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Abstract
Uncertainty is rampant in military expeditionary operations spanning high intensity combat to humanitarian operations.
These missions require rapid planning and decision-support tools to address the logistical challenges involved in
providing support in often austere environments. The U.S. Army’s adoption of an enterprise resource planning (ERP)
system provides an opportunity to develop automated decision-support tools and other analytical models designed to
take advantage of newly available logistical data. This research presents a tool that runs in near-real time to assess
risk while conducting capacity planning and performance analysis designed for inclusion in a suite of applications
dubbed the Military Logistics Network Planning System (MLNPS) which previously only evaluated the mean sample
path. Logistical data from combat operations during Operation Iraqi Freedom (OIF) drives supply requisition forecasts
for a contingency scenario in a similar geographic environment. A nonstationary queueing network model is linked with
a heuristic logistics scheduling methodology to provide a stochastic framework to account for uncertainty and assess
risk.
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1 Introduction

This paper presents a decision-support tool to support
military logistics associated with sustaining an expeditionary
force in response to the call to action from the 2005 RAND
study1 on logistical issues during the invasion of Iraq. The
tool is designed to run in near-real time to develop feasible
plans, rapidly assess alternatives, identify logistical capacity
requirements to support expeditionary operations, and assess
the associated uncertainty and risks relevant to military
planners and decision-makers. The model is restricted to
a general expeditionary scenario but not limited to an
invasion. Modeling efforts focus on repair parts (U.S. class
of supply nine, CL IX) but include food and water (CL I)
and ammunition (CL V) as they share similar sustainment
resources.2 By design, the tool is focused on sustainment
and excludes the time phased force deployment data
(TPFDD) problem of getting a deploying units personnel and
equipment into the theater of operations. The paper extends
Rogers et al.3 by incorporating uncertainty and the use of a
time-dependent variance correction to enable risk analysis.

The rest of this paper is organized as follows: Section 2
motivates the paper, Section 3 introduces related work;
Section 4 establishes this research’s perspective on risk and
presents a stochastic framework for risk analysis; Section 5
outlines the requisition demand forecasting methodology;
and Section 6 demonstrates the model on a notional
operation. Section 7 provides closing thoughts.

2 Motivation
In March 2003 during Operation Iraqi Freedom (OIF), within
a week of the fall of Baghdad, the 3rd Infantry Division
experienced equipment readiness for key ground combat
systems dropping from 90% to under 70% due to distribution
problems for CL IX; the 2005 RAND study examining these
problems concluded these distribution problems stemmed
from a lack of automated decision-support tools capable of
generating analysis fast enough to support the rapid pace of
operations.1

3 Related Work
Rogers4 proposes a Military Logistics Network Planning
System (MLNPS) that harnesses both the Army’s new
enterprise resource planning (ERP) system called the Global
Combat Support System—Army (GCSS-A) and mission-
based forecasting (MBF) to assist decision makers and
planners with several aspects of military logistics.5 As
opposed to using historical average usage rates for repair
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parts, MBF provides a tailored forecast using stratified
sampling that considers unit type, geographical environment,
and planned type of operation.6–11 Some key MLNPS
functions include identifying required capacities across the
logistics network to support an expeditionary operation,
anticipating bottlenecks, conducting what-if analysis, and
course of action analysis. MLNPS is a significant
contribution as it is the only known decision-support tool
designed to use the Army’s ERP data.

The MLNPS fundamentally models the logistics network
as a large factory with each logistics node represented as
a machine in the factory. Supply requisitions (e.g. CL IX)
act as jobs that must be processed through this factory.
With this approach, MLNPS exploits an engine known as
the Virtual Factory (VF) to optimally (or near-optimally)
schedule these requisitions across the network in near-real
time to minimize the maximum lateness; lateness is the
requisition completion time minus the due date. Hodgson et
al.12 introduce the VF in 1998 which has sustained a number
of improvements: most notably, Thoney et al.’s13 addition of
batch processing. Rogers4 finds this heuristic optimization
provides a good forecast for real system performance and
demonstrates significant insights that would have impacted
planners in 2003.

The ability to handle batch processing allows the VF
to schedule for multiple network locations while also
accounting for transportation between locations since a truck
may be modeled as a batch processor itself. Trainor14 and
Melendez15 use batch processing in conjunction with the
VF to address military deployments (also see Hodgson
et al.16). Rogers et al.3 extend this idea by focusing on
repair parts transiting the military logistics network by using
nested batch processors to model requested repair parts being
loaded into pallets which are loaded into containers then
shipped via surface (ocean) vessels.

Using the VF to process this data along with a MBF
for future demand, the MLNPS terminates with a near-
optimal sequence to maximize customer (requesting unit)
satisfaction by minimizing the maximum lateness. Rather
than focusing on the sequencing, Rogers et al.3 demonstrate
the VF provides a forecast of when, where, and how much
queuing will occur at various nodes across the logistics
network. Validating their model against real performance
data from the 2003 invasion of Iraq during Operation Iraqi
Freedom (OIF) demonstrates the MLNPS can accurately
approximate real logistics network performance. Using this
model and mean value parameters, they develop a trial-and-
error method to test drive a logistics plan and assess how
well it will support a planned expeditionary operation using
deterministic outputs from the VF. Their model assesses
the logistics network both for the invasion of Iraq and for
a notional intervention scenario set in Africa. With two
analysts, model setup took 1–2 days from scratch (hours
if already created) with run times taking minutes to hours
depending on time horizon and the size of the network
studied; to our knowledge, this is faster than contemporary
models.

MLNPS has tremendous potential as a military logistics
model for several key reasons: it supports end-to-end
analysis in near-real time (a capability deemed critical by

Figure 1. Conceptual overview of the Military Logistics
Network Planning System (MLNPS). 3 Note: DP: decision point.

Army leadership) and is designed to incorporate both GCSS-
A data and MBF.17,18 As illustrated by Figure 1, GCSS-A
can provide the model with the current location and status of
all requisitions currently in the system. The model requires
the planned logistics network and necessary constraints as an
input from the planner. MLNPS then forecasts how well the
network will perform, where significant queuing will exceed
thresholds causing sustainment problems, and provides a
decision-maker with information to adjust the plan or notify
subordinate units of what to expect as the operation unfolds.

The Army’s new ERP system (GCCS-A), with its ability
to provide data on demand, provides unprecedented access
to data. The Army must harness that data and transform it
into useful, actionable risk information for decision-makers.
While the uncertainty cannot be altogether eliminated,
GCSS-A makes it possible for tools to account for this
uncertainty.

4 A Stochastic Framework That Permits
Risk Analysis

4.1 Risk in the Military Logistics Context
As a deterministic tool, the MLNPS does not adequately
assess uncertainty or permit analysis of risk. The term risk
is ubiquitous in both military and nonmilitary applications
but often lacks precision or quantification.19 This paper
defines risk as a set of possible outcomes with negative
consequences. For this definition, assessing risk requires
estimation of both the severity and likelihood of those
outcomes.20,21 For a more detailed review of supply chain,
military, government, and transportation infrastructure risk,
see McConnell22 (Sec. 3.3).

This view of risk is justified to assess operational risk
faced by the military logistics network in the form of
unanticipated requirements and disruptions from events
caused by enemy action, terrain, and weather.6 Beyond these
considerations, a commander faces risks that address timing,
performance, or other concerns. These may be measured by
any number of qualitative or quantitative metrics that frame
how the commander views risk. The framework for risk
analysis must be flexible to accommodate different notions of
risk and address various sources of risk, even if only through
what-if functionality. Further complicating the analysis is
the fact that risk has both time and location components
that greatly increase the dimensionality – risk can evolve
over time as the operational plan unfolds and might be
concentrated in different logistic nodes as a function of time.

This research’s perspective on risk analysis extends
Alderson et al.’s23 definition of operational resilience:
the ability of a system to adapt its behavior to maintain
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Figure 2. Performance of M/M/c queues (for
c ∈ {1, 4, 16, 64}) demonstrating it is possible to increase both
efficiency and quality through staffing; utilization (ρ) is the arrival
rate (λ) divided by the total service rate (cµ), ρ = λ/cµ.

continuity of function (or operations) in the presence of
disruptions. Alderson et al.23 link infrastructure resilience
to system operation (function) and focus on disruptions.
Our model must enable what-if analysis by capturing both
severity and likelihood.

4.2 Relevant Advances in Queueing Theory
Queuing theory provides a rich and convenient source
of tools to apply to this problem as it can account for
uncertainty in both arriving requisitions and processing
times through a network. Recent advances also integrate
time-varying properties while relaxing the mathematically
convenient but not always realistic Markovian assumptions
from classical textbooks. Queuing theorists largely concern
themselves with two basic questions that align with our
stated research objectives: (1) given a stochastic system’s
properties, estimate its performance (performance analysis)
and (2) given a performance target, estimate the system
properties required to achieve the desired performance
(capacity planning).

Recognizing that the number of servers at a queue
is analogous to the capacity of a logistics node, it is
clear that queuing theory can assist MLNPS in setting
capacities (or estimating required capacities) to achieve
better performance. Figure 2 (mimicking Mandelbaum &
Momc̆ilović24) demonstrates that by increasing the system
scale, it is possible to increase quality of service without loss
of efficiency – in other words, properly setting the capacity
can benefit both quality and efficiency.

We focus on queuing theory that supports staffing
time-dependent (nonstationary) queueing systems and non-
Markovian (non-exponential) properties, particularly arrival
and service processes. Many studies present evidence of
time-varying system properties in everything from hospitals,
call centers, and even trucks at a seaport.25–30 It is well
known that Markovian approximations to non-Markovian
systems can perform poorly, particularly if sufficient
variation exists in the arrival process.31–33 Jennings et
al.34 use an infinite server (IS) and Normal approximation
to choose the time-dependent staffing function, s(t), to
stabilize the probability of delay for a Gt/GIt/st model
with nonstationary non-Markovian arrivals (the first Gt)
and nonstationary identical and independent general service
times (the GIt). Liu and Whitt35 use IS models to
develop offered-load (OL) and modified offered-load (MOL)

approximations for the time-dependent staffing required to
stabilize the expected delay and abandonment probabilities
for the Mt/GI/st +GI queue. This approach is extended
to a feed forward network structure of Mt/GI/st +GI
queues.36 He et al.33 extend established staffing procedures
to allow for non-Markovian arrival processes using a heavy-
traffic limit that applies to systems where some delay is
expected. Their study of the impact and interplay between
arrival process variability and service time distributions
demonstrates that the variance correction used by Jennings
et al.34 is robust for nonstationary models. Readers
wanting a more thorough treatment should see Defraeye &
Nieuwenhuyse.37

4.3 Modeling the Military Logistics Network
The military logistics network stretching from U.S. depots to
the expeditionary theater of operations can be modeled as a
queueing network where logistical nodes (or processes) are
queues and the requisitions are arriving as orders via GCSS-
Army. The simplified model in Figure 3 illustrates how
orders are sourced, picked and packed, then shipped to the
ordering unit. The model is a feed-forward queuing network
as supply requisitions move from the sourcing depot across
the network to the ordering unit and do not require rework or
depart the network through a lateral exit. In the simplified
network shown, requisitions are arrivals in the queuing
theory terminology and arrive according to the requisition
forecast discussed in Section 5. There are multiple classes
of arrivals based on the mode of transportation to be used
whether military air, a contracted point-to-point service
denoted world-wide express (WWX), or surface shipment
(ocean freight). Within each arrival class are many subclasses
defined by the specific route that requisition must take
through the network, largely defined within a class by the
sourcing node and the ordering unit.

We obtain this feed-forward structure through several
important assumptions. First, we assume all requisitions are
appropriately handled, routed, and moved along the required
path from the point of supply to the point of consumption —
in other words, we do not model lost, misrouted, or frustrated
cargo. This is reasonable due to the sheer size of the network
and the immense requisition flow volume. In addition, the
military is actively embracing interconnected technologies
such as radio-frequency identification, two-dimensional bar
codes, satellite-based communications, and others that help
prevent these logistical mishaps.38–42 This paper models
repair parts (CL IX) along with food and water (CL I) and
ammunition (CL V); other classes of supply are beyond the
scope of this paper.

The feed-forward structure implies that by estimating the
performance or capacity required at an upstream location, if
the departure process is obtainable it also provides the arrival
process to the downstream nodes so the analysis can be
repeated for downstream locations. Consider the simplified
military logistics network depicted as a feed-forward
queuing network in Figure 3; supply requisitions arrive at
either Defense Depot Susquehanna, Pennsylvania (DDSP),
or to an alternative depot acting as a sourcing point (SP1 or
SP2). The requisitions from alternative depots still move to
DDSP as it is the primary consolidation and containerization
point (CCP)43 for palletizing and containerizing shipments.
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Figure 3. Military logistics network as a queueing network
(simplified for illustration).

As Rogers4 discusses, most requisitions travel via military
aircraft, world-wide express, or surface shipment. Shipments
traveling on military aircraft (ocean freight) are palletized
(containerized) at DDSP then loaded onto military aircraft
(container ships) at the airport (seaport) of embarkation, or
APOE (SPOE) for movement into theater where they are
offloaded at the airport (seaport) of debarkation, or APOD
(SPOD).43 These shipments are then transported to the
theater distribution center (TDC). Requisitions being shipped
via WWX travel directly to the TDC. At the TDC, pallets and
containers are broken down and moved forward via military
transportation to the ordering units. This final process is
often referred to as the last tactical mile (LTM) due to the
transportation occurring through a designated combat zone.

Using mission-based forecasting (MBF) and the data from
GCSS-Army, it is possible to estimate the arrival processes
to the network shown in Figure 3. Since MBF is not available
for all unit types, Section 5 presents a data-driven approach
to forecasting requisitions for a given scenario. This forecast
provides an estimated nominal time-varying arrival rate to
the upstream sourcing nodes.

4.4 Virtual Factory Delayed-Infinite Server
Feed Forward Model

4.4.1 Network Perspective To assess risk and answer
the research objectives, this paper uses a tandem Virtual
Factory Delayed Infinite Server (VF-DIS) offered load
approximation for each location; the model alternates
between using the VF and the DIS approximations for
each location moving across the network from upstream to
downstream. The appeal lies in leveraging each submodel’s
strengths. The Virtual Factory is efficient and can handle
nested batch processing (e.g., a multipack inside a pallet
on a truck) as well as a number of realistic constraints,
and with small refinements, the DIS model35 provides a
computationally efficient method to evaluate performance
and predict capacity requirements while communicating a
sense of the uncertainty in the predictions. This tandem
approach uses each model to the maximum potential while
avoiding each model’s weaknesses.

Figure 4. Visualization of the Virtual Factory Delayed Infinite
Server (VF-DIS) offered load network model. The models
complement each other — our unified approach denoted in bold
(blue). The dashed lines represents using the two single model
approaches. Note: w0 represents the average elapsed time from
a requisition establishment to the release to the source depot.

The approach starts with the data-driven requisition
forecast and the performance target of average delay desired
for each of the network locations. These performance
targets are obtained from stakeholders, proposed for
the sake of continued analysis, or derived from senior
leader interactions. The forecast conforms to requirements
described in Section 4 but in general is both nonstationary
and non-Markovian. We assume an empirical or fitted
theoretical distribution is available for the processing time
at each location in the network to account for stochastic
variation; these may be general (non-exponential).

Figure 4 offers a visualization of the VF-DIS process with
a small portion of the network. It depicts the network as
two complementary models, the DIS and the VF approaches,
with the bold (blue) line representing the VF-DIS hybrid
solution approach for an analyst conducting risk analysis and
military logistics planning. The dashed line represents the
model workflow if only using a single model in isolation
from the other. Taking the logistics network, processing
logic, and requisition forecast, the λ(t), as inputs, VF-DIS
first uses the VF at the upstream nodes to assess the arrival
process and the resulting departure process given the default
time-dependent capacity plan, the st, which can be initialized
via a simple constant capacity. With the average delay
targets for the upstream nodes, the DIS model calculates
the time dependent capacity required to meet the targets by
providing both a time dependent average (the st) and the
stochastic variability around that average. These capacity
plans (functions over time) are inputs to the VF which
accounts for location-specific policies, logic, and schedules;
the VF then returns the time dependent departure process
represented as σ(t). Since the network is feed-forward, the
departure process is the downstream arrival process so the
model advances downstream once the upstream planning is
complete and repeats the process until it reaches the most
downstream nodes.

The VF can model location-specific policies via its
processor logic. These are important because some locations
do not work weekends, and resources vary according
to specific schedules driven by real-world considerations.
Another example stems from a working policy used by a
container packing location (one of several batch processes):
a container is considered full when it reaches its effective
capacity, reaches the minimum capacity to send and there are
no orders left to pack, or when it has been sitting open (and
partially filled) for at least three days. The VF’s processor
logic conveniently incorporates these nuances.3
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Planners may obtain the performance targets for each
node from senior leader guidance, experts, or simply a staff
estimate as part of the planning process. If not derived from
successful historical performance or leader guidance, staff
planners may choose to use a range of targets they believe
to be feasible and present them with their resulting impacts
to the staff and/or leadership for analysis and decision. The
calculations this choice permits is the science, but choosing
an appropriate performance target is clearly part of the art of
the planning method described here.

The VF-DIS performs the same steps at every location.
If that location is not of interest or cannot be impacted by
available decisions, there is no need to linger performing
analysis after obtaining the departure process. However,
when the VF-DIS model reaches a node of interest such
as the TDC or the LTM trucks, it may be desirable to
identify a logistics plan for that location to meet senior
leader performance guidance and assess the associated risk.
Section 4.4.2 provides the technical details for this process.

4.4.2 Node Perspective Consider an arbitrary node in
the logistics network. Let w be the average delay taken
as the performance target for this node and denote the
average arrival rate on day t as λ(t); the VF provides this
nonstationary arrival rate using the data-driven requisition
forecast discussed in Section 5. The logistics node is
represented as a Gt/GI/st queueing model where the
processing time, S, at this location is independent and
identically distributed (i.i.d.) according to the general
distribution FS . Figure 5 labels this Model 1. Define σ(t)
as the average departure rate on day t for the associated
departure process. DenoteQ(t) as the queue length at time t.
Let B(t) be the number of busy servers at time t with mean
m(t) = E[B(t)] and variance v(t); B(t) is approximately

B(t) ∼ Normal(m(t) + 1/2, z(t)m(t)), (1)

with

E[B(t)] =

∫ (t−w)+

0

λ(t− w − x)F̄S(x)dx, (2)

where the notation (x)+ = max{x, 0}, and the service time
complementary cumulative distribution function, F̄S(x) =
1− FS(x). Equation 2 calculates the average capacity over
time required to maintain the performance target w.

Define {A(t), t ≥ 0} as the counting process that tracks
the number of arrivals (events) by time t, then the arrival
process index of dispersion (for counts), I(t), is the variance-
to-mean ratio of the cumulative number of arrivals (events)
as given by Equation (3). If the node sees Mt arrivals
according to a nonhomogeneous Poisson process (NHPP),
I(t) = 1, t > 0.

I(t) =
Var(A(t))

E[A(t)]
, t > 0 (3)

The arrival process is overdispersed if I(t) > 1 and
underdispersed if I(t) < 1. If the arrival process to Model 1
is significantly overdispersed then a naı̈ve implementation of
the DIS offered load approximation will underestimate risk
to the decision-maker because while the predicted average
will be true, the model will underestimate the variance. Using

the Sudan scenario from Rogers et al.3, Figure 6 provides
an estimated dispersion for the LTM trucks revealing the
LTM arrivals are over five times more variable than a
NHPP. In other applications, healthcare clinics often see
underdispersion (≈0.4–0.6) in appointment-based systems
but overdispersion (≈1.5–2.5) in emergency departments or
at call centers.44–47

This research assumes that with GCSS-A data an analyst
can estimate the dispersion for a given location (Section 5
enables estimating the dispersion using multiple sample
paths for the requisition forecast).

If arrivals occur according to a NHPP, then I(t) = 1, ∀t,
and for a fixed t, B(t) is a Poisson random variable with
mean E[B(t)] (2).35,48 This implies m(t) = v(t). If the
arrival process is not a NHPP, then m(t) 6= v(t) and the
heuristic risk correction factor (RCF), z̃(t), enables the
approximation

v(t) ≈ z̃(t)m(t), (4)

with the correction factor

z̃(t) = max{z(t), 1}, (5)

z(t) = 1 +
(c2a(t)− 1)

E[S]

∫ ∞
0

[1− FS(x)]2dx, (6)

where

c2a(t) ≈ Var(A(t− w)−A(t− w − η))∫ t
t−η λ(u− w)du

, (7)

for a chosen η > 0.
The capacity recommendation follows the square root

staffing (SRS) rule

sγ(t) =
⌈

E[B(t)] + δγ
√

Var(B(t))
⌉
, (8)

establishing a buffer to hedge against stochastic variability
by establishing a probability γ and associated quality of
service parameter δγ such that P (N(0, 1) > δγ) = γ, which
exploits the Normal approximation to the Poisson.

4.4.3 Discussion Figure 5 graphically depicts the node
specific approximation. Model 2 (Mt/GI/st queue) can
approximate Model 1 (see Figure 5) as it captures the
time-dependent fluctuations in the arrival process with
the same deterministic mean function while retaining
Model 1’s non-exponential service time distribution and
time-varying capacity. The only difference is in the arrival
process variability. Convenience motivates the transition to
Model 2 and requires a correction to account for the arrival
variability. There is no reliable method to obtain analytical
approximations for the capacity required over time to meet
performance targets for Model 1 and use of simulation will
not permit the analysis to be performed in near-real time.
From the network perspective, Model 2 enables Poisson
superposition at a downstream node that receives requisitions
from multiple upstream nodes; the aggregate arrival process
is then a nonhomogeneous Poisson process (NHPP).

To identify the capacity to achieve the average delay target
w for Model 2, Liu and Whitt35 show that the Delayed
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Figure 5. Queueing models for a location. Model 2 approximates Model 1 by focusing on the time-dependent behavior. Model 3 is
the Delayed Infinite Server (DIS) offered load approximation for the Mt/GI/st; Liu & Whitt 35 show Model 3 approximates Model 1.
Within Model 3, the contents of the first two queues, Q(t) and B(t) respectively, are independent Poisson random variables for a
fixed t. See Table 1 for departure rate, σ̃(t).

Figure 6. LTM arrival dispersion for the Sudan scenario is over
5 times more variable as a NHPP (dashed line). Graph shows
arrival dispersion in 463L pallet equivalent units (PEU) from
Equation 9.

Infinite Server (DIS) offered load approximation works well
for systems such as the military logistics system where
requisitions may be expected to wait for some (even small)
amount of time before processing. The DIS model, depicted
as Model 3 in Figure 5, approximates Model 2 by using
two infinite capacity queues in series. This presentation of
the DIS model omits the abandonment process implying the
assumption that there is no lost, misrouted, or frustrated
cargo. The first queue represents the waiting space in
Model 2; the second queue represents the service facility of
Model 2.

The infinite capacity implies the departure process
from each queue in Model 3 is also a NHPP which is

computationally and mathematically critical in the feed-
forward network. The idea behind Model 3 is simple.
Requisitions arrive to the first queue (waiting area) and wait
a deterministic amount of time equal to the target average
delay,w, before continuing to the second queue. This implies
an average arrival rate of β(t) = λ(t− w), t ≥ w, at the
second queue which is just a deterministic time shift.

At the second queue, requisitions immediately begin
processing according to the general service time distribution
G = FS . The objective is to determine the number in the
second queue at time t, B(t), which serves as the first order
approximation of the number of busy servers in Model 2
while maintaining an average delay of w. In simpler terms,
Model 3 approximates Model 2 by having all requisitions
wait the desired average delay then simply observes how
many busy servers would be in the second queue over time.
Based on the mathematics of the infinite server queue, this is
obtained via direct calculation using Equations 1– 2 applying
known results for the Mt/GI/∞ queue (see Theorem 1,
Eick et al.48).35

While Equation 2 calculates the average capacity over
time required to maintain the performance target, the
mathematics of Model 3 fully specify the approximate
distribution of this predicted capacity requirement. Section 6
exploits this idea and uses Monte Carlo methods to estimate
what is not available analytically. Table 1 summarizes the
remaining analytical formulas for the DIS offered load
approximation.

The DIS approximation prediction for Model 2 with Mt

arrivals impliesB(t) ∼ Poisson(E[B(t)]). Correcting for the
variability of the Gt arrival process requires application of
a result from the stationary G/G/∞ queueing model as
a heuristic which is consistent with Jennings et al.34(see
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Table 1. Model 3 DIS approximations for Model 2 (assumes Mt arrivals).

Performance Feature DIS Approximation (for a fixed t)

Queue Length, Q(t) ∼Poisson with mean E[Q(t)] =
∫ t∧w
0

λ(t− x)dx

Number of Busy Servers, B(t) ∼Poisson with mean E[B(t)] =
∫ (t−w)+

0
λ(t− w − x)F̄s(x)dx

Departure Rate, σ̃(t) ∼NHPP with time-varying rate σ̃(t) =
∫ (t−w)+

0
λ(t− w − x)dFS(x)

Total Number in System*, X(t) X(t) = Q(t) +B(t)

Notes: *System refers to a specific node; t ∧ w = min{t, w}; (t− w)+ = max{t− w, 0}.

Sec. 6) and He et al.33(see Sec. 3). This paper is the first
to use a time-shifted variance correction to integrate the DIS
approach.

The function z̃(t) (5) does not allow a reduction in
variance (an optional modeling assumption due to lack of
dispersion data — this avoids a false sense of certainty) and
can increase the variance for B(t) using the time-dependent
generalization of the heavy-traffic peakedness (6) taken from
Whitt’s49 treatment of the stationary G/G/∞ model which
characterizes the variance-to-mean ratio of the steady-state
number of busy servers. Since Model 1 is nonstationary,
(6) is a heuristic. Equation (6) assumes a stationary service
time distribution but this can be relaxed. Equation (7) is a
time-dependent generalization of the asymptotic variability
parameter and is similar in form to (3); this paper time-
shifts the asymptotic variability parameter by w to account
for the DIS approximation. The parameter η determines
the dispersion estimate in the local interval [t− η, t]; this
paper uses a timestep of one day and numerical evaluations
confirmed η = 1 is a good choice for this application. The
intuition is that both the arrival variability (7) and the
service time variability (6) affect the variance of the capacity
prediction (number of busy servers). Specifically, the tail of
the service time distribution drives the impact on the variance
with the term

∫∞
0

[1− FSt
(x)]2dx in (6).

Since we estimate the arrival variability parameter (7)
empirically, it can be undefined when

∫ t
t−η β(u)du = 0

which occurs during lulls in arrivals on η consecutive days.
When this occurs, we define c2a(t) = 0 for this special case
such that the RCF z(t) = 1 which aligns with engineering
intuition.

This RCF (5) corrects the variance in the approximation
for Model 2 so the final results may serve as an
approximation for Model 1. The Normal approximation to
the Poisson implies that instead of B(t) ∼ Poisson(m(t))
which underestimates risk, the required capacity is actually
approximated by B(t) ∼ Normal(m(t) + 1/2, z(t)m(t)).
Adding a half to the mean function corrects for the
conversion between a discrete distribution to a continuous
one but may be omitted in practice if desired. This continuity
correction may lead to a positive bias in the capacity forecast
when the nominal requirements are relatively low and the
continuity correction has a larger relative impact on the
mean. In Section 6 which demonstrates this technique, B(t)
is a Normal distribution truncated on the interval [0,+∞)
to prevent the sampled z(t) from pushing probability below
zero; this is equivalent to (B(t)|B(t) > 0). Figure 5 displays
an overview of the entire process to predict capacity
requirements for a single location. The VF is responsible
for both the arrival rate to each node, λ(t), and determining
the departure rate σ(t) as it is designed to handle location

specific packing policies, work schedules, and other realism
constraints.

Much of the queueing literature cited is motivated by
staffing requirements for call centers and often employs (8)
over a discretized time horizon. In the case of expeditionary
military logistics such continuous control is not likely to be
possible, even over long subintervals. Section 6 addresses
this concern and also demonstrates a technique to use the
VF-DIS model structure to generate possible capacity plans
for a location given the time-varying risk information.

Combined with the tandem VF-DIS approach for the
network, this approximation provides a framework to
describe the average requirements that fluctuate over time
as well as the stochastic variation around that deterministic
prediction. In short, this includes both severity and likelihood
in the predictions.

While the feed-forward structure imparts computational
efficiency and suggests a simple sequential approach, the
time-varying (nonstationary) property and presence of non-
Markovian (non-exponential) arrival and service processes
greatly complicate the analysis. The reader will notice
the fundamental modeling unit traversing the network is
changing as well and there is no common unit for capacity
(number of servers); Rogers4 uses number of requisitions
per day for DDSP, 463L pallets50 per day for the APOE, and
forty foot container equivalents (FEU) per day for surface
freight, and even the number of medium truck companies
as a capacity unit. Queueing theory has no easy way of
accounting for these unit changes.

To simplify the analysis, the model employs a 463L
pallet equivalent unit (PEU) as the base unit of capacity
to be used throughout the network. For reference, Figure 7
portrays airmen loading a 463L pallet holding multipack
containers into a military aircraft. This unit is reasonable
as it readily converts to twenty foot container (TEU)
and forty foot container (FEU) equivalent units widely
used in the logistics practitioner community. The CCP
packs requisitions and multipack boxes into containers. The
TDC requires an equivalency unit as it breaks down both
pallets and containers and organizes them with individual
requisitions for onward transport. Given a particular Army
truck company equipment list, known as the modified table
of organization and equipment (MTOE)43, it is possible
to convert between PEU and a collection of logistics
distribution resources.

Establishing the PEU unit also provides an opportunity to
account for the tare weight. One can calculate the number of
PEUs arriving (or departing) location m on day t by taking
the total weight and volume for that day and location and
dividing by the effective maximum capacity of the 463L
pallet given by Equation 9 below. The larger of the two
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Figure 7. Depiction of a 463L pallet with multipack containers
in Al Taqqadum, Iraq (Jan. 9, 2009). Seabees assigned to Naval
Mobile Construction Battalion (NMCB) 7 and airmen of the Air
Force Expeditionary Logistics Readiness Squadron
Detachment 4 maneuver 463L pallets into an Air Force C-17 for
transportation. 50

determines the 463L pallet equivalent capacity required; note
for resources the smaller of the two is the offered resource
capacity. Table 2 lists the 463L maximum and effective
capacity. The use of cubic inches preserves integrality in the
model for computational efficiency and adequately models
the many requisitions with less than a unit cubic foot volume.

Pmt = max
{
TotalWTmt

95% PEU WT
,
T otalCUmt

85% PEU CU

}
(9)

Using 95% of the maximum weight accounts for tare
weight. Using 85% of the maximum volume accounts for the
inevitable voids between contents that prevent using all of
the physical container volume. Whether a tractor trailer or
a shipping container, spaces are considered full at the 85%
volume utilization point.

Table 2. Maximum and effective capacity of the 463L pallet.

Weight (lbs) Volume (cu in)

100% 463L Capacity 10000 838080
Effective PEU 9500 (95%) 712368 (85%)

5 Generating a Data-Driven Demand
Forecast

The MLNPS provides a convenient set of tools for analyzing
performance of logistical courses of action as well as a means
of identifying the capacities needed to hit performance
targets. Both of these capabilities require forecasted demand
from certain classes of supply such as food and water,
ammunition, and repair parts over the studied time horizon.
Since MBF, driven by consumption data, is not available for
platforms outside of Army aviation, we use available modern
combat data as a surrogate to generate the demand forecast.
Acknowledging this is supply-side data and therefore a faulty
signal for true demand, this data-driven process mimics some
MBF techniques such as stratifying on unit type and mission

intensity in order to generate the best demand forecast
possible without true MBF.

5.1 Data-Driven Approach
It is critical to use modern combat data to get a representative
picture of modern combat repair part demand. To forecast
demand for different missions in varying operational
environments, the process presented here would be replicated
using data generated under those conditions. While order
data may not be a perfect demand signal, when properly
characterized this data provides an initial approximation of
the demand required in absence of the consumption-driven
MBF. The model focuses on food and water, ammunition,
and repair parts primarily because the data describe repair
parts and they all share common resources across the
distribution network.

An author from the 2005 RAND study1 provided OIF
repair part requisitions and U.S. Transportation Command
(TRANSCOM) provided data on all requisitions DDPS
processed in 2003. Together these datasets provide the
weight, volume, sourcing depot, requisition date, requesting
unit and location, and other factors for all repair part orders
processed by DDSP and those destined for units in Kuwait
and Iraq. For specific operational characteristics, the process
relies on data from the first 87 days of OIF which consists of
647,189 individual requisitions (11.6 million parts) spanning
the two weeks prior to crossing the line of departure through
the end of May 2003. The DDSP-specific data contains the
7.7 million requisitions from 2003. Both datasets have a time
precision of days which aligns with the chosen time step for
this work. Due to similar terrain and environmental factors
the OIF dataset is sufficient for the analysis which considers
a notional operation in Sudan.

5.2 Process Overview — A Sample Path
Approach

Generating a demand forecast requires three key inputs–
the task organization, concept of the operation, and the
timeline–which are estimates produced during the military
planning process. The task organization lists what units are
conducting the operation and may change over time. The
specific tasks (missions) for these units are found in the
concept of the operation. These products provide the analyst
with the specific details (who, what, when, where, and why)
for the operation.

The timeline is essential to breaking down the time
horizon of interest into distinct missions for the units. The
forecast must account for the fact that repair part demand
is different by both unit type (think infantry versus aviation
units) and type of operation (preparing for combat versus
combat). This is accomplished by defining three operational
intensity levels (OIL) then using the OIF invasion data
to characterize each type of units demand under those
operational descriptions to describe pre-combat (OIL 1),
steady-state operations out of an established base (OIL
2), and direct (major) combat operations or high intensity
conflict (OIL 3). Since these levels are qualitative in nature,
Table 3 provides recommended guidelines for identifying
these levels using historical data.
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Table 3. Guidelines to Identify Operational Intensity Levels.

Operational Distinguishing
Intensity Features

Level 1
� Prior to crossing line of departure
� Not conducting combat operations
� Preparation for combat operations

Level 2

� Operations conducted from established and
secured base or fixed location
� Operations take on a steady-state, routine
nature during this period

Level 3
� Conducting invasion
� Major combat operations / high intensity
conflict

Figure 8. Process overview to generate a demand forecast.
More details available in McConnell. 22 The irregularly shaped
(blue) box indicates the steps required for every unit type and
OIL.

Figure 8 graphically shows the forecasting process which
begins by generating requisitions for the food, water, and
ammunition supplies that must sustain the units in the model.
Then a specific workflow addresses repair part demand for
every unit for every OIL. This workflow determines the
number and timing of requisitions, how those requisitions
are routed to the ordering unit, the required delivery date,
order weight and volume, and the sourcing depot. Once this
has occurred for every unit for every operational intensity
level, the concatenation of these requisitions constitutes
the forecast. Due to how the forecast employs probability
distributions, the resulting forecast is a projected sample path
for that time horizon.

5.3 Modeling the Demand Process
5.3.1 Food, Water (CL I), & Ammunition (CL V) Unit
size plays an obvious role in estimating CL I requirements.
Since bottled water was the primary source of potable water
during OIF and this research focuses on initial expeditionary
operations, we generate pallets of bottled water to supply
the units originating at the TDC.1,4 This assumption may
vary across the time horizon as are the starting locations
of those pallets depending on the logistics plan. Army
Tactics, Techniques, and Procedures (ATTP) 4-41, Army
Field Feeding and Class I Operations recommends ration

cycles and feeding plan guidelines (see Sec. 5.3 of Rogers4)
to identify the capacity required to haul CL I to the units so
the remaining capacity may be allocated to other classes of
supply.

Assuming an average Brigade Combat Team (BCT)
strength of 4,500 Soldiers with attached enablers that
increase the troop count by 10% yields approximately 4,950
personnel per BCT. Consistent with doctrinal water planning
guides, assume 7.27 gallons of water per person per day is
required in an arid environment to account for hydration,
hygiene, and feeding purposes. The standard planning factor
estimates a pallet may hold up to 228 gallons of bottled
water.51 Using a 10% breakage planning factor, this yields
a daily water requirement of 173 pallets of water per day
for a BCT.4 A pallet holds 576 Meals-Ready-to-Eat (MREs)
and assuming initial rations are three MREs per day, the
daily food requirement is approximately 26 pallets per day.
These rations are nonperishable. Based on planning factors
provided by the Army’s Training & Doctrine Command
Analysis Center–Fort Lee (TRAC-LEE, a logistical analysis
center), ammunition requirements would be approximately
60% of the water weight and 40% of the water volume.4

5.3.2 Generating Repair Part (CL IX) Requisitions This
section describes the workflow depicted in Figure 8 by the
irregular shaded (blue) box. This process occurs for each
unit with generated requisitions being collected into a large
list along with the CL I and CL V requisitions. Depending
on multiple factors such as time horizon, task organization,
and mission, this process generates a significant number of
requisitions. For reference, the Sudan scenario in Section 6
generates requisitions for 61 days prior to LD and 90 days
of operations after. In addition to the almost 2.3 million
requisitions that competed for DDSP resources during the
OIF invasion used as a surrogate for global, non-Sudan
demand, the random requisitions generated for just the Sudan
operation is on the order of 294,149 requisitions on average
(20 samples with sample standard deviation 11,538).

Analysis of the OIF invasion data clearly identified that
the number of daily requisitions varies both with the type of
unit and based on that unit’s OIL. For a given unit, the model
assumes each day as independent and identically distributed
within an OIL as the data showed weak autocorrelations.
This assumption is not limiting and can be relaxed. The
OIF invasion data permits modeling the 8 unit types listed
in Table 4. For each unit, the sub-timeline of each OIL
determines the number of requisitions per day. If an IBCT
has an OIL schedule as depicted in Figure 9, the number
of requisitions released on days 1 through 14 requires the
appropriate estimated probability distribution for OIL 1.
In Figure 9, Nrel(j), j = 1, 2, 3, is the daily number of
requisitions ordered (released by GCSS-A) for OIL level j.
Table 4 lists unit types the model can support using the OIF
data taken from 6 March–31 May 2003; interested readers
may refer to McConnell22 (p. 92–94) for distribution and
sample size details.

After generating a unit’s requisition volume across the
timeline of interest, the process randomly selects each
requisition’s mode of transportation according to a specified
distribution which identifies the route. The Sudan operation

Prepared using sagej.cls



10 Journal Title XX(X)

Figure 9. Example for generating number of requisitions by
day for IBCT. Note: FOILlevel

unittype
is the estimated probability

distribution for the number of requisitions required by day for a
particular unit type at a specific OIL.

Table 4. Unit types supported by model. Relies on historical
data taken from OIF invasion 6 March – 31 May 2003.

Unit Operational Intensity Level (OIL)

IBCT 1, 2, 3
HBCT† 1, 2, 3
AVN BN 1, 2, 3
EN BN single level only
DIV HQ single level only
Sustainment BDE single level only
Misc Enabler BN single level only
3x Truck CO single level only

Notes: † now called ABCT, also used as surrogate for SBCT.

Table 5. Transportation mode distribution taken from OIF data.

Transportation Mode Probability

Military Air 0.7340
World Wide Express (WWX) 0.1292
Surface (Ocean) 0.1368

in Section 6 employs the distribution from Table 5 taken from
the OIF invasion data.

The allotted time to deliver the requisition in days, known
as the standard delivery time (SDT ), is generated based on
a requisition’s transportation mode (TransM ). This time is
added to the release time (RT ) to calculate the due date
(DD) according to Equation (10) where i indexes each
requisition. In Equation (11), each standard delivery time
(conditional on transportation mode) is modeled with a
discrete uniform distribution (denoted DU). Since standard
delivery times vary by requisition priority and service-
specific processes, assuming the actual standard delivery
times found in Table 6 from the Department of the Army
Pamphlet (DA PAM) 710-2-1 (Using Unit Supply System)
are the upper bounds (bTransM ) and allowing up to an
approximate 70% reduction (aTransM ) to account for
varying priority designations helps to account for individual
prioritization.52 For more details on requisition priorities see
Rogers4 (p. 31) and DA PAM 710-2-152 (Ch. 2 and Table
2.2).

DDi = (SDTi|TransMi) +RTi (10)

(SDTi|TransMi)
iid∼ DU(aTransM , bTransM ) (11)

The VF requires orders to have both a weight and
volume to properly capture the details of processes such as
movement by truck, packing a 463L pallet, and breaking

Table 6. Bounds for Standard Delivery Times (SDT) in days
modeled by the discrete uniform (DU) distribution in
Equation 11. Transportation mode distribution taken from OIF
invasion data.

Transportation Mode (aTransM , bTransM ) Probability

Military Air (12, 18) 0.734
World Wide Express (WWX) (10, 14) 0.129
Surface (Ocean) (52, 75) 0.137

down and sorting packages in a forty foot container. The
OIF invasion data provides an estimate of these marginal
distributions. Reality requires them to be correlated. Using
a Gaussian copula (see Ross53) allows using a different
target correlation based on the unit type from Table 4 while
respecting the correct marginal distributions for weight and
volume (see p 94–95 of McConnell22). Sampled weights or
volumes that exceed that requisition’s transportation mode
get reassigned to the maximum capacity for the offending
weight or volume; this is reasonable as this only occurs less
than one-fifth of one percent of the time in the data.

Each requisition is assigned to a sourcing depot
conditional on the requesting unit according to the empirical
probability mass function found for each unit types source
depot location. These empirical distributions can vary
based on order content; since the model does not specify
individual types of repair parts, this approach permits
capturing the unit type variation of supply depots while
keeping the level of detail at overall requisition attributes.
As explained by Rogers4, certain Defense Logistics Agency
(DLA) distribution centers have specialized stock—such as
communications equipment at Tobyhanna, Pennsylvania—
and these specializations affect these sourcing distributions.

After specifying the unit (demand node), transportation
mode, and sourcing depot (supply node), it is a simple
lookup from the appropriate route matrix that stores the
route for a requisition going from that depot to that unit
with that transportation mode. Collectively these route
matrices comprise the route library which is an output of
the logistical network modeling process. After identifying
each requisitions route, the entire requisition forecast is
completed by aggregating the CL I / CL V requisitions,
each units forecast, and the forecast for global requisitions
that will compete for DDSP resources. A comparable set
of requisitions that routed through DDSP in OIF provides
a start point for the non-expeditionary requisitions that share
continental U.S. (CONUS) resources upstream.4

This procedure (Figure 8) provides a data-driven approach
to generating requisition forecasts since MBF is not yet
available for all Army units and platforms. The result is a
sample path approach which requires replication to assess the
uncertainty in the forecast itself which is the arrival process
to the queueing network described in Section 4.

6 Risk-based Expeditionary Logistics
Planning for a Notional Operation

Armed with the methodology from Section 4, this section
applies the VF-DIS framework on a notional operation. The
section uses the same fictional scenario used by Rogers4

where an Infantry Brigade Combat Team (IBCT) and a
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Table 7. Task Organization for Sudan mission. 4

Task Organization

1 x Infantry Brigade Combat Team (IBCT)
1 x Stryker Brigade Combat Team (SBCT)
1 x Engineer Battalion (Construction Effects)
1 x Aviation Battalion (Attack & Lift)
1 x Sustainment Brigade
1 x Division Headquarters
3 x Battalions of Miscellaneous Enablers

Stryker Brigade Combat Team (SBCT) are conducting
operations from South Sudan into Sudan against the self-
styled Islamic State in Iraq and Syria (ISIS). The SBCT
will operate in the outlying Darfur region while the
IBCT operates in the capital of Khartoum.4 A Division
Headquarters conducts command and control for the
operation and the units are provided with enablers that
include engineer and aviation units; Table 7 presents the
Task Organization used to generate the forecast for supply
requisitions using the procedure outlined in Section 5. In
his analysis, Rogers4 evaluates different courses of action
(COAs) based on potential locations for the TDC. While the
techniques from this section could assist with evaluating the
COAs presented by Rogers, this section focuses on Rogers
selected option, Sudan COA 1, locating the TDC in Juba, the
capital of South Sudan.

6.1 Focusing on the Last Tactical Mile (LTM)
Applying the techniques from Section 4 to the final plan
recommended by Rogers4 illustrates the contribution of
this methodology. The LTM trucks—the ground units that
transport supplies from the TDC to the BCT Supply
Support Activities (SSAs)—are the ideal candidate for this
demonstration for several reasons. The LTM trucks are the
logistical link to the units which implies this may be a
location where a theater commander has the most control
as they are not necessarily constrained by ties to airports,
seaports, or other infrastructure or process restrictions,
including CONUS effects. Practically, their geographical
proximity to the units also incurs more risk. Given the feed-
forward structure of the network, the LTM trucks are the
final node to analyze and identify the required capacity for
operations; the process to analyze other nodes is almost
identical except that no other node is the furthest downstream
resource. This property creates a few technical challenges
that are readily overcome but not present at any other place
in the feed-forward network. In simpler terms, if analysis of
LTM trucks is possible, it is possible to do this for any node
upstream.

6.2 Overview of the Notional Operation
The operational details and timeline are identical to Rogers4

scenario; Figure 10 provides a visual summary. The SPOD is
located in the port of Mombasa, Kenya. The TDC is located
in Juba, South Sudan, with the APOD nearby. Though not
depicted in Figure 10, the CONUS network is also identical
to LTC Rogers scenario.

The logistics network in Figure 10 is identical to the
one used by LTC Rogers to enable direct comparison
with key details summarized here. For more details on the

Figure 10. Sudan COA 1 Overview with Main Supply Route
(MSR) IRISH annotated. Note: PH: phase.

logistics network, the reader is encouraged to see Ch. 3, of
Rogers (2016). To model the logistics network, we make the
following assumptions:

1. CONUS dedicated truck routes depart six days a week
(Monday through Saturday). Trucks travel seven days
a week but may not deliver on a Saturday or Sunday.

2. CONUS dedicated trucks have unlimited capacity as
DLA can quickly acquire additional trucks. Similarly,
there are always enough trucks to move requisitions
from source depots to CCPs or from a CCP to the
APODs/SPODs.

3. Restocking the sourcing depots does not require the
same resources used by the distribution system.

4. A CONUS depot sources all orders then ships them to
their destination.

5. Once a multipack, pallet, or container has started
loading, it remains at the location until full or the
maximum waiting period has been met (whichever
is soonest). Pallets wait up to three days with
containers waiting up to fifteen. Multipacks, pallets
and containers are considered full when they reach
95% of maximum weight capacity or 85% maximum
volume capacity. If at least one of these criteria are
met, prior to sending, any requisitions that could fit
in the remaining space are pulled from the queue and
packed (on a revised slack basis) to ship forward to the
next location.

6. All pallets and containers contain repair parts for
different units unless the route to a unit does not
support break bulk operations. This ensures the model
does not ship near empty containers.

7. If a requisition can fill an entire multipack, pallet,
or container, the logistics node builds it unit-pure
(no other unit orders included). Unit pure multipacks,
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pallets, and containers do not require breakdown and
sorting operations at the TDC and advance directly to
the LTM trucks.

8. All air shipments use 463L pallets and all ocean
freight employ 40 foot containers. These pallets
and containers are comprised of multipack boxes
and individual parts that are too large to fit in the
multipacks.

9. All surface (ocean) freight travels on commercial
ships. This is not a limiting assumption but fits the
Sudan scenario.

10. Orders for the Sudan scenario follow the same
distribution of transportation modes as occurred in
OIF. This is not a limiting assumption as this is an
input to the forecasting procedure.

Unlike Rogers4, times to process requisitions are stochastic
and are akin to service time distributions. The mean
roundtrip times from Rogers4 are kept fixed (10 days
for IBCT, 8 for SBCT) but this research assumes LTM
convoys may sometimes return up to one day early if
there are good conditions but may be delayed significantly
if adversely impacted by weather or mechanical failures.
Without data to estimate these deviations, we assume the
LTM roundtrip time is distributed via a generalized Beta
distribution having the form a+ (b− a)Beta(α1, α2) with
first shape parameter α1 = 1.2, and second shape parameters
α2 = 12.54 The generalized lower and upper bounds result
from the assumption that roundtrips to support the maneuver
units take a minimum of 90% of the mean roundtrip time
from Rogers4 and no more than twice the mean time.

6.3 Forecasting Required Capability to
Achieve Performance Target at Location
(LTM)

With the network capacities determined by Rogers et al.3

for this scenario, the VF readily provides the sample average
arrival rate in PEU to the LTM trucks using 55 sample paths.
The reader is reminded multiple sample paths are necessary
due to our method of forecasting repair part demand; with
a different and perhaps more direct forecasting method–
such as consumption data-driven MBF–the average scenario
demand over time might be more accessible which would
require only one run of the VF instead of the multiple runs
required in this work. The analysis presented used 55 sample
forecasts.

The DIS model requires a performance target for this
node. Based on Rogers’4 findings, this section uses a
performance target that requires the capacity needed to
achieve a requisition average (not time average) delay of
seven days. The sample dispersion at the LTM is both time-
varying and greater than 1 (≈ 5) which requires the RCF to
adjust the forecasted variance. Without this correction, the
model would underestimate risk.

The forecasted requirements presented in Figure 11
include the risk correction for LTM required capacity given
in PEU. The solid bold (blue) line marks the average with
shaded regions denoting the probability the required capacity
is in that range on any given day. The graph is not smooth for
good reasons. The LTM node is located furthest downstream
and is subject to the accumulated effects of every nodes

schedule nuances (e.g. some logistics nodes in CONUS do
not operate on Saturdays and Sundays). With the timeline
fixed, ship schedules, dedicated trucking routes, and long
convoy round trip times create a very jagged forecast.

This forecast provides the framework which allows
analyzing potential outcomes in a stochastic (probabilistic)
sense because it provides a fully specified distribution
for required capacity for every day. With this in place,
it is possible to rapidly compute probabilities, calculate
expectations, or even generate realizations via Monte Carlo
methods. This implies that if something can be calculated or
generated then it is possible to get stochastic descriptions for
any metrics of interest.

6.4 Generating Courses of Action
The queueing theory that permits construction of the
forecast depicted in Figure 11 implies a continuous or
near-continuous control of that logistics node but that is
hardly possible in the military logistics context, especially
under expeditionary conditions. It may be possible to plan
for significant capacity changes once per phase. Perhaps
a commander can adjust resources once in the planning
horizon or maybe not at all. The forecast generated with the
VF-DIS model is useful for generating some default capacity
options for a specific location.

Developing multiple options is attractive as the compu-
tational efficiency of these models permits rapid detailed
analysis of each option and permits comparing them over
time. One approach is to simply look at the requirements
forecasted by Figure 11 and visually set the capacities with
intuition or external knowledge about the plan; this technique
might develop a plan to ensure the LTM trucks have 70 PEU
for Phase I and II then only 20 PEU for Phase III and IV
(presumably freeing up some capacity for other missions
including a reserve). A more detached technique would be
to simply use Figure 11’s forecast to calculate the daily
value-at-risk (VaR0.95), also known as the 95th quantile, and
plan each phase to receive the capacity set to the phases
time-averaged VaR0.95. Alternatively, a constant capacity
throughout the planning horizon may be appropriate. The
analysis proceeds with these three plans, though one can
evaluate any given plan.

Figure 12 provides a visualization of these competing
options over time with the constant option set to 78 PEU
consistent with Rogers’4 final recommended plan for the
LTM trucks. The chart overlays the three LTM options
against the backdrop of average required capacity, the
75th quantile for required capacity, and the 95th quantile
for required capacity to convey a sense of the stochastic
variation that exists about the average. These options serve to
demonstrate the flexibility of this approach and the capability
to evaluate any given logistical capacity plan.

6.5 Evaluating Multiple Courses of Action
Regardless of the complexity or the number of the capacity
plans, the visualization provided by Figure 12 is not enough.
Commanders want to understand the impacts of these plans
in meaningful terms that include both expected performance
and an understanding of the uncertainty involved. With the
VF and the DIS models, an analyst can evaluate backlogs,
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Figure 11. Forecasted Capacity Required at LTM in 463L PEU to Achieve Target Performance of 7 day Average Delay (55 sample
paths). Dashed vertical lines denote phases of the operation. BCT operational intensity level timelines displayed below graph for
reference.

Figure 12. Generating Options for the LTM trucks in the Sudan
scenario.

delay, lateness, utilization, and other measures by location,
by day, by requesting unit, transportation mode, or any
combination of these. The model equips the analyst to dig
for insights. We present some examples of initial insights
that may be constructed by default to inform the decision-
maker. Figure 13 shows average backlog over time for the
three options as an example.

This approach extends Rogers et al.3 by not only
evaluating average delay across the time horizon but also
by making stochastic information available either directly

Figure 13. Average Backlog in PEU at LTM trucks for the LTM
capacity plans from Figure 12.

calculated analytically using the distributions (by day) or via
Monte Carlo methods which are both quick and accessible
with modern computers. Though Figure 13 currently shows
average backlog only, it is just as easy to present confidence
intervals, quantile bands, or another stochastic visualizations
for a chosen metric of interest. Presenting risk-based
information that depicts the uncertainty coupled with delay
predictions provides a more complete understanding of the
tradeoffs between multiple courses of action. Senior leaders
seek to understand the risks faced and how to mitigate them
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Figure 14. Daily LTM backlog with & without a 7 day disruption
(starting D+11) for Sudan COA 1 scenario in Rogers 4 for 78
PEU LTM plan.

— to that end it is critical to estimate how bad things can
actually get both by location and over time.

6.6 Further Evaluation of a Specific Plan
After evaluating a set of plans over time, we arbitrarly
select the constant capacity plan taken from Rogers et al.3

for further analysis. With the outputs of the VF and DIS
models, an analyst can evaluate backlog, delay, lateness, and
other constructed metrics over time for a specific plan and
under multiple what-if scenarios. Motivated by the massive
sandstorm that resulted in a seven day disruption to CL IX
part resupply early in the invasion of Iraq in 2003, Rogers4

evaluates the impact of a complete disruption of the resupply
vehicles for this Sudan scenario. It is possible to perform a
risk-based analysis of the constant 78 PEU capacity plan for
LTM trucks from Rogers4 under a complete disruption of the
resupply vehicles.

Rogers4 shows the value of performing what-if analysis
on a given plan to assess how it performs under different
potential outcomes. This VF-DIS model permits the same
analysis but also shows information beyond the average
by connecting potential outcomes with their likelihoods.
Figure 14 illustrates this by showing the average backlog
at the LTM trucks with and without a seven day disruption
starting at D+11; the figure also depicts how bad the backlog
can get by showing the 75th and 95th quantiles. The peak
backlog with a 7 day disruption will be almost 480 PEU
(7.4 times the no disruption peak). By taking into account the
variation around the average, an analyst can forecast there is
a 75% chance the peak backlog with this 7 day disruption
would be less than 550 PEU (8.7 times the no disruption
peak) if the LTM trucks have 78 PEU capacity. Similarly,
there is a 95% chance the peak backlog would be no more
than 685 PEU (11 times the peak when there is no disruption
peak). The recovery times are also available from Figure 14.

Because of the underlying distribution forecast by day,
Monte Carlo methods are readily available to assess not
only average behavior over time for a specified logistics
plan but the full distribution of worst-case behavior.
Traditional average worst case metrics used in finance such
as conditional value at risk can be readily computed but

the computational speeds enable looking at more than the
conditional expectation of the worst case scenarios (e.g.
worst 5%). Further, the worse case distribution of a particular
metric is available.22

The utility of risk-based measures for what-if analysis
cannot be overstated. These tools enhance the MLNPS and
extend the possible depth of analysis. Using multiple demand
forecasts (sample paths) required multiple runs of the VF
to estimate the sample arrival rate as well as the sample
dispersion. If the U.S. Army continues to develop MBF
beyond aviation units, this analysis would require only one
run with the VF if GCSS-Army data provided the sample
dispersion for the variance correction. Multiple sample paths
are currently required to obtain the required capacity forecast
(Figure 11) but with an approach such as MBF that does not
rely on sample paths, this is obtainable with a single run of
the VF.

By exploiting the strengths of both the DIS model and
the VF as well as the feed-forward network structure,
this approach maximizes its computational advantages.
After obtaining the forecasted requirements to meet a
logistics target (Figure 11), the subsequent analysis is
computationally efficient using either analytical results,
VF output, or simple Monte Carlo methods which are
extraordinarily fast in our experience just working with
MATLAB.55

7 Conclusion

This research contributes to the military expeditionary
logistics planning problem in several ways. First, since
MBF is not operational for the majority of Army platforms,
formations, missions, or operational environments, we use
supply-side modern combat data taken from OIF and
apply MBF-style techniques, namely stratified sampling, to
generate the best forecast possible for the demand signal.
This forecast accounts for unit type and operational mission.
Based on an operational scenario, we improve the MLNPS
capabilities by adding techniques to account for uncertainty
and assess risk; we achieve this improvement using
a sample path-based forecasting approach, incorporating
recent advances in time-varying queueing networks such
as the DIS approximation, and fusing these capabilities
with the strengths of the VF using the tandem approach.
The VF excels at realistic tasks such as properly
packing multipacks, pallets, and containers, timing the
shipments, and accommodating real-world schedules; the
queueing model integrates both time-varying properties and
overdispersion. This is the first paper to use a time-shifted
variance correction to account for overdispersion in a DIS
setting.

These enhancements to the MLNPS center on two
fundamental tasks: (1) given a plan, estimate the plans
performance, and (2) given a target performance, find the
required plan. This research provides a data-to-decision
support process that yields a framework for assessing risk
as both the severity and likelihood of possible outcomes
become available via analytical calculation or Monte Carlo
methods.
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