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Abstract. We develop CIATA, a combined inversion-and-thinning approach for modeling
a nonstationary non-Poisson process (NNPP), where the target arrival process is described
by a given rate function and its associated mean-value function together with a given
asymptotic variance-to-mean (dispersion) ratio. CIATA is based on the following: (i)
a piecewise-constant majorizing rate function that closely approximates the given rate
function from above; (ii) the associated piecewise-linear majorizing mean-value function;
and (iii) an equilibrium renewal process (ERP) whose noninitial interrenewal times have
mean 1 and variance equal to the given dispersion ratio. Transforming the ERP by the
inverse of the majorizing mean-value function yields a majorizing NNPP whose arrival
epochs are then thinned to deliver an NNPP having the specified properties. CIATA-Ph is
a simulation algorithm that implements this approach based on an ERP whose noninitial
interrenewal times have a phase-type distribution. Supporting theorems establish that
CIATA-Ph can generate an NNPP having the desired mean-value function and asymptotic
dispersion ratio. Extensive simulation experiments substantiated the effectiveness of
CIATA-Ph with various rate functions and dispersion ratios. In all cases, we found ap-
proximate convergence of the dispersion ratio to its asymptotic value beyond a relatively
short warm-up period.
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1. Introduction
In the formulation of a high-fidelity stochastic simu-
lation model of a complex system, special attention
must often be given to the system’s arrival processes.
A stream of random arrivals with a constant arrival rate
is usually modeled by a homogeneous Poisson process
(HPP), which is characterized by interarrival times that
are independent and identically distributed (i.i.d.) ex-
ponential random variables whose mean is the re-
ciprocal of the arrival rate. Unfortunately, many arrival
processes of interest have arrival rates that exhibit
substantial variation over time. For instance, in many
locales the rate of occurrence of storms exhibits a time-
of-year effect within each year as well as a long-term
trend over successive years (Lee et al. 1991). In call
centers, the call arrival rate can exhibit intraday (within-
day), daily, weekly, monthly, and yearly effects; and
system performance depends strongly on these effects
(Ibrahim et al. 2016).

Nonhomogeneous Poisson processes (NHPPs) have
been used to model arrival processes with time-
dependent arrival rates in a broad range of applica-
tion domains (Lewis and Shedler 1976, Pritsker et al.
1995, Kim and Whitt 2014). For an NHPP with a given
rate function and the associated mean-value function
describing the expected buildup of arrivals over time,
exact algorithms for simulating that process are based
on the method of inversion or the method of thinning.
Introduced by Çinlar (1975), the method of inversion
requires using the inverse of the given mean-value
function to transform the arrival epochs of a “base”
HPP with arrival rate equal to 1, yielding the arrival
epochs of the target process. However, in general, the
mean-value function corresponding to an arbitrary rate
function can be analytically intractable or difficult to
invert numerically, so the method of inversion may be
impractical or computationally inefficient at best.
Consequently, thismethod is limited to special forms of
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the rate function for which the mean-value function
is readily invertible. In particular, inversion is
used mostly with rate functions that are piecewise
constant (Chen and Schmeiser 2015), piecewise
linear (Nicol and Leemis 2014), piecewise qua-
dratic (Chen and Schmeiser 2017), or trigonometric
(Chen and Schmeiser 1992).

Proposed by Lewis and Shedler (1979), the method
of thinning in its simplest form exploits an upper
bound for the given rate function to generate a base
HPP with arrival rate equal to that upper bound; then
each arrival epoch in the base HPP is independently
accepted for inclusion in the target NHPP with
probability equal to the ratio of the given rate function
evaluated at that epoch divided by the upper bound. If
this ratio is much less than 1 over a substantial part of
the simulation’s time horizon, then thinning is com-
putationally inefficient because a relatively large
percentage of the arrival epochs in the base HPP are
rejected.

1.1. The Need to Go Beyond NHPPs
Although an NHPP can accurately represent a given
time-dependent arrival rate and the associated mean-
value function, in many simulation studies an arrival
process exhibits stochastic variability about its mean-
value function that cannot be represented even ap-
proximately by an NHPP, while system performance
depends strongly on this variability (Fendick andWhitt
1989, Ibrahim et al. 2016). For example, there is sub-
stantial empirical evidence of nonstationary non-
Poisson arrival processes (NNPPs) for call centers
and healthcare systems (Avramidis et al. 2004,
Jongbloed and Koole 2001, Aldor-Noiman et al. 2009,
Steckley et al. 2009). The variance-to-mean (dispersion)
ratio measures such variability through the ratio of the
variance of the arrival process divided by its mean-
value function evaluated at each point in the relevant
time horizon. (The dispersion ratio is also called the
index of dispersion for counts.) An NHPP has a dis-
persion ratio that is exactly equal to 1 at each point in
time, while many nonstationary arrival processes have
dispersion ratios that differ substantially from 1 and
thus exhibit non-Poisson behavior. In the rest of this
subsection, we briefly discuss the following: (i) a nu-
merical example of such non-Poisson behavior in a
queueing system, and (ii) the importance of the dis-
persion ratio as a property of the arrival process that
affects the principal performance measures for a broad
class of queueing systems.

1.1.1. Numerical Example of Non-Poisson Behavior. In
many types of service networks (e.g., call centers, hos-
pitals, and production systems), the arrival process for
each downstream node is composed of the departure
(service completion) processes from the associated

upstream nodes (service centers) (Liu and Whitt 2012,
2014, 2017; Liu 2018). Hence it is important to model
these departure processes carefully and to develop
effective simulation procedures for performance fore-
casting. For simplicity, we consider the departure pro-
cess from a singleMt/GI/st +M queuing system having
an arrival process that is an NHPP with sinusoidal ar-
rival rate (the Mt), nonexponential service distribution
(the GI), time-varying staffing level (the st), and expo-
nential abandonment distribution (the M). In the
Mt/GI/st +M system, when the quality of service is low
(e.g., the mean waiting time is high), the departure
process D(t){ � number of departures in [0, t] for t≥ 0}
exhibits pronounced non-Poisson behavior, having
a dispersion ratio Var[D(t)]/E[D(t)] far from 1 as well as
a time-varying departure rate.
On the basis of data from Liu and Whitt (2014),

Figure 1 shows that for the departure process from our
Mt/GI/st +M system, the dispersion ratio depends
strongly on the squared coefficient of variation (CV2) of
the service distribution. In particular, the dispersion
ratio of the departure process {D(t) : t≥ 0} converges to
the following: (i) the value 4 for a hyperexponential
service distribution with CV2 � 4 (bottom left panel of
Figure 1), and (ii) the value 0.5 for an Erlang service
distribution with CV2 � 0.5 (bottom right panel of
Figure 1). All these considerationsmotivate the need for
effective and computationally efficient methods for
modeling and simulating NNPPs.

1.1.2. Importance of the Dispersion Ratio in Modeling
and Simulating NNPPs. For a single-server queue in
which the (general) service times are i.i.d. and independent
of the (general) arrival process {N(t) : t≥ 0}, the time-
dependent dispersion ratio C(t) ≡ Var[N(t)]/E[N(t)]
is one of the most important properties affecting
key performance measures, and an estimate of the
asymptotic dispersion ratio is often used in analytical
approximations to those performance measures
(Fendick andWhitt 1989). In recent work (He et al. 2016,
Liu and Whitt 2017, Liu 2018), the arrival process for
a Gt/GI/st + GI system is characterized by two prop-
erties: the time-dependent rate function {λ(t) : t≥ 0} and
the asymptotic dispersion ratio C. One of the main
conclusions is that inaccurate estimation of C results
in significant underestimation or overestimation of the
appropriate staffing levels {st : t≥ 0} for the system.
In the context of many-server queues, Liu and Whitt
(2014, 2017) conclude that the variability in the arrival
process chiefly affects system performance and staffing
through the asymptotic dispersion ratio. Similarly, in
a feedforward queueing network with nodes that are
instances of an Mt/GI/st + GI system, the key perfor-
mance measures for a downstream node are affected
mainly by the time-dependent rate function and the
dispersion ratio of the aggregate departure process
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{D(t) : t≥ 0} that is generated by the associated up-
stream nodes and is routed to the given downstream
node (Liu and Whitt 2014). Thus the asymptotic dis-
persion ratio for the aggregate process {D(t) : t≥ 0} is
central to analytical and simulation-based approxima-
tions of the performance of the downstream node.
Moreover, Liu and Whitt (2014) find that the dispersion
ratio for {D(t) : t≥ 0} is an effective tool for studying the
deviation of this process from the NHPP property; see
also Cox and Lewis (1966), Fendick and Whitt (1989),
and Sriram and Whitt (1986).

1.2. CIATA: A Combined Inversion-and-Thinning
Model of an NNPP

In this article, we develop methods for modeling and
simulating an NNPP with a given asymptotic disper-
sion ratio as well as given rate and mean-value func-
tions. First, we explain our approach to modeling such
an NNPP, and we discuss the theoretical and practical
basis for this approach. The corresponding algorithm
for simulating our NNPPmodel is detailed in Section 3.

The nonstationary arrival process N(t) �{ number
of arrivals in [0, t] : t≥ 0} has the given mean-value
function

E[N(t)] � µ(t) ≡
∫ t

0
λ (y)dy for t≥ 0, (1)

where the associated rate function λ (y) is assumed to
be nonnegative, bounded, and continuous on [0,∞)
such that µ(t)→∞ as t→∞. Moreover, each finite
time interval [0, t] is assumed to have a (finite) par-
tition such that λ (y) is constant or quasiconcave on
each subinterval of the partition. Finally, {N(t) : t≥ 0}
is assumed to have a given asymptotic disper-
sion ratio

C ≡ lim
t→∞

Var[N(t)]
E[N(t)]

, where 0<C<∞. (2)

Because bothHPPs andNHPPs haveVar[N(t)]/E[N(t)] �
1 for all t> 0, an arrival process with a given time-
dependent arrival rate and C≠ 1 must be an NNPP.
To model a given NNPP with the properties (1) and

(2), we formulate CIATA, a combined inversion-and-
thinning approach, in two steps as follows.
Step 1. Let {N°(u) : u≥ 0} be an equilibrium re-

newal process (ERP) with independent interrenewal
times {Xn° : n≥ 1} such that (i) the {Xn° : n≥ 2} are
i.i.d. continuous random variables having E[X2°] � 1,

Figure 1. (Color online) Estimated Departure Rate, Mean, Variance, and Variance-to-Mean (Dispersion) Ratio for the Number
of Service Completions in Two Mt/GI/st + GI Queueing Systems

Note. Based on data from Liu andWhitt (2014), the left panel depicts system performance with the waiting-time target w � 0.2, the rate function
λ(t) � 100 + 20 sin(t), the time-dependent staffing function st of Liu andWhitt (2012), the exponential distribution of patience times with rate 0.5,
and a hyperexponential (H2) distribution of service times. In the right panel, the service-time distribution is Erlang (E2).
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Var[X2°] � C, and cumulative distribution function
(c.d.f.) G(x) � Pr{X2°≤ x} for x≥ 0 with G(0) � 0 and
G(x)< 1 for x> 0; and (ii) X1° has the associated
equilibrium c.d.f.Ge(x) � (1/E[X2°])∫

x
0[1 − G (y)]dy for

x≥ 0. The renewal epochs of the ERP are denoted
by {Sn° : n≥ 0}, where S0° � 0. Let λ̃(t), t≥ 0, be a posi-
tive, piecewise-constant majorizing approximation to
the given rate function λ(t), t≥ 0 (i.e., λ̃(t)≥λ(t) and
λ̃(t)> 0 for t≥ 0) so that the associated piecewise-
linear function µ̃(t) � ∫ t0λ̃ (y)dy, t≥ 0, is a majorizing
approximation to the given mean-value function (1).
By transforming the ERP’s renewal epochs using
the inverse of µ̃(t), we obtain the arrival epochs {S̃n �
µ̃−1(Sn°) : n≥ 0} (with S̃0 � 0) of an NNPP {Ñ(t) : t≥ 0}
that is defined by Ñ(t) � max{n : S̃n ≤ t} for t≥ 0 and
that has rate function λ̃(t), t≥ 0, and mean-value
function E[Ñ(t)] � µ̃(t), t≥ 0.

Step 2. For n≥ 1, the nth arrival epoch S̃n is inde-
pendently accepted for inclusion in the final simulation-
generated arrival process {N̂(t) : t≥ 0} with proba-
bility λ(̃Sn)/λ̃(̃Sn) so that (i) the thinned arrival process
{N̂(t) : t≥ 0} is our model of the given NNPP {N(t) :
t≥ 0}, and (ii) the thinned arrival process has the de-
sired mean-value function (1) and asymptotic disper-
sion ratio (2).

Remark 1 (Basis for the CIATA Model). For the reasons
discussed in Section 1.1, CIATA is based on the two
simplest and most prominent properties of an NNPP
(namely, {λ(t) : t≥ 0} and C), which can be estimated
from arrival data more easily and rapidly than other
properties of an NNPP such as quantiles and the co-
variances between the arrival counts in nonoverlapping
time intervals. The relative simplicity and ease of es-
timating the input parameters of CIATA will enable
practitioners to obtain useful and timely informa-
tion about the behavior of a complex NNPP. All the
foregoing theoretical and practical considerations
form the basis on which CIATA is proposed as a
model of an NNPP with a given rate function and
asymptotic dispersion ratio in a broad class of simu-
lation applications. 9

Remark 2 (Limitations of the CIATA Model). In modeling
daily arrivals to a telephone call center, Avramidis et al.
(2004) find that system performance is sensitive not
only to a time-varying arrival rate and a non-Poisson
dispersion ratio for the arrival process during each
day but also to nonzero covariances between the ar-
rival counts in different (nonoverlapping) time periods
within a day and across successive days. Although
CIATA provides a way to match the first and second
properties closely under certain conditions, it lacks
a method for matching the third property; thus CIATA
may be unsuitable in applications that require accurate
approximations for all three properties. 9

1.3. Summary of Contributions
Our contributions are threefold. The novelty of CIATA
is that it effectively combines the inversion and
thinning techniques in a model of NNPPs, which ac-
commodates the use of flexible and convenient dis-
tributions for the noninitial interrenewal c.d.f.G(x)
when CIATA is implemented in a simulation algo-
rithm. As detailed in the literature review (Section 2),
other recent methods for modeling and simulating
a given NNPP can only match the given mean-value
function and may not be able to match the given value
of the asymptotic dispersion ratio C even approxi-
mately as the length of the simulation’s time horizon
increases. Moreover, some of the latter methods can be
either difficult to implement or computationally in-
efficient if the inverse of the given mean-value function
is difficult or expensive to compute. CIATA avoids
both of these drawbacks. Therefore we believe that
CIATA is an advance in modeling NNPPs.
To implement the CIATA model, we develop

CIATA-Ph, a simulation algorithm that uses simple
phase-type distributions for G(x) to generate a realiza-
tion of the NNPP {N̂(t)} over a given finite time horizon
[0, S]. We formulate conditions sufficient to ensure that
CIATA-Ph can achieve the desired mean-value func-
tion exactly on [0, S] and that it can approach the de-
sired value of C as S→∞ and t→∞. The analysis
establishing these results clearly reveals the precise role
of each major step of CIATA-Ph, with special emphasis
on how the inversion and thinning steps fit together in
the operation of CIATA-Ph.
To evaluate the effectiveness of CIATA-Ph in prac-

tice, we conduct extensive simulation experiments on
several types of arrival processes, including some ar-
rival processes that do not satisfy the assumptions on
which CIATA-Ph is based. We provide evidence that
CIATA-Ph can closely achieve a wide range of desired
values for the dispersion ratio (from C � 0.2 to 10) as
well as the desired mean-value function. We quantify
the associated errors using a variety of measures of the
closeness of key empirical characteristics of the NNPP
{N̂(t) : t∈ [0, S]} delivered by CIATA-Ph to the corre-
sponding theoretical characteristics of the given NNPP
{N(t) : t∈ [0, S]}. We also conduct a sensitivity analysis
with respect to various parameters of CIATA and
CIATA-Ph.
The rest of this article is organized as follows. In

Section 2, we review the related literature on methods
for modeling, estimating, and simulating NNPPs. In
Section 3, we develop CIATA-Ph. In Section 4, we
summarize the results of our experimental perfor-
mance evaluation for CIATA-Ph, andwe close Section 4
with a comparison of the performance of CIATA and
CIATA-Ph with other recent procedures for modeling
and simulating NNPPs. Conclusions and recommen-
dations for future work are summarized in Section 5.
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The online supplement contains proofs of the main
theoretical results supporting the CIATAmodel and its
implementation in CIATA-Ph as well as additional
experimental results for CIATA-Ph. This article is a
follow-up to Kuhl and Wilson (2009), in which the idea
for CIATA is first proposed. Liu (2013) provides the
basis for this article, and Liu et al. (2015) summarize
some additional preliminary simulation results for a
predecessor of CIATA-Ph.

2. Literature Review
Gerhardt and Nelson (2009) develop an inversion
method formodeling and simulating anNNPP that can
achieve desired values of the following: (i) the mean-
value function µ(t) at each time t≥ 0 and (ii) the as-
ymptotic dispersion ratio C as t→∞. Originally pro-
posed by Massey and Whitt (1994), the idea is a
generalization of the conventional inversion method
for simulating an NHPP in which the usual base
process (i.e., a rate-1 HPP) is replaced by an ERPwhose
noninitial interrenewal times have mean equal to 1 and
variance equal to C. This method is useful when the
mean-value function is easily invertible.

Gerhardt and Nelson (2009) also develop a thinning
method for modeling and simulating an NNPP. On the
basis of an upper bound λ̃ for the given rate function,
thinning is applied to a majorizing ERP with noninitial
interrenewal times having mean 1/λ̃ and variance
C/(λ̃)2. The authors show that the resulting thinned
arrival process has the desired mean-value function µ(t)
for all t≥ 0; however, the thinned process does not, in
general, have the desired asymptotic dispersion ratio C.
The other disadvantage of this method is that it may be
computationally inefficient if λ(t)≪ λ̃ over a substantial
range of values for t, resulting in a relatively large
number of rejections.

All the existing methods for estimating the rate
function of an NNPP seem to be based directly on the
nonparametric techniques of Henderson (2003) for es-
timating the rate function of an NHPP, where the latter
rate function is assumed to be piecewise constant. These
nonparametric techniques exploit K i.i.d. realizations of
the given NHPP, and all the resulting arrival epochs
are accumulated in adjacent observation intervals of
a common length ζ that is independent of the data but
may depend on K. Henderson (2003) establishes key
asymptotic properties of the associated estimators
of the rate and mean-value functions as K→∞, both
when ζ is constant and when ζ tends to zero with
increasing K. However, it is unclear whether these as-
ymptotic properties also apply to estimation of the rate
function of an NNPP because the proofs by Henderson
(2003) depend critically on key properties of the Poisson
distribution.

On the basis of the techniques of Henderson (2003),
Gerhardt and Nelson (2009) develop a nonparametric

estimator of C using weighted least-squares regression to
fit the relation Var[N(t)] � Cµ(t)+ εt for selected values of
t in a finite observation interval [0,TE]. As K→∞, the
asymptotic properties of this estimator of C are unclear. In
particular, from the statement and proof of Theorem 2
below, we see that in this situation the appropriate linear
model is Var[N(t)] � Cµ(t) + θ∗ + o(1), where o(1) de-
notes a function ϑ(t) �����→

t→∞ 0; and, in general, the in-

terceptθ∗ canhave a relatively largemagnitude. Therefore
the authors’ estimator of C is generally biased by using
regression through the origin or by taking observation
epochs t∈ [0,TE] for which µ(t) is small relative to |θ∗| .
As mentioned in Remark 2, Avramidis et al. (2004)

formulate three models for the stream of daily arrivals
at a call center that provide approximations to the
following features of the daily arrival process: (i)
a time-dependent arrival rate, (ii) overdispersion
compared with a Poisson arrival process, and (iii)
dependence between arrival counts in different time
periods within the day. However, the accuracy that
can be achieved by these approximations is not en-
tirely clear, and the authors do not provide conditions
under which these models can match properties (i)–(iii)
exactly.

3. CIATA-Ph: An Algorithm for Simulating
CIATA-Based NNPPs

Extending the inversion and thinning methods of
Gerhardt and Nelson (2009) for simulating an NNPP
with given mean-value function and asymptotic dis-
persion ratio, CIATA-Ph is designed to have broader
applicability and substantially improved computational
efficiency compared with either of those methods. In
particular, CIATA-Ph can handle a broader range of
functional forms for λ(t) and µ(t) than the inversion
method, and unlike the thinning method, CIATA-Ph
can achieve any value of C. At certain points in the rest
of this article, one or both of the following assumptions
will be required.

Assumption 1. The given rate function λ(t) for t≥ 0 has
a finite upper bound λ∗. Moreover, each finite time in-
terval [0, t] has a (finite) partition such that λ (y), y∈ [0, t],
is constant or quasiconcave on each subinterval of the
partition.

Assumption 2. The rate function λ(t) is continuous at
every t≥ 0, and the associated mean-value function has the
property µ(t)→∞ as t→∞.

3.1. Overview of CIATA-Ph
To simulate the CIATA model of a given NNPP
{N(t) : t∈ [0, S]} with 0< S<∞ and with a given rate
function λ(t), t∈ [0, S], that satisfies Assumptions 1 and
2 as well as Equations (1) and (2), we perform the
following five steps of CIATA-Ph:

Liu et al.: Modeling and Simulation of Nonstationary Non-Poisson Arrival Processes
INFORMS Journal on Computing, 2019, vol. 31, no. 2, pp. 347–366, © 2019 INFORMS 351



Step 1. Construct a positive piecewise-constant majo-
rizing rate function λ̃Q(t) that closely bounds the given
rate function λ(t) for t∈ [0, S] based on a partition of [0,S]
withQ associated subintervals of [0, S], where Q is taken
sufficiently large to ensure that λ(t) is constant or qua-
siconcave on each subinterval. This step is detailed in
Section 3.2 and is stated formally in Algorithm 1 below.

Step 2. Construct the piecewise-linear mean-value
function µ̃Q(t) � ∫ t0λ̃Q (y)dy for t ∈ [0, S].

Step 3. Generate an ERP {N°(u) : u ∈ [0, µ̃Q(S)]} with
a noninitial interrenewal distribution G(x) having the
properties specified in Section 1.2 so as to yield the
ERP’s renewal epochs {Sn° : n≥ 1}. This step is elabo-
rated in Section 3.3 below.

Step 4. Generate the arrival epochs {S̃n : n � 1, . . . ,
ÑQ(S)} for the majorizing NNPP {ÑQ(t) : t∈ [0, S]},
where ÑQ(S) � N°[µ̃Q(S)], by evaluating the inverse of
the majorizing mean-value function at the ERP’s
renewal epochs so that S̃n � µ̃−1

Q (Sn°) for n � 1, . . . ,
ÑQ(S).

Step 5. Apply the method of thinning to the {S̃n : n �
1, . . . , ÑQ(S)} so that for n � 1, . . . , ÑQ(S), the nth ar-
rival epoch S̃n of the majorizing NNPP is indepen-
dently accepted for inclusion in the delivered NNPP
with probabilityλ(̃Sn)/λ̃Q (̃Sn). Let {Sℓ : ℓ � 1, . . . ,NQ(S)}
denote the resulting sequence of accepted arrival
epochs, and let NQ(t) � max{ℓ : Sℓ ≤ t} for t ∈ [0, S].
Then {N̂(t) � NQ(t) : t∈ [0, S]} is the NNPP delivered
by CIATA-Ph.

Algorithm 2 in Section 3.4 is a formal statement
of CIATA-Ph. Theorem 1 below establishes that if
Assumption 1 holds and Q is sufficiently large,
then we have E[NQ(t)] � µ(t) for t ∈ [0, S]; thus the
NNPP generated by CIATA-Ph achieves the given
mean-value function (1) exactly. Theorem 2 below
establishes that if Assumptions 1 and 2 hold, then
limt→∞limS→∞limQ→∞Var[NQ(t)]/E[NQ(t)]�C so that
the NNPP generated by CIATA-Ph approximately
achieves the given asymptotic dispersion ratio (2) if t,
S, and Q are sufficiently large.

3.2. Constructing a Majorizing Rate Function
To enable efficient generation of arrival epochs,
we seek to construct a positive piecewise-constant
majorizing rate function λ̃Q(t) that converges uni-
formly to the given rate function λ(t) for t∈ [0, S] as
Q→∞ provided Assumptions 1 and 2 hold. We let

+ ≡ ⋃
L

ℓ�1
(ζ†ℓ , ζ‡ℓ) (3)

represent the set of nonoverlapping intervals within
[0, S] on which λ(t) is constant, and we assume that the
associated endpoints {ζ†ℓ , ζ‡ℓ : ℓ � 1, . . . ,L} are known.
Let ε � 10−6. For each Q≥ 1 and t∈+, we take

λ̃Q(t) ≡ max {λ[(ζ†ℓ + ζ
‡
ℓ)/2], ε/Q} if t∈ (ζ†ℓ , ζ‡ℓ). (4)

In [0, S] \+, we define λ̃Q(t) separately on each of the
associated nonoverlapping intervals {[ξ†j , ξ‡j ] : j �
1, . . . ,M} so that we have

} ≡ ⋃
M

j�1
[ξ†j , ξ‡j ] � [0, S] \+. (5)

Assumption 1 ensures that we can find a sufficiently
large integer Q∗ such that for Q≥Q∗ and for each in-
terval [ξ†j , ξ

‡
j ] (where j � 1, . . . ,M), there is a partition

Pj,Q � {zi,j : 0≤ i≤Q#
j } of that interval with the associ-

ated subintervals {[zi−1,j, zi,j] : i � 1, . . . ,Q#
j } such that

we have the following properties: (i) Q#
j ≥Q; (ii) λ(t) is

quasiconcave on each subinterval of the partition; (iii)
the mesh of the partition (i.e., the maximum length
of the partition’s subintervals) does not exceed
(ξ‡j − ξ†j )/Q; and (iv) the partition Pj,Q ⊂Pj,Q−1 if Q>Q∗.
Moreover, Assumptions 1 and 2, the extreme value
theorem (Royden and Fitzpatrick 2010), and proposi-
tion 3.8 of Avriel et al. (2010) ensure the following
additional property: (v) on each subinterval asso-
ciated with the partition Pj,Q of [ξ†j , ξ

‡
j ], the restriction

of λ(t) to that subinterval takes its maximum value
and is unimodal; therefore we can set λ̃Q(t) equal to
the maximum of λ(t) over that subinterval. In prac-
tice,we assume that the regularly spacedpoints {zi,j ≡ ξ†j +
i(ξ‡j − ξ†j )/Q : i � 0, 1, . . . ,Q} constitute a such a partition
of [ξ†j , ξ

‡
j ].

Remark 3. In definition (3) of +, we chose to take its
associated subintervals as open rather than closed or
“half open, half closed” (i.e., including one endpoint and
excluding the other endpoint). This choice was made
merely for convenience in the complementary definition
(5) of }; as demonstrated in the subsequent discussion,
it has no bearing on the validity of the fundamental
properties we establish for the majorizing rate function,
the majorizing mean-value function, or the NNPPs
generated by CIATA-Ph. 9

Remark 4. In the following development, including the
proofs of Theorems 1 and 2, the function λ(t)/λ̃Q(t) for
t∈ [0, S] must be measurable and bounded above by 1.
As detailed below, the method for constructing λ̃Q(t)
ensures that λ̃Q(t)> 0 and λ(t)≤ λ̃Q(t) for t∈ [0, S] so
the required properties are guaranteed. 9

A formal statement of the scheme to compute λ̃Q(t)
for t∈ [0, S] is given in Algorithm 1. For 1≤ j≤M
and 1≤ i≤Q#

j , we construct λ̃Q(t) on the subinterval
[zi−1,j, zi,j] using the golden section search procedure to
find the maximum value λ∗

i,j of λ(t) on that subinterval,
where λ∗

i,j > 0. Theorem 5.1 and section 5.4 of Simmons
(1975) provide the basis for this approach to computing
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λ∗
i,j in practice. Therefore the majorizing rate function is

defined on } as follows:

λ̃Q(t) �

∑Q#
j

i�1
∑M

j�1 λ
∗
i,jI(zi−1,j , zi,j](t) for t∈} \ {ξ†j :

j � 1, . . . ,M},
λ∗
1,j if t � ξ†j for some

j ∈ {1, . . . ,M},

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩
(6)

where I(zi−1,j , zi,j](t) is the indicator function for (zi−1,j, zi,j]
so that we have I(zi−1,j ,zi,j](t) ≡ 1 if zi−1,j < t≤ zi,j and
I(zi−1,j , zi,j](t) ≡ 0 otherwise. Using the piecewise-constant
majorizing rate function defined on [0, S] by (4) and (6),
we obtain the easily inverted piecewise-linearmajorizing
mean-value function as

µ̃Q(t) ≡
∫ t

0
λ̃Q (y)dy for t∈ [0, S]. (7)

Remark 5. Assigning a suitable value toQ (and hence as-
signing suitable values to {Q#

j : 1≤ j≤M}) in Algorithm 1
depends on the following: (i) the behavior of the rate
function λ(t) over the time horizon [0, S], and (ii) the exe-
cution time of CIATA-Ph as a function ofQ. In Section 4.4,
we explain our assignment procedure as applied to the
test processes used in the experimental performance
evaluation of CIATA-Ph. 9

3.3. Generating an ERP Yielding an NNPP with the
Desired Dispersion Ratio

To construct an ERP that ultimately yields an NNPP
with the given mean-value function and asymptotic dis-
persion ratio, CIATA-Ph uses phase-type distributions for

the associated noninitial interrenewal times. Specifically,
CIATA-Ph uses the hyperexponential distribution for the
case C≥ 1 and the hyper-Erlang distribution for the case
0<C< 1 as suggested by the example in Section 1.1.1
and recommended by Gerhardt and Nelson (2009).
In previous simulation implementations of CIATA,

generation of the ERP’s interrenewal times was based
on the lognormal distribution (Liu 2013) or the Weibull
distribution (Liu et al. 2015). This setup was motivated
primarily by the convenience of generating the ERP
based on a single type of distribution for all values
of C. Ultimately, however, we found that in all the
NNPPs tested, the phase-type distributions detailed here
consistently yielded faster convergence of Var[NQ(t)]/
E[NQ(t)] to C as t→∞. If general distributions are used
for the noninitial interrenewal times, then they can be
approximated by phase-type distributions with simple
parameters; for example, Asmussen (1996) developed an
effective EM algorithm for fitting phase-type distribu-
tions to general distributions.

3.3.1. High Dispersion Ratio (C≥ 1). Hyperexponential
distributions have larger coefficients of variation than
the exponential distribution. For the 2-phase hyperexponential
(H2) distribution, with probability p ∈ (0, 1) the upper ex-
ponential phase with parameter µ1 is sampled, and with
probability (1 − p) the lower exponential phase with
parameter µ2 is sampled. The resulting random variable
X has c.d.f.FH2(x; p,µ1,µ2) � 1 − pe−µ1x − (1 − p)e−µ2x for
x≥ 0. The first two noncentral moments of X are given by
E[X] � p/µ1 + (1 − p)/µ2 and E[X2] � 2p/µ2

1 + 2(1 − p)/
µ2
2, respectively. The squared coefficient of variation ofX is

CV2[X]�Var(X)/E2[X] � [2p/µ2
1 + 2(1 − p)/µ2

2]/[p/µ1+(1 − p)/µ2]2 − 1. The following proposition characterizes

Algorithm 1 (Constructing the Piecewise-Constant Majorizing Rate Function)

1: Initialization: Set φ � (1 + ��
5

√
)/2, δ← 10−4, and set Q and {Q#

j : 1≤ j≤M} depending on the application (see
Remark 5).

2: for j � 1, . . . ,M do
3: Partition [ξ†j , ξ‡j ] into Q#

j equal-length subintervals {[zi−1,j, zi,j] : i � 1, . . . ,Q#
j }:

Set zi,j ← ξ†j + i(ξ‡j − ξ†j )/Q
#
j for 0≤ i≤Q#

j .

4: for i � 1, . . . ,Q#
j do

5: Set a← zi−1,j, b← zi,j, y1 ← a + (2 − φ)(b − a), y2 ← a + (φ − 1)(b − a).
6: while (b − a)≥ δ do
7: if λ (y1)<λ (y2) then
8: Set λ∗

i,j ←λ (y2), a← y1, y1 ← y2, y2 ← a + (φ − 1)(b − a);
9: else

10: Set λ∗
i,j ←λ (y1), b← y2, y2 ← y1, y1 ← a + (2 − φ)(b − a).

11: end if
12: end while
13: end for
14: end for
15: Assign λ̃Q(t) on + and } according to Equations (4) and (6), respectively.
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the desired ERP based on an H2 distribution. The
proof of this result is given in Section S2 of the online
supplement.

Proposition 1 (Parameters of the ERP with H2 interre-
newal distribution for C≥ 1). If C≥ 1 and

p � 1 + C±
���������
C2 − 1

√
2(1 + C)

,

then with the interrenewal times X1° ~Ge(x) ≡ FH2[x; 1/2, 2p,
2(1 − p)] and {Xn° : n≥ 2} ~i.i.d.G(x) ≡ FH2[x; p, 2p, 2(1 − p)]
for x≥ 0, we have E[X2°] � 1, Var[X2°] � C, G(0) � 0, and
G(x)< 1 for x> 0.

Remark 6. If C� 1, then we have p� 1/2 and µ1 �µ2 � 1
so that in Proposition 1 the resulting ERP is a rate-1
HPP. 9

Remark 7. In the case that C≥ 1, CIATA-Ph uses the
two-phase balanced-means hyperexponential distri-
bution for {Xn° : n≥ 2} so that µ1 � 2p and µ2 � 2(1 − p).
With this setup, the two solutions to the equations
E[X2°] � 1, Var[X2°] � C yield the same interrenewal
distribution.Moreover, in our computational experience
this setup leads to relatively short warm-up periods
beyond which the associated NNPP approximately
achieves its asymptotic dispersion ratio. 9

3.3.2. Low Dispersion Ratio (C< 1). Hyper-Erlang dis-
tributions have smaller coefficients of variation than
the exponential distribution. For the hyper-Erlang dis-
tribution, with probability p∈ [0, 1) CIATA-Ph samples
the upper Erlang distributionwith shape parameter k − 1
(k is an integer with k≥ 2) and scale parameter β; and
with probability (1 − p), CIATA-Ph samples the lower
Erlang distribution with shape parameter k and scale
parameter β. The distribution with shape parameter
k≥ 1 and scale parameter β> 0 has c.d.f.FEr(x; k, β) �
∫ x0τk−1 exp(−τ/β)/[(k − 1)!βk]dτ for x≥ 0. For a random
variable X ~ FEr(x; k, β), the first two noncentral mo-
ments are given by E[X] � kβ and E[Y2] � k(k + 1)β2,
respectively. For any real number r, let �r� denote the
ceiling of r. The following proposition characterizes
the desired ERP based on a hyper-Erlang distribution.
The proof of this result is given in Section S2 of the
online supplement.

Proposition 2 (Parameters of the ERP with hyper-Erlang
interrenewal distribution for 0<C< 1). If 0<C< 1 and
we take

k � �1/C�, p � kC − �������������������
k(1 + C) − k2C

√
1 + C

, and β � 1/(k − p),

then with the interrenewal times

X1° ~Ge(x) ≡ x[1 − FEr(x; k − 1, β)] + FEr(x; k, β) for x≥ 0

and

{Xn° : n≥ 2} ~i.i.d.G(x) ≡ pFEr(x; k − 1, β)
+ (1 − p)FEr(x; k, β) for x≥ 0,

we have E[X2°] � 1, Var[X2°] � C, G(0) � 0, and G(x)< 1
for x> 0.

Remark 8. In the case that C< 1, for noninitial
interrenewal times {Xn° : n≥ 2}, CIATA-Ph uses the
mixture c.d.f. of the form pFEr(x; k − 1, β) + (1 − p)×
FEr(x; k, β) for two reasons. With this setup and with
the choice of the integer k≥ 2 such that k � �1/C�, there
is a unique feasible solution (β, p) to the equations
E[X2°] � 1, Var[X2°] � C. Moreover, in our computa-
tional experience this setup leads to relatively short
warm-up periods beyond which the associated NNPP
approximately achieves its asymptotic dispersion
ratio. 9

Remark 9. When C is close to zero so that k is large, it is
inefficient to generate samples from the Erlang distri-
butions FEr(x; k − 1, β) and FEr(x; k, β) as sums of ex-
ponential random variables with scale parameter β. In
this case, other algorithms (e.g., ratio-of-uniforms or
acceptance–rejection algorithms) can be used to gen-
erate samples from these distributions efficiently (Law
2015, sections 8.2.5 and 8.3.4). 9

3.4. Using CIATA-Ph to Generate NNPPs
A formal statement of CIATA-Ph is given inAlgorithm 2
below. Theorem 1 below specifies conditions under
which CIATA-Ph delivers an arrival process with the
desired mean-value function. Section S1 of the online
supplement contains the proof of this result. For clarity
and simplicity in the rest of this article, the notation
{NQ(t) : 0≤ t≤S} is always used to denote the NNPP
generated by CIATA-Ph.

Theorem 1. If λ(t) satisfies Assumption 1 and Q is
sufficiently large, then the NNPP {NQ(t) : t∈ [0, S]}
generated by CIATA-Ph has the given mean-value
function,

E[NQ(t)] � µ(t) f or t∈ [0, S]. (8)

For every t∈ [0, S], we letCQ(t) ≡ Var[NQ(t)]/E[NQ(t)] �
Var[NQ(t)]/µ(t) denote the dispersion ratio at time t for
the NNPP generated by CIATA-Ph. In terms of the
noncentral moments θℓ ≡ E[(X2°)ℓ] for ℓ≥ 1, we have
C � (θ2 − θ2

1)/θ
2
1. Because θ1 � 1 and θ3 <∞ for both of
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the interrenewal distributions used in CIATA-Ph, we
can define the constant

θ∗ ≡ 1
6
+ C2

2
− θ3

3
(9)

that appears in the statement of Theorem 2. Section S1 of
the online supplement contains the proof of this theorem.

Theorem 2. If the given rate and mean-value functions λ(t)
and µ(t) satisfy Assumptions 1 and 2, then

lim
S→∞µ(S) � ∞; (10)

and the NNPP {NQ(t) : t∈ [0, S]} generated by CIATA-Ph
has the following properties:
lim
Q→∞CQ(t) � C + θ * /µ(t) + o(1)/µ(t) for t∈ [0, S],

(11)

where o(1) denotes a function ϑ(t) �����→
t→∞ 0; and we have

lim
t→∞ lim

S→∞ lim
Q→∞CQ(t) � C. (12)

4. Experimental Performance Evaluation
In this section, we discuss a comprehensive performance
evaluation of CIATA-Ph. In Section 4.1, we specify the
rate function and the asymptotic dispersion ratio for
each NNPP used in the experimentation. In Section 4.2,
we detail our performance-estimation methods. In
Section 4.3, we summarize all the simulation results for
CIATA-Ph. In Section 4.4, we explain our method for
setting Q. Finally, in Section 4.5, we compare the per-
formance of CIATA-Ph with that of the NNPP-
simulation procedures of Gerhardt and Nelson (2009).

4.1. Experimental Setup
The test processes used in the performance evaluation
are derived from our earlier work on modeling and

simulation of arrival streams exhibiting strong de-
pendencies on the time of day, the day of the week, or
the season of the year as well as long-term trends
over successive years (Lee et al. 1991, Pritsker et al.
1995). For each NNPP used in the experimental
performance evaluation, we choose rate functions
of the type exponential-polynomial-trigonometric with
multiple periodicities (EPTMP), which means they have
the form

λ(t) � exp{h(t;m, p,Θ)} with

h(t;m, p,Θ) � ∑m
i�0

αiti +
∑p
j�1

γj sin(ωjt + φj), and (13)

Θ � [α0,α1, . . . ,αm,γ1, . . . ,γp,ω1, . . . ,ωp,φ1, . . . ,φp, ]

is the vector of continuous parameters of the designated
rate function (Kuhl et al. 1997). The first m + 1 terms in
Equation (13) define a degree-m polynomial represent-
ing a possible long-term evolutionary trend in the arrival
rate over time. The next p terms in Equation (13) define
the trigonometric functions representing possible peri-
odic effects exhibited by the arrival process. The use of
an exponential rate function is a convenient means of
ensuring that the instantaneous arrival rate is always
positive. In a specific application, we can assign the
appropriate degreem for the polynomial rate component
as well as the appropriate oscillation amplitude (γj),
oscillation frequency (ωj), and phase delay (φj) for each
of the cyclic rate components (if applicable). For more
details on estimation and simulation of EPTMP-type rate
functions, see Kuhl et al. (1997).
Table 1 displays the parameters for the five test cases

of EPTMP-type rate functions that are used in our per-
formance evaluation of CIATA-Ph. All five test cases
have a time horizon of S � 8 time units and contain two

Algorithm 2 (Using CIATA-Ph to Generate an NNPP)

1: Construct the majorizing rate function λ̃Q(t) given by Equations (4) and (6) using Algorithm 1.
2: if C≥ 1, then
3: Choose the c.d.f.’s Ge(x) and G(x) as in Proposition 1,
4: else
5: Choose the c.d.f.’s Ge(x) and G(x) as in Proposition 2.
6: end if
7: Set n← 1, ℓ← 0, S0°← 0, S̃0 ← 0, and S0 ← 0. Generate Xn°~Ge and set Sn°← Sn−1° + Xn°.

Set S̃n ← µ̃−1
Q
(Sn°).

8: while S̃n ≤ S do
9: Generate Un~ Uniform[0,1].
10: if Un ≤λ(̃Sn)/λ̃Q (̃Sn), then
11: Set ℓ← ℓ + 1 and Sℓ ← S̃n.
12: end if
13: Set n←n + 1. Generate Xn°~G. Set Sn°←Sn−1° + Xn° and S̃n ← µ̃

−1
Q (Sn°).

14: end while
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nested cyclic effects. In cases 1–3, the first cyclic effect
has a period of 1 time unit (ω1 � 2π) and the second
cyclic effect has a period of 0.5 time units (ω2 � 4π). In
cases 4 and 5, the first cyclic effect has a period of 16
time units (ω1 � π/8); and the second cyclic effect has
a period of 8 time units (ω2 � π/4). Cases 1 and 4 do not
contain a general trend over time. Cases 2, 3, and 5
contain general trends that are represented by poly-
nomials of degrees 1, 2, and 2, respectively. In the
performance evaluation of CIATA-Ph for cases 1–3, the
asymptotic dispersion ratio is assigned the values
C � 0.2, 0.8, 1.5, and 10.0. Cases 4 and 5 demonstrate the
performance of CIATA-Ph in test processes for which
the rate function changes relatively slowly over the time
horizon. In cases 4 and 5, the asymptotic dispersion ratio
is assigned the values C � 0.2 and 1.5.

To evaluate the performance of CIATA-Ph, we carry
out a metaexperiment for each procedure consisting of
R � 100 independent basic experiments, and in each
basic experiment, we execute K � 200 independent
replications of CIATA-Ph to generate 200 realizations
of the NNPP {NQ(t) : t∈ [0, S]} defined by each of the
relevant test cases in Table 1 with each of the associated
values of the dispersion ratio. For each case, this ex-
perimental setup is designed to yield valid point and
confidence interval (CI) estimators of the mean-value
function µ(t) and the dispersion-ratio function CQ(t) for
selected values of t∈ (0, S], enabling quantitative and
visual assessment of the extent to which the simulation-
generated NNPP satisfies the desired conditions (1)
and (2). In the next section, we detail the statistical
methods used in the experimental performance evalu-
ation of CIATA-Ph.

4.2. Performance Estimation Methods
On the basis of 100 replications of each basic experiment,
for each case, we compute point and 95% CI esti-
mators of µ(ti) and CQ(ti) at the observation times
{ti ≡ iζ : i � 1, . . . ,T}, where the spacing ζ between
successive observation times is chosen so that T � S/ζ
is a positive integer. For all the experiments in this
section, we set ζ � 0.2 so that T � 40.

The following methods are used to compute the
point and CI estimators required for the experimental
performance evaluation. On the kth realization of a
given NNPP (case) in the rth basic experiment, we let
NQ(t; r, k) denote the number of accepted arrivals up
to time t∈ [0, S], where r � 1, . . . ,R, and k � 1, . . . ,K. In
the rth basic experiment, the estimators of the mean-
value and variance functions for the given NNPP are
the sample statistics

NQ(t; r) � 1
K

∑K
k�1

NQ(t; r, k)

V̂ar[NQ(t; r, 1)]

� 1
K − 1

∑K
k�1

[NQ(t; r, k) −NQ(t; r)]2

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭
for t∈ (0, S] and
r � 1, . . . ,R.

Note that the statistic V̂ar[NQ(t; r, 1)] is computed from
the results generated in the rth basic experiment, and it
is an estimator of the variance of the random variable
NQ(t) observed on one replication of the given arrival
process {NQ (y) : y∈ [0, S]}.
The estimated dispersion-ratio function at time t is

ĈQ(t; r) � V̂ar[NQ(t; r, 1)]
NQ(t; r)

for t∈ (0, S] and r � 1, . . . ,R.

On the basis of the entire metaexperiment, the
overall estimators of µ(t), Var[NQ(t)], CQ(t), and
Var[ĈQ(t; 1)] are, respectively,

µ̂Q(t) �
1
RK

∑R
r�1

∑K
k�1

NQ(t; r, k),

V̂ar[NQ(t)]� 1
R

∑R
r�1

V̂ar[NQ(t; r, 1)], (14)

ĈQ(t) � 1
R

∑R
r�1

ĈQ(t; r), and

V̂ar[ĈQ(t; 1)] � 1
R − 1

∑R
r�1

[ĈQ(t; r) − ĈQ(t)]2. (15)

Table 1. Parameters of the NNPPs with EPTMP-Type Rate Functions That Are Used in the
Experimental Performance Evaluation of CIATA-Ph

Test case

Parameter

α0 α1 α2 γ1 φ1 ω1 γ2 φ2 ω2

1 3.6269 – – 1.0592 −0.6193 6.2831 0.5000 0.5000 12.5664
2 3.6269 0.1000 – 1.0592 −0.6193 6.2831 0.5000 0.5000 12.5664
3 3.6269 −0.1000 0.0200 1.0592 −0.6193 6.2831 0.5000 0.5000 12.5664
4 3.6269 – – 1.0592 −0.6193 0.3927 0.5000 0.5000 0.7854
5 3.6269 −0.1000 0.0200 1.0592 −0.6193 0.3927 0.5000 0.5000 0.7854
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Therefore, for u ∈ (0, 1), the approximate 100(1 − u)%CI
estimators of u(t) and CQ(t) are, respectively,

µ̂Q(t)± z1−u/2
������������������
V̂ar[NQ(t)]/R

√
and

ĈQ(t)± z1−u/2
���������������������
V̂ar[ĈQ(t; 1)]/R

√
for t∈ (0, S], (16)

where z1−u/2 is the 1 − u/2 quantile of the standard
normal distribution.

To provide additional criteria for evaluating the per-
formance of CIATA-Ph, we examine the relative errors of
the point estimators µ̂Q(t) and ĈQ(t) (i.e., their respective
percentage deviations from the associated target values
µ(t) and C), which we call closeness measures, and we
study the sensitivity of these closeness measures to the
dispersion ratio C and to the number of majorizing
intervalsQ. We define the average percentage discrepancy
(APD) ΔT( · ) and maximum percentage discrepancy
(MPD) Δ∗

T( · ) as two measures of closeness:

ΔT(µ̂Q ) � 1
T

∑T
i�1

Di(µ̂Q), Δ
∗
T(µ̂Q) � max1≤i≤T{Di(µ̂Q)},

ΔT(ĈQ) � 1
T

∑T
i�1

Di(ĈQ), Δ
∗
T(ĈQ) � max1≤i≤T{Di(ĈQ)},

}
(17)

where the percentage discrepancy Di( · ) is the percent-
age difference of the estimators µ̂Q(ti) and ĈQ(ti) from
their respective target values µ(ti) and C at each obser-
vation time ti:

Di(µ̂Q) �
µ̂Q(ti) − µ(ti)

µ(ti)

∣∣∣∣∣
∣∣∣∣∣× 100% and

Di(ĈQ) � ĈQ(ti) − C
C

∣∣∣∣∣
∣∣∣∣∣× 100% for i � 1, . . . ,T.

Finally, we compute the approximate 95% CI estimator
for the expected value of ΔT(ĈQ),

ΔT(ĈQ)± z1−ξ/2
SΔ(ĈQ)���

T
√ , where

SΔ(ĈQ) � 1
T − 1

∑T
i�1

[Di(ĈQ) − ΔT(ĈQ)]2
{ }1/2

, (18)

and ξ � 0.05. For the APD estimator ΔT(µ̂Q), the
standard-deviation estimator SΔ(µ̂Q), and the CI es-
timator of E[ΔT(µ̂Q)] are defined similarly.

4.3. Performance of CIATA-Ph
On the basis of Equations (14)–(18), in this section, we
report results for CIATA-Ph in cases 1, 3, and 4, with the
target dispersion ratios C � 0.2 and 1.5. In the online

supplement, we summarize the results for CIATA-Ph in
cases 2 and 5 andwith other dispersion ratios (i.e.,C � 0.8
and 10). For case 1 and t∈ [0, 8], we plot the following in
Figure 2: (i) the given rate function λ(t) (dashed
curve) and the corresponding majorizing step rate
function λ̃Q(t) (solid step function); (ii) the 95% CI
estimators of the mean-value function µ(t) (vertical
bars) superimposed on µ(t) (solid curve); and (iii) the
95% CI estimators for the dispersion-ratio function
CQ(t) (vertical bars) superimposed on the value of C
(horizontal line). Here Q � 160 so the majorizing step size
is S/Q � 0.05.
Figures 3 and 4 depict the CIATA-Ph–generated

results for cases 3 and 4, respectively, based on the
same layout used in Figure 2. Also, see Tables S7–S10
and Tables S23–S26 in the online supplement for the
values of the CI estimators for µ(t) and CQ(t) depicted in
Figures 2–4.
The bottom panels of Figures 2–4 exemplify the

warm-up periods required for a CIATA-Ph–generated
arrival process to achieve approximate convergence to
the desired asymptotic dispersion ratio. Except for
“extreme” situations such as C � 0.2 or C � 10, we found
that the time-dependent dispersion ratio usually achieved
approximate convergence to C within a relatively short
warm-up period; consequently, we concluded that
CIATA-Ph could deliver reasonably fast convergence
to a given nonextreme dispersion ratio. See Table S5 in
the online supplement for a comparison of the warm-
up times across different dispersion ratios.
Table 2 provides the closeness measures ΔT(µ̂Q),

Δ
∗
T(µ̂Q), ΔT(ĈQ), and Δ

∗
T(ĈQ) and the approximate 95%

CIs for E[ΔT(µ̂Q)] and E[ΔT(ĈQ)] for the cases 1, 3, and 4
with C � 0.2 and 1.5. For the situations in which
C � 1.5, Table 2 shows that the APD and MPD for
the mean-value function of the CIATA-Ph–generated
NNPP are less than 1% and 3%, respectively; and the
APD and MPD for the dispersion ratio of the CIATA-
Ph–generated NNPP are less than 2% and 8%, respec-
tively. For the more extreme situations in which C � 0.2,
we see that the APD and MPD for the mean-value
function of the CIATA-Ph–generated NNPP are less

Table 2. CIATA-Ph–Based Closeness Measures for Cases 1,
3, and 4

C ΔT(µ̂Q) Δ
∗
T(µ̂Q) ΔT(ĈQ) Δ

∗
T(ĈQ)

Case 1
0.2 0.918% ± 0.197% 2.538% 3.530% ± 0.266% 6.150%
1.5 0.819% ± 0.176% 2.463% 1.901% ± 0.35% 5.233%

Case 3
0.2 0.056% ± 0.009% 0.22% 1.304% ± 0.202% 5.00%
1.5 0.163% ± 0.038% 0.56% 1.196% ± 0.196% 3.89%

Case 4
0.2 0.037% ± 0.025% 0.70% 3.297% ± 0.900% 20.93%
1.5 0.124% ± 0.053% 1.21% 0.913% ± 0.293% 7.97%
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than 1% and 3%, respectively; and the APD and MPD
for the dispersion ratio of the CIATA-Ph–generated
NNPP are less than 4% and 21%, respectively. We
judged these results to provide good evidence of the
effectiveness of the CIATA-Ph–based majorizing ap-
proximations of the given rate andmean-value functions
together with the resulting approximation of the given
dispersion ratio. See pages S-18 and S-19 in the online
supplement for case-1 results with C � 20, 15, 10, and
0.8 and for a discussion of these results.

4.4. Assigning a Value to Q When Using CIATA-Ph
Assigning a suitable value to Q in an application of
CIATA-Ph depends on the behavior of the given rate
function λ(t) over the time horizon [0, S] and on the
execution time of CIATA-Ph as a function of Q. This
assignment often requires a pilot study to carry out
the following steps for trial values of Q: (i) visual

inspection of a graph of λ̃Q(t) superimposed on λ(t)
for t∈ [0, S]; (ii) sensitivity analysis of selected CIATA-
Ph–generated performance measures as they depend
on Q; and (iii) sensitivity analysis of the execution time
of CIATA-Ph as it depends on Q. For concreteness, we
discuss how these steps were carried out for case 1 with
C � 1.5 and C � 0.2.

4.4.1. Accuracy of CIATA-Ph. To perform step (i), we
examined the top panel of Figure 5, which shows λ̃Q(t)
superimposed on λ(t) for 0≤ t≤ S � 8 andQ � 80. In our
experience, if λ(t) is smooth (differentiable) except at
a finite set of times in [0, S], then a good starting point for
step (i) is to take Q ∈ [80, 320]. Such an initial value of Q
ensures that Algorithm 1 will deliver a partition of [0, S]
for which Assumption 1 is satisfied except on relatively
small subintervals whose interior contains an isolated
local minimum of λ(t). Because λ(t) is not quasiconcave
over such a subinterval, Algorithm 1 is not guaranteed to

Figure 2. (Color online) Performance of CIATA-Ph for Case 1 with Dispersion Ratio C � 1.5, 0.2 and with Q � 160

Note. The top panel shows λ̃Q(t) versus λ(t); the middle panel shows 95% CIs for µ(t) when C � 1.5 (left side) and C � 0.2 (right side); and the
bottom panel shows comparable 95% CIs for CQ(t).
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deliver a true majorizing rate function satisfying the re-
quired conditions λ̃Q(t)≥λ(t) and λ̃Q(t)> 0 over that sub-
interval. However, in our experience with Algorithm 1,
these conditions have always been satisfied everywhere
in [0, S] provided Q≥ 40.

Visual inspection of Figure 5 reveals that λ̃Q(t) is a true
majorizing approximation to λ(t) for all t∈ [0, S] when
Q � 80, and Figure S1 in the online supplement shows
that this conclusion also holds when Q � 40. However,
Figure S1 shows that setting Q � 40 results in the un-
desirable condition λ̃Q(t)≫λ(t) over a substantial part of
the time horizon. In this situation, the dispersion ratio of
the CIATA-Ph–generated process {NQ(t) : t∈ [0, S]} can

differ significantly from C. This point is elaborated in the
next paragraph. Thus we judged that we should take
Q≥ 80 in performing steps (i) and (ii).
To carry out step (ii) for Q � 80 and Q � 160, we

examined the middle and bottom panels of Figures 5
and 2, respectively. For both values ofQ, clearly µ̂Q(t) is
an accurate estimator of µ(t) for all t∈ [0, S] and for both
C � 1.5 and C � 0.2, which suggests that taking Q≥ 80
is sufficient to ensure the conclusion of Theorem 1.
Similarly, when Q � 160, we see that ĈQ(t) is a reason-
ably accurate estimator of C for all t∈ [0, S]; and
this result agrees with the conclusion of Theorem 2.
On the other hand, when Q � 80, we see that ĈQ(t)

Figure 3. (Color online) CIATA-Ph Performance for Case 3 with Dispersion Ratio C � 1.5, 0.2 and with Q � 160

Note. The top panel shows λ̃Q(t) versus λ(t); the middle panel shows 95% CIs for µ(t) when C � 1.5 (left side) and C � 0.2 (right side); and the
bottom panel shows comparable 95% CIs for CQ(t).
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consistently underestimates C for C � 1.5, and ĈQ(t)
substantially overestimates C for C � 0.2. When Q � 40,
the bottom panel of Figure S1 shows similarly poor
behavior of ĈQ(t). On the basis of the empirical evi-
dence from steps (i) and (ii), we decided to take Q≥ 160
so as to ensure that for the CIATA-Ph–generated ar-
rival process {NQ(t) : t∈ [0, S]}, the statistic ĈQ(t), t∈ [0, S],
is a reasonably close approximation to C.

4.4.2. Computational Complexity of CIATA-Ph. By
performing step (iii) of the pilot study for case 1, we
finalized the assignment of Q. Before discussing the
specifics of that assignment, first we formulate a gen-
eral “big O” upper bound on 7(Q, S,λ), the expected
computation time for CIATA-Ph to generate a single
realization of the NNPP {NQ(t) : t∈ [0, S]} as Q or S
increases. Recall that λ∗ is a finite upper bound on λ(t)
for t≥ 0 as specified byAssumption 1. For the purpose of
deriving the desired upper bound on7(Q, S,λ), wemay
assume that the points {zi � iS/Q : i � 0, 1, . . . ,Q} con-
stitute a partition of [0, S] satisfying Assumption 1.

To account for each step of Algorithm 2, we define
the following upper bounds: (i) wERP bounds the
computation time to generate one new renewal epoch

Sn° in the ERP; (ii) wcheck bounds the time to check the
condition Sn°≤ µ̃Q(zi) for one transformed subinter-
val [µ̃Q(zi−1), µ̃Q(zi)]⊂ [0, µ̃Q(S)]; (iii) winvert bounds the
time to perform one inversion S̃n ← µ̃−1

Q (Sn°); and (iv)
wthin bounds the time to accept or reject one arrival
time S̃n. Lemma 1 in the online supplement ensures
that µ̃Q(S) ≤λ∗S so we have

7(Q,S,λ)≤ (wERP + winvert + wthin)λ* S + wcheckλ* SQ
� O(SQ) as Q→∞ or S→∞.

(19)

On the basis of Equation (19) with a given value of S, we
see that a relatively large value of Q (e.g., Q> 1,000 in
case 1) will make CIATA-Ph computationally in-
efficient because such a value ofQwill require checking
an excessive number of transformed subintervals of
[0, µ̃Q(S)] in order to locate the transformed subinterval
[µ̃Q(zi−1), µ̃Q(zi)] in which to perform the inversion

S̃n ← µ̃−1
Q (Sn°) required in Steps 7 and 13 of Algorithm 2.

On the other hand, a relatively small value of Q (e.g.,
Q< 10 in case 1) will be at best computationally in-
efficient if λ̃Q(t)≫λ(t) over much of the time horizon so
that in many iterations of Step 10 in Algorithm 2, the

Figure 4. (Color online) CIATA-Ph Performance for Case 4 with Dispersion Ratio C � 1.5, 0.2 and with Q � 160

Note. The top panel shows λ̃Q(t) versus λ(t); the middle panel shows 95% CIs for µ(t) when C � 1.5 (left side) and C � 0.2 (right side); and the
bottom panel shows comparable 95% CIs for CQ(t).
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acceptance probability λ(̃Sn)/λ̃Q (̃Sn)≪ 1. In this situa-
tion, thewhile loop in steps 8–14 of Algorithm 2must be
repeated excessively often just to generate one new
arrival in the process {NQ(t) : t∈ [0, S]}. Consequently,
there must be some values of Q, neither too small nor
too large, that achieve the minimum computational
complexity for CIATA-Ph.

To carry out step (iii) of the pilot study for case 1, we
recorded and plotted in Figure 6 the execution time of
CIATA-Ph for Q � 8, 16, 24, . . . , 200, 300, . . . , 1,000 in
case 1 with C � 1.5. In Figure 6, we see that the execution
time for small values ofQ (e.g., 8 and 16) is relatively large,
and it initially decreases with increasing values of Q,
achieving a local minimum for Q in the approximate

range 30≤ Q≤ 80. For values of Q> 80, the execution
time increases as an approximately linear function ofQ,
which is consistent with Equation (19). Moreover, we
see that the execution times are nearly equal for Q � 16
and Q � 160. Evaluating the trade-off between the accu-
racy and computational complexity of CIATA-Ph, we
concluded that the assignment Q � 160 was appropriate
for our test processes.

4.5. Comparison of CIATA-Ph with the Simulation
Procedures of Gerhardt and Nelson (2009)

In Section 2, we summarized the procedures of
Gerhardt and Nelson (2009) for simulating an NNPP

Figure 5. (Color online) CIATA-Ph Performance for Case 1 with Dispersion Ratio C � 1.5, 0.2 and with Q � 80

Note. The top panel shows λ̃Q(t) versus λ(t); the middle panel shows 95% CIs for µ(t) when C � 1.5 (left side) and C � 0.2 (right side); and the
bottom panel shows comparable 95% CIs for CQ(t).
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with given rate function, mean-value function, and
asymptotic dispersion ratio by inversion of the mean-
value function and by thinning. In this section, we
compare the performance of CIATA-Ph with both of
the procedures of Gerhardt and Nelson (2009).

4.5.1. Thinning Procedure of Gerhardt and Nelson
(2009). In Section 2, we mentioned that although the
thinning procedure of Gerhardt and Nelson (2009) is
guaranteed to achieve the desired mean-value function
µ(t) for all t, it is not guaranteed to achieve the asymptotic
dispersion ratio C even for large t. We illustrate this
phenomenon in the case 1 test process for scenarios in
which C � 10 and C � 1.5. In Figure 7, we plot the es-
timated dispersion-ratio function Ĉ(t) (see Section 4.2)
for the thinning procedure of Gerhardt and Nelson (la-
beled GNTA) and for CIATA-Ph. Figure 7 shows that
GNTA does not accurately yield the desired dispersion
ratioC; instead Ĉ(t) quickly settles down to a value that is
significantly lower than the target. On the basis of result
2.3 of Gerhardt and Nelson (2009), this phenomenon
appears to be caused at least in part by the relatively small
value for the ratio [µ(S)/S]/λ̃ ≈ [390/8]/88 ≈ 0.55. On the
other hand, the results for CIATA-Ph are much more
accurate because the majorizing rate function λ̃Q(t) is
a much closer approximation to the target rate function
λ(t) for t ∈ [0, S] than is achieved by GNTA with the
upper bound λ̃.

To gain more understanding of the advantages of
CIATA-Ph and its sensitivity with respect to [µ(S)/S]/λ̃,
we consider sinusoidal arrival rates

λ(t) � λ[1 + γsin(t)] for t∈ [0, S] (20)

with average arrival rate λ and relative oscillation
amplitude γ∈ (0, 1). Let the upper bound rate be λ̃ �
λ(1 + γ). Thus we have

η ≡ µ(S)/S

λ̃
�

∫ S0λ[1 + γsin(t)]dt
{ }/

S

λ(1 + γ)

� 1 − γ

1 + γ

S + cos(S) − 1
S

[ ]
< 1 for all S> 0,

(21)

where the final inequality in Equation (21) follows
easily by checking that the inequality S + cos(S)> 1
holds not only for all S ∈ (0, 2] but also for all S> 2.
Figure 8 depicts the results of comparing the per-

formance of CIATA-Ph with that of GNTA for the
following parameter settings: average arrival rate
λ � 50; time horizon S � 8; dispersion ratio C � 0.2, 1.5,
4, 10; and relative oscillation amplitude γ � 0.2, 0.8 (so
that η � 0.84, 0.56). Figure 8 shows that CIATA-Ph
delivers a dispersion ratio (dashed-and-dotted line
connected by squares) that is substantially closer to
the target value (dashed line) than the dispersion
ratio delivered by GNTA (solid line connected by
triangles). Moreover, the dispersion ratio delivered
by CIATA-Ph is nearly constant while that delivered
by GNTA is significantly time unstable, exhibiting a
highly time-varying pattern following the time vari-
ability of the arrival rate.

Figure 6. (Color online) Computation Time (in Seconds) for CIATA-Ph in Case 1 with C � 1.5
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In Table 3 (top half), we give the time average of the
dispersion function in [0, S] (S � 8) for both CIATA-Ph
andGNTA; andwe compute the average relative errors
of both methods (i.e., the average over time of the
ratio |performance − target | /target). In this half of
Table 3, we consider the following parameter set-
tings: λ � 50; γ � 0.2, 0.5, 0.8 (so that η � 0.84, 0.67,
0.56); and C � 0.2, 0.8, 1.1, 1.2, 1.5, 4, 10. Table 3
(bottom half) repeats the same experiment with the
smaller average arrival rate λ � 10. For the smaller
arrival rate, we observe performance degradation
for both CIATA-Ph and GNTA. However, CIATA-Ph
continues to perform significantly better than GNTA.

To provide a picture of when and how CIATA-Ph
performs better than GNTA, we summarize below:

• Sign of error in estimating C: GNTA’s dispersion
ratio tends to be lower (higher) than the target dispersion
ratio when C> 1 (C< 1), while CIATA-Ph gives much
more accurate performance.

• Sensitivity to η: The performance of GNTA de-
grades when the arrival rate exhibits a bigger fluc-
tuation around the mean arrival rate. Specifically,
GNTA performs poorly as the relative oscillation
amplitude γ increases (or equivalently, the ratio η in
Equation (21) decreases). On the other hand, CIATA-
Ph continues to achieve good performance for all
values of η.

• Sensitivity to C: CIATA-Ph gives more benefits
than GNTA when C is far from 1 (e.g., when C> 1.5 or
C< 0.8). In practice, we recommend using CIATA-Ph
rather than GNTA when the target arrival process is
highly overdispersed or underdispersed.

4.5.2. Inversion Procedure of Gerhardt and Nelson
(2009). Although the inversion procedure of Gerhardt
and Nelson (2009) is guaranteed to achieve the target
mean-value function for all t as well as convergence to
the target dispersion ratio for large t, it can be com-
putationally inefficient if the target mean-value func-
tion is difficult to invert analytically or numerically.
We illustrate this phenomenon in the case 1 test
process for the scenario in which C � 1.5. In Table 4,
we give the execution times of the inversion algorithm
(labeled GNIA) and of CIATA-Ph based on Q � 50,
100, 150, 200, 250, and 300 subintervals. All execution
times are based on running MATLAB on a 2.66-GHz
Intel 2 Quad processor with 3.25-GB RAM, running
Windows XP Professional. Although the results in
Table 4 will vary depending on the software and
hardware used to perform the comparison, it is clear
that CIATA-Ph significantly outperforms inversion
in this test process.

5. Conclusions and Recommendations
The main finding of this work is that CIATA and
CIATA-Ph can be effective for modeling and simu-
lating anNNPP that is specified solely in terms of given
rate andmean-value functions aswell as a given asymptotic
dispersion ratio. In many application domains, we have
often found that these characteristics represent the only
available information, at least in initial simulation
studies. In such situations, we believe that the pro-
posed techniques based on CIATA and CIATA-Ph
have definite advantages over competing procedures,
in particular with respect to general applicability, the

Figure 7. (Color online) Performance Comparison of GNTA and CIATA-Ph with Case-1 Arrival Rates

Note. The top panel shows the sample mean estimators of CQ(t) for selected values of t ∈ (0, 8] when C � 10; and the bottom panel shows the
corresponding statistics when C � 1.5.
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speed of convergence to the desired asymptotic dis-
persion ratio, and computational efficiency.

There are several promising directions for futurework
on modeling and simulation of NNPPs. With respect to
issues raised in this article that require further investigation,
we are particularly focused on the formulation of a ro-
bust rule of thumb for setting Q given the asymptotic
dispersion ratio C, the length S of the time horizon, and
the behavior of the mean-value value function µ(t) over
that timehorizon so as tominimize the averagewarm-up
period required to achieve approximate convergence to
C. We are also pursuing a comprehensive experimental
comparison of CIATA-Ph to determine more precisely
the types of applications in which one procedure is
preferred over the other.

Beyond the specific issues related to further work on
CIATA-Ph, several directions for future work merit
special attention. With respect to estimation of NNPPs,
there is a clear need for the following: (i) optimal

nonparametric smoothing methods for estimating the
rate function; and (ii) efficient, nearly unbiased esti-
mators of the asymptotic dispersion ratio. With respect
to improved methods for simulating an NNPP with
a given dispersion ratio, Equation (11) seems to be
a key result. In particular, substantially faster con-
vergence to the asymptotic dispersion ratio may be
achieved by selecting an interrenewal distribution G( · )
for the underlying ERP whose noncentral moments
{θℓ : ℓ � 1, 2, 3} (nearly) minimize the magnitude of
the constant θ∗ defined in Equation (9). For this pur-
pose, it may be desirable to exploit a distribution family
on R+ that is capable of matching a broad range of
feasible values for the noncentral moments {θℓ : ℓ �
1, 2, 3}. Closely related to this possibility is the ad-
aptation of CIATA-Ph to generate an NNPP whose
dispersion ratio is piecewise constant over the rele-
vant time horizon. All these topics are the subject of
ongoing research.

Figure 8. (Color online) Performance Comparison of GNTA and CIATA-Ph with Sinusoidal Arrival Rates in Equation (20)
with λ � 50, γ � 0.2, 0.8 (η � 0.84, 0.56), and C � 0.2, 1.5, 4, 10
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