Course Syllabus

Course Description

This is a Ph.D. level course in stochastic models and queueing theory designed to develop a solid understanding of uncertain phenomena and mathematical tools used to model and analyze random observations in industrial engineering and operations research. The course will provide both rigorous proof-based mathematical basis and related applications.

Instructor

Yunan Liu (Instructor) Email: yliu48@ncsu.edu Website: http://yunanliu.wordpress.ncsu.edu

Teaching assistents

Songchen Jiang (responsible for issues on class logistics) qq: 460499514

Yafei Li (responsible for holding office hours 4:30 –6:00) qq: 515259041

Course website

https://yunanliu.wordpress.ncsu.edu/neu-summer-course/

Prerequisites

Knowledge on probability theory and stochastic models.

Reference Texts

- (α) Required: Ross, S. M. Intro to Probability Models. 10th or 11th Edition, Academic Press, Elsevier.
- (β) Recommended: Ross, S. M. Stochastic Processes. 2nd Edition, Academic Press, Weley, 1996.

Tentative Course Outline

- 1. Review of Probability Theory
 - Probability space
 - Independence and dependence
 - Conditional probability and Bayes' formula
 - Random variables: definition, distribution functions, discrete and continuous types

- Random variables: expectation, variance, covariance and moment generating functions
- Markov's inequality and Chebyshev's inequality
- Modes of convergence
- Limit theorems: strong law of large number (SLLN) and central limit theorem (CLT)
- 2. Discrete-Time Markov Chain (DTMC)
 - Definition: the Markov property
 - Classification of states: transience and recurrence
 - Chapman-Kolmogorov equations
 - The Gambler's ruin problem
 - Steady-state distributions
 - DTMCs with absorbing states/classes: canonical forms, fundamental matrices, and mean times until absorption
 - Time reversibility, random walk on a graph
- 3. Poisson Process (PP)
 - Exponential distribution: the lack-of-memory property and its applications
 - Equivalency of the three definitions of Poisson processes
 - Properties of Poisson: independent thinning and superposition
 - Order statistics and conditional distributions of the arrival times
 - Generalization 1: compound Poisson process (thinning and superposition for NPP)
 - Generalization 2: nonhomogeneous Poisson process (definitions, properties and connection to PP)
 - The $M_t/G/\infty$ queue: number of customers at time t and the departure process
- 4. Continuous-Time Markov Chain (CTMC)
 - CTMC: basic definition, transition probability and rate matrices
 - Kolmogorov-Chapman equation and Kolmogorov ODE
 - Steady state: two different approaches
 - Birth-and-death processes and Markovian queueing networks
 - Time reversibility
- 5. Renewal Counting Process (RCP)
 - Renewal functions and renewal equations
 - Renewal reward processes (RRP)
 - Limit theorems for RCP and RRP
 - Age, excess and spread of an RCP
 - An application: patterns