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Abstract

Motivated by large-scale service systems, we study an overloaded multi-class queueing system hav-

ing time-varying arrivals and customer abandonments. Our objective is to devise appropriate staffing

and scheduling policies to achieve differentiated service levels for each customer class. Formally, for

a class-specific delay target wi > 0 and probability target αi ∈ (0, 1), we concurrently determine a

proper staffing level (number of servers) and a scheduling rule (assigning newly idle servers to a waiting

customer from one of the classes), under which the probability that a class-i customer waits more than

wi does not exceed αi at all times. For this purpose, we propose a joint staffing and scheduling poli-

cy that is both time dependent (coping with the time variability in arrival pattern) and state dependent

(capturing the stochastic variability in service times and arrival times). The proposed framework enables

us to treat class-dependent service rate. Effectiveness of our proposed staffing and scheduling plocies is

substantiated by heavy traffic limit theorems (as the system scale increases). We also conduct computer

simulation experiments to provide engineering confirmations and practical insights.

1



Overview. This appendix provides additional supplementary material to the main paper. In §1 we give a

road map of our approach. In §2, we provide all the technical proofs omitted from the main paper. In §3, we

give additional numerical studies. First, in Table 1 we give all acronyms used here and in the main paper.

1 Road Map of Our Approach

We first explain the main steps of the our approach to achieve the asymptotic service-level differentiation

and stabilization, see Figure 1. First, we propose our TV-SRS and TV-DPS policies having some unknown

control functions, namely, c and κi, 1 ≤ i ≤ K. See §§2.2–2.3 of the main paper for detailed structure of

TV-SRS and TV-DPS. In both formulas, we have determined the first order terms (nominal staffing term of

TV-SRS, and normalized HWT term of TV-DPS), and we leave the second order terms undetermined (c for

TV-SRS and κi for TV-DPS). What is complicated here is how to treat these second-order terms, and they

are driven by the probability targets αi.

Figure 1: Road map of our approach

Next, we develop convenient many-server FWLLN and F-

CLT limits under our proposed TV-SRS and TV-DPS, which is

the main focus of our analysis. In Theorem 1 and Corollary 1,

we give the FWLLN and FCLT limits for various system func-

tions, including class-dependent queue length, number of busy

servers, PWT and HWT. Theorem 1 also establishes an SSC

meaning that all K class-dependent PWT and HWT degener-

ate to a one-dimensional frontier process Ĥ . In Corollary 2,

we further analyze this frontier process: we show that (i) Ĥ

uniquely solves an SVE of which the drift and volatility terms

are explicit functions of the model input parameters (thus in-

dependent with the unknown control functions); (ii) the solu-

tion Ĥ is Gaussian; and (iii) the transient mean and variance

process of Ĥ can be numerically computed using contraction-

based algorithms (which converges geometrically fast).

Finally, we utilize this frontier process Ĥ to determine the

“optimal” control functions c∗ and κ∗i . The idea here is to use

our control functions to shift the mean value of V̂i so that the probability mass {V̂i > 0} is controlled at αi.

We give the resulting (unique) formulas in Proposition 1; here the variance Var(Ĥ)(t) plays an important
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Acronym Meaning

ASL average staffing level

CCDF complementary cumulative distribution function

CDF cumulative distribution function

CTAS Canadian triage and acuity scale

DIS delayed infinite server

DIS-MOL delayed infinite-server modified-offered-load approximation

ED emergency department

ERP equilibrium renewal process

FCLT functional central limit theorem

FPE fixed-point equation

FWLLN functional weak law of large numbers

HWT head-of-line waiting time

HT heavy traffic

i.i.d. independent and identically distributed

KPI key performance indicator

MOL modified offered load

MPSS marginal price of staffing and scheduling

MSHT many-server heavy-traffic

MSL maximum staffing level

NHPP non-homogeneous Poisson process

NNPP nonstationary non-Poisson process

OL overloaded

PDF probability density function

PoA probability of abandonment

PoD probability of delay

PWT potential waiting time

QED quality-and-efficiency driven

QoS quality of service

SCV squared coefficient of variation

SL service level

SSC state-space collapse

SVE stochastic Volterra equation

TPoD tail probability of delay

TTGA two-term Gaussian approximation

TV time varying

TV-SRS time-varying square-root staffing

TV-DPS time-varying dynamic prioritization scheduling

Table 1: Summary of useful acronyms used in the main paper.

3



role in these formulas. In Theorem 2, we show that the complete TV-SRS and TV-DPS policies (with

structure given in §§2.2–2.3 and control functions given in Proposition 1) successively achieve asymptotic

service-level differentiation and stabilization.

Corollaries 2–4 aim to provide additional insights by studying important special cases. For example,

Corollary 2 shows that when service rates are class independent, the SVE degenerates to an OU process

with time-varying parameters and admits an analytic solution.

2 Proofs

We hereby provide all proofs that are omitted in the main paper, including Theorems 1–2, Propositions 1-2,

Corollaries 2–4.

2.1 Proof of Theorem 1

Main steps of the proof. Step 1: We first show that each component within the curly bracket in (15) of

the main paper is at most O(1/
√
n) away from the frontier process, that is, Hn

i (t)/wi + n−1/2κi(t) =

Hn(t) +O(1/n) (or Ĥn
i (t) = wi(Ĥ

n(t)−κi(t)) +O(1/
√
n)). This is essentially a SSC result and follows

from a key observation that, at any given point in time, the number of total departures required for a HoL

customer to enter service under the TV-DPS policy is of order O(1). Step 2: We then use (6) of the main

paper to obtain a simple relation between Ĥn
i and B̂n

i . Based on the fact that the difference between Ĥn
i (t)

and wi(Ĥn(t)− κi(t)) can be made arbitrarily small for n large enough, we are able to establish a set of K

differential equations and one linear equation jointly satisfied by (B̂n
1 , . . . , B̂

n
K , Ĥ

n). This allows us to apply

the Gronwall’s inequality to establish the stochastic boundedness of the sequence {(B̂n
1 , . . . , B̂

n
K , Ĥ

n);n ∈

N}, which in turn enables us to deduce the desired FWLLN results. Step 3: An application of the continuous

mapping theorem with the established FWLLN allows us to establish the Brownian limits given in (21) of

the main paper for the corresponding CLT-scaled processes. Applying the continuous mapping theorem

again with these Brownian limits yields the joint convergence of {(B̂n
1 , . . . , B̂

n
K , Ĥ

n)}. Next, the FCLT

for the HWT and PWT processes follows by converging-together lemma with the established FCLT for the

frontier process. Step 4: Finally, the FCLT for the queue-length processes follows by first exploiting the

relation between Qni and Hn
i and then applying the continuous mapping theorem. �
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Step 1: SSC for the pre-limit HWT and PWT processes. We start by observing the relation between

Hn
i (t) and V n

i (t)

V n
i (t−Hn

i (t)) = Hn
i (t) +O(1/n) (1)

under the TV-DPS rule, where the error term O(1/n) will follow if the number of customers (from other

queues) who have a higher service priority over the HoL customer in the ith queue is of order O(1); i.e., it

only requires O(1) number of service completions before the HoL customer of the ith queue enters service.

To see that relation (1) is true, suppose customer A enters service from the ith queue at time t and customer

B becomes the new HoL customer in queue i. Then customer B must have arrived at the system at time

t − Hn
i (t−). Further we use ani to denote the inter-arrival time between A and B. It is immediate that

customer A arrived at the system at time t−Hn
i (t−)− ani . Suppose κi ≡ 0, i ∈ I ≡ {1, . . . ,K} (the case

where κi are not zero functions can be analyzed in a similar fashion). Then under the TV-DPS policy, only

those class-j customers who arrived during the interval(
t− wj (Hn

i (t) + ani )

wi
, t− wjH

n
i (t)

wi

)
(2)

could enter service prior to the time at which customer B enters service. To proceed, we make the following

observation: If P(1) and P(2) are two independent Poisson processes with rate λ(1) and λ(2), respectively,

then the number of arrivals from P(2) between two successive arrivals of P(1) follows a geometric distri-

bution with parameter with parameter λ(1)

λ(1)+λ(2)
. Now because the interval (2) has a length of (wja

n
i /wi),

the number class-j customer who can enter service before B is stochastically bounded by a geometric dis-

tributed random variable with mean
wjλ

↑
j

wiλ
↓
i

and variance
(
wjλ

↑
j

wiλ
↓
i

)2

+
wjλ

↑
j

wiλ
↓
i

. By the same token, we can argue

that the total number of customers who will enter service before B enters service is bounded by the sum of

K − 1 geometric random variables with mean `(1)
i =

∑
j 6=i wjλ

↑
j

wiλ
↓
i

and variance `(2)
i =

∑
j 6=i

(
wjλ

↑
j

wiλ
↓
i

)2

+ `
(1)
i .

On the other hand, the inter-arrival times of class i live on the order ofO(1/n). Using the same reasoning

for (1), we have

Hn
i (t)/wi + n−1/2κi(t) = Hn(t)−O(1/n),

or equivalently,

Ĥn
i (t) = wi(Ĥ

n(t)− κi(t))−O(1/
√
n), (3)

where we recall that Ĥn is the CLT-scaled frontier process, namely, Ĥn(t) ≡ n1/2 (Hn(t)− 1).

Step 2: The FWLLN. Here we prove the desired FWLLN results by showing the stochastic boundedness

of the corresponding CLT-scaled processes; see §5.2 of [5] for a precise definition of stochastic boundedness.
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In what follows, we will first prove that the sequence {(B̂n
1 , . . . , B̂

n
K , Ĥ

n);n ∈ N} is stochastically bounded.

To that end, introduce the LLN- and CLT-scaled empirical process

Ūn(t, x) ≡ 1

n

bntc∑
k=1

1{Xi≤x} for t ≥ 0, 0 ≤ x ≤ 1, and

Ûn(t, x) ≡
√
n
(
Ūn(t, x)− E

[
Ūn(t, x)

])
=

1√
n

bntc∑
k=1

1{Xi≤x} − x

 ,

(4)

where X1, X2, . . . are i.i.d. random variables uniformly distributed on [0, 1]. [4] have shown that Ûn ⇒ Û

in DD as n → ∞, where Û is the standard Kiefer process. Paralleling (3.3) - (3.6) in [1], we break the

enter-service process Eni (t) in (6) of the main paper into three pieces, namely,

Eni (t) = Eni,1(t) + Eni,2(t) + Eni,3(t), (5)

where

Eni,1(t) ≡
√
n

∫ t−Hn
i (t)

−Hn
i (0)

F ci (V n
i (u))dÂni (u), t ≥ 0, (6)

Eni,2(t) ≡
√
n

∫ t−Hn
i (t)

−Hn
i (0)

∫ 1

0
1{y>F ci (V ni (u))}dÛ

n
i (Āni (u), y) t ≥ 0, (7)

Eni,3(t) ≡ n

∫ t−Hn
i (t)

−Hn
i (0)

F ci (V n
i (u))λi(u)du t ≥ 0, (8)

for Āni , Â
n
i given by (16) of the main paper and Ûni is a CLT-scaled empirical process specified by (4).

Define the fluid version and CLT-scaled version of the enter-service process as

εi(t) ≡
∫ t−wi

−wi
F ci (wi)λi(u)du, (9)

Êni (t) ≡ n−1/2 (Eni (t)− nεi(t)) = n−1/2

(
Eni (t)− n

∫ t−wi

−wi
F ci (wi)λi(u)du

)
. (10)

Following the decomposition given in (5) - (8), we can write

Êni (t) = Êni,1(t) + Êni,2(t) + Êni,3(t), (11)

where

Êni,1(t) ≡ n−1/2Eni,1(t) =

∫ t−Hn
i (t)

−Hn
i (0)

F ci (V n
i (u))dÂni (u) t ≥ 0 (12)

Êni,2(t) ≡ n−1/2Eni,2(t) =

∫ t−Hn
i (t)

−Hn
i (0)

∫ 1

0
1{y>F ci (V ni (u))}dÛ

n
i (Āni (u), y) t ≥ 0, (13)

Êni,3(t) ≡ n−1/2

(
Eni,3(t)− n

∫ t−wi

−wi
F ci (wi)λi(u)du

)
t ≥ 0. (14)
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For the term Êni,3, we further deduce

Êni,3(t) =
√
n

[∫ t−Hn
i (t)

−Hn
i (0)

F ci (V n
i (u))λi(u)du−

∫ t−wi

−wi
F ci (wi)λi(u)du

]

=
√
n

∫ t

0
F ci (Hn

i (u))λi(u−Hn
i (u))du−

√
n

∫ t

0
F ci (wi)λi(u− wi)du

−
∫ t

0
F ci (Hn

i (u))λi(u−Hn
i (u))dĤn

i (u) +O(n−1/2)

= −
∫ t

0

{
fi(ζ

n
i (u))λi(u− ζni (u)) + F ci (ζni (u))λ′i(u− ζni (u))

}
wi(Ĥ

n(u)− κi(u))du

−
∫ t

0
wiF

c
i (Hn

i (u))λi(u−Hn
i (u))d(Ĥn(u)− κi(u)) +O(n−1/2),

(15)

where the second equality follows by a change of variables, namely t → t − Hn
i (t), plus the relation (1),

while the third equality follows from (3) and applying the mean-value theorem with ζni (t) satisfying

Hn
i (t) ∧ wi ≤ ζni (t) ≤ Hn

i (t) ∨ wi. (16)

On the other hand, the conservation of flow implies

Eni (t) = Bn
i (t) +Dn

i (t), (17)

where we have used Dn
i (t) to denote the number of class-i customers that have completed service by time

t. From (9) it follows

εi(t) =

∫ t−wi

−wi
F ci (wi)λi(u)du =

∫ t

0
F ci (wi)λi(u− wi)du = mi(t) +

∫ t

0
µimi(u)du, (18)

where the last equality follows from (10) of the main paper. Multiplying both sides of (18) by n and

subtracting it from (17) yields

Eni (t)− nεi(t) = Bn
i (t)− nmi(t) +Dn

i (t)− n
∫ t

0
µimi(u)du

= Bn
i (t)− nmi(t) +

(
Dn
i (t)− µi

∫ t

0
Bn
i (u)du

)
+ µi

(∫ t

0
Bn
i (u)du−

∫ t

0
nmi(u)du

)
.

Next divide both sides by n1/2 to get

Êni (t) = B̂n
i (t) + µi

∫ t

0
B̂n
i (u)du+ D̂n

i (t) or dB̂n
i (t) + µiB̂

n
i (t)dt = dÊni (t)− dD̂n

i (t), (19)

where we have defined

D̂n
i (t) ≡ n−1/2

(
Dn
i (t)− µi

∫ t

0
Bn
i (u)du

)
.
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Because the baseline input exceeds the output at all times, it holds that

Bn(t) = sn(t) (20)

with arbitrarily high probability for n sufficiently large. Hence, it suffices to focus on the sample paths for

which relation (20) holds. In this case we can easily deduce

K∑
i=1

B̂n
i (t) = n−1/2 (Bn(t)− nm(t)) = n−1/2 (sn(t)− nm(t)) = c(t). (21)

Upon substituting (11) - (13) and (15) into(19), we obtain, for i = 1, . . . ,K,

dB̂n
i (t) + wiF

c
i (Hn

i (t))λi(t−Hn
i (t))dĤn(t)

=− µiB̂n
i (t)dt−

[
fi(ζ

n
i (t))λi(t− ζni (t)) + F ci (ζni (t))λ′i(t− ζni (t))

]
wiĤ

n(t)dt

+
[
fi(ζ

n
i (t))λi(t− ζni (t)) + F ci (ζni (t))λ′i(t− ζni (t))

]
wiκi(t)dt

+ wiF
c
i (Hn

i (t))λi(t−Hn
i (t))dκi(t) + dÊni,1(u) + dÊni,2(u)− dD̂n

i (u) +O(n−1/2).

(22)

We can then use (21) to write B̂n
K = c(t) −

∑K−1
i=1 B̂n

i . Plugging it into (22) for i = K, we obtain a set of

K linear differential equations with respect to the K-dimensional process (B̂n
1 , . . . , B̂

n
K−1, Ĥ

n). Similar to

what was done to (5.14) in [1], we apply the Gronwall’s inequality together with the stochastic boundedness

of Êni,1, Êni,2, and D̂n
i plus the assumed properties of λi, fi and F ci to conclude the stochastic boundedness

of the sequence {(B̂n
1 , . . . , B̂

n
K−1, Ĥ

n);n ∈ N}. In particular, the sequence {Ĥn;n ∈ N} is stochastically

bounded. In view of (3) and (1), we have that {Ĥn;n ∈ N} and {V̂n;n ∈ N} are stochastically bounded,

for i = 1, . . . ,K. This implies the FWLLN for the HWT and PWT processes, that is, as n→∞,

(Hn, Hn
1 , . . . ,H

n
K , V

n
1 , . . . , V

n
K)⇒ (e, w1e, . . . , wKe, w1e, . . . , wKe) in D2K+1, (23)

where the joint convergence holds due to converging-together lemma (Theorem 11.4.5. in [6]).

Step 3: The FCLT for the waiting time processes. Similar to the proof of Lemma 5.1 in [1], we invoke

the continuous mapping theorem with (12) and (23) to get

Êni,1(t)⇒ Êi,1(t) ≡ F ci (wi)

∫ t−wi

−wi

√
λi(u)dWλi(u), (24)

whereWλi is a standard Brownian motion.

To proceed, we argue that, as n→∞,

Êni,2(t)⇒ Êi,2(t) ≡
√
F ci (wi)Fi(wi)

∫ t−wi

−wi

√
λi(u)dWθi(u), (25)
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for Wθi being a standard Brownian independent of Wλi . The essential structure of the proof for (25) is

exactly the same as that of A.7.2 in [1], which in turn draws on Theorem 7.1.4 in [2]. Because the proof can

be fully adapted from theirs, we omit the details.

Moreover, as a direct consequence of the established stochastic boundedness of {(B̂n
1 , . . . , B̂

n
K);n ∈

N}, we have the FWLLN for the busy-server processes

(
B̄n

1 , . . . , B̄
n
K

)
⇒ (m1, . . . ,mK) in DK as n→∞.

Next a standard random-time-change argument allows us to derive

D̂n
i (·) = n−1/2

[
Πd
i

(
nµi

∫ ·
0
B̄n
i (u)du

)
− nµi

∫ ·
0
B̄n
i (u)du

]
⇒Wµi

(
µi

∫ ·
0
mi(u)du

)
as n→∞,

(26)

where we have defined Πd
i to be a unit-rate Poisson process and Wµi to be a standard Brownian motion

independent of Wλi and Wθi . To establish the convergence of (19) of the main paper, we will need to

strengthen (24), (25) and (26) to joint convergence. The joint convergence of multiple random elements is

equivalent to individual convergence if they are independent. Here Êni,1, Êni,2 and D̂n
i are not independent

because both Êni,1 and Êni,2 involve the arrival-time sequence, and D̂n
i depends onBn

i which in turn correlates

with Eni through (17). But they are conditionally independent given Ani , H
n
i , V

n
i and Bn

i . Hence, we can

establish the joint convergence by first conditioning and then unconditioning. See Lemma 4.1 of [? ] for a

reference, which is a variant of Theorem 7.6 of [5].

To derive a set of SDEs satisfied by the CLT-scaled processes (Ĥn, B̂n
1 , . . . , B̂

n
K), we seek to simplify

the right-hand side of (15). First we note that the inequality (16) and the convergence in (25) imply

ζni (t) = wi +O(n−1/2) = Hn
i (t) +O(n−1/2). (27)

We then use integration by parts to deduce

−
∫ t

0
wiF

c
i (ζni (u))λ′i(u− ζni (u))(Ĥn(u)− κi(u))du

−
∫ t

0
wiF

c
i (Hn

i (u))λi(u−Hn
i (u))d(Ĥn(u)− κi(u))

=− wiF ci (ζni (t))λi(t− ζni (t))(Ĥn(t)− κi(t))

+

∫ t

0
wi {F ci (ζni (u))λi(u− ζni (u))− F ci (Hn

i (u))λi(u−Hn
i (u))}d(Ĥn(u)− κi(u))

+

∫ t

0
wiλi(u− ζni (u))(Ĥn(u)− κi(u))dF ci (ζni (u))

=− wiF ci (wi)λi(t− wi)(Ĥn(t)− κi(t)) +O(n−1/2),

(28)
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where the last equality holds due to (27). Upon plugging (28) into (15), we obtain

Êni,3(t) = −
∫ t

0
wifi(wi)λi(u− wi)(Ĥn(u)− κi(u))du− wiF ci (wi)λi(t− wi)(Ĥn(t)− κi(t)) +O(n−1/2).

Now plugging (11) and the equation above into (19), we get

B̂n
i (t) + wiF

c
i (wi)λi(t− wi)Ĥn(t)

=− µi
∫ t

0
B̂n
i (u)du−

∫ t

0
wifi(wi)λi(u− wi)Ĥn(u)du+

∫ t

0
wifi(wi)λi(u− wi)κi(u)du

+ wiF
c
i (wi)λi(t− wi)κi(t) + Êni,1(t) + Êni,2(t)− D̂n

i (t) +O(n−1/2) for i = 1, . . . ,K.

(29)

The joint convergence (Ĥn, B̂n
i , . . . , B̂

n
K) ⇒ (Ĥ, B̂i, . . . , B̂K) then follows by applying the continuous

mapping theorem (see Theorem 4.1 of [5]) to (20) and (29), with the joint convergence of Êni,1, Ê
n
i,2 and

D̂n
i , as specified by (24), (25) and (26), respectively. Alternatively, one can subtract (29) by (20) in the main

paper and invoke the Gronwall’s inequality to show that the difference between the pre-limit and the limit

is bounded by a negligible term as n → ∞, as was done in the proof of (4.7) in [1]. The convergence of

{Ĥn
i ;n ∈ N} and {V̂ n

i ;n ∈ N} follow easily from and (3) and (1), respectively.

Step 4: The FCLT for the queue-length processes. To show that {Q̂ni ;n ∈ N} converges to the corre-

sponding limit, we decompose the right-hand side of (7) in the main paper into three terms, namely,

Qni (t) = Qni,1(t) +Qni,2(t) +Qni,3(t), (30)

where

Qni,1(t) ≡
√
n

∫ t

t−Hn
i (t)

F ci (t− u)dÂni (u), t ≥ 0, (31)

Qni,2(t) ≡
√
n

∫ t

t−Hn
i (t)

∫ 1

0
1{x>F ci (t−u)}dÛ

n
i (Āni (u), x) t ≥ 0, (32)

Qni,3(t) ≡ n

∫ t

t−Hn
i (t)

F ci (t− u)λi(u)du t ≥ 0, (33)
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Accordingly, the centered and normalized queue-length process can be decomposed into three terms

Q̂ni (t) ≡ n−1/2 (Qni (t)− nqi(t)) = Q̂ni,1(t) + Q̂ni,2(t) + Q̂ni,3(t),

where Q̂ni,1(t) ≡
∫ t

t−Hn
i (t)

F ci (t− u)dÂni (u) ⇒
∫ t

t−wi
F ci (t− u)dÂi(u), (34)

Q̂ni,2(t) ≡
∫ t

t−Hn
i (t)

∫ 1

0
1{x>F ci (t−u)}dÛ

n
i (Āni (u), x)

⇒
∫ t

t−wi

√
F ci (t− u)Fi(t− u)λi(u)dWθi(u), (35)

Q̂ni,3(t) ≡
√
n

∫ t−wi

t−Hn
i (t)

F ci (t− u)λi(u)du ⇒ F ci (wi)λi(t− wi)Ĥi(t). (36)

Here the proof for (34) and (35) is very similar to that of (24) and (25), and the proof for (36) is also

straightforward. �

2.2 Proof of Proposition 1

The multi-dimensional SDE in (20) of the main paper is equivalent to

d

dt

(
eµitB̃i(t)

)
= eµit

(
−wiF ci (wi)λi(t− wi)Ĥ(t)−

∫ t

0
wifi(wi)λi(u− wi)Ĥ(u)du+ yi(t) +Gi(t)

)
,

(37)

where

B̃i(t) ≡
∫ t

0
B̂i(u)du and yi(t) ≡ wiF ci (wi)λi(t− wi)κi(t) +

∫ t

0
wifi(wi)λi(u− wi)κi(u)du.

Integrating (37) from 0 to t yields

B̃i(t) = e−µit
∫ t

0
eµis

(
−wiF ci (wi)λi(s− wi)Ĥ(s)−

∫ s

0
wifi(wi)λi(u− wi)Ĥ(u)du+ yi(s) +Gi(s)

)
ds

= e−µit
(
−
∫ t

0
eµiswiF

c
i (wi)λi(s− wi)Ĥ(s)ds−

∫ t

0
wifi(wi)λi(u− wi)Ĥ(u)

∫ t

u
eµisdsdu

+

∫ t

0
eµisyi(s)ds+

∫ t

0
eµisGi(s)ds

)
=

∫ t

0
wiλi(s− wi)

(
−F ci (wi)e

µi(s−t) − fi(wi)
1− eµi(s−t)

µi

)
Ĥ(s)ds

+

∫ t

0
eµi(s−t)yi(s)ds+

∫ t

0
eµi(s−t)Gi(s)ds.

11



Summing up over i from 1 to K, we have∫ t

0
c(s)ds =

K∑
i=1

B̃i(t) =

∫ t

0

K∑
i=1

wiλi(s− wi)

(
−F ci (wi)e

µi(s−t) − fi(wi)
1− eµi(s−t)

µi

)
Ĥ(s)ds

+

K∑
i=1

∫ t

0
eµi(s−t)

(
wiF

c
i (wi)λi(s− wi)κi(s) +

∫ s

0
wifi(wi)λi(u− wi)κi(u)du

)
ds

+
K∑
i=1

∫ t

0
eµi(s−t)

∫ s

0

√
F ci (wi)λi(u− wi) + µimi(u)dWi(u)ds

=
K∑
i=1

∫ t

0
wiλi(s− wi)

(
−F ci (wi)e

µi(s−t) − fi(wi)
1− eµi(s−t)

µi

)
Ĥ(s)ds

+

K∑
i=1

∫ t

0
wiλi(s− wi)κi(u)

(
F ci (wi)e

µi(s−t) + fi(wi)
1− eµi(s−t)

µi

)
du

+
K∑
i=1

∫ t

0

1− eµi(u−t)

µi

√
F ci (wi)λi(u− wi) + µimi(u)dWi(u). (38)

Differentiating (38) yields

c(t) = −
K∑
i=1

wiλi(t− wi)F ci (wi)Ĥ(t) +

∫ t

0

K∑
i=1

wiλi(s− wi)eµi(s−t) (µiF
c
i (wi)− fi(wi)) Ĥ(s)ds

+

K∑
i=1

wiλi(t− wi)F ci (wi)κi(t) +

∫ t

0

K∑
i=1

wiλi(s− wi)eµi(s−t) (−µiF ci (wi) + fi(wi))κi(s)ds

+
K∑
i=1

∫ t

0
eµi(u−t)

√
F ci (wi)λi(u− wi) + µimi(u)dWi(u),

And further aggregating the independent Brownian motionsW1, . . . ,WK intoW yields the SVE in (26) of

the main paper.

Uniqueness and existence of solution to the SVE (25) of the main paper. Consider two functions x, y ∈

C satisfying an equation

x(t) =

∫ t

0
L(t, s)x(s)ds+ y(t). (39)

we show that (39) specifies a well-defined function φ : C→ C such that x = ψ(y). To do so, for a given y,

we define the operator

ψ(x) =

∫ t

0
L(t, s)x(s)ds+ y(t). (40)

Therefore, x solves the fixed-point equation (FPE)

x = ψ(x). (41)
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We first prove that ψ is a contraction over a finite interval [0, T ]. Specifically, let x1, x2 ∈ C, and use the

uniform norm ‖x‖T = sup{0≤t≤T} |x(t)|. We have

|ψ(x1)(t)− ψ(x2)(t)| ≤
∫ t

0
|L(t, s)|ds · ‖x1 − x2‖T

≤ ‖x1 − x2‖T

(∑K
i=1wiλ

↑
i (µiF

c
i (wi) + fi(wi))∑K

i=1wiλ
↓
iF

c
i (wi)

)
t. (42)

Hence, we have ‖ψ(x1)− ψ(x2)‖T ≤ L↑T‖x1 − x2‖T , where the constant

L↑ =

∑K
i=1wiλ

↑
i (µiF

c
i (wi) + fi(wi))∑K

i=1wiλ
↓
iF

c
i (wi)

<∞, (43)

which is guaranteed by the strict positivity assumptions on wi, λi and F ci for all 1 ≤ i ≤ K. In case

L↑T > 1, we can partition the interval [0, T ] to successive smaller intervals with length ∆T satisfying

∆T < 1/L↑. This will recursively guarantee the contraction property over all smaller intervals. Hence, the

Banach fixed point theorem implies that the FPE (41) has a unique solution over the entire interval [0, T ].

Consequently, the function φ specified by (39) is well-defined because φ(y) has one and only one image

for any y. So we conclude that SDE (25) in the main paper has a unique solution Ĥ . If fact, we can write

solution as

Ĥ = φ

(∫ ·

0
J(·, s)dW(s) +K(·)

)
.

Remark 2.1 The strict positivity assumptions on λi and F ci for all classes 1 ≤ i ≤ K can be relaxed. Note

that the contraction property (42) continues to hold as long as there exists a class i such that λ↓i and F ci (wi)

are both positive.

To show that Ĥ is Gaussian, we again use the contraction ψ defined in (40). We follow the steps that estab-

lish strong solutions in [3]. Define a sequence of processes {Ĥ(k), k = 0, 1, 2, . . .} such that Ĥ(0)(t) = 0,

and Ĥ(k+1) = ψ(Ĥ(k)) with y(t) =
∫ t

0 J(t, s)dW(s, ω) for k ≥ 0. (For each Brownian path and associated

Brownian integral, we recursively define the sequence.) We can show that Ĥ(k) is Gaussian using an induc-

tive argument. Specifically, Ĥ(k+1) is Gaussian because both
∫ t

0 L(t, s)Ĥ(k)(s)ds and
∫ t

0 J(t, s)dW(s, ω)

are Gaussian. Because ψ is a contraction, we know that Ĥ is the almost sure limit of Ĥ(k), which implies

weak convergence. Hence, Ĥ is again Gaussian (because the limit of convergent Gaussian processes is a-

gain Gaussian). To elaborate, we may consider the characteristic function of Ĥ(k)(t): Φk(s) = eisµk−s
2σ2
k/2

(with µk and σ2
k being the mean and variance of Ĥ(k)), which must converge to the characteristic function of

Ĥ . Convergence of Φk(s) at all s implies the convergence of µk and σ2
k, which implies that the characteristic

function of Ĥ has the form eisµ∞−s
2σ2
∞/2, which concludes the Gaussian distribution.
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Treating the mean and variance of Ĥ . Taking expectation in (26) of the main paper yields

m
Ĥ

(t) =

∫ t

0
L(t, s)m

Ĥ
(s)ds+K(t), where m

Ĥ
(t) = E[Ĥ(t)]. (44)

It remains to show that the FPE x = Γ(x) has a unique solution, where x ∈ C and the operator

Γ(x)(t) =

∫ t

0
L(t, s)x(s)ds+K(t).

We can do so by showing that Γ : C→ C is another contraction. Specifically, for x1, x2 ∈ C,

|Γ(x1)(t)− Γ(x2)(t)| ≤
∫ t

0
|L(t, s)||x1(s)− x2(s)|ds ≤ L↑t‖x1 − x2‖t,

where the finite upperbound L↑ is given by (43). The rest of the proof is similar.

To treat the variance of Ĥ , consider the SVE (25) of the main paper at 0 ≤ s, t ≤ T

H(t)−
∫ t

0
L(t, u)H(u)du =

∫ t

0
J(t, u)dW(u),

H(s)−
∫ s

0
L(s, v)H(v)dv =

∫ s

0
J(s, v)dW(v).

Multiplying the two equations and taking expectation yield that

C(t, s) = −
∫ t

0

∫ s

0
L(t, u)h(s, v)C(u, v)dvdu+

∫ s∧t

0
J(t, u)J(s, u)du

+

∫ t

0
L(t, u)C(u, s)du+

∫ s

0
h(s, v)C(t, v)dv,

where C(t, s) = Cov(Ĥ(t), Ĥ(s)), or equivalently, an FPE

C = Θ(C), (45)

where C(·, ·) ∈ C([0, T ]2), and the operator

Θ(C)(t, s) = −
∫ t

0

∫ s

0
L(t, u)h(s, v)C(u, v)dvdu+

∫ t

0
L(t, u)C(u, s)du

+

∫ s

0
L(s, v)C(t, v)dv +

∫ s∧t

0
J(t, u)J(s, u)du. (46)

Using the norm ‖x‖T = sup
0≤s,t≤T

|x(t, s)|, we next prove that Θ is a contraction. Specifically, for x1, x2 ∈

C([0, T ]2), we have

|Θ(x1)(t, s)−Θ(x2)(t, s)| ≤
∫ t

0

∫ s

0
|L(t, u)L(s, v)| · |x1(u, v)− x2(u, v)|dvdu

+

∫ t

0
|L(t, u)| · |x1(u, s)− x2(u, s)|du+

∫ s

0
|L(s, v)| · |x1(t, v)− x2(t, v)|dv

≤
(

(L↑)2ts+ L↑t+ L↑s
)
‖x1 − x2‖T .
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The contraction property is guaranteed if we pick some small enough ∆T > 0 such that
(
(L↑)2∆T 2 + 2L↑∆T

)
<

1. According to the Banach contraction theorem, we have the uniqueness and existence in the small block

[0,∆T ]2. The uniqueness and existence of C(·, ·) over the entire region [0, T ] × [0, T ] can be proved by

recursively dealing with small blocks of the form [i∆T, (i+ 1)∆T ]× [j∆T, (j + 1)∆T ].

Remark 2.2 (Numerical Algorithm for σ2
Ĥ

(t)) The above proof of the existence and uniqueness of the

FPE (45) automatically suggests the following recursive algorithm to compute the covariance C(t, s) and

variance σ2
Ĥ

(t). To begin with, we pick an acceptable error target ε > 0.

Algorithm:

(i) Pick an initial candidate C(0)(·, ·);

(ii) In the kth iteration, let C(k+1) = Θ
(
C(i)

)
with Θ given in (46).

(iii) If ‖C(k+1) − C(k)‖T < ε, stop; otherwise, k = k + 1 and go back to step (ii).

According to the Banach contraction theorem, this algorithm should converge geometrically fast. When it

finally terminates, we set σ2
Ĥ

(t) = C(t, t), for 0 ≤ t ≤ T , which will be used later to devise required control

functions c and κi. �

2.3 Proof of Proposition 2

First note that the FPE (28) of the main paper specifies a well-defined function φ : C→ C such that

M
Ĥ

= φ(K). (47)

See the proof of the uniqueness and existence of the SVE (specifically, see (39)–(43)) for details. (In fact, it

is not hard to see that the function φ in (47) is Liptchitz continuous and linear.)

Let (κ∗, c∗) ≡ (κ∗1, . . . , κ
∗
K , c

∗), with κ∗i and c∗ given in (34) and (33) of the main paper. Let K∗ and

M∗
Ĥ

be the corresponding version of (27) of the main paper and the mean of Ĥ . (We know that K∗(t) =

M∗
Ĥ

(t) = 0.) So we have

κ∗i (t) = κ∗i (t)−M∗Ĥ(t) = z1−αiσĤ(t), 1 ≤ i ≤ K. (48)

Now consider another solution to (κ̃, c̃) to (32) of the main paper, with (κ̃, c̃) ≡ (κ∗1 + ∆κ1, . . . , κ
∗
K +

∆κK , c
∗+ ∆c). Let K̃ and M̃

Ĥ
be the corresponding version of (27) of the main paper and mean of Ĥ . By

(32) of the main paper, we have

κ∗i (t) + ∆κi(t)− M̃Ĥ
(t) = z1−αiσĤ(t), , 1 ≤ i ≤ K. (49)
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Comparing (48) with (49), we must have

∆κi(t) = M̃
Ĥ

(t)−M∗
Ĥ

(t) ≡ ∆κ(t) for all 1 ≤ i ≤ K. (50)

Hence, any alternative solution to (32) of the main paper (if any) has the form (κ∗1 +∆κ, . . . , κ∗K +∆κ, c∗+

∆c). Next, M∗
Ĥ

= φ(K∗) and M̃
Ĥ

= φ(K̃) imply that

M∗
Ĥ

(t) =

∫ t

0
L(t, s)M∗

Ĥ
(s)ds+K∗(t) and M̃

Ĥ
(t) =

∫ t

0
L(t, s)M̃

Ĥ
(s)ds+ K̃(t),

which leads to

∆κ(t) = M̃
Ĥ

(t)−M∗
Ĥ

(t) =

∫ t

0
L(t, s)

(
M̃
Ĥ

(s)−M∗
Ĥ

(s)
)

ds+
(
K̃(t)−K∗(t)

)
,

or equivalently ∆κ = M̃
Ĥ
−M∗

Ĥ
= φ

(
K̃ −K∗

)
,

meaning

∆κ(t) =

∫ t

0
L(t, s)∆κ(s)ds+

(
K̃(t)−K∗(t)

)
. (51)

By (50) and (27) of the main paper, we have

K̃(t)−K∗(t) =
∆κ(t)

∑K
i=1

(
ηi(t)−

∫ t
0 ηi(s)e

µi(s−t)(µi − hFi(wi))ds
)
−∆c(t)

η(t)
. (52)

Finally, combining (51) with (52), we must have, for any ∆κ,

∆c(t) = ∆κ(t)
K∑
i=1

(
ηi(t)−

∫ t

0
ηi(s)e

µi(s−t)(µi − hFi(wi))ds
)
− η(t)

(
∆κ(t)−

∫ t

0
L(t, s)∆κ(s)ds

)
= 0,

where the last equality above holds by (27) of the main paper. Therefore, we can see that c is indeed unique,

but κi is only unique up to adding a arbitrary common function ∆, which is consistent with our intuition. �

2.4 Proof of Theorem 2

The FCLT limits in Theorem 2 implies the FWLLN, that is, we have

(Hn
i , V

n
i )⇒ (wie, wie) in D2, for 1 ≤ i ≤ K, as n→∞,

where e(t) = 1. To prove part (i) of Theorem 2, it is sufficient to show that {V n
i , n ≥ 1} and {Hn

i , n ≥ 1}

are uniformly integrable (u.i.).

We first prove that the queue length Qni is u.i. To do so, note that Qni , which is further bounded by

the queue length of an Mt/GI/∞ infinite-server model, having arrival rate λni (t) and service hazard rate
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h̃i(x) = min{hi(x), µi}. Denote its queue length by Xn
∞(t). We have Q̄n(t) ≤st X̄n

∞(t). Because Xn
∞(t)

is a Poisson r.v., the u.i. of X̄n
∞(t) is straightforward. Specifically, we have

sup
n

E
[
(X̄n
∞(t))2

]
= sup

n

∫ t0 λni (t− x)Gi(x)dx

n
+

(∫ t
0 λ

n
i (t− x)Gi(x)dx

n

)2
 <∞, (53)

where Gi is the cdf having hazard rate h̃i. See Proposition A.2.2 in [2].

Next, we write the PWT

V n
i (t) =

Qni (t)∑
j=0

Uj ,

where Uj is the time between the jth and (j + 1)th departure times of existing waiting customers at queue

i. Here a departure includes abandonment and entrance to service. Then

E
[
V n
i (t)2

]
= E

Qni (t)∑
j=0

(Uj)
2 +

∑
j 6=k

UjUk


≤ (E[Qni (t)] + 1)

2`2i + `i
(nm↓µ̃)2

+ E[Qni (t)2 +Qni (t)]
`2i

(nm↓µ̃)2

where µ̃ ≡ min1≤i≤K µi.

Using the bound in (53), we have supn E
[
V n
i (t)2

]
<∞, which implies u.i. of V n

i (t). The u.i. of Hn
i is

straightforward because 0 ≤ Hn
i (t) ≤ T + wi.

We next prove part (ii) of Theorem 2. The TPoD for class-i customers

P(V n
i (t) > wi) = P(

√
n(V n

i (t)− wi) > 0) = P(V̂ n
i (t) > 0)

→ P(V̂i(t) > 0) = P
(
wi

(
Ĥ(t+ wi)− κi(t+ wi)

)
> 0
)

= P
(
Ĥ(t+ wi) > κi(t+ wi)

)
= P

(
Z >

κi(t+ wi)

σ
Ĥ

(t+ wi)

)
= P (Z > zαi) = αi,

where the third equality holds by (22) of the main paper. �

2.5 Proof of Corollaries 2–4

Proof of Corollary 2. Because the functions L(t, s) and J(t, s) are now separable in t and s, SDE of Ĥ

becomes

Ĥ(t) =
1

R(t)

∫ t

0
L̃(s)Ĥ(s)ds+

1

R(t)

∫ t

0
J̃(s)dW(s) +K(t), (54)
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where R(t), L̃(t) and J̃(t) are specified in Proposition 1. Multiplying R(t) on both sides and differentiating

(54) yield

R′(t)− L̃(t)

R(t)
Ĥ(t)dt+ dĤ(t) =

J̃(t)

R(t)
dW(t) +K ′(t)dt+

K(t)R′(t)

R(t)
dt.

Multiplying e
∫ t
0
R′(t)−L̃(t)

R(t)
dv on both sides and integrating from 0 to t yields

e
∫ t
0
R′(v)−L̃(v)

R(v)
dv
Ĥ(t) =

∫ t

0
e
∫ u
0
R′(v)−L̃(v)

R(v)
dv J̃(u)

R(u)
dW(u)

+

∫ t

0
e
∫ u
0
R′(v)−L̃(v)

R(v)
dv

dK(u) +

∫ t

0
e
∫ u
0
R′(v)−L̃(v)

R(v)
dvK(u)R′(u)

R(u)
du.

or equivalently,

Ĥ(t) =

∫ t

0
e
−

∫ t
u
R′(v)−L̃(v)

R(v)
dv J̃(u)

R(u)
dW(u)

+

∫ t

0
e
−

∫ t
u
R′(v)−L̃(v)

R(v)
dv

dK(u) +

∫ t

0
e
−

∫ t
u
R′(v)−L̃(v)

R(v)
dvK(u)R′(u)

R(u)
du. (55)

Note that

e
−

∫ t
u
R′(v)−L̃(v)

R(v)
dv

= elogR(u)−logR(t)e
∫ t
u
L̃(v)
R(v)

dv
=
R(u)

R(t)
e
∫ t
u
L̃(v)
R(v)

dv
. (56)

Combining (55) and (56) yields the desired solution in Corollary 2. The variance formula in Corollary 2

easily follows from the isometry of the Brownian integral. �

Proof of Corollary 3. When λi(t) = λi, and µi = µ we automatically achieve

mi(t) = mi ≡
λiF

c
i (wi)

µ
, η(t) = η ≡

K∑
i=1

ηi =

K∑
i=1

wiλiF
c
i (wi) (57)

and the variance formula simplifies to

σ2
Ĥ

(t) =

∑K
i=1 (F ci (wi)λi + µmi)

e2µtη2

∫ t

0
e

2
η (ηµu+

∫ t
u

∑K
i=1 ηi(µ−hFi (wi))dv)du

=
2
∑K

i=1 F
c
i (wi)λi

η2
e
− 2t
η

∑K
i=1 ηihFi (wi)

∫ t

0
e

2u
η (

∑K
i=1 ηihFi (wi))du.

Now, the integral is of an elementary function and after simplification and letting t go to infinity, we have

the following expression for the asymptotic variance:

σ2
Ĥ

(t) =

∑K
i=1 F

c
i (wi)λi

η
∑K

i=1 ηihFi(wi)
∑K

i=1 ηihFi(wi)

(
1− e−

2t
η

∑K
i=1 ηihFi (wi)

)
→

∑K
i=1 λiF

c
i (wi)∑K

i=1wiλiF
c
i (wi)

∑K
i=1wiλifi(wi)

,

Therefore, at t→∞, we have

κi(t)→ κi = z1−αi

√ ∑K
i=1 λiF

c
i (wi)∑K

i=1wiλiF
c
i (wi)

∑K
i=1wiλifi(wi)

, ci(t)→ ci ≡
wiλifi(wi)

µ
κi.

And the convergence occurs exponentially fast. �
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Proof of Corollary 4. When K = 1, the variance formula (39) simplifies to

σ(t) =
e−hF (w)t

η(t)

√∫ t

0
e2hF (w)u (F c(w)λ(u− w) + µm(u)) du.

Therefore, the second-order staffing term

c(t) = z1−αe
−µt

e−hF (w)teµt

√∫ t

0
e2hF (w)u (F c(w)λ(u− w) + µm(u)) du

−(µ− hF (w))

∫ t

0
e−hF (w)seµs

√∫ s

0
e2hF (w)u (F c(w)λ(u− w) + µm(u)) duds

)

= z1−αe
−µt
(
Z(t)− (µ− hF (w))

∫ t

0
Z(s)ds

)
for Z(t) given in Corollary 5. �

3 Additional Numerical Studies

3.1 Implementation Details

All Monte Carlo simulations were conducted using MATLAB. We sample the values of the performance

functions at fixed time points ∆T, 2∆T, . . . , N∆T = T where T = 24 is the length of the time interval,

the step size (sampling resolution) is ∆T = 0.01, and N = T/∆T = 2400 is the total number of samples

in [0, T ]. To collect simulated data of PWT, on each simulation run, we create frequent virtual arrivals at

all queues with interarrival time ∆T . These virtual customers behave like real customers while in the queue

and capture what the system experience would be like for a customer had they arrived at the given sampling

time points. However, these virtual customers, when they are eventually moved to the head of the queue and

assigned with a server, will not enter service; instead, they are removed immediately from the system after

their elapsed waiting times have been recorded. For instance, the jth (1 ≤ j ≤ N ) class-i virtual customer

arrives at queue i at time j∆T . If this customer is removed (from the head of the line) at time t, then the

system collects a sample for the class-i PWT at time j∆T on the lth run: V l
i (j∆T ) = t− j∆T . The class-i

mean PWT and TPoD at time tj ≡ j∆T are estimated by averagingm (e.g., m = 5000) independent copies

of Vi(j∆T ) and indicators 1{Vi(j∆T )>wi}, namely, we use the unbiased Monte-Carlo estimators

̂E[Vi(tj)] ≡
1

m

m∑
l=1

V l
i (j∆T ) and ̂P(Vi(tj) > wi) ≡

1

m

m∑
l=1

1{V li (j∆T )>wi}.

The numerical integrations (for the variance formulas and control functions) were done using the trapezoidal

method in MATLAB.
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3.2 Additional simulations for TPoD using the two-class base model

3.2.1 Confidence intervals

Supplementing Figure 4 in the main paper, we provide a the 100(1 − β)% = 99% confidence intervals

(CIs) for the two-class based model. See Figure 2 for the variance bands (shaded in grey). Recall at every

t ∈ [0, T ], we use the unbiased estimator Yi(t) ≡ 1{Vi(t)>wi} to estimator the class-i TPoD, which has

mean E[Yi(t)] ≈ αi and variance Var(Yi(t)) ≈ αi(1 − αi). Based on this, the half width of the CI is

z1−β/2
√

Var(Yi(t))/
√
m ≈ 0.0146, when the number of samples is m = 5000. Figure 2 shows that our

Monte-Carlo simulations indeed yield accurate estimations of TPoDs, which meet desired targets at all

times.
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Figure 2: Simulation comparison for a two-class model with 99% confidence intervals simulated class-

dependent TPoD P(Vi(t) > wi), with µ1 = µ2 = 1, n = 50, w1 = 0.5, w2 = 1, α1 = 0.2, α2 = 0.8, and

5000 independent runs.

3.2.2 Class-dependent service rates

We extend the two-class base model in §4.1 of the main paper to the case of class-dependent service rates,

µ1 = 0.5 and µ2 = 1. In this case we numerically compute the variance process of Ĥ(t) and required

control functions using our contraction based algorithm given in Remark 2.2. We pick the error tolerance

ε = 10−6; and our contraction-based algorithm converges in 42 iterations. Similar to the case of class-

independent service rates, TV-SRS and TV-DPS continue to achieve good TPoD performance. See Figure 3

for the simulation results.
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Figure 3: Simulation comparison for a two-class model with class-dependent rates: (i) arrival rates (top

panel); (ii) simulated class-dependent TPoD P(Vi(t) > wi) (middle panel); and (iii) time-varying staffing

level (bottom panel), with µ1 = 0.5, µ2 = 1, n = 50, w1 = 0.5, w2 = 1, α1 = 0.2, α2 = 0.8, and 5000

independent runs.

3.2.3 Bigger staffing intervals

We extend our discussion in §4.1.2 of the main paper to further study the impact of inflexible staffing

functions. We do so by increasing ∆s. In Figure 4, we compare the TPoD performance for a system staffed

according to the MSL method with ∆s = 0.5 and ∆s = 2. As expected, when increasing the interval length,

the staffing level becomes too rough to cope with the time-varying demand, thus unable to achieve desired

performance stabilization.

3.2.4 Smaller delay targets

In §4.2.1 of the main paper, we have considered the case of small delay targets w1 = 0.1, w2 = 0.2, Figure

6 there shows that our methods continue to achieve stable performance for both classes. We now set w1 and

w2 to values that are closer to 0. In Figure 5, we give simulations for two cases of smaller wi: (a)w1 = 0.05,

w2 = 0.1; and (b) w1 = 0.01, w2 = 0.02. The other parameters are the same as in Figure 6 of the main

paper. According to Figure 5, we see that stable TPoD performance is achieved for case (a); however, our
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Figure 4: Simulation comparison for a two-class model with fixed-staffing intervals: (i) arrival rates (top

panel); (ii) simulated class-dependent TPoD P(Vi(t) > wi) (middle panel); and (iii) time-varying MSL

staffing ∆s = 0.5, 2 (bottom panel), with µ1 = µ2 = 1, n = 50, w1 = 0.5, w2 = 1, α1 = 0.2, α2 = 0.8,

and 5000 independent runs.

method is no longer effective for case (b). This is consistent with our intuitions. First, all heavy-traffic

results on asymptotic service differentiation have been established under the assumption that wi > 0, which

puts the model in the efficiency-driven regime (namely, the system is asymptotically overloaded). However,

for any finite n (hereby n = 50), a small wi ≈ 0 will place the system in the quality-and-efficiency driven

(QED) regime. Therefore, effective TPoD control with extremely small wi will require the knowledge of

the corresponding FCLT limits in the QED regime. In the case wi = 0 so that TPoD degenerates to PoD,

our method should fail completely. After all, wi appears in the denominator of the TV-DPS control formula.

We remark that the problem of achieving differentiated and stabilized PoD performance remains an open

problem.

3.2.5 Relaxation of the assumption on class-dependent arrival times

Recall that at the beginning of §2 of the main paper, we made the following assumptions on the arrival

processes.
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Figure 5: Simulation comparison for a two-class model with smaller delay targets: (i) arrival rates (top

panel); (ii) simulated class-dependent TPoD P(Vi(t) > wi) (middle panel); and (iii) time-varying staffing

(bottom panel), with (a) w1 = 0.05, w2 = 0.1 (left) and (b) w1 = 0.01, w2 = 0.02, µ1 = µ2 = 1, n = 50,

α1 = 0.2, α2 = 0.4, and 5000 independent runs.

Assumption 3.1 (Arrivals begin at different times) Each class-i arrival processAi(t) begins at time−wi <

0, 1 ≤ i ≤ K.

Such an assumption is imposed to facilitate the mathematical treatment. We now elaborate: Given class-

dependent delay targets 0 < w1 ≤ w2 ≤ · · · ≤ wK (without loss of generality we order them in the

increasing order), each class-i arrival process begins at a different (negative) time −wi, and class-i arrivals

begin to occur earlier than class-j arrivals for i > j. By time 0 at which we begin to serve all customers

following TV-SRS and TV-DPS, we already have enough candidate customers, and more important, each

class-i HoL customer is “old” enough (reaching the specific class-i delay target wi). This provide a clean

condition for us to implement TV-DPS. (Note that we do not serve any customer until time 0 because our

TV-SRS s(t) = 0 for t < 0.)

We now relax Assumption 3.1 by allowing customers of all classes to arrive at the same time t = 0.

Without loss of generality, we can simply let all customer classes to begin their arrival processes at time

−wK = max
1≤i≤K

wi < 0. (It suffices to later shift time by wK units.)

Assumption 3.2 (Arrivals begin at the same times) All arrival processes {Ai(t), 1 ≤ i ≤ K} begin at the

same time −w∗ ≡ − max
1≤i≤K

wi < 0.
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Comparing Assumption 3.2 to Assumption 3.1, we now allow additional arrivals to occur before time 0 for

classes 1, 2, . . . ,K − 1. Specifically, extra class-i arrivals occur in the augmented interval [−wK ,−wi),

1 ≤ i ≤ K − 1. In the nth system, Assumption 2 add approximately O(n(wK − wi)) initial customers to

the ith queue, 1 ≤ i ≤ K − 1.

We first give a numerical example to illustrate the effect of adding additional customers at time 0 under

Assumption 3.2 with the system operating under TV-SRS and TV-DPS based on Assumption 3.1 (the for-

mulas currently used in the main paper). In Figure 6, we reuse our two-class base example. The second plot

shows that that the additional initial customers can have significant impact on the TPoD performance; they

cause an initial rampdown (understaffing), see the dotted-and-dashed lines. We believe this performance is

still acceptable, because stable TPoD is achieved after some initial “warmup” time.

Nevertheless, we next discuss how to adjust our staffing and scheduling formulas to eliminate the initial

TPoD bumps. To treat the new (more complex) assumption 3.2, we follow the discussions in Remark 3

of the main paper. We partition the negative interval [−wK , 0) into K consecutive subintervals: I1 ≡

[−wK ,−wK +w1), I2 ≡ [−wK +w2,−wK +w3), . . . , IK ≡ [−wK +wK−1, 0). In the interval I1, we do

not serve any customers. In I2, we act as if there is one customer class, namely, class 1 (we compute the TV-

SRS formula using arrival rate λ1(t)1{t∈I1}). In I3, we pretend that there are only two classes, namely class

1 and 2 (we only serve the first two classes using 2-class TV-SRS and TV-DPS formulas calculated based on

arrival rates λ1(t)1{t∈I2} and λ2(t)1{t∈I1∪I2}). In the interval Ii, 3 ≤ i ≤ K, we serve the first i−1 classes

and compute the TV-SRS and TV-DPS formulas using arrival rates λ1(t)1{t∈Ii−1}, λ2(t)1{t∈Ii−2∪Ii−1}, . . .,

λi−1(t)1{t∈I1∪···∪Ii−1}. At time 0 and beyond, the TV-SRS and TV-DPS rules are implemented in the usual

way for all classes (using arrival rates λ1(t)1{−w1≤t≤T}, . . ., λK(t)1{−wK≤t≤T}).

Using the same two-class example, we plot the simulated TPoD curves in Figure 6 under the refined

policy; see the two solid lines in plot 2. This shows that our refinement on our “piecewise” TV-SRS and TV-

DPS in consecutive intervals indeed achieve stable TPoD performance starting from the beginning (without

needing a warmup period). See plot 3 of Figure 6 for the two staffing functions.

3.3 Staffing and scheduling to differentiate the mean PWT

We have shown in Theorem 2 of the main paper that TV-SRS and TV-DPS achieves asymptotic stabilization

for both mean delay E[Vi(t)] and TPoD P(Hi(t) > wi) at desired targets wi and αi.

We will next provide simulations to confirm the effectiveness of our methods using E[Vi(t)] as the

performance metric. First, we note that this is a performance metric that depends only on wi, not αi; and our

fine-tuning second-order control functions (second-order safety staffing term c and second-order scheduling
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Figure 6: Simulation comparison for a two-class model with both classes begin to arrival at the same time

−w2: (i) arrival rates (top panel); (ii) simulated class-dependent TPoD P(Vi(t) > wi) under both staffing

functions (middle panel); and (iii) two staffing functions (bottom panel), with w1 = 0.05, w2 = 0.1,

µ1 = µ2 = 1, n = 50, α1 = 0.2, α2 = 0.8, and 5000 independent runs.

threshold κi) are developed to account for the probability target αi. Indeed, it is clear from (14) and (15)

of the main paper that these second-order terms will play negligible roles as the scale n increases, which is

consistent with our asymptotic stability results in Theorem 2. For simplicity, in this section we will set the

probability target αi = 0 for all 1 ≤ i ≤ K, so that c(t) = κi(t) = 0 and TV-DPS and TV-SRS degenerate

to the simpler HWT-based dynamic prioritization and offered-load staffing

i∗ ∈ arg max
1≤i≤K

{
Hi(t)

wi

}
and s(t) = m(t). (58)

This simplification is intuitive: The basic idea of using the second-order terms to set the tail probability

P(V n
i (t) > wi) to αi is to asymptotically adjust the mean of the nearly Gaussian distributed V̂ n

i (t) so that

the probability mass above 0 is equal to αi, see (31) of the main paper. According to the symmetric structure

of the limiting Gaussian distribution, we should set αi = 0 in order to have the mean of V n
i (t) balanced at
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wi.

We next give simulation results. consider sinusoidal arrival rates

λi(t) = λ̄i (1 + ri sin(γit+ φi)) , 1 ≤ i ≤ K, (59)

with average rate λ̄i, relative amplitude |ri| < 1, frequency γi, and phase φi. We first consider a two-

class base model, where Class 1 and Class 2 represent high and low priority customers respectively. We

let λ̄1(t) = 1, λ̄2(t) = 1.5, r1 = 0.2, r2 = 0.3, γ1 = γ2 = 1, φ1 = 0, φ2 = −1. Abandonment times

follow class-dependent exponential distributions with PDF fi(x) = θie
−θix. We let θ1 = 0.6, θ2 = 0.3.

Service rates are class-independent and standardized so that µ1 = 0.5, µ2 = 1 (with mean service time

1/µi = 1). To prioritize Class 1, we set higher QoS levels (i.e., lower target wait time). We set our target

QoS parameters as w1 = 0.5 and w2 = 1 (α1 = α2 = 0.5).

Paralleling §4 in the main paper, we consider the following cases:

(i) Base case. The two-class model described above with sinusoidal arrival rates in (59), and scale

n = 50. See Figure 7 and Table 9. The relative performance difference is controlled under 3%.

(ii) High QoS. The example in (i) with smaller delay targets w1 = 0.1, w2 = 0.2. See Figure 8.

(iii) Smaller arrival rate. The example in (i) having the sinusoidal arrival rates in (59) with n = 5. See

Figure 9.

(iv) Mixed arrivals. The example in (i) with class-1 arrival rate reduced by an order of magnitude (i.e.,

λ̄1 = 0.1. See Figure 10.

(v) Five-class example. The five-class example in §4.2.5 of the main paper, with αi = 0.5, 1 ≤ i ≤ 5.

See Figure 11.

Table 2: Five Class Model: Class specific parameters and QoS target levels

Class parameters Delay targets

Class λ̄ r γ φ θ µ w

1 1.0 0.20 0.5 0 0.6 1 0.2

2 1.5 0.30 1.0 -1 0.3 1 0.4

3 1.2 0.05 1.3 1 0.5 1 0.6

4 1.1 0.15 1.6 -2 1.0 1 0.8

5 1.6 0.40 2.0 2 1.2 1 1.0
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The Monte-Carlo simulations are conducted by generating m independent runs, with m = 5000 when the

scale n = 50 andm = 20000 when n = 5. From Figures 7–11, we conclude that our staffing and scheduling

rules in (58) successfully achieve stabilized performance across all classes.
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Figure 7: Simulation comparison for a two-class model: (i) arrival rates (top panel); (ii) simulated class-dependent

mean PWT E[Vi(t)] (middle panel); and (iii) time-varying MSL staffing (bottom panel), with µ1 = 0.5, µ2 = 1,

n = 50, w1 = 0.5, w2 = 1, and 5000 independent runs.

Table 3: A two-class base case: Average, max, and min of (simulated) delay and relative differences to their

target levels, using floored, rounded, and ceiled versions of the TV-SRS formula.

Avg. Max Min

Class Floor Round Ceiling Floor Round Ceiling Floor Round Ceiling

1
w1 0.4980 0.4983 0.4991 0.5019 0.5013 0.5035 0.4940 0.4945 0.4967

% (-0.39) (-0.34) (-0.18) (+0.38) (+0.25) (+0.69) (-1.20) (-1.09) (-0.66)

2
w2 0.9823 0.9828 0.9845 0.9928 0.9902 0.9965 0.9720 0.9717 0.9755

% (-1.77) (-1.72) (-1.55) (-0.72) (-0.98) (-0.35) (-2.80) (-2.83) (-2.45)
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Figure 10: Simulation comparison for a two-class model with mixed magnitudes of arrivals: (i) arrival rates (top

panel); (ii) simulated class-dependent mean PWT E[Vi(t)] (middle panel); and (iii) time-varying MSL staffing (bottom

panel), with µ1 = 0.5, µ2 = 1, n = 100, λ̄1 = 0.1, w1 = 0.1, w2 = 0.2, and 5000 independent runs.
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Figure 11: Simulation comparison for a fixe-class model: (i) arrival rates (top panel); (ii) simulated class-dependent

mean PWT E[Vi(t)] (middle panel); and (iii) time-varying MSL staffing (bottom panel), with 5000 independent runs,

and model parameters given in Table2
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