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E-Companion

Supplementing the main paper, in this appendix we give additional results. In §EC.1, we give

proofs of all results in the main paper. In §EC.2, we consider the SSRD with preemptive service.

In §EC.3, we give additional discussions on how our results compare to Xu et al. (2015). In §EC.4

we provide additional simulation results.

EC.1. Proofs

Proof of Theorem 1

According to the waiting time formulas (6) and (9), wSSRD <w0 is equivalent to(
p1

µ2
1

+
p2

µ2
2

)
µ2

0 <
θ1 + θ2− (ρ1θ1 + ρ2θ2)

θ1 + θ2− ρ(p1θ1 + p2θ2)
. (EC.1)

Because p1/µ1 + p2/µ2 = 1/µ0, the left-hand side of (EC.1)(
p1

µ2
1

+
p2

µ2
2

)
µ2

0 = 1 + p1p2 (1/µ1− 1/µ2)
2 ·µ2

0, (EC.2)

and the right-hand side of (EC.2)

θ1 + θ2− (ρ1θ1 + ρ2θ2)

θ1 + θ2− ρ(p1θ1 + p2θ2)
= 1 +

λ0(θ2− θ1)p1p2(1/µ1− 1/µ2)

θ1 + θ2− ρ(p1θ1 + p2θ2)
. (EC.3)

We require that the second term of (EC.2) is positive, which implies that µ2 > µ1 when θ2 > θ1.

Combining (EC.1), (EC.2) and (EC.3) yields that

λ0(θ2− θ1)

θ1 + θ2− ρ(p1θ1 + p2θ2)
> (1/µ1− 1/µ2) ·µ2

0,

or equivalently
ρ

(p2− p1)(1− ρ) + (2− ρ)/θ0

(
1
θ1
− 1

θ2

) >µ0

(
1

µ1

− 1

µ2

)
. (EC.4)

Let Cθ ≡ θ2/θ1 and Cµ ≡ µ2/µ1, we have θ1 = θ0(p1 +p2/Cθ), µ1 = µ0(p1 +p2/Cµ). Plugging Cθ and

Cµ into (EC.4), we can further algebraically simplify (EC.4) to

Cθ + 1− ρ
(1− ρ)Cθ + 1

>Cµ. (EC.5)

It is noted that Cθ+1−ρ
(1−ρ)Cθ+1

is increasing in Cθ, which is upper bounded by 1/(1− ρ). Thus we have

Cµ < 1/(1− ρ). By noticing that (1− ρ)Cµ < 1, then (EC.5) can be transformed to

Cθ >
Cµ + ρ− 1

1− (1− ρ)Cµ
and Cµ <

1

1− ρ,

which completes this proof. �
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Proof of Lemma 1

To prove part (i), we decompose −A into a summation of an identity matrix I and an matrix B

as follow

−A = I +


−∑m

i=1 a1,i− a1,1 −a1,2 · · · −a1,m

−a2,1 −∑m

i=1 a2,i− a2,2 · · · −a2,m

... · · · . . .
...

−am,1 am,2 · · · −∑m

i=1 am,i− am,m

= I + B,

where I is an m-dimensional identity matrix. Based on the definition of ai,j, we have −∑m

i=1 ak,i−
ak,k ∈ (−1,0) for i, k = 1,2, ...,m and −ai,j ∈ (−1,0) for i 6= j, thus all elements of B are in the

interval (−1,0], then the inverse of −A can be expressed as

(−A)−1 = (I + B)−1 = I +
∞∑
i=1

(−1)iBi.

Because B < 0, we have (−1)iBi > 0 for i > 1. Therefore, (−A)−1 = (I + B)−1 > I −B. Hence,

we can obtain that A−1 = −(I + B)−1 < −(I−B) ≤ −I < 0. Notice that x = −A−1e, where −xi
equals the summation of the elements of the ith row of matrix A−1, in which A−1 ≤−I, thus the

summation of the elements in each row of A−1 is smaller than −1, i.e., −xi < −1 (xi > 1) for

i= 1,2, ...,m, which completes this proof.

(ii) Because x =−A−1e, the solutions x1, . . . , xm satisfy

m∑
k=1

Ckρk
Ck +Ci

(xi +xk) = xi− 1 and
m∑
k=1

Ckρk
Ck +Cj

(xj +xk) = xj − 1.

Without loss of generality, we assume i < j, so that

xi−xj =
m∑
k=1

Ckρkxk
Ck +Ci

− Ckρkxk
Ck +Cj

+
m∑
k=1

Ckρkxi
Ck +Ci

− Ckρkx2

Ck +Cj

>
m∑
k=1

Ckρkxk
Ck +Ci

− Ckρkxk
Ck +Cj

+
m∑
k=1

Ckρkxi
Ck +Ci

− Ckρkxj
Ck +Ci

=A0 +B0(xi−xj).
(EC.6)

Hence we can obtain that xi−xj >A0/(1−B0), whereA0 =
∑m

k=1Ckρkxk/(Ck+Ci)−Ckρkxk/(Ck+

Cj), B0 =
∑m

k=1Ckρk/(Ck+Ci). Because B0 <
∑m

k=1 ρk = ρ< 1 and A0 > 0, it is obvious to see that

xi−xj > 0 .

(iii) We assume ρi > 0 for all i= 1,2, ...,m (If ρk = 0 for some k, the m-grade case degenerates to

the (m− 1)-grade case). Because Ax = e, multiplying Ci to the ith row and dividing by Cj for the

jth column of A yields
 ρ1 · · · ρm

...
. . .

...
ρ1 · · · ρm

+


∑m

i=1 a1,i− 1− a1,1 −a1,2 · · · −a1,m
−a2,1

∑m

i=1 a2,i− 1− a2,2 · · · −a2,m
... · · · . . .

...
−am,1 −am,2 · · · ∑m

i=1 am,i− 1− am,m


 ·


x1

C2x2

...
Cmxm

=


−1
−C2

...
−Cm

 .

(EC.7)
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Omitting the last row (after some algebraic steps), we have
−b1,1 b1,2 · · · −b1,m

−b2,1 −b2,2 · · · −b2,m

...
...

. . .
...

−bm−1,1 −bm−1,2 · · · bm−1,m




x1

C2x2

...
Cmxm

=


C2− 1
C3−C2

...
Cm−Cm−1

 , (EC.8)

where bi,j ≥ 0 and

bk,i =

(
1

Ck +Ci
− 1

Ck+1 +Ci

)
Ciρi, k 6= i, i− 1;

bk,k = 1−
(

m∑
i=1

Ciρi
Ck +Ci

)
+

(
1

Ck +Ck
− 1

Ck+1 +Ck

)
Ckρk, k= 1, . . . ,m− 1;

bk,k+1 =
∑
j 6=k+1

bk,j, k= 1, . . . ,m− 1.

(EC.9)

Because Ck+1 >Ck and bk,k+1 =
∑

j 6=k+1 bk,j for k= 1, . . . ,m− 1, (EC.8) implies that

m∑
j=1

b1,jC2x2 >
m∑
j=1

b1,jCjxj,

m∑
j=1

bk,jCk+1xk+1 >
m∑
j=1

bk,jCjxj, k= 2, ...,m− 2;

m∑
j=1

bm−1,jCmxm >
m∑
j=1

bm−1,jCjxj.

It is easy to find that Ckxk (k≥ 2) is not the smallest one among x1,C2x2, . . . ,Cmxm, otherwise we

have
∑m

j=1 bk−1,jCkxk ≤
∑m

j=1 bk−1,jCjxj, which contradicts to the inequalities above. Therefore,

we must have x1 < Cixi (i ≥ 2). Next, we will prove C2x2 < Cixi for i = 3, . . . ,m in a similar

way. In (EC.8), dividing by Ci+1−Ci in ith row for i= 1, . . . ,m− 1 and subtracting ti = bi,1(C2−
1)/[b1,1(Ci+1−Ci)] times of the first row in ith row for i= 2, . . . ,m− 1 leads to

−b′1,1 b′1,2 · · · −b′1,m
0 −b′2,2− t2b′1,2 · · · −b′2,m + t2b

′
1,m

...
...

. . .
...

0 −b′m−1,2− tm−1b
′
1,2 · · · b′m−1,m + tm−1b

′
1,m




x1

C2x2

...
Cmxm

=


1

1− t2
...

1− tm−1

 , (EC.10)

where b′i,j = bi,j/(Ci+1 − Ci). In order to find the relationships among C2x2,C3x3 . . . ,Cmxm, we

rewrite the above equations as
−C2,2 C2,3 · · · −C2,m

−C3,2 −C3,3 · · · −C3,m

...
...

. . .
...

−Cm−1,2 −Cm−1,3 · · · Cm−1,m




C2x2

C3x3

...
Cmxm

=


a2

a3

...
am−1

 , (EC.11)
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where

Ck,2 =
b1,1bk,2 + b1,2bk,1
(Ck+1−Ck)b1,1

> 0, k= 2, . . . ,m− 1;

Ck,k+1 =
b1,1bk,k+1 + b1,k+1bk,1

(Ck+1−Ck)b1,1

> 0, k= 2, . . . ,m− 1;

Ck,j =
b1,1bkj − b1,jbk,1
(Ck+1−Ck)b1,1

, j 6= 2, k+ 1;

ak = 1− tk, k= 2, . . . ,m− 1.

(EC.12)

Based on the definition of Ci,j, it is easy to verify that Ck,k+1 =
∑

j 6=k+1Ck,j for k= 2, ...,m− 1.

The structure of (EC.11) is similar to (EC.8). If ak > 0 and Ck,j > 0, we have

m∑
j=2

C2,jC3x3 >
m∑
j=2

b2,jCjxj,

m∑
j=2

Ck,jCk+1xk+1 >
m∑
j=2

bk,jCjxj, k= 3, ...,m− 2;

m∑
j=2

Cm−1,jCmxm >
m∑
j=2

bm−1,jCjxj.

Hence, we can deduce C2x2 <Cixi for i= 3, ...,m. Therefore, it is sufficient to complete the proof

by showing that ak > 0 and Ck,j > 0.

Because (C2− 1)/[(Ck+1 + 1)(Ck + 1)]< 1/(C2 + 1), we have

b1,1−
bk,1(C2− 1)

Ck+1−Ck
> 1−

(
ρ1 +

m∑
i=2

Ci
1 +Ci

ρi

)
> 1− ρ> 0, (EC.13)

which implies that ak > 0 for k= 2, ...,m− 1.

Note that we have Ck,2 > 0 and Ck,k+1 > 0 from (EC.12), it remains to show that Ck,j > 0 for

2≤ k≤m− 1 and j /∈ {2, k+ 1}, we consider the following cases:

(1) When j = k, we need to prove b1,1bk,k > b1,kbk,1, that is(
1

1 +Ck
− 1

C2 +Ck

)
Ckρk

(
1

1 +Ck
− 1

1 +Ck+1

)
ρ1

<

[
1−

m∑
i=1

Ci
1 +Ci

ρi +

(
1

2
− 1

1 +C2

)
ρ1

][
1−

m∑
i=1

Ci
Ck +Ci

ρi +

(
1

2
− Ck
Ck +Ck+1

)
ρk

]
.

It is straightforward to verify that

1−
m∑
i=1

Ci
1 +Ci

ρi +
ρ1

2
+

Ckρk
Ck + 1

> 1−
m∑
i=1

ρi + ρ1 + ρk,

1−
m∑
i=1

Ci
Ck +Ci

ρi +
ρk
2

+
ρ1

Ck + 1
> 1−

m∑
i=1

ρi + ρ1 + ρk.
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By letting Y ≡ 1− ρ+ ρ1 + ρk, we have[
1−

m∑
i=1

Ci
1 +Ci

ρi +

(
1

2
− 1

1 +C2

)
ρ1

][
1−

m∑
i=1

Ci
Ck +Ci

ρi +

(
1

2
− Ck
Ck +Ck+1

)
ρk

]

>

[
Y −

(
ρ1

C2 + 1
+

Ckρk
1 +Ck

)][
Y −

(
ρ1

Ck + 1
+

Ckρk
Ck +Ck+1

)]
>

[
1−

(
x

C2 + 1
+

Cky

1 +Ck

)]2

Y 2

and (
1

1 +Ck
− 1

C2 +Ck

)
Ckρk

(
1

1 +Ck
− 1

1 +Ck+1

)
ρ1 <

Ck
1 +Ck

y
x

1 +Ck
Y 2,

where x= ρ1/Y, y= ρk/Y .

Therefore, it is sufficient to show that [1− (2/x+ āy)]2 > ā(1− ā)xy, where ā≡Ck/(Ck + 1), ā∈
(1/2,1), i.e. 2/x + āy +

√
ā(1− ā)xy < 1. Define φ(x) ≡ 2/x + ā(1 − x) +

√
ā(1− ā)x(1−x) >

2/x + āy +
√
ā(1− ā)xy so that φ′(x) = [1/2 − ā + (

√
ā(1− ā)(1 − 2x))/(2

√
x(1−x))]. Setting

Ā ≡ (2ā− 1)2/[ā(1− ā)], we find that (i) when 0 < x < 1/2−
√
Ā/(4Ā+ 16), φ′(x) > 0 and (ii)

when 1/2−
√
Ā/(4Ā+ 16)<x< 1, φ′(x)< 0, then we derive that 2/x+ āy+

√
ā(1− ā)xy < φ(x)≤

maxφ(x) = f(1/2−
√
Ā/(4Ā+ 16)) = (ā+ 1)/2< 1.

(2) When j 6= k, we need to prove b1,1bk,j > b1,jbk,1, that is

C2− 1

(Ck + 1)(Ck+1 + 1)

(Ck+1 +Cj)(Ck +Cj)

(1 +Cj)(C2 +Cj)
ρ1 < 1−

m∑
i=1

Ci
1 +Ci

ρi +

(
1

2
− 1

1 +C2

)
ρ1.

Define Ψ(x) = (Ck+1 +x)(Ck +x)/[(Ck+1 + 1)(Ck + 1)]− (1 +x)(C2 +x)/(C2 + 1). We have

Ψ′(x) = 2x

(
1

(Ck+1 + 1)(Ck + 1)
− 1

C2 + 1

)
+

Ck +Ck+1

(Ck+1 + 1)(Ck + 1)
− 1< 0

for all x≥ 1. Then Ψ(x) is decreasing in x≥ 1. Notice that Ψ(1) =−1, then Ψ(x)< 0 for x≥ 1,

which gives that Ψ(Cj)< 0 for j 6= k. Then we can get that

Ψ(Cj)

(1 +Cj)(C2 +Cj)
< 0 ⇔ 1

(Ck + 1)(Ck+1 + 1)

(Ck+1 +Cj)(Ck +Cj)

(1 +Cj)(C2 +Cj)
<

1

C2 + 1
,

⇔ C2

(Ck + 1)(Ck+1 + 1)

(Ck+1 +Cj)(Ck +Cj)

(1 +Cj)(C2 +Cj)
<

C2

C2 + 1
,

which implies that

C2− 1

(Ck + 1)(Ck+1 + 1)

(Ck+1 +Cj)(Ck +Cj)

(1 +Cj)(C2 +Cj)
+

1

C2 + 1
< 1.

Therefore, we have

1−
m∑
i=1

Ci
1 +Ci

ρi +

(
1

2
− 1

1 +C2

)
ρ1−

C2− 1

(Ck + 1)(Ck+1 + 1)

(Ck+1 +Cj)(Ck +Cj)

(1 +Cj)(C2 +Cj)
ρ1

>1− ρ1−
m∑
i=2

Ci
1 +Ci

ρi > 1− ρ> 0,
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which completes our proof. �

Proof of Theorem 2 Our proof has two steps. First, we show the sub-optimality of m-grade case;

second, derive the optimal SSRD parameters for the 2-grade case.

Step 1: Sub-optimality of cases m≥ 3. The optimization problem (14) can be rewritten as

min
m∑
i=1

ρi
√
xi(ρ1, . . . , ρm)

s.t.
m∑
i=1

ρi = ρ< 1 (EC.14)

ρi ≥ 0, i= 1,2, . . . ,m,

where xi(ρ1, . . . , ρm) is a function of (ρ1, . . . , ρm) and it is the solution of the linear equation Ax =

−e. We apply the first-order Kuhn-Tucker condition to obtain the optimal work load ρ∗1, . . . , ρ
∗
m.

Let λ ≥ 0, µi ≥ 0 for i = 1, . . . ,m be the Lagrange multipliers (Luenberger and Ye 2008). The

corresponding Lagrangian of (EC.14) is

L(ρ1, . . . , ρm, λ,µ1, . . . , µm) =
m∑
i=1

ρi
√
xi(ρ1, . . . , ρm)−β(

m∑
i=1

ρi− ρ) +
m∑
i=1

αiρi. (EC.15)

The Kuhn-Tucker condition implies that if the minimizers ρ∗1, . . . , ρ
∗
m exist, there exist β ≥ 0,

αi ≥ 0, i= 1, . . . ,m such that

∂L

∂ρi
= 0, αiρi = 0, ρi, αi ≥ 0, i= 1, . . . , n, (EC.16)

which is equivalent to

√
xi +

1

2

(
x1iρ1√
x1

+
x2iρ2√
x2

+ · · ·+ xmiρm√
xm

)
−β+αi = 0, αiρi = 0, ρi, αi ≥ 0, i= 1, . . . ,m,

(EC.17)

where xi,j = ∂xi/∂ρj, which solves the linear equation

Abi =−Bix, (EC.18)

with bi = (xi,1, . . . , xi,m)T , e = (1, . . . ,1)T ,

B1 =


2c1,1 0 · · · 0
c2,1 c2,1 0 0

...
...

. . .
...

cm,1 0 0 cm,1

 , . . . , Bm =


c1,m 0 · · · c1,m

0 c2,m 0 c2,m

0
...

. . .
...

0 0 0 2cm,m

 , ci,j =
Cj

Ci +Cj
. (EC.19)

For all ρi > 0, we have bi = A−1BiA
−1e.
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We first consider the case m= 3 and later extend to the case of general m≥ 3 by induction. If

the optimal ρ∗1, ρ
∗
2, ρ
∗
3 are all strictly greater than 0, we find that αi = 0, i= 1,2,3 from Kunh-Tucker

conditions. Then ρ∗1, ρ
∗
2, ρ
∗
3 satisfy the following equations

f1(ρ1, ρ2, ρ3) = 2(
√
x1−

√
x2)−a(b1−b2) = 0,

f2(ρ1, ρ2, ρ3) = 2(
√
x1−

√
x3)−a(b1−b3) = 0,

(EC.20)

where a = (ρ1/
√
x1, ρ2/

√
x2, ρ3/

√
x3). Note that

b1−b2 = A−1(B1−B2)A−1e = A−1

 c2,1 c2,1− 1 0
c2,1 c2,1− 1 0
c3,1 −c3,2 c3,1− c3,2

A−1

 1
1
1

 . (EC.21)

Define the matrix

A−1 =

 d1,1 d1,2 d1,3

d2,1 d2,2 d2,3

d3,1 d3,2 d3,3

 ,

where dij ≤ 0 from (i) of Lemma 1. Because Ax =−e, we have

A−1

 c2,1 c2,1− 1 0
c2,1 c2,1− 1 0
c3,1 −c3,2 c3,1− c3,2

A−1

 1
1
1

=−A−1

 c2,1 c2,1− 1 0
c2,1 c2,1− 1 0
c3,1 −c3,2 c3,1− c3,2

x

=−

x1[(d1,1 + d1,2)c2,1 + d1,3c3,1]−x2[(d1,1 + d1,2)c1,2 + d1,3c3,2] +x3(c3,1− a3,2)d1,3

x1[(d2,1 + d2,2)c2,1 + d2,3c3,1]−x2[(d2,1 + d2,2)c1,2 + d2,3c3,2] +x3(c3,1− a3,2)d2,3

x1[(d3,1 + d3,2)c2,1 + d3,3c3,1]−x2[(d3,1 + d3,2)c1,2 + d3,3c3,2] +x3(c3,1− a3,2)d3,3

 .

From (iii) of Lemma 1, we have x1c2,1−x2c1,2 = x1/(C2 + 1)−C2x2/(C2 + 1)< 0, and

x1c3,1−x2c3,2 +x3c3,1−x3c3,2 =

(
x1

C3 + 1
− C2x2

C3 +C2

)
−
(
C3x3

C3 + 1
− C3x3

C3 +C2

)
<

(
C2x2

C3 + 1
− C2x2

C3 +C2

)
−
(
C3x3

C3 + 1
− C3x3

C3 +C2

)
= (C2x2−C3x3)

(
1

C3 + 1
− 1

C3 +C2

)
< 0,

where the inequalities hold because from C2x2 <C3x3 (part (iii) of Lemma 1). Since di,j ≤ 0, we

have (x1c2,1−x2c1,2)(di,1 + di,2) + [x1c3,1−x2c3,2 +x3c3,1−x3c3,2]di,3 > 0 for i= 1,2,3. Hence,

A−1

 c2,1 c2,1− 1 0
c2,1 c2,1− 1 0
c3,1 −c3,2 c3,1− c3,2

A−1

 1
1
1

< 0. (EC.22)

Therefore, we have b1 − b2 < 0, leading to a(b1 − b2)< 0 (note that a> 0). According to (ii) of

Lemma 1, we have x1 >x2, which implies that

f1(ρ1, ρ2, ρ3) = 2(
√
x1−

√
x2)−a(b1−b2)> 0,
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which cannot satisfy the optimal condition (EC.20). This shows that (ρ∗1, ρ
∗
2, ρ
∗
3) cannot be attained

in the region {(ρ1, ρ2, ρ3)|ρ1 > 0, ρ2 > 0, ρ3 > 0}. Therefore, we must have ρi = 0 for some i∈ {1,2,3}.
If there are ρi = ρj = 0 for i, j ∈ (1,2,3) and i 6= j, it degenerates to the homogenous service case.

Because we have shown that SSRD policy outperforms the homogeneous policy, there should be

only one ρi = 0 (the grade-2 case).

We next treat the general case m≥ 3. We assume that this structure holds for the i case, i≤m,

that is, if there are in total m service grades, the optimal SSRD allocation is to allocate the arriving

customers with two classes. We consider the m+ 1-grade case. If ρ∗i > 0 for i= 1, . . . ,m+ 1, similar

to (EC.20), we have

fk(ρ1, ..., ρm+1) = 2(
√
x1−

√
xk+1)−a(b1−bk+1) = 0, k= 1, . . . ,m. (EC.23)

When k= 1, similar to (EC.21), we have

b1−b2 = A−1(B1−B2)A−1e =−A−1


c2,1 c2,1− 1 0 · · · 0
c2,1 c2,1− 1 0 · · · 0
c3,1 −c3,2 c3,1− c3,2 · · · 0

...
... 0

. . . 0
cm,1 −cm,2 0 · · · cm,1− cm,2

x,

where B1 and B2 are defined as (EC.19) analogically. Denote di,j as the (i, j)th entries of A−1.

From (i) of Lemma 1, we have di,j ≤ 0. Because x1c2,1−x2c1,2 < 0, the kth element of the vector

A−1


c2,1 c2,1− 1 0 · · · 0
c2,1 c2,1− 1 0 · · · 0
c3,1 −c3,2 c3,1− c3,2 · · · 0

...
... 0

. . . 0
cm,1 −cm,2 0 · · · cm,1− cm,2

x

satisfies

x1[(dk,1 + dk,2)c2,1 +
m∑
i=3

dk,ici,1]−x2[(dk,1 + dk,2)c1,2 +
m∑
i=3

dk,ici,2] +xi

m∑
i=3

(ci,1− ci,2)dk,i

≥
m∑
i=3

dk,ici,1x1− dk,ici,2x2 + dk,ici,1xi− dk,ici,2xi

=
m∑
i=3

dk,i

[
x1

C1 + 1
− C2x2

Ci +C2

+
xi

Ci + 1
− C2xi
Ci +C2

]
=

m∑
i=3

dk,i

[
x1

C1 + 1
− C2x2

Ci +C2

+
Cixi

Ci +C2

− Cixi
Ci + 1

]
≥

m∑
i=3

dk,i(C2x2−Cixi)
(

1

Ci + 1
− 1

Ci +C2

)
> 0.

Therefore, we have b1−b1 < 0, which implies that f1(ρ1, . . . , ρm)> 0, because a(b1−b2)< 0 and
√
x1 >

√
x2 ((i) of Lemma 1). This means that ρi > 0 for all i can not be optimal for (m+ 1)-grade

case, so that we must have ρi = 0 for some i. Hence, the m+1 case degenerates to the k-grade case

for some k≤m.
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Step 2: Treating the m= 2 case. For the 2-grade case with C = θ2/θ1, the optimal allocation

probability can be derived directly from Proposition 1, namely,

p∗1(C,ρ) =
ρ1

√
1 +C −Cρ

ρ1

√
1 +C −Cρ+ ρ

√
1 +C − ρ, p∗2(C,ρ) =

ρ
√

1 +C − ρ
ρ1

√
1 +C −Cρ+ ρ

√
1 +C − ρ. (EC.24)

We next develop the optimal policy for ρ∗1(C) and ρ∗2(C) by unconditioning on ρ. Substituting

(EC.24) into (14), our minimization problem becomes

min
ρ1,ρ2

(ρ1

√
1 +C − ρ+ ρ2

√
1 +C −Cρ)2

1 +C −Cρ+ (C − 1)ρ1

s.t. ρ1 + ρ2 = ρ< 1.

(EC.25)

We can give the optimal SSRD results (as a function of C and ρ) below.

Let E = 1 +C−Cρ, F = 1 +C−ρ, ρ1 = z and ρ2 = ρ− z. Define g(z)≡ (
√
Fz+ (ρ− z)

√
E)2/[E+

(C − 1)z]. Then the first-order derivative of g(z) with respect to z is

dg(z)

dz
=

(
(
√
F −
√
E)z+

√
Eρ
)
·
(

(C − 1)(
√
F −
√
E)z−

(
(C − 1)

√
Eρ− 2((

√
F −
√
E)E)

))
(E+ (C − 1)z)2

.

(EC.26)

Because F > E and C > 1, it is easy to verify that (C − 1)(
√
F −
√
E)x > 0 and (C − 1)

√
Eρ−

2(
√
F −
√
E)E > 0. So we conclude that

dg(z)

dz

{
< 0, when 0< z <

√
Eρ√

F−
√
E
− 2E

C−1
;

> 0, when
√
Eρ√

F−
√
E
− 2E

C−1
< z < ρ.

Hence, z∗ =
√
Eρ/(

√
F −
√
E)− 2E/(C − 1) is the unique minimizer in (0, ρ). Substituting it into

p∗1(C,ρ) and p∗2(C,ρ) in (EC.24) yields (p∗1(C,ρ), p∗2(C2, ρ)) = (E/E+F ,F/E+F ). The correspond-

ing optimal SSRD parameters (ρ∗,p∗,µ∗,θ∗) and delay w∗(C,ρ) can be obtained, accordingly, by

replacing ρ1 with z∗.

We have showed that, if there are m≥ 2 “candidate” grades, it is optimal to consider 2 grades.

It remains to argue that we should choose grade 1 and grade m, not any other grade j, 1< j <m.

For a 2-grade SSRD policy with a fixed ρ > 0, w∗(C,ρ) is decreasing in C (see Proposition 2).

Hence, we have w∗(Cm, ρ)<w∗(Cm−1, ρ)< · · ·<w∗(C1, ρ). This concludes that it is optimal to to

allocate all customers to the classes having the maximum retrial rate (case m) and the minimal

retrial rate (case 1) (none to any other classes). �

Proof of Proposition 2 Plugging the optimal SSRD parameters ρ∗1, ρ
∗
2 and p∗1, p

∗
2 into (9), we

obtain that the expected waiting time as a function of C:

w∗(C,ρ) =
2ρ2(c2

v + 1)

(1− ρ)λ0

( √
(1 +C −Cρ)(1 +C − ρ)

(
√

1 +C −Cρ+
√

1 +C − ρ)2

)
+

ρ

(1− ρ)θ0

,
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which has the derivative with respect to C

dw∗(C,ρ)

dC
=− (c2

v + 1)(2− ρ)ρ4(C − 1)

2
√

1 +C − ρ√1 +C −Cρ
(√

1 +C − ρ+
√

1 +C −Cρ
)4

(1− ρ)λ0

. (EC.27)

Since C > 1 and ρ< 1, we can easily validate that dw∗(C,ρ)/dC < 0, so that w∗(C,ρ) is decreasing

in C ≥ 1. Letting C→∞ in (15)–(17) yields (19)–(20). �

Proof of Proposition 3 Let E = 1 +C −Cρ and F = 1 +C − ρ, we have

lim
C→∞

w∗(C,ρ) = lim
C→∞

(
wB0

(
4
√
EF

(
√
E+
√
F )2

)
+wI0

)
=wB0

( √
1− ρ

(
√

1− ρ+ 1)2

)
+wI0.

Next, for any ρ∈ (0,1), we have

lim
C→∞

(
w∗(C,ρ)−wI0 −wB0

√
1− ρ

(
√

1− ρ+ 1)2

)
C =

(2− ρ)ρ2

2
√

1− ρ(1 +
√

1− ρ)4
<∞.

Thus we have w∗(C,ρ) = wI0 +wB0
√

1− ρ(1/(
√

1− ρ+ 1)2 +O(1/C)). That is, w∗(C,ρ) converges

to wB0

( √
1−ρ

(
√

1−ρ+1)2

)
+wI0 when C→∞ in the order of O(1/C). Substituting the optimal allocation

into (21) yields

RD(C,ρ) =
w0−w∗(C,ρ)

w0

=
1−

(
4
√
EF

(
√
E+
√
F )2

)
1 + 2µ0/(θ0(c2

v + 1))
. (EC.28)

It is sufficient to prove that (E+F )/
√
EF is increasing in C and ρ, namely,

d(E+F )/
√
EF

dC
=

(2− ρ)(C − 1)ρ2

2(1 +C − ρ)3/2(1 +C −Cρ)3/2
> 0,

d(E+F )/
√
EF

dρ
=

(C − 1)2(1 +C)ρ

2(1 +C − ρ)3/2(1 +C −Cρ)3/2
> 0.

Therefore, RD(C,ρ) is increasing in C and ρ. For any given µ0 and θ0, as C→∞ and ρ→ 1, we

obtain the desired result. In addition, the asymptotic order of growth in the homogeneous case

is O(1/(1− ρ)) because w0 = (1/θ0 + (c2
v + 1)/2µ0)ρ/(1− ρ). For the waiting time under SSRD,

it is decreasing in ratio C. When C→∞, by substituting C =∞ into E and F in (17), we have

w∗(∞, ρ) =O(1/
√

1− ρ) +O(1/(1− ρ)). Therefore, w0 −w∗(∞, ρ) =O(1/(1− ρ))−O(1/
√

1− ρ),

which gives

w0−w∗(C,ρ)

w0

=
O(1/(1− ρ))−O(1/

√
1− ρ)

O(1/(1− ρ))
=

1

1 + 2µ0/(θ0(c2
v + 1))

. �

Proof of Proposition 4 For fixed C = θ2/θ1 > 1, θ0 and ρ, the average number of retrials under

SSRD (Theorem 2) and homogeneous service are given by

r∗(C,ρ) =
(c2v + 1)ρ2θ0

(1− ρ)λ0

(√
EF (CE+F )(C + 1)

C(E+F )(
√
E+
√
F )2

)
+

ρ

1− ρ and r0 =
ρθ0

(1− ρ)µ0

+
ρ

1− ρ .
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Therefore, we have

RT (C,ρ) =
r0− r∗(C,ρ)

r0
=

1− 2
√
rp(C+rp)(C+1)

C(1+rp)(1+
√
rp)2

1 + 2µ0/(θ0(c2v + 1))
. (EC.29)

In order for our SSRD policy to outperform the homogeneous service policy, we need

2
√
rp(C + rp)(C + 1)

C(1 + rp)(1 +
√
rp)2

< 1,

or equivalently,

4(1 +C − ρ)(1 +C −Cρ)
(
1 +C − ρ+C2(1 +C −Cρ)

)2
<C2(1 +C)4(2− ρ)4.

We define

h(C,ρ)≡C2(1 +C)4(2− ρ)4− 4(1 +C − ρ)(1 +C −Cρ)
(
1 +C − ρ+C2(1 +C −Cρ)

)2
. (EC.30)

By taking the first and second partial derivatives of h(C,ρ) with respect to ρ, we have

∂h(C,ρ)

∂ρ
= 4

(
C2− 1

)2 (
3
(
C4 + 1

)
(1− ρ)2 +C2

(
14− 22ρ+ 9ρ2 + ρ3

)
− 2C

(
1 +C2

) (
−5 + 9ρ− 6ρ2 + 2ρ3

))
,

∂h2(C,ρ)

∂ρ2
= 4

(
C2− 1

)2 (
6
(
1 +C4

)
(ρ− 1) +C2

(
−22 + 18ρ+ 3ρ2

)
− 2C

(
1 +C2

) (
9− 12ρ+ 6ρ2

))
.

For any C > 1, we have ρ< 1, −22+18ρ+3ρ2 < 0 and 9−12ρ+6ρ2 = 6(ρ−1)2 +3> 0, which imply

∂h2(C,ρ)/dρ2 < 0. Because ∂h(C,ρ)/dρ|ρ=0 > 0 and ∂h(C,ρ)/dρ|ρ=1 > 0, h(C,ρ) must be increasing

in ρ ∈ [0,1]. It is also noted that h(C,0) =−4(1 +C)4(C2− 1)2 < 0 and h(C,1) =C2(1 +C)2(C −
1)2 > 0. Therefore, there exists a unique ρC such that RT (C,ρ) > 0 when ρ > ρC for any given

C > 1. The value of ρC can be found by solving f(C,ρ) = 0. If lim
ρ→1,C→∞

C2/3 · (1− ρ) = ϑ ∈ [0,∞],

then lim
ρ→1,C→∞

rp/C
2/3 = (1−ρ)/C+1

C2/3(1−ρ)+C−1/3 = 1/ϑ, which leads to

lim
ρ→1,C→∞

2
√
rp(C + rp)(C + 1)

C(1 + rp)(1 +
√
rp)2

= lim
ρ→1,C→∞

2C1/3(C +ϑC2/3)(C + 1)

C
√
ϑ(1 +C2/3/ϑ)(1 +C1/3/

√
ϑ)2

,

= lim
ρ→1,C→∞

2
√
ϑ(C1/3 + 1/ϑ)(C + 1)

(1 + 1/ϑC2/3)C2/3
= 2
√
ϑ,

yielding lim
ρ→1,C→∞

RT (C,ρ) = (1− 2
√
ϑ)/(1 + 2µ0/[θ0(c2

v + 1)]).

Next we will identify the maximal RT (C,ρ). First, we will show that RT (C,ρ) is increasing in

ρ ∈ (0,1) for any C > 1. Then it is sufficient to prove that u(rp)≡ 2
√
rp(C+rp)(C+1)

C(1+rp)(1+
√
rp)2

is decreasing in

rp, because rp = 1−ρ+C
1+C(1−ρ) ≥ 1 is increasing in ρ∈ (0,1). The derivative of u(rp) is

du(rp)

drp
=
C + 1

C
·
[

φ̄(rp)√
rp(1 +

√
rp)3(1 + rp)2

]
,

where φ̄(rp) = rp(3 +
√
rp + rp− r3/2

p )−C(rp +
√
rp + 3r3/2

p − 1). Because φ̄(1)≤ 0 and

dφ̄(rp)

drp
=

6
√
rp + 3rp + 4r3/2

p − 5r2
p−C

(
1 + 2

√
rp + 9rp

)
2
√
rp

≤ 6
√
rp + 3rp−C

(
1 + 2

√
rp + 9rp

)
2
√
rp

≤ 4
√
rp− 6rp− 1

2
√
rp

< 0,



e-companion to Wang, Wang and Liu: Service Differentiation in Retrial Queues ec13

we conclude that φ̄(rp)≤ 0, and more important, u(rp) is decreasing in rp. Taking ρ→ 1, we have

RT (C,1) =
r0− r∗(C,ρ)

r0
=

1− 4
√
C

(1+
√
C)2

1 + 2µ0/(θ0(c2v + 1))
. (EC.31)

Because RT (C,1) increases in C > 1, it can be asymptotically maximized when C→∞ (the upper

bound can be attained at ϑ= 0). �

Proof of Proposition 5 We consider the asymptotic value ofRS(C,ρ) as ρ→ 1,C→∞. First, note

that lim
ρ→1,C→∞

1−ρ= lim
ρ→1,C→∞

1/C = lim
ρ→1,C→∞

(1−ρ)/C = lim
ρ→1,C→∞

√
rp/(1+rp) = 0 and lim

ρ→1,C→∞
=

C/[(1− ρ)C + 1] =∞. With ξ = lim
ρ→1,C→∞

(1− ρ)C, we have

lim
ρ→1,C→∞

γ0− γ∗(C,ρ)

γ0

= lim
ρ→1,C→∞

1−
1 + ρ

1−ρ

[
(C+rp

√
rp)(1+

√
rp)

(1+rp)θ0(C+rp)
+

(c2v+1)
√
rp

µ0(1+rp)

]
E[S−1

0 ]

1 + ρ
1−ρ

(
c2v+1

2µ0
+ 1

θ0

)
E[S−1

0 ]

= lim
ρ→1,C→∞

1−
(C+rp

√
rp)(1+

√
rp)

(1+rp)θ0(C+rp)
+

(c2v+1)
√
rp

µ0(1+rp)

c2v+1

2µ0
+ 1

θ0

= lim
ρ→1,C→∞

c2v+1

2µ0
+ 1

θ0
−
[
1+ 1

(1−ρ)C+1

√
C

(1−ρ)C+1

](
1+
√

C
(1−ρ)C+1

)
(

1+ C
(1−ρ)C+1

)(
1+ 1

(1−ρ)C+1

)
θ0

c2v+1

2µ0
+ 1

θ0

= lim
ρ→1,C→∞

c2v+1

2µ0
+ 1

θ0
− 1

(ξ+2)θ0

c2v+1

2µ0
+ 1

θ0

= lim
ρ→1,C→∞

c2
v + 1 + 2[(ξ+ 1)/(ξ+ 2)]µ0/θ0

c2
v + 1 + 2µ0/θ0

. �

Proof of Corollary 3

In Proposition 3, we have showed that RRD can be maximized as C →∞ and ρ→ 1. When

C =O(1/(1−ρ)α) with α∈ (1,3/2), we have lim
C→∞,ρ→1

C2/3 · (1−ρ) = 0 and lim
C→∞,ρ→1

C · (1−ρ) =∞,

so that the maximum RRT and RRS can be attained, respectively. �

Proof of Proposition 6

We first note that ∂F (xC , yC ,C)/∂xC = ∂F (xC , yC ,C)/∂yC = 0. Then by taking the derivative of

dF (xC , yC ,C) with respect to C, we have

dF (xC , yC ,C)

dC

=
∂F (xC , yC ,C)

∂xC

∂xC
∂C

+
∂F (xC , yC ,C)

∂yC

∂yC
∂C

+
∂F (xC , yC ,C)

∂C

=
∂F (xC , yC ,C)

∂C

=
∂f(w1(xC , yC ,C))

∂w1(xC , yC ,C)

∂w1(xC , yC ,C)

∂C
xC +

∂f(w2(xC , yC ,C))

∂w2(xC , yC ,C)

∂w2(xC , yC ,C)

∂C
(1−xC)

=
∂f(w1(xC , yC ,C))

∂w1(xC , yC ,C)

 (2− ρ)(ρ− yC)
(
y2C
xC

+ (ρ−yC)2

1−xC

)
(1− yC + (1− ρ+ yC)C)2λ0(1− ρ)

+
(1−xC)ρ

(xC(C − 1) + 1)2θ0(1− ρ)

xC
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+
∂f(w2(xC , yC ,C))

∂w2(xC , yC ,C)

 −yC(2− ρ)
(
y2C
xC

+ (ρ−yC)2

1−xC

)
(1− yC + (1− ρ+ yC)C)2λ0(1− ρ)

− xCρ

(xC(C − 1) + 1)2θ0(1− ρ)

 (1−xC)

=

(
∂f(w1(xC , yC ,C))

∂w1(xC , yC ,C)
xC(ρ− yC)− ∂f(w2(xC , yC ,C))

∂w2(xC , yC ,C)
yC(1−xC)

) (2− ρ)
(
y2C
xC

+ (ρ−yC)2

1−xC

)
(1− yC + (1− ρ+ yC)C)2λ0(1− ρ)

+

(
∂f(w1(xC , yC ,C))

∂w1(xC , yC ,C)
− ∂f(w2(xC , yC ,C))

∂w2(xC , yC ,C)

)
xC(1−xC)ρ

(xC(C − 1) + 1)2θ0(1− ρ)
.

Let G≡ ∂f(w1(xC , yC ,C))/∂w1(xC , yC ,C)−∂f(w2(xC , yC ,C))/∂w2(xC , yC ,C), we consider the fol-

lowing three cases:

Case 1. If f is linear (i.e., G= 0), we have dF (xC , yC ,C)/dC < 0, because xC(ρ− yC)− yC(1−
xC) = λxC(1−xC)(1/µ2− 1/µ1)< 0, which implies that C∗ =∞.

Case 2. If f is concave (i.e., G< 0), we have dF (xC , yC ,C)/dC < 0 (which similar to the analysis

in case 1).

Case 3. If f is convex (i.e., G > 0), we know that ∂f(w1(xC ,yC ,C))

∂w1(xC ,yC ,C)
(∂f(w2(xC ,yC ,C))

∂w2(xC ,yC ,C)
) is increasing

(decreasing) in C because w1(xC , yC ,C) (w2(xC , yC ,C)) is increasing (decreasing) in C. It is evident

that lim
C→∞

dF (xC ,yC ,C)

dC
= 0 and lim

C→∞
|C2(dF (xC ,yC ,C)

dC
)|<∞. In particular, if lim

C→∞
C2(dF (xC ,yC ,C)

dC
)> 0,

it implies that F (xC , yC ,C) will keep increasing when C is large, hence the optimal ratio that

minimizes F (xC , yC ,C) can only be attained at a certain finite value C∗ ∈ (0,∞).

The limits C→∞, lim
C→∞

xC = x∞ and lim
C→∞

yC = y∞ can be derived by solving the equations (32)-

(33) with C =∞. By substituting them into w1(∞) =w1(x∞, y∞,∞) and w2(∞) =w2(x∞, y∞,∞),

we can obtain the resulting waiting times. Therefore, a sufficient condition that a finite C∗ can be

attained is

lim
C→∞

C2 · dF (xC , yC ,C)

dC
> 0 ⇔

(
∂f(w1(∞))

∂w1(∞)
x∞(ρ− y∞)− ∂f(w2(∞))

∂w2(∞)
y∞(1−x∞)

) (2− ρ)
(
y2∞
x∞

+ (ρ−y∞)2

1−x∞

)
(1− ρ+ y∞)2λ0(1− ρ)

+

(
∂f(w1(∞))

∂w1(∞)
− ∂f(w2(∞))

∂w2(∞)

)
(1−x∞)ρ

x∞θ0(1− ρ)
> 0. (EC.32)

Note that the condition (EC.32) always holds as long as x∞(ρ−y∞)> y∞(1−x∞), or equivalently

x∞ρ> y∞. From (33), we have(
df(w1(x, y,C))

dw1(x, y,C)
(1− ρ)(1−x) +

df(w2(x, y,C))

dw2(x, y,C)
x

)
∂w1(x, y,C)

∂y
= 0.

Because ∂w1(x, y,C)/∂y = 0 (due to the fact that [df(w1(x, y,C))/dw1(x, y,C)](1 −
ρ)(1 − x) + [df(w2(x, y,C))/dw2(x, y,C)]x > 0), the equation above implies that yC =

[
√

(1 +xC)2(1− ρ)2 + 4xCρ(2− ρ)− (1 +xC)(1− ρ)]/2, which yields

x∞ρ> y∞ ⇔ 2(2− ρ)<
√

(1 +x∞)2(1− ρ)2 + 4x∞ρ(2− ρ)− (1 +x∞)(1− ρ)

⇔ (2(2− ρ) + (1 +x∞)(1− ρ))2 < (1 +x∞)2(1− ρ)2 + 4x∞ρ(2− ρ)⇔ x∞ >
1− ρ
1 + ρ

. �
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Proof of Lemma 7 Note that i and j are the numbers of customers in the buffer and orbit,

respectively, we have the following balance equations for 1≤ i≤K − 1 and j ≥ 0:

(λ0 + jθ0)p(0,j)=µ0p(1,j), (EC.33)

(λ0 +µ0 + jθ0)p(i,j)=µ0p(i+1,j) + (j+ 1)θ0p(i−1,j+1) +λ0pi−1,j, (EC.34)

(λ0 +µ0)p(K,j)=(j+ 1)θ0p(K−1,j+1) +λ0pK−1,j +λ0pK,j−1. (EC.35)

We will solve the above equations using the generating function below:

Πi(z) =
∞∑
j=0

zjp(i,j), 1≤ i≤K − 1.

Multiplying equations (EC.33)-(EC.35) by zj and summing up over all j ≥ 0, we obtain the

balance equations of the generating functions:

λ0Π0(z) + zθ0Π′0(z)=µ0Π1(z), (EC.36)

(λ0 +µ0)Πi(z) + zθ0Π′i(z)=µ0Πi+1(z) + θ0Π′i−1(z) +λ0Πi−1(z), (EC.37)

(λ0−λ0z+µ0)ΠK(z)=θ0Π′K−1(z) +λ0ΠK−1(z). (EC.38)

Multiplying equations in (EC.37) by zi for 1 ≤ i ≤K − 1 and then sum them over for (EC.36)-

(EC.38), we have

λ0Π0(z) + (λ0 +µ0)
K−1∑
i=1

Πi(z)z
i + (λ0−λ0z+µ0)ΠK(z)zK

= µ0Π1(z) +
K−1∑
i=1

(µ0Πi+1(z) +λ0Πi−1(z))zi +λ0ΠK−1(z)zK

⇔ λ0(1− z)Π0(z) +
K∑
i=1

(λ0z
i(1− z)Πi(z)−µ0z

i−1(1− z)Πi(z)) = 0

⇔ λ0Π0(z) +
K∑
i=1

(λ0z−µ0)zi−1Πi(z) = 0. (EC.39)

Setting z = 1 in (EC.39) yields
∑K

i=1 Πi = λ0
µ0
, which is the probability that the server is busy.

Furthermore, by taking the derivative with respect to z in (EC.39) and letting z = 1, we get

λ0Π′0(1) +
K∑
i=1

((iλ0− (i− 1)µ0)Πi + (λ0−µ0)Π′i(1)) = 0

⇔ µ0Π′0(1) +
K∑
i=1

(iλ0− (i− 1)µ0)Πi = (µ0−λ0)
K∑
i=0

Π′i(1)

⇔ Norbit =
µ0(Π1− ρ0(1− ρ0))

θ0(1− ρ0)
+

K∑
i=1

(iρ0− (i− 1))Πi

1− ρ0

,
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where Norbit =
∑K

i=0 Π′i(1) is the mean number of customers in the orbit. �

Proof of Proposition 8 When the capacity of waiting line is K, we let I(t) be the number of

customers in line and N(t) be the state of the waiting line, where N(t)∈ {0,1, . . . ,2K}. When the

state of waiting line is N(t), the total number of customers in the buffer can be uniquely determined

by I(t) = blog
N(t)+1
2 c, see Figure EC.1. Define NI(t)(t) ≡ N(t) and Ni−1(t) ≡ b(Ni(t) − 1)/2c for

i= I(t), I(t)− 1, ...,1. Then the ith customer in the waiting line is a type-2 customer if and only

if Ni(t) is even. Therefore, the state of waiting line can be characterized by N(t) uniquely. Then

the system state under SSRD can be modeled by the continuous-time Markov chain (CTMC)

{(I(t),N(t),Q1(t),Q2(t)); t≥ 0}, where Qi(t) is the number of type-i customer in orbit i, i= 1,2.

Its infinitesimal generator of the CTMC is given as follows:

q(i,n,m1,m2),(i′,n′,m′1,m
′
2)=


µd n

2i−1·3−2
e, if (i′, n′,m′1,m

′
2) = (i− 1, n− 2

i+d n
2i−1·3−2

e−2
,m′1,m

′
2);

m1θ1, if (i′, n′,m′1,m
′
2) = (i+ 1,2n+ 1,m′1− 1,m′2);

m2θ2, if (i′, n′,m′1,m
′
2) = (i+ 1,2n+ 2,m′1,m

′
2− 1);

λ1, if (i′, n′,m′1,m
′
2) = (i+ 1,2n+ 1,m′1,m

′
2);

λ2, if (i′, n′,m′1,m
′
2) = (i+ 1,2n+ 2,m′1,m

′
2).

Let P (i, n) =
∑

m1

∑
m2
p(i, n,m1,m2)zm1

1 zm2
2 , through Kolmogorov equations for the stationary

distributions, and take the summation for m1 ≥ 0, m2 ≥ 0, we have

(λ0 +µd 2n+1

2i−1·3−2
e)P (i,2n+ 1) +

z1∂P (i,2n+ 1)θ1
∂z1

+
z2∂P (i,2n+ 1)θ2

∂z2

= µ1P (i+ 1,2n+ 1 + 2i) +µ2P (i+ 1,2n+ 1 + 2i+1) +
θ1∂P (i− 1, n)

∂z1
+λ1P (i− 1, n), (EC.40)

(λ0 +µd 2n+2

2i−1·3−2
e)P (i,2n+ 2) +

z1∂P (i,2n+ 2)θ1
∂z1

+
z2∂P (i,2n+ 2)θ2

∂z2

= µ1P (i+ 1,2n+ 2 + 2i) +µ2P (i+ 1,2n+ 2 + 2i+1) +
θ2∂P (i− 1, n)

∂z2
+λ2P (i− 1, n), (EC.41)

λ0P (0,0) +
∂P (0,0)θ1

∂z1
+
∂P (0,0)θ2

∂z2
= µ1P (1,1) +µ2P1,2,

(λ0 +µd 2n+1

2i−1·3−2
e−λ1z1−λ2z2)P (K,2n+ 1) =

∂P (K − 1, n)θ1
∂z1

+λ1P (K − 1, n), (EC.42)

(λ0 +µd 2n+2

2i−1·3−2
e−λ1z1−λ2z2)P (K,2n+ 2) =

∂P (K − 1, n)θ2
∂z2

+λ2P (K − 1, n), (EC.43)

where i≥ 1, 2i−1 ≤ n≤ 2i− 2.

Multiplying zi1 · (z2/z1)
∑i
j=0b

n+1−2i−1

2i
c
, zi1 · (z2/z1)

∑i
j=0b

n+3/2−2i−1

2i
c
, zK1 · (z2/z1)

∑K
j=0b

n+1−2i−1

2i
c

and

zK1 · (z2/z1)
∑K
j=0b

n+3/2−2i−1

2i
c

on the both sides of (EC.40), (EC.41), (EC.42) and (EC.43), and

then summing them up over all i = 1,2, ...,K − 1 and 2i−1 − 1 ≤ n ≤ 2i − 2, we can eliminate

all terms of ∂P (i,n)

∂z1
and ∂P (i,n)

∂z1
. Letting z1 = 1 and z2 = z, we can eliminate the (1 − z) on the

both sides of the equation above. By letting z = 1 and using P0,0 +
∑K

i=1

∑2i−1·3−2

n=2i−1 P (i, n) +∑K

i=1

∑2i+1−2

n=2i−1·3−2P (i, n) = 1, we have

P (0,0)λ2 +
K∑
i=1

2i−1·3−2∑
n=2i−1

P (i, n)λ2 +
K∑
i=1

2i+1−2∑
n=2i−1·3−1

P (i, n)(λ2−µ2) = 0



e-companion to Wang, Wang and Liu: Service Differentiation in Retrial Queues ec17

⇔ P (0,0)λ2 +
K∑
i=1

2i−1·3−2∑
n=2i−1

P (i, n)λ2 +
K∑
i=1

2i+1−1∑
n=2i−1·3−2

P (i, n)λ2 =
K∑
i=1

2i+1−2∑
n=2i−1·3−1

P (i, n)µ2

⇔ λ2 = µ2

K∑
i=1

2i+1−2∑
n=2i−1·3−1

P (i, n).

Notice that N(t) ∈ [2i−1 · 3− 1,2i+1 − 2] for i= 1, . . . ,K implies that the service area is occupied

by type-2 customer, then the probability that the service area is occupied by type-2 customer

is
∑K

i=1

∑2i+1−2

n=2i−1·3−1P (i, n), which gives ρ2 =
∑K

i=1

∑2i+1−2

n=2i−1·3−1P (i, n) = λ2/µ2. Similarly, we can

conclude that ρ1 = λ1/µ1, which completes this proof. �
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Figure EC.1 The system states in M/M/1/K retrial model with SSRD

Algorithm 1

Step 1. Set the initial value of K, M , C and the λ, µ, θ, p under SSRD

Step 2. Define the transition matrix Q

Step 3. Define an eT in an additional column of Q, and an additional 1 in a vector of 0’s, I.

Step 4. Calculate Π = IQ−1.

Step 5. Derive N1, N2 and the expected queue length L in the buffer through Π.

EC.2. The Preemptive SSRD

In the main paper, we have studied the non-preemptive SSRD policy, where high priority customers

may not always receive service before low priority customers, but they have a higher probability

to receive service first. As a result, the performance (delay and number of trials) of high priority

customers are somewhat influenced by low priority customers. In this section, we assume that type-

1 customers may be preempted by type-2 customers. For tractability, we restrict our attention to 2

service groups. Artalejo et al. (2001) considered a retrial queueing system where retrial customers
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have preemptive priority over customers in the waiting line. Here we consider two retrial groups

among which one group prempts the other.

We make the following model assumptions:

• An arrival seeing an idle server immediately enters service;

• If a type-2 customer, upon arrival or retrial, finds a type-1 customer in service, it immediately

enters service by preempting that type-1 customer to the orbit queue;

• If a type-2 customer, upon arrival or retrial, finds the server is occupied by another type-2

customer, she will be blocked and enter the orbit queue;

• If a type-1 customer, upon arrival or retrial, finds the server is occupied by another customer

(of type 1 or type 2), she will be blocked and enter the orbit queue.

We assume the retrial rates and service rates are θ1, θ2 and µ1, µ2 for the two classes. It is evident

that performance of type-2 customers are not affected by type-1 customers, so that the expected

waiting time for type-2 customers are given by (6). In particular,

w2 =
ρ2

1− ρ2

(
1

θ2

+
1

µ2

)
. (EC.44)

The main difficulty is to compute the expected delay for type-1 customers. We will first obtain the

stationary marginal distribution of the number of type-1 customers via the principle of maximum

entropy; and we will next derive the expected number of customers using generating functions.

Specifically, we consider a three dimensional CTMC {X(t); t ≥ 0}={(L(t),N1(t),N2(t)) ; t ≥ 0},
where L(t) denotes the type of the customer in service (if any), and Ni(t) is the number of type-i

orbiting customers, i= 1,2. The states L(t) = 0,1,2 correspond to the case of an idle server, a type-

1 customer in service, and a type-2 customer in service. For m1,m2 ≥ 0, we set up the following

balance equations:

(λ+m1θ1 +m2θ2)p(0,m1,m2) = µ1p(1,m1,m2) +µ2p(2,m1,m2), (EC.45)

(λ+µ1 +m2θ2)p(1,m1,m2) = λ1p(0,m1,m2) + (m1 + 1)θ1p(0,m1+1,m2), (EC.46)

(λ+µ2)p(2,m1,m2) = λ2p(0,m1,m2) + (m2 + 1)θ2p(0,m1,m2+1) +λ2p(1,m1−1,m2)

+λ1p(2,m1−1,m2) +λ2p(2,m1,m2−1), (EC.47)

where p(i,−1,m2) = p(i,m1,−1) = 0 for i= 1,2. We also define the following generating functions:

Π0(z1, z2) =
∞∑

m1=0

∞∑
m2=0

zm1
1 zm2

2 p(0,m1,m2),

Π1(z1, z2) =
∞∑

m1=0

∞∑
m2=0

zm1
1 zm2

2 p(1,m1,m2),

Π2(z1, z2) =
∞∑

m1=0

∞∑
m2=0

zm1
1 zm2

2 p(2,m1,m2).
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Multiplying equations (EC.45) and (EC.47) by zm1
1 and zm2

2 , and summing up over all m1 and

m2, we obtain the following balance equations for the generating functions:

z1θ1

∂Π0

∂z1

+ z2θ2

∂Π0

∂z2

+λΠ0 = µ1Π1 +µ2Π2, (EC.48)

Π1(λ+µ1) + z2θ2

∂Π1

∂z2

= λ1Π0 + θ1

∂Π0

∂z1

+ z1λ1Π1, (EC.49)

Π2(λ+µ2) = λ2Π0 + θ2

∂Π0

∂z2

+ z1θ2

∂Π1

∂z2

+λ2z1Π1 +λ1z1Π2 +λ2z2Π2. (EC.50)

Comparing the two workloads ρ1 and ρ2 yields the following result.

Proposition EC.1. Considering the preemptive M/M/1 retrial queues having two customer

classes. The workloads are ρ1 = λ1/µ1 and ρ2 = λ2/µ2.

Proof. First, we have ρi = Πi for i = 1,2. In order to find Π1 and Π2, we multiply (EC.49) and

(EC.50) by z1 and z2 respectively and substract them from (EC.48), which yields

(λ−z1λ1−z2λ2)Π0 +(z1(λ+µ1)−z2
1λ1−λ2z1z2−µ1)Π1 +((λ+µ2)z2− (λ1z1 +λ2z2)z2−µ2)Π2 = 0.

(EC.51)

Letting z1 = 1 and z2 = 1, and removing (1− z2) and (1− z1) on the both sides of (EC.51) yield

λ2Π0 +λ2Π1 + (λ2z2−µ2)Π2 = 0, (EC.52)

λ1Π0− (µ1− z1λ1)Π1 +λ1Π2 = 0. (EC.53)

Setting λ2 = λ1 = 1 in (EC.52) and (EC.53), we have Π1 = λ1/µ1 and Π2 = λ2/µ2. �

Proposition EC.1 shows that the steady-state workloads of the two classes remain unchanged

when the service policy becomes preemptive. Hence the fixed-capacity constraints in (2) continue to

hold under the preemptive rule. When L(t) = j, we denote the expected number of type-i customers

in orbit i as Lj,i = ∂Πj/∂zi|zi=1 for j = 0,1,2 and i= 1,2. Therefore, the mean number of type-1

customers satisfies N1 =L0,1 +L1,1 +L2,1. We next explain how to compute N1.

Proposition EC.2. Considering the preemptive M/M/1 retrial queues having two customer

classes, the expected number of type-1 orbiting customers is

N1 =A ·L2,1 +B, (EC.54)

where

A=
µ1θ1−µ2θ2

−λ1θ1 +µ1θ1−λ2θ2

,

B =
λ2

1(λ2−µ2)µ2(µ1 + θ1) +λ1λ2 (−µ2(µ1 +µ2)(µ1 + θ2) +λ2 (µ2
1 +µ2θ2))

µ1µ2(λ2−µ2)(−λ1θ1 +µ1θ1−λ2θ2)
.
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Proof. Because type-2 customers are not affected by type-1 customers and N2 =L0,2 +L1,2 +L2,2,

we have L0,2 +L1,2 = λ2
2/(θ2µ2) and L2,2 = (θ2 +λ2)λ2

2/(µ2θ2(µ2−λ2)). From (EC.49) and (EC.50),

we have

L0,2 =
λ(1−Π0)− θ1L0,1

θ2

, L1,2 =
θ1L0,1 +λ1Π1 +λ1Π0−Π1(λ+µ1)

θ2

. (EC.55)

That is, both L0,2 and L1,2 are functions of L0,1. Differentiating (EC.53) on both sides with respect

to z1 and and setting z1 = 1 yield

λ1L0,1− (µ1−λ1)L1,1 +λ1Π1 +λ1L2,1 = 0. (EC.56)

Letting z1 = z2 = z in (EC.51), we have

λ(1− z)Π0 + (z(λ+µ1)− z2λ−µ1)Π1 + ((µ2 +λ)z−λz2−µ2)Π2 = 0

⇔ λΠ0 + (λz−µ1)Π1 + (λz−µ2)Π2 = 0

⇔ λ(L01 +L02) +λΠ1 + (λ−µ1)(L11 +L12) + (λ−µ2)(L21 +L22) +λΠ2 = 0. (EC.57)

Plugging (EC.55) into (EC.57) and combining (EC.56) and (EC.57), we can express both L0,1 and

L1,1 as functions of L2,1. Equation (EC.54) is obtained using the relation N1 =L0,1 +L1,1 +L2,1. �

It now remains to compute L21. In the rest of this section, we develop a procedure to compute

the stationary distribution of p(2,m1,m2) for m1,m2 ≥ 0. We define the marginal distribution as

p(0,·,m2) =
∑
m1≥0

p(0,m1,m2), p(1,·,m2) =
∑
m1≥0

p(1,m1,m2), p(2,·,m2) =
∑
m1≥0

p(2,m1,m2).

The exact marginal distribution for type-2 customers is given as follow (Artalejo et al. (2001)):

p(2,·,m2) =
∑
m1≥0

p(2,m1,m2) =
ρm2+1

2

m2!θm2
2

(1− ρ2)
1+

λ2
θ2

m2∏
n=1

(λ2 +nθ2), (EC.58)

p(0,·,m2) + p(1,·,m2) =
∑
m1≥0

p(2,m1,m2) =
ρm2

2

m2!θm2
2

(1− ρ2)
1+

λ2
θ2

m2−1∏
n=0

(λ2 +nθ2). (EC.59)

We truncate the type-1 and type-2 orbit queues by K and M , respectively. For a given large

number K and a certain prespecified error parameter ε > 0, the minimal M can be determined as

follow

M = min{M |
M∑

m1=0

p(0,·,m2) + p(1,·,m2) + p(2,·,m2) > 1− ε}. (EC.60)

We write (EC.45)–(EC.47) in the vector notations:

p0,m2
Am2

= µ1p1,m2
+µ2p2,m2

, (EC.61)

p1,m2
Bm2

= p0,m2
Cm2

, (EC.62)

p2,m2
Dm2

= λ2p0,m2
+ p0,m2+1Em2

+ p1,m2
Fm2

+λ2p2,m2−1 + p1,m2+1Gm2
, (EC.63)
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where m2 = 0,1, ...,M and pi,m2
= (p(i,0,m2), p(i,1,m2), ..., p(i,K,m2)), i= 0,1,2, A(i,j)

m2
= λ+ (i− 1)θ1 +

m2θ2 for i = j and 1 ≤ i ≤K + 1, E(i,j)
m2

= (m2 + 1)θ2 for i = j and 1 ≤ i ≤K + 1, F(i,j)
m2

= λ2 for

j = i+ 1 and 1≤ i≤K, G(i,j)
m2

= (m2 + 1)θ2 for j = i+ 1 and 1≤ i≤K,

B(i,j)
m2

=

λ+µ1 +m2θ2, for i= j and 1≤ i≤K + 1;
−λ1, for j = i+ 1 and 1≤ i≤K;
0, else.

C(i,j)
m2

=

λ1, for i= j and 1≤ i≤K + 1;
(i− 1)θ1, for i= j+ 1 and 2≤ i≤K + 1;
0, else.

D(i,j)
m2

=

λ2 +µ2, for i= j and 1≤ i≤K + 1;
−λ1, for j = i+ 1 and 1≤ i≤K;
0, else.

From (EC.61) and (EC.62), we have

p0,m2
= µ2p2,m2

(Am2
−Cm2

Bm−1
2
µ1)−1, (EC.64)

p1,m2
= µ2p2,m2

(Am2
−Cm2

Bm−1
2
µ1)−1Cm2

B−1
m2
. (EC.65)

Substituting (EC.64) and (EC.65) into (EC.63), we can obtain

p2,m2
Θm2

= p2,m2+1∆m2+1 +λ2p2,m2−1, (EC.66)

for 0 ≤ m2 ≤ M , where Θm2
= Dm2

− λ2(µ2(Am2
− Cm2

B−1
m2
µ1)−1) − (µ2(Am2

−
Cm2

B−1
m2
µ1)−1)Cm2

B−1
m2

Fm2
and ∆m2+1 = (µ2(Am2+1 − Cm2+1B

−1
m2+1µ1)−1)(Em2

+

Cm2+1B
−1
m2+1Gm2

).

In summary, we can compute the distribution p2,m2
for 0≤m2 ≤M by follow Algorithm 2 below.

Algorithm 2

Step 1. Calculate p(2,·,m2+1) and p(0,·,m2+1) +p(1,·,m2+1) for 0≤m2 ≤M from (EC.58) and (EC.59),

where M is determined by (EC.60) for any given small ε.

Step 2. Let p∗2,M+1 =
p2,·,M+1

M+1
eT .

Step 3. Take ΘM−1 = ΘM
λ2

, ΘM−2 = ΘM−2
ΘM−1

λ2
− ∆M

λ2
.

Step 4. Calculate Θm2
=

Θm2+1Θm2+1−Θm2+2∆m2+2

λ2
and ∆m2

=
∆m2+1Θm2+1−∆m2+2∆m2+2

λ2
for 0 ≤

m2 ≤M − 3

Step 5. p∗2,M = (∆1∆1−∆0Θ0)(Θ0Θ0−Θ1∆1)−1.

Step 6. p∗2,m2
= p∗2,MΘi + ∆i for 0≤m2 ≤M − 1.

Step 7. L21 =
∑M

m2=0 p∗2,m2
·β, where β = (0,1,2, ...,K)T .

The initial value in Step 2 of Algorithm 2 can be estimated via the principle of the maxi-

mum entropy. We consider an example to illustrate this algorithm. For θ1 = 0.6111, θ2 = 1.8333,
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λ1 = 0.21083, λ2 = 0.2917, µ1 = 0.9097, µ2 = 1.0763, p1 = 0.4167, p2 = 0.5833, the approximate

distribution and exact distribution are given in Table EC.1, with the error parameter ε = 0.005

(M = 5,K = 35).

Table EC.1 The comparison between approximated distribution and stationary distribution when ρ= 0.5

p2,·,0 p2,·,1 p2,·,2 p2,·,3 p2,·,4 p2,·,5

Approximate distribution 0.1851 0.0581 0.0170 0.0049 0.0014 3.8357E-4

Exact distribution 0.1879 0.0590 0.0173 0.0049 0.0014 3.8803E-4

Table EC.1 shows that the desired accuracy can be achieved when M = 5, which also implies

that L2,1 = 0.4078 and N1 = 1.0022. It is noted that the approximated distribution are less than

the stationary distributions, i.e., p∗2,m ≤ p2,m, due to the finite truncation of the orbit queue. To

normalize the probabilities so that they add up to 1, we may add an additional step between Step

6 and Step 7, namely, p∗2,m = (p2,,̇m/p
∗
2,me)p∗2,m.

However, when ρ is large, the value of the truncation K and M should be more carefully selected.

For example, when ρ= 0.9, we set K = 200 and M = 15 to keep the error within the tolerance, in

which L21 = 11.7592, N1 = 20.7155. Therefore, by carefully selecting the truncated values K and

M , desired accuracy can be achieved.

Plugging L2,1 into (EC.54), we obtain the expected number of type-1 customers N1. Next,

the mean delay of type-1 customers can be determined using Little’s law w1 =N1/λ1. Following

(EC.44), the expected total orbiting time and total number of trials for all customers can be derived

as wPSSRD =w1p1 +w2p2 and rPSSRD =w1θ1p1 +w2θ2p2. In Figure EC.2, we plot delays and number

of trials as a function of C, with ρ= 0.7,0.9. Because C ranges from 0.01 to 100, the case C < 1

(C > 1) represents the case where class 1 (class 2) has a higher priority.

Remark EC.1. Considering the preemptive M/M/1 retrial queues with two customer types.

• If type-2 customers receive a higher priority, then

wPSSRD >w0 >wSSRD, rPSSRD < r0 < rSSRD.

• If type-1 customers receive a higher priority, then

wPSSRD <wSSRD <w0, rPSSRD > rSSRD > r0.

Specifically, a preemptive priority (with type-2 customers receiving a higher priority) can reduce

the number of trials but increases the overall delay. On the other hand, a preemptive priority

(with type-1 customers receiving a higher priority) will increase the number of trials but reduce

the overall delay. In summery, the preemptive differentiation policy cannot reduce both the delay

and number of trials simultaneously as in our non-preemptive SSRD policy.
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Figure EC.2 The comparison of preemptive and non-preemptive case under SSRD

EC.3. Comparison to Xu et al. (2015)

EC.3.1. Monotonicity of variability

To support the discussion in Part (c) of Remark 5, we compare the variance of delay in the M/G/1

model in Xu et al. (2015) and in our M/G/1 retrial model under SSRD.

First, following §4.1 of Kella and Yechiali (1988), we obtain the variance of delay in Xu et al.

(2015) by V ar[W ] =
∑m

k=1 pk(E[W 2
k ]−E2[Wk]), where

E[Wk] =

∑m

i=1 λiE[S2
i ]

2(1−∑k

i=1 ρi)(1−
∑k−1

i=1 ρi)
,

E[W 2
k ] =

[(∑k

i=1 λiE[S2
i ]

1−∑k

i=1 ρi
+

∑k−1

i=1 λiE[S2
i ]

1−∑k−1

i=1 ρi

)
E[Wk] +

∑m

i=1 λiE[S3
i ]

3(1−∑k

i=1 ρi)(1−
∑k−1

i=1 ρi)

]
1

(1−∑k−1

i=1 ρi)
.
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Figure EC.3 Mean and variance of delay of the M/M/1 model in Xu et al. (2015) as a function of the service

grade m, with µ0 = 1 and λ0 = 0.9.

Figure EC.3 illustrates the mean and variance of delay when µ0 = 1 and λ0 = 0.9. We observe that

the mean and variance of delay are decreasing and increasing in the number of service grades m,

respectively, under the optimal differentiation policy (Corollary 3 and (24) of Xu et al. (2015)).

That is, the delay can be further reduced when the variance increases (which occurs when the

service grades m increases).

Next we study the monotonicity of the variance of delay for our M/G/1 retrial queue under

SSRD. Consider m≥ 2 service grades, with the maximum ODR C = θm/θ1. Let Ci = 1+(i−1)(C−
1)/(m−1) and ρi = ρ/m for i= 1,2, . . . ,m. According to the optimal allocation (13) and constraint

(2), we have pi = (1/
√
xi)/(

∑m

j=1 1/
√
xj), µi = λi/ρi =mλ0pi/ρ and θi =Ciθ0

∑m

j=1 pi/Ci. For C =

5, we examine the mean and variance of delay as functions of the number of service grades m.

Figure EC.4 shows that the mean (variance) of delay significantly decreases (increases) as m= 1

increases from 1 to 2. However, the variance (mean) of delay becomes decreasing (increasing) in m

when m≥ 2. Indeed, the minimum mean delay is achieved at m= 2 (which is consistent with our

main result in Theorem 2), which yields the maximum variance of delay. Similar to results in Xu

et al. (2015), the reduction of delay benefits from the increased variance, which now decreases as

m increases when m≥ 2.

Finally, we use simulations to demonstrate the growth of the variance of delay in C. Figure

EC.5 shows that, under the optimal SSRD given by Theorem 2 with m= 2, the variance of delay

is increasing in the ORD C, then the mean of delay is decreasing in C, which is consistent with

Proposition 2.

EC.3.2. Limiting distribution of the random service rate in Xu et al. (2015)

We hereby provide support to Part (b) of Remark 5. It has been shown in Xu et al. (2015) that

creating service variability can reduce the mean waiting time in an M/G/1 queue. Especially, the
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Figure EC.4 Mean and variance of delay of the M/M/1 retrial model under SSRD as a function of the service

grade m, with θ0 = µ0 = 1 and λ0 = 0.9

Figure EC.5 Mean and variance of delay of the M/M/1 retrial model under SSRD as a function of C, with

θ0 = µ0 = 5 and λ0 = 0.9

optimal performance can be achieved when the number of service grade m→∞. We discovered

that the optimal case (m→∞) yields a nice continuous distribution for the random service rate.

Proposition EC.3 (Limiting continuous service-rate distribution in Xu et al. (2015)).

Under the optimal service allocation policy in Xu et al. (2015), the service provider offers a

random service rate M, where M is a random variable following a continuous distribution with

bounded support, having probability density

fM(a) =
2− ρ
2ρµ2

0

a, a∈ S≡
(
µ
ρ
, µ̄ρ

)
≡
(

2µ0(1− ρ)

2− ρ ,
2µ0

2− ρ

)
. (EC.67)

Remark EC.2. First, it is easy to check that the density function given above is indeed well

defined, that is,
∫
a∈S fM(a)da= 1. Apparently the base service rate µ0 is in the interior of S, because

2µ0(1−ρ)
2−ρ < µ0 <

2µ0
2−ρ . The spread of the support increases in ρ. Specifically, S becomes the interval

(0,2µ0) as ρ→ 1, and S degenerates to a single point µ0 as ρ→ 0.

Proof: Suppose there are K customer grades. By (24) of Proposition 4 (p.241) in Xu et al.

(2015), we know that the optimal service rate assignment satisfies

pk = p1[(1− ρ)
2
m ]k−1, (EC.68)
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µk = µ1[(1− ρ)
1
m ]k−1, 1≤ k≤m− 1. (EC.69)

Normality of p1, . . . , pK implies

1 = p1 + · · ·+ pm = p1[1 + (1− ρ)
2
m + . . .+ (1− ρ)

2(k−1)
m ] ⇒ p1 =

1− (1− ρ)
2
m

1− (1− ρ)2
. (EC.70)

Similarly, the equal mean condition, along with (EC.68)–(EC.70) imply that

1

µ0

=
p1

µ1

+ · · ·+ pm
µm

=
p1

µ1

m∑
k=1

(1− ρ)
k−1
m ⇒ µ1 =

µ0ρ

1− (1− ρ)2
· 1− (1− ρ)

2
m

1− (1− ρ)
1
m

. (EC.71)

Let µ1(m) be the µ1 in (EC.71), we have

lim
m→∞

µ1(m) =
µ0ρ

1− (1− ρ)2
lim
m→∞

1− (1− ρ)
2
m

1− (1− ρ)
1
m

=
µ0ρ

1− (1− ρ)2
lim
x→0

1− (1− ρ)2x

1− (1− ρ)x

=
µ0ρ

1− (1− ρ)2
lim
x→0

−2(1− ρ)2x log(1− ρ)

−(1− ρ)x log(1− ρ)
=

2µ0ρ

1− (1− ρ)2
=

2µ0

2− ρ ≡ µ1(∞), (EC.72)

lim
m→∞

µm(m) = lim
m→∞

µ1(m)[(1− ρ)
1
m ]m−1 = µ1(∞)(1− ρ). (EC.73)

Now let the random variable Mm denote the random service rate offered to an arbitrary cus-

tomer where there are m service grades. According to (EC.72)–(EC.73), we know that as m→∞,

Mm asymptotically has a bounded domain S given by (EC.67).

We next show thatMm⇒M∞ ≡M as m→∞, where the limiting random variableM∞ has a

continuous support in S. Pick a∈ S and a small h> 0, then

P (Mm ∈ (a,a+h)) =
m∑
k=1

1{µk(m)∈(a,a+h)} · pk(m),

where µk(m) and pk(m) are the µk and pk given in (EC.68) and (EC.69). According to (EC.69),

we have

a< µk = µ1(m)(1− ρ)
k−1
m <a+h ⇔ k̄m ≡

m log( a
µ1(m)

)

log(1− ρ)
+ 1>k >

m log( a+h
µ1(m)

)

log(1− ρ)
+ 1≡ km.

Hence, we have

P(Mm ∈ (a,a+h)) =

k̄m∑
k=km+1

1− (1− ρ)
2
m

1− (1− ρ)2
[(1− ρ)

2
m ]k−1

=
1− (1− ρ)

2
m

1− (1− ρ)2
[(1− ρ)

2
m ]km · 1− [(1− ρ)

2
m ]k̄m−km−1

1− (1− ρ)
2
m

=
(1− ρ)

2 log

(
a+h
µ1(m)

)
log(1−ρ)

1− (1− ρ)2

1− (1− ρ)

2

[
log

(
a

µ1(m)

)
−log

(
a+h
µ1(m)

)]
log(1−ρ)


=

(
a+h
µ1(m)

)2

1− (1− ρ)2

(
1−

(
a

a+h

)2
)
.



e-companion to Wang, Wang and Liu: Service Differentiation in Retrial Queues ec27

Now letting m→∞ yields

P(M∈ (a,a+h)) = lim
m→∞

P(Mm ∈ (a,a+h)) =

(
a+h
µ1(∞)

)2

1− (1− ρ)2

(
1−

(
a

a+h

)2
)

=

(
(a+h)(2−ρ)

2µ0

)2

1− (1− ρ)2

(2a+h)h

(a+h)2
,

where the last equality holds by (EC.72). The probability density function of M is given by

fM(a) = lim
h↓0

P(M∈ (a,a+h))

h
= lim

h↓0

(
(a+h)(2−ρ)

2µ0

)2

1− (1− ρ)2

(2a+h)

(a+h)2
=

2− ρ
2ρµ2

0

a, a∈ S. �

EC.4. Additional Simulations

Nonexponential retrial times. In this paper, we have treated a retrial model with general

service times but exponential orbit times. We have showed that the dominance condition (10)

is independent with the structure of the service-time distribution beyond its mean. Hence, we

conjecture that condition (10) continues to hold for nonexponential orbit times. In the future, we

plan to extend to models with nonexponential orbit times. We conduct simulation experiments

in Table EC.2 for the M/H2/1 model with 2-phase hyperexponential (H2) service times (mixture

of two exponential distributions) and H2 orbit times with SCV c2
s = c2

r = 4, θ0 = µ0 = 1. Table

EC.2 shows that SSRD achieves a smaller average delay than homogeneous service when the traffic

intensity ρ is close to 1. Specifically, the RRD of SSRD with respect to homogeneous service is

13.3% (13.7%, 4.6%) for ρ= 0.972 (0.95, 0.9). But RRD is negative when ρ≤ 0.8.

Table EC.2 Comparing SSRD and homogeneous service for the M/H2/1 model with H2 retrial times.

Homogeneous service Differentiated service

ρ E[No. waiting] E[No. in service] E[delay] E[No. waiting] E[No. in service] E[delay]

0.975 100.94±9.67 0.97±4.1E-3 105.03±10.20 94.86±8.67 0.97±4.1E-3 91.03±9.07
rel. diff. - - - 6.02% 0% 13.33%

0.95 65.17±7.15 0.95±5.4E-3 68.92±7.54 57.26±5.64 0.95±5.5E-3 59.45±5.65
rel. diff. - - - 12.14% 0% 13.74%

0.9 29.20±2.06 0.90±6.4E-3 32.02±2.22 27.92±2.10 0.90±6.6E-3 30.55±2.19
rel. diff. - - - 4.42% 0% 4.61%

0.8 11.57±0.60 0.80±6.4E-3 14.53±0.77 11.86±0.66 0.80±6.5E-3 14.72±0.75
rel. diff. - - - -2.51% 0% -1.38%

0.7 6.26±0.27 0.70±6.4E-3 8.97±0.37 6.43±0.28 0.70±6.7E-3 9.15±0.38
rel. diff. - - - -2.64% 0% -1.97%

Multiple server. Multiserver queueing models have been proven more practical for modeling

realistic service systems. Therefore, in the future we plan to extend our service-differentiation policy

from single-server framework to multi-server models. We next conduct a simulation example for an

M/M/2 retrial queueing system. In Table EC.3 we observe that SSRD helps reduce the average

delay when the traffic intensity is close to 1. All simulations are conducted with 95% confidence

intervals.
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Table EC.3 Comparing performance of SSRD and homogeneous service for the 2-server M/M/2 model.

Pure service Differentiated service

ρ E[No. waiting] E[No. in service] E[delay] E[No. waiting] E[No. in service] E[delay]

0.975 77.43±3.71 1.95±2.0E-3 39.71±1.89 72.32±3.50 1.95±2.1E-3 36.94±1.77
rel. diff. - - - 6.61% 0% 6.96%

0.95 36.16±0.91 1.90±2.1E-3 19.08±0.48 34.71±0.90 1.90±2.1E-3 18.26±0.48
rel. diff. - - - 3.95% 0% 4.30%

0.9 15.83±0.23 1.80±2.1E-3 8.82±0.13 15.54±0.23 1.80±2.2E-3 8.64±0.12
rel. diff. - - - 1.83% 0% 2.11%

0.8 6.09±5.2E-2 1.60±2.4E-3 3.80±3.2E-2 6.11±5.4E-2 1.60±2.4E-3 3.81±3.5E-2
rel. diff. - - - -0.36% 0% -0.42%

0.7 2.94±1.9E-2 1.40±2.0E-3 2.10±1.3E-2 2.99±2.0E-2 1.40±2.3E-3 2.14±1.6E-2
rel. diff. - - - -1.50% 0% -1.81%




