ≥ 0}.
(b) Find the stationary distribution for the two-dimensional processes {(X(t), Y (t)), t ≥ 0}.
(c) Is the two-dimensional process {(X(t), Y (t)), t ≥ 0} time reversible as well?

Reading: Read Green Ross Sections 7.1-7.4, 7.7 and 7.9. Examples 7.12, 7.13, 7.23, 7.24 and
7.25 are good examples which are very representative. If you need more exercises, you can also
study Exercise 7.8, 7.22, 7.25 and 7.42 which have answers in the back.
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Hints for Assignment 12

6.26: Make use of the time reversibility of this CTMC. This implies that the reverse-time CTMC
has the same probability law as the original CTMC. Also note that “past departures” of the
original CTMC are “future arrivals” of the reverse-time CTMC.

7.1: Note that it is possible to have multiple renewals occurring at the same time for a general
RCP.

7.4: Note that to disprove something, one counterexample is enough. As an easy counterexample,
how about an RCP with deterministic interarrival times?

OP 1: This is another big problem which is quite educational.

(a) Easy! No hint.

(b) Make use of the fact that the min of Exp r.v.’s is again Exp and events happens after
independent Exp r.v.’s. There are the following three types of events:

(i) an external arrival to queue i, i = 1, 2;

(ii) a customer leaving the system from server i, i = 1, 2;

(iii) a customer being routed inside the network from server i to queue j, i 6= j, i, j = 1, 2.

Let row vectors e1 ≡ (1, 0) and e2 ≡ (0, 1). Think about the meaning of states n̄ + ei,
n̄ − ei, n̄ + ei − ej and n̄ − ei + ej . However, you have to be careful: the cases ni = 0
and ni ≥ 1 have to be treated differently.

(c) Just follow the analysis in (b).

(d) Just think about the question: Are we certain if a queue i is empty or it has least one
customer in steady state? That would make a difference. Think about Problem 2 of
IC-PS-12: what is the departure rate of the first queue there? Now for the JQN, what
are the steady-state departure rate for each queue i?

(e) Medium (well)! Theoretically speaking, you just have to check the balance equation:
ᾱQ = 0 because it should have a unique solution. So this seems to be a “plug-in”
problem. However, you will definitely hate me if this is what I ask you to do! Note that
Q is a HUGE matrix of infinite dimension! Fortunately, the rate matrix Q is sparse. We
also know that an alternative representation of the balance equation is “rate in = rate
out” for each state n̄ ∈ S. Therefore, it remains to specify: (i) from which states can
the CTMC go to state n̄ in one step and (ii) to which states can the CTMC go from
state n̄ in one step. But we already know the answer from part (b) and the rates of
these transitions from (c). It remains the verify the equality:

“long-run rate into state n̄” =
∑
n̄′

αn̄′ Qn̄′,n̄ =
∑
n̄”

αn̄Qn̄,n̄” = “long-run rate leaving n̄”.

Write out the above equation by plugging in different terms and check if LHS = RHS.
Also, make use of the correct TRE in (d). What remains from here is just algebra.

OP 3: (a) Let i1, i2 ∈ SX and j1, j2 ∈ SY . Can the 2-D process jump from state (i1, j1) to state
(i2, j2) in one step? If not, what are the intermediate states?

(b) Make use of the independence.

(c) Check the definition (or the criterion equation) of time reversibility.


