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Abstract. Analytic formulas are developed to set the time-dependent number of servers
to stabilize the tail probability of customer waiting times for the Gt/GI/st + GI queueing
model, which has a nonstationary non-Poisson arrival process (the Gt), nonexponential
service times (the first GI), and allows customer abandonment according to a nonexponen-
tial patience distribution (the +GI). Specifically, for any delay target w > 0 and probability
target α ∈ (0, 1), we determine appropriate staffing levels (the st) so that the time-varying
probability that the waiting time exceeds a maximum acceptable value w is stabilized
at α at all times. In addition, effective approximating formulas are provided for other
important performance functions such as the probabilities of delay and abandonment,
and the means of delay and queue length. Many-server heavy-traffic limit theorems in
the efficiency-driven regime are developed to show that (i) the proposed staffing function
achieves the goal asymptotically as the scale increases, and (ii) the proposed approxi-
mating formulas for other performance measures are asymptotically accurate as the scale
increases. Extensive simulations show that both the staffing functions and the perfor-
mance approximations are effective, even for smaller systems having an average of three
servers.
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1. Introduction
Queueing systems have been widely adopted to model
and analyze service systems, such as healthcare sys-
tems and customer contact centers (Armony et al. 2014,
Brown et al. 2005). Because the demands in service sys-
tems typically vary significantly over time, an impor-
tant issue is how to efficiently allocate critical resources
such as staffing (represented as the number of servers)
to achieve required targets for the desired perfor-
mance. In a hospital setting, this can be interpreted as
staffing the number of doctors and nurses to ensure
that the patients’ waiting times before treatments are
below certain targets (e.g., six hours). Because inef-
ficient staffing policies can cause excessive suffering,
low care quality, degradation of treatment outcomes,
and significant mortality increase (Cram et al. 2004,
Donahue 2013, Stanton 2004), there is a growing need
for developing theories and methods to help improve
staffing efficiency.
We develop new formulas to generate appropri-

ate staffing recommendations that would stabilize
performance in multiserver queueing systems with
time-varying demands and realistic model features.
First, abandonment by waiting customers, which

corresponds to patients leaving without being seen by
a care provider, or to callers hanging up in a call center,
can significantly alter system performance (Zeltyn and
Madelbaum 2005, Yom-Tov and Mandelbaum 2014).
Second, we include the challenging case of the rela-
tively long service times, which commonly occurs in
healthcare systems but has been proven difficult to
treat (Green et al. 2007), because the influence of the
time variability of demands is extended significantly
after their arrival times by the long service durations.
Next, empirical studies show that neither service time
nor abandonment time is exponentially distributed
(Armony et al. 2014, Brown et al. 2005, Shi et al. 2016),
which motivates us to build general models beyond
the conventional Erlang models that have convenient
Markovian probability structure.

In particular, we consider a Gt/GI/st + GI model
with a nonstationary arrival process (the Gt), inde-
pendent and identically distributed (i.i.d.) nonexponen-
tial service times (the GI), time-varying staffing lev-
els (the st , which is to be determined), and customer
abandonment with i.i.d. nonexponential abandonment
times (the +GI). We will develop an analytic staffing for-
mula s(t) to stabilize the tail probability of delay (TPoD), the
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probability that the waiting time exceeds a delay target (i.e., a
maximum acceptable value), at a desired constant probability
target.More precisely, for given quality-of-service (QoS) tar-
gets: (i) delay w > 0 and (ii) probability α ∈ (0, 1), our
staffing function aims to achieve a time-stable TPoD:

p(t ,w) ≡ P(V(t) > w) ≈ α, for 0 6 t 6 T, (1)

where T is a finite time (e.g., a day or a week), and
V(t) is the time-dependent offered waiting time, that is
the delay of an arrival at time t assuming this arrival is
infinitely patient.
Applied Relevance of the Tail Probability of Delay. To

emphasize that TPoD is an important performance
indicator in practice, we next give evidence arising
from call centers and healthcare.
(1) The 80-20 rule in call centers. A common telephone
service factor (TSF) in call centers is the well-known
80-20 rule, meaning 80% of calls should be answered
in 20 seconds, which is equivalent to 20% of calls (i.e.,
α � 0.2) having to wait for more than 20 seconds (i.e.,
w � 1/3 minute). See Aksin et al. (2007), Brown et al.
(2005), Gans et al. (2003) for more background.
(2) The six-hour service level in Singapore hospitals.
TPoD is also an important service metric in healthcare.
Shi et al. (2016) showed that it is an important prob-
lem to keep delays below w � 6 hours in the impatient
departments of Singapore hospitals; their empirical
studies show that under inefficient staffing, the prob-
ability the delay is below six hours, dubbed “six-hour
service level,” varies significantly over time during a
day from α� 4% to 37% in a Singapore hospital; see Shi
et al. (2016, figure 1(b)).
(3) Canadian triage and acuity scale. Patients in Cana-
dian emergency departments are classified to 5 lev-
els, with 1 representing the sickest and 5 the least
sick. According to the Canadian triage and acuity scale
(CTAS) guideline (Bullard et al. 2014, p. 1), “CTAS
level i patients need to be seen by a physician within
wi minutes 100αi% of the time,” with

(w1 ,w2 ,w3 ,w4 ,w5)� (0, 15, 30, 60, 120)mins,

(α1 , α2 , α3 , α4 , α5)� (0.98, 0.95, 0.9, 0.85, 0.8).

The CTAS standard can be directly translated to our
TPoD performance with delay target wi and probabil-
ity target αi for level-i patients, i � 1, . . . , 5.
Although important, TPoD has not yet been seri-

ously treated in service systems with time-varying
arrival rates. We next review related literature on per-
formance stabilization via optimal staffing levels.

Related literature. Pointwise stationary approximation
(PSA) has been proven useful in staffing systems with
shorter service times, which follows the basic idea
of approximating a nonstationary model at each time

by a stationary model; see Green et al. (2007) for a
review. The modified-offered-load (MOL) approximation
has been developed to design staffing functions to
control performance functions including the probabil-
ity of delay (PoD), mean waiting time, and probability of
abandonment (PoA). A key step of MOL is to study the
corresponding infinite-server queue and to compute its
offered-load function (that is the total service resource
needed if there were no constraint on the capacity),
see He et al. (2016), Jennings et al. (1996), Yom-Tov
andMandelbaum (2014), Li et al. (2016), Liu andWhitt
(2012a, 2014b, 2017), Whitt and Zhao (2017). Feldman
et al. (2008), Defraeye and van Nieuwenhuyse (2013)
developed a simulation-based iterative staffing algorithm
(ISA). The basic idea of ISA includes three steps: Step 1,
ISA starts with a candidate staffing function; Step 2,
under the candidate staffing, ISA estimates the perfor-
mance (e.g., PoD) via Monte Carlo simulations; Step 3,
based on the simulation results, ISA makes adjust-
ments to the candidate staffing and return to Step 2,
until the performance target is met. Because many
independent sample paths (such as 5,000) have to be
generated in each iteration to produce satisfying statis-
tical estimates, a major disadvantage of ISA is its com-
putational expensiveness. Furthermore, ISA does not
provide insightful explicit staffing formulas because it
is generated by simulations. Except for the simulation-
based algorithm in Defraeye and van Nieuwenhuyse
(2013), none of the above methods treats TPoD. This
motivates us to develop an analytic formula-based
staffing method. (We will show that our new ana-
lytic staffing recommendation can treat the challenging
realistic example in Defraeye and van Nieuwenhuyse
2013 without needing simulations; see Section 4.)

Challenges of treating TPoD. Controlling PoA is
equivalent to controlling the mean delay E[V(t)];
see Liu and Whitt (2012a). Comparing to PoA and
mean delay, TPoD is a much more flexible QoS met-
ric because the manager will be able to choose two
desired QoS parameters, w and α, where w indicates
the desired delay target and α measures the tolerance
level of excessive delay. For instance, to carefully clas-
sify the 5 patient acuity levels, CTAS gives 5 distinct
values of (wi , αi), for i � 1, . . . , 5.
Two main factors contribute to the complications of

treating TPoD (versus othermeasures such as themean
waiting time and PoD). First, controlling TPoD requires
the understanding of the full distribution of waiting
time V(t), which is far more difficult than stabilizing
the mean waiting time (because it involves only the
first moment information E[V(t)]). Second, when PoD
P(V(t) > 0) is controlled at a probability 0 < α < 1, the
system is nearly critically loaded and has negligible
delay (V(t) ≈ 0). In this case the system performance is
close to that of its corresponding infinite-server model,
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which is the basis of previous staffing literature. How-
ever, controlling TPoD with a delay target w > 0 that
is not close to 0 should operate the system in the over-
loaded regime so it no longer performs closely to the
infinite-server model. These two factors motivate us
to develop new methodologies that characterize the
full waiting time distribution; our new approach is
no longer limited to the frameworks of infinite-server
model. Based on heavy-traffic Gaussian approxima-
tions, we develop a new staffing prescription that is the
sum of two staffing terms, dubbed two-term Gaussian-
approximation-based (TTGA) staffing method.

Our contributions. We summarize our contributions
in four directions.
First, we introduce an analytic staffing method

TTGA to stabilize the TPoD at desired QoS tar-
gets. Unlike simulation-based ISA and the numerical-
search-basedMOL, TTGA gives simple analytic formu-
las that are extremely easy to compute and implement.
Unlike simulation-based algorithms, TTGA’s explicit
staffing structure gives useful engineering insights; see
Remarks 1, 3, and 5, and Corollaries 1–3. To the best of
our knowledge, there exists no analytic formula-based
staffing method to stabilize TPoD prior to our work.
Second, we substantiate the remarkable performance

of TTGA by establishing a heavy-traffic limit theorem,
assuming an exponential service distribution. This the-
orem guarantees that as the scale increases, TTGA is
asymptotically the correct staffing level for stabilizing
the TPoD at any desired probability α ∈ (0, 1), with any
delay target w > 0.

Third, although the TPoD can be stabilized, the time-
varying effect of the arrival process cannot be com-
pletely eliminated, because all other performance met-
rics (e.g., PoD, PoA, means of delay and queue length,
and utilization) are still highly time varying. There-
fore, there is a need for seeking effective time-varying
performance estimators (Feldman et al. 2008, Liu and
Whitt 2012a). We provide analytic formulas to approxi-
mate these other important performancemeasures and
establish a second heavy-traffic limit theorem showing
the asymptotic accuracy of these estimators as the scale
increases.
Finally, we conduct extensive simulation experi-

ments to verify the effectiveness of robustness of TTGA.
Our examples include various service and patience
distributions (e.g., exponential, hyperexponential, and
lognormal), small-scale and large-scale systems (e.g.,
from 3 servers to 1,000 servers), a wide range of prob-
ability targets α (e.g., from 0.02 to 0.9), various delay
targets (e.g., from w ≈ 0 to w � 6), various arrival rate
function (e.g., sinusoidal, quadratic, piecewise linear)
and realistic arrival rates estimated by real hospital
and call center data. Our numerical experiments show
that TTGA is effective in both (i) overloaded systems

(i.e., efficiency-driven (ED) regime) and (ii) nearly crit-
ically loaded systems (i.e., quality-and-efficiency driven
(QED) regime). In addition, we show that TTGA con-
tinues to work effectively in systems with fewer servers
(e.g., hospitals); we can treat the challenging case in
Defraeye and van Nieuwenhuyse (2013) without using
simulations.

An example. Before describing the details of TTGA,
we first give an example using the arrival rates esti-
mated from a call center of a U.S. bank, obtained
from SEEStat center (SEE Center 2014). To confirm that
TTGA can achieve the 80-20 rule, we let TTGA param-
eters be w � 20 seconds and α � 1%− 80% � 0.2, mean-
ing 80% of calls are answered in 20 seconds. In this
example, we consider an Mt/M/st + M model with
mean service time 2 minutes and mean patience time
4 minutes. Figure 1 plots (i) the call center arrival rate
in a day (top panel); (ii) TTGA staffing level (middle
panel); and (iii) estimated TPoD by simulations (bot-
tom panel). Detailed experiment description and simu-
lation procedure are given in Section 4. Figure 1 shows
that the TPoD is indeed controlled below α � 0.2 in
throughout a day.

We remark that this is a small-scale model having an
average of five servers. The variability of TPoD (bottom
plot of Figure 1) is caused by adding and removing
a server. More comprehensive examples are given in
Section 4. We will show that the TPoD performance
becomesmore time stable as the system scale increases.

Organization of the Paper. In Section 2 we develop
the analytic TTGA staffing formulas as a function of
both the model input parameters and the QoS param-
eters; we give an asymptotic stability theorem to sup-
port the effectiveness of TTGA;we also provide various
simplified staffing formulas in structural special cases.
In Section 3 we provide useful analytic approximating
formulas for other important performance measures
such as the PoD, PoA, mean waiting time, and mean
queue length. In Section 4 we conduct comprehensive
numerical experiments to substantiate the effectiveness
of TTGA. In Section 5 we prove the asymptotic stability
of TTGA and the asymptotic accuracy of the approxi-
mating formulas of other performance functions as the
scale increases.Wedrawconclusions in Section 6.Addi-
tional supporting materials appear in the e-companion
and a longer online appendix (Liu 2017).

2. The TTGA Staffing and
Asymptotic Stability

In Section 2.1 we describe the Gt/GI/st + GI queueing
system. In Section 2.2 we develop the TTGA staffing
functions and establish a heavy-traffic limit theorem on
the asymptotic stability of TTGA assuming an expo-
nential service distribution. We give staffing formulas
in structural special cases in Section 2.3.
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Figure 1. (Color online) The QED Performance with the 80-20 Rule: Arrival Rate, TPoDs, and TTGA Staffing Functions for the
Model with Real Call-Center Arrival Rate
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Note. The QoS targets are w � 20 seconds and α � 20% � 0.2.

2.1. The Gt/GI/st +GI Model
We consider the Gt/GI/st + GI model, with arrival
process following a nonstationary non-Poisson process
(NNPP) with rate λ(t), i.i.d. service times following a
general cumulative distribution function (cdf) G(x), and
i.i.d. patience times following a general cdf F(x). Let
F̄(x), f (x) and hF(x) ≡ f (x)/F̄(x) be the complementary
cdf (ccdf), probability density function (pdf), and hazard
rate of the patience times. We assume the system is ini-
tially empty. Let the average arrival rate in the interval
[0,T] be

λ̄ ≡ 1
T

∫ T

0
λ(u) du. (2)

The Gt arrival process. Let N(t) be the total number of
arrivals by time t > 0. The Poisson or non-Poisson prop-
erty of N(t) can be effectively studied with the index
of dispersion for counts (IDC) I(t) ≡ Var(N(t))/E[N(t)].
For a nonhomogeneous Poisson process (NHPP), I(t) � 1
for all t. However, recent studies (Kim and Whitt 2014,
Nelson and Gerhardt 2011) have shown that the IDC of
arrival processes in service systems differ significantly
from 1, which implies that the Poisson assumption can
be unrealistic. This motivates us to consider the case of
general Gt arrivals.
Following Nelson and Gerhardt (2011), Liu et al.

(2018), we consider a Gt arrival model that has two
key features: (i) deterministic variability in time char-
acterized by a time-varying arrival-rate function λ(t)

and (ii) non-Poisson stochastic variability characterized
parsimoniously by the single parameter c2

λ > 0. Our
NNPP satisfies

E[N(t)]�Λ(t) ≡
∫ t

0
λ(s) ds and

limt→∞ I(t)� c2
λ > 0.

(3)

The reference cases are c2
λ � 0 for a deterministic pro-

cess and c2
λ � 1 for a Poisson process. Hence, NHPP

will be covered as a special case. Our NNPP can model a
process that is more (less) volatile than NHPP if we let
c2
λ > 1 (c2

λ < 1).
A simple way to obtain such an NNPP is to use the

composition method. Let N0(t) be a rate-1 stationary
counting process satisfying a central limit theorem (CLT):
(N(t) − t)/

√
t⇒ N (0, c2

λ) as t→∞, where ⇒ denotes
convergence distribution andN (m , σ2) denotes a Gaus-
sian distribution with mean m and variance σ2. For
example, N0(t) can be a renewal process with interre-
newal times having mean 1 and variance c2

λ. We can
construct an NNPP N(t) ≡ N0(Λ(t)) that satisfies (3).
See Nelson and Gerhardt (2011), Liu et al. (2018) for
details.

2.2. The TTGA Staffing Formula
We now present our TTGA staffing formula. The basis
of TTGA is the many-server heavy-traffic (MSHT) func-
tion weak law of large numbers (FWLLN) and functional
central limit theorem (FCLT) for the Gt/GI/st +GI queue
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(Liu and Whitt 2012b, 2014a). These results show
that the properly scaled performance functions (e.g.,
queue length and waiting times) converge in dis-
tribution to convenient Brownian motion based lim-
iting processes as the scale increases. See Liu and
Whitt (2014a). Taking the offered waiting time V(t)
for an example: When the system is in large scale,
the FCLT supports the following Gaussian approxi-
mation:

V(t) ≈N (ws(t), σ2
s (t)), E[V(t)] ≈ ws(t)

and Var(V(t)) ≈ σ2
s (t),

(4)

where the approximatingmean and variance ws(t) and
σ2

s (t) are both functions of the staffing function s(t)
(denoted by the subscript “s”) while assuming other
model parameters λ(t), F and G are fixed. Detailed
formulas of ws(t) and σ2

s (t) are given in Liu and
Whitt (2014a).
The first staffing term of TTGA. To stabilize TPoD for
given QoS targets w and α, our first step is to choose
nominal staffing levels to center V(t) around the delay
target w (i.e., placing E[V(t)] close to w). Therefore, we
obtain a staffing function s(1)w (t) by analytically solving
the equation ws(t) � w, t > 0. Because the probability
target α is not yet included, this first staffing function is
a function only of the QoS target w and model param-
eters λ(t), F, and G:

s(1)w (t) ≡ F̄(w)
∫ t−w

0
λ(u)(1−G(t −w − u)) du. (5)

Detailed derivation of (5) is given in Section 5.
If we round s(1)(t) to the closest integer values (e.g.,
ds(1)(t)e) and set the staffing level accordingly, the
mean delay E[V(t)] will be asymptotically stabilized
at the delay target w as expected. We next formally
state the asymptotic stability result. Its proof is given
in the e-companion.

Theorem 1 (Asymptotic Stability of Mean Delays). Con-
sider a Gt/GI/st + GI queueing model having arrival rate
λ(t) in the interval [0,T] with an average λ̄, service cdf G
and patience cdf F. If the staffing function is s(t)� ds(1)w (t)e
in (5) for w > 0, then the mean delay is stabilized at w in the
interval [0,T] asymptotically for a large λ̄, namely,

sup
0<t6T

|E[V(t)] −w | → 0, as λ̄→∞, w > 0, T > 0.

We remark that our first staffing term s(1)(t) in (5)
coincides with the offered-load function of the delayed
infinite-server (DIS) approximation (Liu and Whitt
2012a).

Unfortunately, s(1)(t) is not effective for stabilizing
TPoD, because s(1)(t) does not include the probabil-
ity target α. Indeed, under s(1)(t), the mean waiting
time E[V(t)] ≈ w so that V(t) ≈ N (w , σ2

s (t)), which

implies that the TPoD P(V(t) > w) ≈ P(N (w , σ2
s (t))

> w) � P(N (0, σ2
s (t)) > 0) � 0.5. So the TPoD should be

close to 0.5 if we directly staff according to s(1)w (t); s(1)(t)
is too crude for a desired α that is not close to 0.5 (e.g.,
α � 0.2 for the 80-20 rule).
Our strategy is to refine (5) by adding a second-order

staffing term that is a function of α. We envision a
staffing function consisting of two parts, in particular,

sw , α(t)� s(1)w (t)+ s(2)w , α(t), (6)

where s(1)w (t) is given in (5) (a function of w), and s(2)w , α

is some secondary staffing term (a function of both w
and α) that gives finer adjustments.

The secondary staffing term s(2)w , α(t). The delay target
w > 0 can be understood as the “first-order” QoS target
because it roughly determines the average (principle)
behavior of the random delay V(t), while the probabil-
ity 0 < α < 1 can be understood as the “second-order”
QoS target because it measures the variability of V(t)
around its mean value (which is of a smaller order).
Since the first staffing term in (6) controls the w and
the second term in (6) controls α, we expect s(2)w , α(t) to
be a smaller order term compared to s(1)w (t). The sec-
ond term s(2)w , α(t) should slightly tilt E[V(t)] from w to
some ws(2) (a function of s(2)w , α(t)), making it possible to
shift the TPoD to any α ∈ (0, 1). Under TTGA (6), we
have the following approximation for TPoD:

P(V(t) > w)
≈ P(N (ws(2) , σ

2
s(1)+s(2)(t)) > w)

� P
(
N (0, 1) > w −ws(2)

σs(1)+s(2)(t)

)
� 1−Φ

(
w −ws(2)

σs(1)+s(2)(t)

)
,

where Φ( · ) is the cdf of an N (0, 1) Gaussian distri-
bution. Matching the right-hand side of TPoD to the
desired probability target α ∈ (0, 1), we can solve for the
desired second term s(2)w , α(t) in (6). The detailed deriva-
tion is given in the proof of Theorem 2.

As a function of (s(1)w , α , c2
λ , F,G,w , α), we now provide

the analytic form of s(2)w , α(t):

s(2)w , α(t) ≡ zαe−µt

(
Z(t) − (µ− hF(w))

∫ t∨w

w
Z(u) du

)
, (7)

where

Z(t) ≡ e (µ−hF (w))t

·

√∫ t∨w

w
e2hF (w)x(Ĉ(µs(1)w (x)+ Ûs(1)w (x)) − Ûs(1)w (x)) dx ,

(8)

Ĉ ≡
√
(c2
λ − 1)Fc(w)+ 1+ c2

s , c2
s ≡ Var(S)/E[S]2 is the

squared coefficient of variation (SCV) of a generic ser-
vice time S, zα is the α-percentile of the standard
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Gaussian random variable N (0, 1), namely, zα ≡ Φ−1 ·
(1 − α), x ∨ y ≡ max(x , y), and Ûu(x) ≡ du(x)/ dx is the
derivative of the function u(x). Since both s(1)w and s(2)w , α

are continuous functions, we can simply round the for-
mula (6) (e.g., dsw , αe) to set the actual integer-valued
staffing levels in practice (this is what we do in our sim-
ulation examples).

Remark 1 (Understanding the Second Term s(2)w , α(t)). We
provide some intuitive explanations for the seemingly
complicated term s(2)w , α(t).

(i) Sign of s(2)w , α. The TTGA formula (6) simply re-
duces to s(1)w (t) when α � 0.5, because s(2)w , 0.5 � z0.5 � 0.
This agrees with our intuition because directly staffing
according to (5) should already stabilize the TPoD at
0.5. Since the impact of α factors out in the term zα, the
second term s(2)w , α > 0 (< 0)when α < 0.5 (> 0.5) (because
zα > 0 (< 0)). This is also consistent with our intuition
that the first staffing term s(1)w (5) understaffs (overstaffs)
the system when the desired target α < 0.5 (> 0.5). So
we rely on the secondary term s(2)w , α to add (remove) an
appropriate “second-order" number of servers, setting
the TPoD at a desired α ∈ (0, 1).

(ii) Magnitude of s(2)w , α. The analytic formulas (7)–(8)
also help estimate the magnitude of s(2)w , α. It is easy
to see that s(2)w , α � O(

√
s(1)w ), where we say f � O(g) if

supt>0 | f (t)/g(t)| 6 C for some C > 0. This observation
justifies whywe refer to s(1)w and s(2)w , α as the “first-order”
and “second-order” staffing levels and w and α as the
“first-order” and “second-order” QoS targets. See Fig-
ure 4 for a comparison of magnitudes of s(1)w and s(2)w , α.
To provide more insights, we show in Section 2.3 that
the TTGA formula in (6) simplifies to the square-root
staffing formula in special cases.
(iii) Dependence on model parameters. The secondary

staffing term s(2)w , α is an analytic function of the QoS
targets w and α, the main staffing term s(1)w , and the
model parameters F, µ, c2

s , and c2
λ. We note that s(2)w , α

depends on the service cdf G only via its mean 1/µ and
variance c2

s/µ2. In addition, s(2)w , α is independent of λ(t).
In contrast, both the service cdf G and the time-varying
arrival rate λ(t) are captured by the first-order term s(1)w .

We next state a heavy-traffic limit theorem for the
asymptotic stability of the TTGA formula (6) when the
service distribution is exponential (i.e., G(x) � 1− e−µx

and c2
s � 1). We give the proof in Section 5.

Theorem 2 (Asymptotic Stability of the TTGA Formula (6)
for Stabilizing TPoD). Consider a Gt/M/st + GI queueing
model having arrival rate λ(t) in the interval [0,T] with
an average λ̄ ≡ ∫T

0 λ(t) dt/T, exponential service times, and
general patience cdf F. If the staffing function is given in
(6) with c2

s � 1, then for all w > 0, 0 < α < 1, the TPoD

is stabilized at α in the interval [0,T] asymptotically for a
large λ̄, namely,

sup
0<t6T

|P(V(t) > w) − α | → 0, as λ̄→∞.

Remark 2 (TTGA for Nonexponential Service Times).
A rigorous heavy-traffic limit theorem for the asymp-
totic stability of TTGA with GI service requires an
associated FCLT for the Gt/GI/st +GI model. But such
a limit theorem currently remains an open problem.
The good news is that according to Theorem 1, we
know that our first-order staffing term s(1)w stabilizes
the mean delay when the service distribution is nonex-
ponential. The second-order term s(2)w , α in (7) for c2

s , 1
is a heuristic refinement. The basis of this refinement
is to use a renewal process to approximate the depar-
ture process when the service cdf is nonexponential.
We are able to include c2

s as a factor in s(2)w , α because the
FCLT of properly scaled renewal processes is a Brown-
ian motion multiplied by the SCV of the interrenewal
time; see Whitt (2002). We substantiate the effective-
ness of the staffing formula for GI service (with c2

s , 1)
by conducting simulation experiments with nonexpo-
nential service times (e.g., lognormal and H2 service
distributions) in Section 4. We provide more detailed
explanations of this heuristic refinement in the online
appendix.

2.3. Staffing Functions in Structural Special Cases
In this section, we simplify the TTGA staffing function
in (6) by imposing special model assumptions. In par-
ticular, we consider three cases: NHPP arrival pro-
cess, constant arrival rate, and sinusoidal arrival rate.
We formulate the simplified staffing formulas through
the following corollaries and give the proofs in the
e-companion.

Corollary 1 (TTGA Staffing for the G/M/st + GI Model).
If the arrival rate is a constant λ̄ and service times are expo-
nentially distributed, then staffing formula in (6) is asymp-
totically a classical square-root-staffing (SRS) function, in
particular, as t→∞,

sw , α(t) ∼ s(1)w + βw , α

√
s(1)w , where s(1)w ≡ F̄(w)λ

µ
,

βw , α ≡ zα

√
[(c2

λ − 1)F̄(w)+ 2]hF(w)
2µ ,

(9)

and we say f ∼ g if f (x)/g(x)→ 1 as x→∞.

Remark 3 (Average Number of Servers and Marginal
Price of Staffing). The above SRS structure can help esti-
mate the required average number of servers. The QoS
coefficient βw , α is a function of both w and α; it is
increasing in the arrival CSV c2

λ and depends on the
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Figure 2. (Color online) MPS with Respect to w (with α � 0.5, Left) and α (with w � 0.5, Right) When the Arrival Rate Is 100
and t Is Large
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patience ccdf F̄ and hazard rate hF only at their values
at w. In addition, these analytic staffing formulas can
help estimate the marginal price of staffing (MPS), that
is, to improve the service to a next level (e.g., reducing w
by ∆w, or reducing α by ∆α), how many extra servers are
needed?We can answer this question by computing the
partial derivatives of the staffing formula in (9) with
respect to w and α. (See the e-companion for analytic
formulas of the two partial derivatives.) Let λ̄ � 100,
c2
λ � 4, patience cdf be a hyperexponential with mean 2
and variance 8, mean service time 1/µ � 1, we plot the
two partial derivatives in Figure 2. We observe that the
MPS is monotonically decreasing in w and the MPS is
high when α is close to 0 or 1 but low when α ≈ 0.5. For
instance, for ∆α � 0.1, we need to add to the staffing
function (−∂s0.5, α/∂α |α�0.5)×∆α ≈ 30× 0.1� 3 servers if
we hope to reduce α from 0.5 to 0.5−∆α � 0.4. See Sec-
tion EC.2.4.1 of the e-companion for more discussions
of MPS.

Corollary 2 (TTGAStaffing for the Mt/M/st +GI Model).
If the arrival process is an NHPP, and µ � hF(w), then

sw , α(t)� s(1)w (t)+ βw , α

√
s(1)w (t), where βw , α ≡ zα . (10)

Remark 4 (Connection with the Garnett Function in
Garnett et al. (2002)). The assumption of an NHPP
arrival process implies a time-varying SRS staffing
function. If, in addition, the patience distribution is
exponential with rate θ � µ, then our staffing for-
mula (10) agrees with the Garnett SRS formula in
Garnett et al. (2002). In this case, our TTGA staffing
function reduces to the SRS staffing function for the full
Markovian Mt/M/st + M model studied in Feldman
et al. (2008), when w � 0. Of course, we hereby aim
at stabilizing the TPoD, which generalizes the PoD
by introducing a new QoS target w. Nevertheless, the
TPoD reduces to the simple PoD when w ≈ 0.

Because sinusoidal functions capture the periodic
structure in realistic arrival patterns (see Feldman et al.
2008, Yom-Tov and Mandelbaum 2014, Liu and Whitt
2012a), we next consider a sinusoidal arrival rate

λ(t)� λ̄(1+ r sin(γt +φ)), (11)

with average rate λ̄, relative amplitude |r | < 1, fre-
quency γ, and phase φ. We give structural results
below for the corresponding TTGA staffing function.

Corollary 3 (TTGA staffing for sinusoidal arrival rates). If
the arrival-rate is sinusoidal as in (11), then

s(1)w (t)∼
λ̄
µ

F̄(w)+ rλ̄F̄(w)√
µ2+γ2

sin(γ(t+φ/γ−w)−ϕ)

s(2)w , α(t)∼
zα f (w)
µ
√

F̄(w)
(
ā+ b̄1 sin(γ(t+φ/γ−w)−η)

+ b̄2 sin(γ(t+φ/γ−w)−ϕ)
)1/2

,

where

ā≡ λ̄C
2hF(w)

, b̄1≡
rλ̄(µC−2(C−1)hF(w))√
(µ2+γ2)(4h2

F(w)+γ2)
,

b̄2≡
rλ̄(C−1)√
µ2+γ2

C≡(c2
λ−1)F̄(w)+2,

ϕ≡arctan(γ/µ) and η≡ϕ+arctan(γ/(2hF(w)).

Remark 5 (Asymptotic Periodic Structure). Corollary 3
indicates that if the arrival rate is sinusoidal, then the
TTGA staffing function exhibits a periodic pattern. The
detailed formulas here can be used to estimate use-
ful quantities of the periodic function, such as the
period, oscillation magnitude, and their sensitivities to
the model parameters.

3. Approximating Other Performance
Functions Under TTGA

Although the TPoD is stabilized at a desired target
once the queueing model is staffed according to TTGA,
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other important performance measures still remain
highly time varying. Indeed, Feldman et al. (2008), Liu
and Whitt (2012a) show that the time-varying effect
brought by the nonstationary arrivals cannot be com-
pletely eliminated by any staffing method. For the
purpose of performance approximation and forecast-
ing, we next provide analytic formulas to approximate
performance functions including the PoD pde(t), PoA
pab(t), mean delay E[W(t)], mean queue length E[Q(t)],
and service utilization u(t) (the ratio of the mean num-
ber of busy servers and the total number of servers).
These approximating formulas are simple and analytic
functions of the model parameters (λ, c2

λ ,G, F) and the
QoS parameters (w , α).

Let Q(t) and B(t) be the number of customers wait-
ing in queue and the number of busy servers at time t.
Let X(t) ≡Q(t)+B(t) be the total number of customers
in the system at t. We will show in Section 5 that
both V(t) and X(t) are approximately distributed as
Gaussian random variables for a large λ̄. In particular,
under the TTGA staffing, we have

V(t) ≈N (w − zασ
∗
V(t), σ∗V 2(t)) and

X(t) ≈N (X∗(t), σ∗X 2(t)),
where

σ∗V
2(t)� e−2µt Z2(t)

(λ(t −w)F̄(w))2

X∗(t)�
∫ t

t−w
λ(u)Ḡ(t − u) du

− zαλ(t −w)F̄(w)σ∗V(t)+ sw , α(t)

σ∗X
2(t)�

∫ t

t−w
λ(u)F̄(t − u)[(c2

λ − 1)F̄(t − u)+ 1] du

+ e−2µt Z2(t),

and Z(t) is given in (8). See Section 5 for detailed
derivations for these Gaussian formulas. Based on the
above Gaussian approximations, we propose the per-
formance approximating formulas

E[V(t)] ≈ Ṽ(t)≡E
[
N (w−zασ

∗
V(t), σ∗V 2(t))+

]
,

pab(t) ≈ p̃de(t)≡
∫ ∞

0
Φ

(
w−x
σ∗V(t)

−zα

)
f (x)dx

E[Q(t)] ≈ Q̃(t)≡E
[
(N (X∗(t), σ∗X 2(t))−sw , α(t))+

]
,

pde(t) ≈ p̃de(t)≡Φ
(

w
σ∗V(t)

−zα

)
,

un(t) ≈ ũ(t)≡E
[
N

(
X∗(t)

sw , α(t)
,
σ∗X

2(t)
s2

w , α(t)

)+
∧1

]
,

(12)

where x∧ y ≡min(x , y) and x+ ≡max(x , 0). We add the
superscript “+" in the approximating formulas because
all performance functions have to be nonnegative. The
computation of the approximating formulas in (12)
involves numerically computing E[(a + bZ)+] and its

analogs. We remark that these computations are sim-
ple and fast because the formulas can be expressed as
simple functions of the Gaussian cdf Φ and pdf φ. We
provide the final explicit forms of (12) in Section EC.5
of the e-companion.

Next we provide a heavy-traffic limit theorem to
establish the asymptotic accuracy of the approximating
formulas in (12) when the service times are exponen-
tial. The proof is given in Section 5.

Theorem 3 (Asymptotic Accuracy of Performance Ap-
proximation Formulas). Consider the Gt/M/st + GI queue-
ing model having arrival rate λ(t) in the interval [0,T] with
an average λ̄, exponential service times, and general patience
cdf F. If the staffing function is given in (6) with c2

s � 1, the
approximating formulas in (12) are asymptotically accurate
for a large λ̄, specifically,

sup
06t6T

|E[V(t)] − Ṽ(t)| → 0,

sup
06t6T

|λ̄−1(E[Q(t)] − Q̃(t))| → 0,

sup
06t6T

|u(t) − ũ(t)| → 0,

sup
06t6T

|pde(t) − p̃de(t)| → 0,

sup
06t6T

|pab(t) − p̃ab(t)| → 0, as λ̄→∞.

(13)

4. Numerical Examples
We provide extensive numerical experiments to ver-
ify the effectiveness of TTGA. First, we consider an
H2(t)/M/st + H2 base example in Section 4.1. Next
we give additional simulation experiments in Sec-
tion 4.2–4.4, including cases with smaller arrival rates
and number of servers, various delay targets, and
different arrival-rate functions such as quadratic and
piecewise constant. In Section 4.2.2 we provide another
realistic example with an arrival rate estimated from
the emergency department of a Belgian hospital, pro-
viding direct comparison with the performance of
the simulation-based staffing algorithm in Defraeye
and van Nieuwenhuyse (2013). Finally, we present an
example allowing nonexponential (lognormal) service
times in Section 4.5.

4.1. An H2(t)/M/st +H2 Main Example
We consider an H2(t)/M/st +H2 model, having arrivals
according to an NNPP with a sinusoidal rate function
given in (11), exponential service cdf G(x) � 1 − e−µx ,
and a two-phase hyperexponential (H2) patience cdf:

F(x)� 1− pa e−θ1x − (1− pa)e−θ2x . (14)

FollowingNelson andGerhardt (2011), Liu et al. (2018),
we construct an NNPP arrival process {N(t), t > 0}
by composing a rate-1 renewal process with a mean-
value function Λ(t) in (3). To make sure the arrival
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process is not nearly an NHPP, we consider an H2 inter-
renewal cdf

Fλ(x)� 1− pλe−λ1x − (1− pλ)e−λ2x . (15)

We let µ � γ � 1 (so the mean service time 1/µ � 1),
φ� 0, λ1 � 2pλ, λ2 � 2(1− pλ), θ1 � 2paθ, θ2 � 2(1− pa)θ,
θ � 0.5 (so the mean patience time 1/θ � 2), λ̄ � 100 (so
the average arrival rate is 100), r �0.2 (so the arrival rate
varies from 80 to 120), and pλ � pa � (5+

√
15)/10 such

that the SCV (variance divided by the square of the
mean) of the interarrival times and patience times are
c2
λ � c2

a ≈4. According to Liu et al. (2018), the arrival pro-
cess has a variance-to-mean ratio Var(N(t))/E[N(t)] ≈ 4
(which is not nearly Poisson).
Our staffing procedure applies to arbitrary arrival-

rate functions. Here the choice of a sinusoidal function
Figure 3. (Color online) A Simulation Comparison: Estimated Time-Dependent TPoD, PoD, Mean Queue Length for the
H2(t)/M/st +H2 Example with a Sinusoidal Arrival Rate λ(t)� 100+ 20 sin(t), w � 0.5 and α � 0.1, . . . , 0.9
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is convenient because it roughly captures the spirit of
real systems having cyclic demand; see Feldman et al.
(2008). An important issue for applications is the rate
of fluctuation in the arrival-rate function compared to
the mean service time. Because a cycle of the arrival-
rate function in (11) is 2π, therewill be about four cycles
during the interval [0, 24] (i.e., during a 24-hour day).

We use simulation experiments to show that TTGA
achieves the desired time-stable performances for a
wide range of α. Figure 3 shows simulation estimates of
key performance measures with a delay target w � 0.5
and probability target α � 0.1, . . . , 0.9. Figure 3 shows
that all TPoD (solid lines) are stabilized at desired tar-
gets α (dashed lines). We show that TTGA performs
well with even smaller α (e.g., 0.02 6 α 6 0.08) in
Section 4.3.2. In addition, while TPoD is stabilized,
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Table 1. Average, Min and Max of TPoD, and Comparison with the TPoD Targets, with w � 0.5 and λ(t)� 100+ 20 sin(t)

Avg Max Min
(diff. to target) (diff. to target) (diff. to target)

Target Ceiling Flooring Ceiling Flooring Ceiling Flooring

0.9 0.9024 0.9114 0.9146 0.9222 0.8900 0.8958
(+0.0024) (+0.0114) (+0.0146) (+0.0222) (−0.0100) (−0.0042)

0.8 0.7985 0.8120 0.8236 0.8274 0.7796 0.7916
(−0.0015) (+0.0120) (+0.0236) (+0.0274) (−0.0204) (−0.0084)

0.7 0.6981 0.7097 0.7252 0.7330 0.6760 0.6866
(−0.0019) (+0.0097) (+0.0252) (+0.0330) (−0.0240) (−0.0134)

0.6 0.5919 0.6103 0.6204 0.6404 0.5698 0.5842
(−0.0081) (+0.0103) (+0.0204) (+0.0404) (−0.0302) (−0.0158)

0.5 0.4937 0.5100 0.5232 0.5422 0.4668 0.4810
(−0.0063) (+0.0100) (+0.0232) (+0.0422) (−0.0332) (−0.0190)

0.4 0.3929 0.4071 0.4198 0.4346 0.3646 0.3788
(−0.0071) (+0.0071) (+0.0198) (+0.0346) (−0.0354) (−0.0212)

0.3 0.2965 0.3110 0.3166 0.3330 0.2728 0.2844
(−0.0035) (+0.0110) (+0.0166) (+0.0330) (−0.0272) (−0.0156)

0.2 0.2007 0.2098 0.2222 0.2318 0.1848 0.1880
(+0.0007) (+0.0098) (+0.0222) (+0.0318) (−0.0152) (−0.0120)

0.1 0.1028 0.1112 0.1168 0.1266 0.0868 0.0956
(+0.0028) (+0.0112) (+0.0168) (+0.0266) (−0.0132) (−0.0044)

other performance measures (solid lines in subplots
2–5), such as the PoA, mean delay and mean queue
length (i.e.,meannumber ofwaiting customers) remain
time varying; nevertheless, they agree closely with our
approximating formulas (dashed lines in subplots 2–5),
that are given in Section 3 for the detailed approximat-
ing formulas. These simulation estimates are obtained
by averaging 5,000 independent sample paths. We give
the details of the numerical implementation and com-
puter simulations in Section EC.5 of the e-companion.
The bottom panel of Figure 3 shows all nine time-
varying staffing levels corresponding to the different
values of α.We remark that the highest (lowest) staffing

Figure 4. (Color online) The Staffing Functions with α � 0.1, . . . , 0.9, w � 0.5, and λ(t)� 100+ 20 sin(t)
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function corresponds to the lowest (highest) perfor-
mance functions in other subplots.

We further quantify the good performance shown in
Figure 3 by computing the minimum, maximum, and
average values of the TPoD performance and compare
them to the TPoD targets in Table 1. We remark that
the discretization (e.g., ceiling, rounding, and flooring)
does not play an important role in this example because
the number of servers is relatively large (ranging from
50 to 90).

In Figure 4 we plot the TTGA staffing functions for
three cases: α � 0.1, 0.5, and 0.9 (the three functions
on the top), with a fixed delay target w � 0.5. The
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detailed staffing formula of this example is given in
Section EC.4 of the e-companion, as a straightforward
result of the general TTGA staffing function (6)–(8) in
Section 2. Indeed, we see that the secondary staffing
terms s(2)0.5, 0.1(t) > 0, s(2)0.5, 0.5(t)� 0 and s(2)0.5, 0.9(t) < 0, so that
the TTGA staffing functions for these three cases are
ordered as s0.5, 0.1 > s(1)0.5 � s0.5, 0.5 > s0.5, 0.9. Figure 4 helps
visualize the relation s(2)w , α � O(

√
s(1)w ) and justify the

names “first-order" and “second-order" for s(1)w and s(2)w , α.

4.2. Small-Scale Systems
When the arrival rate is larger, e.g., λ̄ � 1,000 in (11),
the TPoD is, unsurprisingly, even more stable. (This
is supported by the asymptotic stability result.) We
give the simulations in the online appendix. We
next investigate the important case of smaller arrival
rates.

Figure 5. (Color online) Staffing Functions for α � 0.1, 0.5, 0.9 with w � 0.5 and λ(t)� 10+ 2 sin t
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Figure 6. (Color online) Tail Probabilities in a Small System, with Staffing Functions Discretized by Ceiling (Left) and
Flooring (Right), for α � 0.1, . . . , 0.9, w � 0.5 and λ(t)� 10+ 2 sin t
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4.2.1. Base Model with λ̄ � 10. To make this challeng-
ing, we consider the H2(t)/M/st + H2 example in Sec-
tion 4.1 having the same sinusoidal arrival-rate func-
tion in (11) with λ̄ � 10 (instead of 100 in Section 4.1).
We remark that an average arrival λ̄ � 10 does not nec-
essarily imply an average staffing level with around 10
servers. In fact, for a large α, the number of servers is
around 3. See Figure 5 for the TTGA staffing levels for
three cases: (i) α� 0.1 (average staffing is 11), (ii) α� 0.5
(average staffing is 7) and (iii) α � 0.9 (average staffing
is 3).

Figure 6 shows that the TTGA staffing method con-
tinues to achieve time-stable performance of TPoD for
the case of smaller arrival rates with α � 0.1, . . . , 0.9.
Other performance measures and approximations are
given in the online appendix. Despite the relatively
larger oscillations comparing with the example in
Section 4.1 with a large λ̄, the TPoD is again well
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stabilized. We point out that the nonsmoothness of
the TPoD is caused by (i) the discretization of the
continuous staffing functions s(1)w and s(2)w , α (see Fig-
ure 5), (ii) the choice of discretization methods (ceiling,
rounding or flooring), and (iii) the Gaussian-truncation
effect, which we further explain in Remarks 6 and 7.

Remark 6 (Effect of Discretization). Unlike the case
λ̄ � 100, the performance of TPoD becomes far more
sensitive to the discretization of the staffing function.
When the discrete staffing levels add (remove) one
server at time t, TPoD inevitably decreases (increases)
quite significantly. Furthermore, TPoD tends to fluctu-
ate quite frequently at the beginning (before time 2),
because the TTGA staffing function climbs from 0 to
its average value very fast, as shown in Figure 5. We
also remark that the choice of discretization methods
can play a much bigger role for smaller arrival rates.
We compare the performance of the TPoD in Figure 6
for two staffing functions: (i) ds(1)w + s(2)w , αe (as in (6)) and
(ii) bs(1)w + s(2)w , αc. Figure 6 shows that adding a server
to (removing a server from) the staffing function at
all t can significantly alter the performance for smaller
systems, while doing so does not make a big difference
for large systems (as in Table 1).

Remark 7 (The Gaussian Truncation Effect). Because we
have the lowest (highest) staffing level for α � 0.9
(α � 0.1) (see the bottom and top staffing functions in
Figure 5), and also because the impact of the discretiza-
tion increases as the staffing level decreases, we would
then naturally expect the TPoD to oscillate more (less)
severely for α � 0.9 (α � 0.1). Surprisingly, we observe
from Figure 6 that the magnitude of the fluctuation of
TPoD does not monotonously increase in α! In fact, the
TPoD tends to fluctuate the most around α � 0.5. We
call this the Gaussian truncation effect, which we will
explain next.
Recall that TTGA is based on a Gaussian approxima-

tion for the random delay V(t). We use the first-order
staffing term s(1)w to center V(t) near the delay target w

Figure 7. (Color online) Performance Oscillation in Smaller Systems: The Gaussian Truncation Effect
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(the first-order QoS target) and then use the second-
order term s(2)w , α to make finer adjustments so that
we can furthermore truncate that Gaussian random
variable to obtain the desired probability α (the
second-order QoS target). As discussed in Remark 6,
the discretization starts to play a much bigger role for
smaller systems, causing the TPoD to deviate from the
desired target. We call this deviation the discretiza-
tion error of staffing. When α is either small (e.g., 0.1)
or big (e.g., 0.9), the truncation of the Gaussian ccdf
will not deviate much from α, because the value of
the Gaussian pdf is small when α is either small or
large; see parts (a) and (c) in Figure 7 for an illustra-
tion. However, the worse case is α � 0.5: even a slight
discretization error will make a significant impact on
the truncation, because that is where the Gaussian pdf
peaks (see Figure 7(b)). This is why the TPoD is more
(less) sensitive to the discretization error for a medium
α (small or large α).

4.2.2. The Belgian Hospital Example. Next we con-
sider an example with realistic arrival rate estimated
from the emergency department of a Belgian hos-
pital, studied in Defraeye and van Nieuwenhuyse
(2013); we aim to provide direct comparison with
the performance of the simulation-based staffing algo-
rithm there, showing that we can achieve the same goal
without needing simulations.

In Defraeye and van Nieuwenhuyse (2013), the
authors used ISA to keep the TPoD below α � 0.1 for
w � 10 minutes in an example with realistic arrival rate
estimated from the emergency department of a Belgian
hospital; see Defraeye and van Nieuwenhuyse (2013,
figure 4(a)) (also see the top panel of Figure 8 here).
They assumed that the service and patience times are
exponentially distributed with mean 30 minutes and 4
hours, respectively. Here we apply the TTGA staffing
method to the same example. See Figure 8 for the daily
arrival rate, TTGA staffing function, and TPoD with
target α�0.1. This is an extremely challenging example
because the arrival rate is very small (between 1 and 4),
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Figure 8. (Color online) Arrival Rate, TTGA Staffing Function, and TPoD for the Belgian Hospital Example, with Parameters
µ � 2, θ � 0.25, and w � 1/6
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and our TTGA staffing functions only change a few
times (varying between 1 and 4). Comparing with fig-
ure 5 in Defraeye and vanNieuwenhuyse (2013), TTGA
achieves similar good performance without using sim-
ulations.

4.3. Lightly-Loaded and Heavily-Loaded Systems
To supplement the base example in Section 4.1 with
w � 0.5 and α ranging from 0.1 to 0.9, we now consider
cases where the system is (i) lightly loaded with w ≈ 0
(Section 4.3.1); (ii) lightly loaded with smaller α (e.g.,
α� 0.02, see Section 4.3.2); and (iii) heavily loadedwith
bigger w (e.g., w � 3, Section 4.3.3).

4.3.1. High QoS with Small Delay Targets. Despite the
fact that the effectiveness of TTGA is supported by a

Figure 9. (Color online) Tail Probabilities of Delay for High QoS Targets: w � 0.05 with λ(t)� 100+ 20 sin t
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heavy-traffic limit theorem assuming w > 0 so the sys-
tem is in the overloaded (or ED) regime, our staffing
formulas still work quite well for the case of high QoS
with delay target w ≈ 0, which places the system in
the QED regime where TPoD reduces to PoD. To sub-
stantiate this claim, we repeat the simulations for the
example in Section 4.1 for w � 0.05 (i.e., 1/20 of the
mean service time), with all the other model parame-
ters unchanged. Figure 9 shows that the TPoD is sta-
bilized and close to the desired target α ranging from
0.1 to 0.9. We also consider the extreme case of w � 0 in
Section 6 of the online appendix.

4.3.2. High QoS with Small Probability Targets. Sup-
plementing the good performance for a system in the
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Figure 10. (Color online) Tail Probabilities of Delay for High QoS Targets: w � 0.3 and α � 0.02, 0.04, 0.06, 0.08 with
λ(t)� 100+ 20 sin t
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QED regime, we now consider even smaller probabil-
ity target α ≈ 0. We repeat the example in Section 4.1
for α < 0.1 and moderate delay target w � 0.3. Fig-
ure 10 shows that the TPoD is stabilized and close to the
desired target α. We remark that the choices of smaller
0.02 6 α 6 0.08 have already made the system operate
in the QED regime, because the corresponding PoDs
range between 0.4 to 0.8; see the online appendix for
more discussions.
4.3.3. Heavily Loaded Systems with Large Delay Tar-
gets. We now consider the case of relatively large
delay targets by repeating the example in Section 4
with w � 3 and leaving all the other parameters
unchanged. Examples having even larger delay targets
(e.g., w � 6) are also considered in the online appendix.
Since all customers wait for a relatively long time, a

large proportion of them eventually abandon. There-
fore, we end up again investigating the performance
of TTGA for a small-scale system, which supplements
examples in Section 4.2. As shown in Figure 11, the
average staffing levels are from 8 to 16 as α varies
from 0.1 to 0.9, despite of a relatively large arrival rate
λ̄ � 100.

Figure 11. (Color online) Staffing Functions for α � 0.1, 0.5 and 0.9, with w � 3 and λ(t)� 100+ 20 sin t
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In Figure 12, simulations show that TTGA continues
to achieve time-stable performance for the case of large
delay targets, with a wide range of α (α � 0.1, . . . , 0.9).
Because we are again facing a smaller system (having
a small number of servers), we point out that the rela-
tively larger fluctuations of the TPoD are again caused
by (i) the discretization of the continuous staffing func-
tions s(1)w and s(2)w , α and (ii) the Gaussian-truncation
effect. Simulations of other performance measures and
their approximations are given in the online appendix.

4.3.4. Staffing Level Comparison for Different Delay
Targets. We now compare the TTGA staffing levels
as a function of the delay targets. Considering the
same example in Section 4, we plot the staffing func-
tions in Figure 13 for w � 0, 0.1, 0.3, 0.5, 1, 2, 3, 6 with
α � 0.1 and 0.9.We observe that the TTGA staffing level
decreases significantly as the delay target w increases,
because larger delay leads to more abandonment and
smaller system size (thus fewer servers).

We also remark that although the TTGA staffing
function remains 0 at the beginning (before time w),
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Figure 12. (Color online) Tail Probabilities of Delay with Staffing Functions Discretized by Ceiling (Left) and Flooring (Right)
for α � 0.1, . . . , 0.9, Large Delay Target w � 3 and λ(t)� 100+ 20 sin t
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Figure 13. (Color online) TTGA Staffing Levels for Different Delay Target 0 6 w 6 6, with (i) α � 0.1 (Left) and (ii) α � 0.9
(Right)
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the TPoD is well stabilized for all time t, including the
interval [0,w]. This is so because the delay V(t) of an
arriving customer at t (i.e., the potential waiting time
at t) is realized when the customer enters service at a
future time t + V(t). Since everybody waits around w
(with minor adjustment according to the second-order
QoS target α), no one should enter service before w,
which yields a zero staffing level at the beginning.

4.4. Other Arrival Rate Functions
We now consider arrival-rate functions having differ-
ent structures. Specifically, we consider (i) quadratic
λ(t)� 90+5t −0.15t2 and (ii) piecewise constant λ(t)�
120 · 1A(t)+ 80 · 1Ac (t), with the set A ≡ [0, 5) ∪ [5, 10) ∪
[15, 20). Simulation experiments again verify the effec-
tiveness of the TTGA staffing methods; see Figure 14,

which is an analog of Figure 3. We include cases of
other arrival rates, such as constant and piecewise lin-
ear functions, in the online appendix.

4.5. Nonexponential Service Distribution
Although the supporting asymptotic stability theorem
of TTGA for GI service remains an open problem,
we provide simulations to verify that TTGA performs
well for GI service. In particular, we consider an
H2(t)/LN/st + H2 model, having a lognormal (LN) ser-
vice distribution and all other parameters the same as
the main example in Section 4.1. We first review the
basics of the LN distribution. Let S be a generic service
time, we write S � eZ where Z �N (µ̄, σ̄2). Then the pdf
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Figure 14. (Color online) Tail Probabilities of Delay with (i) Quadratic Arrival Rate λ(t)� 90+ 5t − 0.15t2 , 0 6 t 6 24 (Left);
and (ii) Piecewise Constant Arrival Rate Alternating Between 120 and 80 Every 5 Time Units (Right)
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of S is
g(x)� 1

xσ̄
√

2π
e−(log x−µ̄)2/(2σ̄2) ,

with mean, variance, and SCV

E[S]� e µ̄+σ̄
2/2 , Var(S)� (e σ̄2 − 1)e2µ̄+σ̄2

,

and c2
s � e σ̄

2 − 1.

We fix the mean service time E[S] � 1 and vary the
SCV c2

s in three cases: (i) c2
s � 0.25 (µ̄ � −0.3466 and

σ̄ � 0.8326), (ii) c2
s � 1 (µ̄ � −0.1116, σ̄ � 0.4724), and

(iii) c2
s � 4 (µ̄�−0.8047, σ̄ � 1.2686). We use LN(a , c2) to

denote an LN distribution with mean a and SCV c2.
The cases of c2

s � 0.25 and 1 are of less interest
because service times in many service systems are
more volatile than exponential, exhibiting an SCV
larger than 1, e.g., c2

s � 1.52 in financial call centers; see
Brown et al. (2005). We now consider the more chal-
lenging case c2

s � 4. Figure 15 (an analog of Figure 3)
shows that (i) the TPoD is stabilized at desired tar-
gets for the H2(t)/LN(1, 4)/st +H2 model and (ii) other
important performance functions all tend to agree with
our approximating formulas, except for a short initial
warm-up period. We give the simulations for the cases
c2

s � 0.25 and 1 in the online appendix, because they
are similar to (in fact better than) Figure 15. We have
also conducted simulations in the online appendix for
models with other types of nonexponential service dis-
tributions, such as H2 distribution.

5. Proofs
We first review useful MSHT limit theorems from Liu
andWhitt (2012b, c, 2014a) in Sections 5.1–5.2. We next
prove the asymptotic stability of TTGA (Theorem 2)
and asymptotic accuracy of the performance approxi-
mations (Theorem 3) in Sections 5.3–5.4. We give the
proofs of other results in the online supplement.

5.1. A Sequence of Queueing Models Indexed by n
We follow the convention by defining a sequence of
Gt/GI/st +GI queueing models indexed by n, with the
nth model having a nonstationary non-Poisson arrival
process Nn(t), i.i.d. general service times with cdf G,
i.i.d. general patience times with cdf F, and a time-
varying staffing function

sn(t) ≡
⌈
n s(t)+

√
nsg(t)

⌉
, (16)

that is a generalized version of the SRS. Paralleling Sec-
tion 2, we let Nn(t)≡N (0)(nΛ(t))where N (0)(t) is a rate-1
ERP with interrenewal SCV c2

λ and Λ(t) ≡ ∫∞0 λ(u)du.
We assume the base staffing and arrival-rate functions
s(t), sg(t)andλ(t)areall nonnegativepiecewise smooth
functions. We also assume the pdf’s of service and
patience times g and f exist. We let Ḡ≡ 1−G and F̄ �

1−F be the ccdf’s of G and F, and let hF(x)≡ f (x)/F̄(x)
be the patience-time hazard-rate function. Thus, the
Gt/GI/st +GI queueing model indexed by n is charac-
terized by the six-tuple (λ(t), c2

λ ,G,F, s(t), sg(t)) and the
scaling factor n>1.
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Figure 15. (Color online) A Simulation Comparison: Estimated Time-Dependent TPoD, PoD, Mean Queue Length for the
H2(t)/LN(1, 4)/st +H2 Example with a Sinusoidal Arrival Rate λ(t)� 100+ 20 sin(t), Service SCV c2

s � 4, w � 0.5 and
α � 0.1, . . . , 0.9
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Although we allowed the average arrival rate λ̄ to
increase in Theorems 1–3, we point out that is equiv-
alent to allowing the scale n to increase, because we
can always rewrite λn(t) � nλ̄ · (λ(t)/λ̄) � λ̄n · (λ(t)/λ̄)
and let the average λ̄n go to infinity. Considering the
main example in Section 4, we may let n � 100 and the
base arrival-rate function λ(t) � 1 + 0.2 sin(t) so that

the staffing function of the main example is λn(t) �
nλ(t)� 100+20 sin(t). We remark that the choice of n is
not unique; we can alternatively let n �50 and λ(t)�2+
0.4 sin(t), because the resulting staffing function sn(t)
will remain the same. This is why we allowed the aver-
age arrival to increase.

Here both s and sg in the staffing function (16) are
part of the model input. Although we have not yet set
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the staffing function in the desired form of TTGA, we
can see that the staffing function in (16) indeed has the
correct orders (with n in the first term s and

√
n in the

second term sg), as discussed in Remark 1.
For the nth queueing model, let Bn(t) and Qn(t) be

the total number of customers being served in service
and waiting in queue at time t, respectively. Also let
Xn(t) ≡ Bn(t)+ Qn(t) be the total number of customers
in system at time t. Let Vn(t) be the offered waiting time
at t, that is the virtual waiting time of an arrival at t
assuming infinite patience; and let Wn(t) be the head-
of-line waiting time (HWT) at t, that is the elapsed delay
of the head-of-line customer, if there is any. Define the
time-dependent TPoD as

pn(t , w) ≡ P(Vn(t) > w) (17)

for any delay target w > 0.

5.2. MSHT Fluid and Diffusion Limits
We next provide useful MSHT functional weak law of
large numbers (FWLLN) and FCLT for Gt/M/st + GI
queues with time-varying arrivals and staffing func-
tions, and exponential service-time cdf G(x)� 1− e−µx ,
developed in Liu and Whitt (2012b, 2014a). We impose
a special initial condition by assuming the system ini-
tially critically loaded; that is,

Qn(0)� 0 and Xn(0)� Bn(0)� sn(0),
for all n > 1. (18)

For the system to be in the ED regime, we assume the
queueing system is asymptotically overloaded, which
requires the total input dominates the maximum out-
put, namely,

Λ(t) > D(t) ≡
∫ t

0
µs(u) du , for all 0 6 t 6 T. (19)

Following Liu and Whitt (2012b, 2014a), the LLN-
scaled processes are defined as

B̄n(t)≡n−1Bn(t), Q̄n(t)≡n−1Qn(t), X̄n(t)≡n−1Xn(t).
The next result is a special case of the FWLLN devel-
oped by Liu and Whitt (2012b, 2014a).
Theorem 4 (FWLLN Limits for the Overloaded Gt/M/st +

GI Queue). For a sequence of Gt/M/st +GI models defined
in Section 5.1 with staffing function (16). If the assumptions
in (18) and (19) are satisfied, then the LLN-scaled processes

(B̄n , Q̄n , X̄n ,Wn ,Vn) ⇒ (s ,Q , s +Q ,w , v) in �5 ,

as n→∞, (20)

where w(t) and v(t) uniquely solve the ordinary differential
equations (ODEs)

Ûw(t)� 1−
µs(t)+ Ûs(t)

F̄(w(t))λ(t −w(t))
and

Ûv(t)� F̄(v(t))λ(t)
µs(t + v(t))+ Ûs(t + v(t)) − 1,

with initial values w(0)� v(0)� 0,

Q(t) ≡
∫ t

t−w(t)
λ(u)F̄(t − u) du ,

and� is the space of right-continuous functions having lim-
its from the left.

Following Liu andWhitt (2014a), the CLT-scaled pro-
cesses are

B̂n(t) ≡ n1/2(B̄n(t) − s(t)), Q̂n(t) ≡ n1/2(Q̄n(t) −Q(t)),
X̂n(t) ≡ n1/2(X̄n(t) − s(t) −Q(t)),
Ŵn(t) ≡ n1/2(Wn(t) −w(t)), V̂n(t) ≡ n1/2(Vn(t) − v(t)).

The next result is a special case of the FCLT developed
by Liu and Whitt (2014a).

Theorem 5 (FCLT Limits for the Overloaded Gt/M/st +

GI Queue). For a sequence of Gt/M/st +GI models defined
in Section 5.1 with staffing function (16). If the assumptions
in (18) and (19) are satisfied, then the CLT-scaled processes

(B̂n , Q̂n , X̂n , Ŵn , V̂n) ⇒ (0, X̂ , X̂ , Ŵ , V̂) in �5 ,

as n→∞, (21)

where X̂, V̂ and Ŵ are continuous-path Gaussian processes.
For t > 0, X̂(t)�N (Xg(t), σ2

X̂
(t)), V̂(t)�N (Vg(t), σ2

V̂
(t)),

Ŵ(t) � N (Wg(t), σ2
Ŵ
(t)) are Gaussian random variables

with

Xg(t)≡λ(t−w(t))F̄(w(t))Wg(t),

Vg(t)≡
Wg(t + v(t))

1− Ûw(t + v(t)) , Wg(t)≡−
∫ t

0
H(t ,u)z(u)du

σ2
V̂
(t)≡

σ2
Ŵ
(t + v(t))

[1− Ûw(t + v(t))]2 , σ2
Ŵ
(t)≡

∫ t

0
H2(t ,u)I2(u)du

σ2
X̂
(t)≡

∫ t

t−w(t)
λ(u)F̄(t− u)[(c2

λ −1)F̄(t− u)+1]du

+(λ(t−w(t))F̄(w(t)))2σ2
Ŵ
(t),

z(t)≡
sg(t)µ+ Ûsg(t)

λ(t−w(t))F̄(w(t))
,

I2(t)≡
µs(t)+ [1+ (c2

λ −1)F̄(w(t))](µs(t)+ Ûs(t))
[λ(t−w(t))F̄(w(t))]2

, and

H(t ,u)≡exp
{∫ t

u
(1− Ûw(x))

(
− Ûλ(x−w(x))
λ(x−w(x))

−hF(w(x))
)

dx
}
. (22)

5.3. Proof of Theorem 2
We are now ready to show the asymptotic stability of
our TTGA in Theorem 2 and the asymptotic accuracy of
our approximating formulas in Theorem 3. In the new
notation using the scaling factor n (that is, replacing
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λ(t) in (6) by λn(t) � nλ(t) with λ(t) being the base
arrival rate), our TTGA staffing function for the nth
model becomes

sn(t)� dns(1)w (t)+
√

nsw , α(t)e+ , (23)

where the definitions of s(1)w (t) and s(2)w , α(t) remain the
same as in (5) and (7).
Our proofs are based on the following two lemmas.

Lemma 1. For a sequence of Gt/M/st +GI models defined
in Section 5.1 with staffing function (23). If the assumptions
in (18) and (19) are satisfied, then both of the fluid waiting
times w(t) and v(t) in Theorem 4 are stabilized at w for
all t.

Proof. Because the second term in (23) is O(
√

n) , then
the staffing function in the associated limiting fluid
model is limn→∞ n−1sn(t) � s(1)w (t). Hence, the claimed
result holds by Theorems 1 and 4 here, along with The-
orem 8 in section 10 of Liu and Whitt (2012b). �

Lemma 2. For a sequence of Gt/M/st +GI models defined
in Section 5.1 with staffing function (23). If the assumptions
in (18) and (19) are satisfied, then the means and standard
deviations of the Gaussian FCLT limit of delays V̂ and Ŵ in
Theorem 5 satisfy the following relations:

Vg(t)� Wg(t + w), σV̂(t)� σŴ (t + w),
Wg(t)�−zασŴ (t), Vg(t)�−zασV̂(t), t > 0.

Proof. Lemma 1 implies w(t)� w ( Ûw(t)� 0). The func-
tion H(t , u) in (22) simplifies to

H(t , u)� exp
(
−

∫ t

u

Ûλ(x −w)
λ(x −w) dx − hF(w)(t − u)

)
� exp

(
−

∫ t

u
d log(λ(x −w)) − hF(w)(t − u)

)
�
λ(u −w)
λ(t −w) e−hF (w)(t−u). (24)

Replacing s(t) and sg(t) in (22) by s(1)w (t) and s(2)w , α(t),
we have

σ2
Ŵ
(t)�

∫ t

0

λ2(u −w)
λ2(t −w) e−2hF (w)(t−u)

((c2
λ − 1)F̄(w)+ 2)(µs(1)w (u)+ Ûs(1)w (u)) − Ûs(1)w (u)

q2(u ,w) du

�
e−2hF (w)t

λ2(t − v)(F̄(w))2

∫ t

0
e2hF (w)u([(c2

λ − 1)Fc(w)+ 2]

· (µs(1)w (u)+ Ûs(1)w (u)) − Ûs(1)w (u)) du.

�
e−2µt

λ2(t −w)(F̄(w))2
Z(t), (25)

where the first equality holds by (24) and the last equal-
ity holds by the definition of Z(t) in (8). Note that
s(1)w (t)� Ûs(1)w (t)� Z(t)� 0 for 0 6 t 6 w. Next,

Wg(t)�−
∫ t

0

λ(u−w)
λ(t−w) e−hF (w)(t−u) s

(2)
w ,α(u)µ+ Ûs(2)w ,α(u)

q(u ,w) du

�− e−hF (w)t

λ(t−w)F̄(w)

∫ t

0
ehF (w)u(s(2)w ,α(u)µ+ Ûs(2)w ,α(u))du

�− e−hF (w)t

λ(t−w)F̄(w)

∫ t

w
ehF (w)u

{
zαe−µu

(
Z(u)

−(µ−hF(w))
∫ u

w
Z(x)dx

)
µ

+zαe−µu

[
−µ

(
Z(u)−(µ−hF(w))

∫ u

w
Z(x)dx

)
+ ÛZ(u)−(µ−hF(w))Z(u)

]}
du

�− zαe−hF (w)t

λ(t−w)F̄(w)

·
∫ t

w
e (hF (w)−µ)u

( ÛZ(u)−(µ−hF(w))Z(u)
)
du

�− zαe−hF (w)t

λ(t−w)F̄(w)
e (hF (w)−µ)t Z(t)

�− zαe−µt

λ(t−w)F̄(w)
Z(t). (26)

Combining (25) and (26) completes the proof. �
Finishing the proof of Theorem 2. Lemma 2 implies
that under the TTGA staffing (23), the FCLT limit for V̂n
is a negative-mean Gaussian random variable

V̂(t)�N (−zασŴ (t), σŴ (t))�−zασŴ (t)+ σŴ (t)Z,
where Z�N (0, 1), (27)

Therefore, for all 0 < t 6 T, the TPoD of the nth model

pTPoD
n (t ,w)�P(Vn(t)>w)�P(

√
n(Vn(t)− v(t))

>
√

n(w− v(t)))�P(V̂n(t)> 0)→P(V̂(t)> 0)
�P(Z> 0)�1−Φ(zα)�α, as n→∞,

(28)

where the convergence holds by Theorem 5, the third
equality holds because v(t)� w according to Lemma 1,
and the fourth equality holds by (27). Because the FCLT
states a convergence in space � for the whole pro-
cess V̂n and the FCLT diffusion limit V̂ has continu-
ous paths (see Liu and Whitt 2014a), the convergence
in the J1 metric is equivalent to the uniform metric.
Accordingly, we can claim the uniform convergence
sup0<t6T |pTPoD

n (t ,w) − α | → 0. �

5.4. Proof of Theorem 3
Next we prove the convergence results in Theorem 3
for performance functions including the mean delay,
mean queue length, utilization, PoD, and PoA.
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Mean delay. Under the TTGA staffing in (23), we know
from Theorem 5 and (27) that

Vn(t)� v(t)+ 1√
n

V̂(t)+ o
(

1√
n

)
� w − zα√

n
σV̂(t)+

1√
n
σV̂(t)Z+ o

(
1√
n

)
.

Define Ṽn(t) ≡ w − zαn−1/2σV̂(t)+ n−1/2σV̂(t)Z. Then for
any ε > 0 and each t ∈ (0,T], P(|Ṽn(t) − Ṽn(t)+ | > ε)→ 0
because |Ṽn(t) − Ṽn(t)+ | > 0 if and only if Ṽn(t) < 0
and P(Ṽn(t) < 0) � Φ(zα −

√
nv(t)/σV̂(t)(t)) → 0. There-

fore, P(|Ṽn(t) − Ṽn(t)+ + o(1/
√

n)| > ε) → 0. For t � 0,
Vn(t) − Ṽn(t)+ � o(1/

√
n) so P(Vn(t) − Ṽn(t)+ > ε) → 0.

So P(|Vn(t) − Ṽn(t)+ | > ε) → 0 for all t. Convergence
in probability implies convergence in distribution, so
Vn(t) − Ṽn(t)+⇒ 0. To Prove E[|Vn(t) − Ṽn(t)+ |] → 0, it
suffices to show the uniform integrability (u.i.) of |Vn(t)−
Ṽn(t)+ |, which will follow if supn E[(Vn(t) − Ṽn(t)+)2]
<∞. We show this next.

E[(Vn(t)− Ṽn(t)+)2]
�E[(Vn(t)− Ṽn(t)+)2 | Ṽn(t)> 0]P(Ṽn(t)> 0)
+E[(Vn(t)− Ṽn(t)+)2 | Ṽn(t)< 0]P(Ṽn(t)< 0)

� o
(

1
n

)
P(Ṽn(t)> 0)+E

[(
Ṽn(t)+ o

(
1√
n

))2 ���� Ṽn(t)< 0
]

·P(Ṽn(t)< 0)6 1+ o
(

1
n

)
P(Ṽn(t)< 0)+2o

(
1√
n

)
·E[Ṽn(t) | Ṽn(t)< 0]P(Ṽn(t)< 0)+E[Ṽn(t)2 | Ṽn(t)< 0]
6 2+E[Ṽn(t)2]�2+Var(Ṽn(t))+E[Ṽn(t)]2

�2+
σ2

V̂
(t)

n
+

(
w− zα

σV̂(t)√
n

)2

,

which attains its maximal value for some n∗ > 1. Thus,
we have obtained a finite bound

sup
n>1

sup
0<t6T

E[(Vn(t) − Ṽn(t)+)2] < CV <∞.

Mean queue length. Under TTGA staffing, we know
from Theorem 5 that

Q̄n(t)� Q(t)+ 1√
n

Xg(t)+
1√
n
σX̂(t)Z+ o

(
1√
n

)
.

Define Q̃n(t) ≡Q(t)+ n−1/2Xg(t)+ n−1/2σX̂(t)Z. Similar
to the proof for the convergence of the mean delay,
we have the uniform convergence sup0<t6T |Q̄n(t) −
Q̃n(t)| ⇒ 0 and a uniform bound for the purpose of u.i.

sup
n>1

sup
0<t6T

E[(Q̄n(t) − Q̃n(t)+)2]

6 sup
n>1

sup
0<t6T

(
2+ (σ2

X̂
(t)+X2

g(t))
1
n
+ 2Q(t)Xg(t)

1√
n

)
< CQ <∞,

which concludes the convergence E[|Q̄n(t) − Q̃n(t)+ |]
→ 0, as n→∞.

Utilization. For the system utilization u(t), essentially
we need to prove

E
[

Xn(t)
sn(t)

∧ 1−
N (nX(t)+

√
nXg(t), nσX̂(t))+

sn(t)
∧ 1

]
→ 0,

as n→∞.

We know that Xn(t) � nX(t) +
√

nXg(t) +
√

nσX̂(t)Z +

o(
√

n) from Theorem 5. Define X̃n(t) ≡ nX(t) +√
nXg(t) +

√
nσX̂(t)Z. Now we need to prove (X̃n(t) +

o(
√

n))/sn(t)∧1− X̃n(t)+/sn(t)∧1)⇒ 0. It is easy to see
that under TTGA staffing, as n→∞, P(X̃n(t) > sn(t))
→ 1 because the system is always overloaded.
Also notice that sn(t) is of order n. So P((X̃n(t) +
o(
√

n))/sn(t) ∧ 1 � 1) → 1 and P(X̃n(t)+/sn(t) ∧ 1 � 1)
→ 1. It follows that (X̃n(t) + o(

√
n))/sn(t) ∧ 1 −

X̃n(t)+/sn(t)∧1⇒ 0. Clearly, E[((X̃n(t)+ o(
√

n))/sn(t)∧
1 − X̃n(t)+/sn(t) ∧ 1)2] is bounded by 1. Then we have
the desired result.

PoD and PoA. We have shown that Vn(t)⇒ Ṽn(t)+,
which implies that the PoD P(Vn(t) > 0) ∼
P(Ṽn(t)+>0)�P(Ṽn(t)>0)�P(Z> (zα−

√
nv(t)/σV̂(t))�

Φ(
√

nw/σV̂(t)−zα). Conditioning on the patience time
A, the proof of the convergence of the PoA P(Vn(t)>A)
is similar. �

6. Conclusion
We have developed an analytic staffing formula
(dubbed TTGA) to stabilize the tail probability of delay
across a wide range of performance targets in the
Gt/GI/st + GI model with a non-NHPP arrival pro-
cess and time-varying arrival rate and nonexponential
service and patience distributions. Simulation experi-
ments show that TTGA successfully stabilizes the tail
probability of delay for both large systems (having
at least 100 servers) and small systems (having no
more than 4 servers). In addition to stabilizing the
tail probability of delay, we have provided effective
approximating formulas for other important perfor-
mance measures, such as the probability of delay and
probability of abandonment, mean delay, and mean
queue length. Supporting heavy-traffic limit theorems
are developed to show that the TTGA staffing method
stabilizes performance as the scale increases and that
the performance approximating formulas are accurate
as the scale increases, for the special case of exponen-
tial service times.

Future directions. Motivated by the Canadian emer-
gency department example, we plan to extend our
TTGA method to models having multiple customer
classes, each of which has its own TPoD targets wi
and αi . For example, the CTAS guideline (Example 3 of
Section 1) specifies five patient sickness levels, which
can be represented by five classes. We plan to do this
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extension in two steps: First, we will determine the
total service capacity, that is the overall staffing level
for all customer groups; next, we will develop the time-
dependent service allocation policy.
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