1. **Conditional probability**

 There are two events A and B. Suppose A makes B more likely, i.e., the occurrence of event A increases the likeliness of event B, does B make A more likely or less likely?

 For instance:

 - $A \equiv \{\text{Average temperature in August is }> 80^\circ F\}$
 - $B \equiv \{\text{Yafei’s electricity bill in August is }> \$100\}$.

2. **Baye’s Rule** (Example 1.12 in Green Ross)

 There are two urns. The first one has 2 white and 7 black balls, the second has 5 white and 6 black balls. Flip a fair coin and draw a ball from the first urn or the second urn depending on whether the outcome was a head or tail. Suppose a white ball is selected, what is the probability that the outcome of the toss was a head?
3. Independence
 If \(A \perp B \), then \(A \perp B^c \), \(A^c \perp B \), and \(A^c \perp B^c \).

4. Independence
 A system functions if one of its \(n \) components in parallel works. Component \(i \) works independently with probability \(p_i, i = 1, 2, \ldots, n \). Find the probability that the system functions.
5. **Cumulative distribution functions**

Is $F(x) \equiv e^{-e^{-x}}$, $-\infty < x < \infty$ a CDF?

6. **Expectations**

Let X be a nonnegative random variable, i.e., $X \geq 0$. Show that:

(a) $E[X] = \int_0^\infty P(X > x)dx = \int_0^\infty \bar{F}(x)dx$.
(b) $\mathbb{E}[X^n] = \int_0^\infty n x^{n-1} \mathbb{P}(X > x) dx$.