E-Companion

Supplementing the main paper, in this appendix we give additional results. In §EC.1, we give proofs of all results in the main paper. In §EC.2, we consider the SSRD with preemptive service. In §EC.3, we give additional discussions on how our results compare to Xu et al. (2015). In §EC. 4 we provide additional simulation results.

EC.1. Proofs

Proof of Theorem 1

According to the waiting time formulas (6) and (9), $w_{S S R D}<w_{0}$ is equivalent to

$$
\begin{equation*}
\left(\frac{p_{1}}{\mu_{1}^{2}}+\frac{p_{2}}{\mu_{2}^{2}}\right) \mu_{0}^{2}<\frac{\theta_{1}+\theta_{2}-\left(\rho_{1} \theta_{1}+\rho_{2} \theta_{2}\right)}{\theta_{1}+\theta_{2}-\rho\left(p_{1} \theta_{1}+p_{2} \theta_{2}\right)} . \tag{EC.1}
\end{equation*}
$$

Because $p_{1} / \mu_{1}+p_{2} / \mu_{2}=1 / \mu_{0}$, the left-hand side of (EC.1)

$$
\begin{equation*}
\left(\frac{p_{1}}{\mu_{1}^{2}}+\frac{p_{2}}{\mu_{2}^{2}}\right) \mu_{0}^{2}=1+p_{1} p_{2}\left(1 / \mu_{1}-1 / \mu_{2}\right)^{2} \cdot \mu_{0}^{2} \tag{EC.2}
\end{equation*}
$$

and the right-hand side of (EC.2)

$$
\begin{equation*}
\frac{\theta_{1}+\theta_{2}-\left(\rho_{1} \theta_{1}+\rho_{2} \theta_{2}\right)}{\theta_{1}+\theta_{2}-\rho\left(p_{1} \theta_{1}+p_{2} \theta_{2}\right)}=1+\frac{\lambda_{0}\left(\theta_{2}-\theta_{1}\right) p_{1} p_{2}\left(1 / \mu_{1}-1 / \mu_{2}\right)}{\theta_{1}+\theta_{2}-\rho\left(p_{1} \theta_{1}+p_{2} \theta_{2}\right)} . \tag{EC.3}
\end{equation*}
$$

We require that the second term of (EC.2) is positive, which implies that $\mu_{2}>\mu_{1}$ when $\theta_{2}>\theta_{1}$. Combining (EC.1), (EC.2) and (EC.3) yields that

$$
\frac{\lambda_{0}\left(\theta_{2}-\theta_{1}\right)}{\theta_{1}+\theta_{2}-\rho\left(p_{1} \theta_{1}+p_{2} \theta_{2}\right)}>\left(1 / \mu_{1}-1 / \mu_{2}\right) \cdot \mu_{0}^{2}
$$

or equivalently

$$
\begin{equation*}
\frac{\rho}{\left(p_{2}-p_{1}\right)(1-\rho)+(2-\rho) / \theta_{0}\left(\frac{1}{\theta_{1}}-\frac{1}{\theta_{2}}\right)}>\mu_{0}\left(\frac{1}{\mu_{1}}-\frac{1}{\mu_{2}}\right) . \tag{EC.4}
\end{equation*}
$$

Let $C_{\theta} \equiv \theta_{2} / \theta_{1}$ and $C_{\mu} \equiv \mu_{2} / \mu_{1}$, we have $\theta_{1}=\theta_{0}\left(p_{1}+p_{2} / C_{\theta}\right), \mu_{1}=\mu_{0}\left(p_{1}+p_{2} / C_{\mu}\right)$. Plugging C_{θ} and C_{μ} into (EC.4), we can further algebraically simplify (EC.4) to

$$
\begin{equation*}
\frac{C_{\theta}+1-\rho}{(1-\rho) C_{\theta}+1}>C_{\mu} \tag{EC.5}
\end{equation*}
$$

It is noted that $\frac{C_{\theta}+1-\rho}{(1-\rho) C_{\theta}+1}$ is increasing in C_{θ}, which is upper bounded by $1 /(1-\rho)$. Thus we have $C_{\mu}<1 /(1-\rho)$. By noticing that $(1-\rho) C_{\mu}<1$, then (EC.5) can be transformed to

$$
C_{\theta}>\frac{C_{\mu}+\rho-1}{1-(1-\rho) C_{\mu}} \quad \text { and } \quad C_{\mu}<\frac{1}{1-\rho}
$$

which completes this proof.

Proof of Lemma 1

To prove part (i), we decompose $-\mathbf{A}$ into a summation of an identity matrix \mathbf{I} and an matrix \mathbf{B} as follow

$$
-\mathbf{A}=\mathbf{I}+\left(\begin{array}{cccc}
-\sum_{i=1}^{m} a_{1, i}-a_{1,1} & -a_{1,2} & \cdots & -a_{1, m} \\
-a_{2,1} & -\sum_{i=1}^{m} a_{2, i}-a_{2,2} & \cdots & -a_{2, m} \\
\vdots & \cdots & \ddots & \vdots \\
-a_{m, 1} & a_{m, 2} & \cdots-\sum_{i=1}^{m} a_{m, i}-a_{m, m}
\end{array}\right)=\mathbf{I}+\mathbf{B}
$$

where \mathbf{I} is an m-dimensional identity matrix. Based on the definition of $a_{i, j}$, we have $-\sum_{i=1}^{m} a_{k, i}-$ $a_{k, k} \in(-1,0)$ for $i, k=1,2, \ldots, m$ and $-a_{i, j} \in(-1,0)$ for $i \neq j$, thus all elements of \mathbf{B} are in the interval $(-1,0]$, then the inverse of $-\mathbf{A}$ can be expressed as

$$
(-\mathbf{A})^{-1}=(\mathbf{I}+\mathbf{B})^{-1}=\mathbf{I}+\sum_{i=1}^{\infty}(-1)^{i} \mathbf{B}^{i}
$$

Because $B<0$, we have $(-1)^{i} \mathbf{B}^{i}>0$ for $i>1$. Therefore, $(-\mathbf{A})^{-1}=(\mathbf{I}+\mathbf{B})^{-1}>\mathbf{I}-\mathbf{B}$. Hence, we can obtain that $\mathbf{A}^{-1}=-(\mathbf{I}+\mathbf{B})^{-1}<-(\mathbf{I}-\mathbf{B}) \leq-\mathbf{I}<0$. Notice that $\mathbf{x}=-\mathbf{A}^{-1} \mathbf{e}$, where $-x_{i}$ equals the summation of the elements of the $i^{\text {th }}$ row of matrix \mathbf{A}^{-1}, in which $\mathbf{A}^{-1} \leq-\mathbf{I}$, thus the summation of the elements in each row of \mathbf{A}^{-1} is smaller than -1 , i.e., $-x_{i}<-1\left(x_{i}>1\right)$ for $i=1,2, \ldots, m$, which completes this proof.
(ii) Because $\mathbf{x}=-\mathbf{A}^{-1} \mathbf{e}$, the solutions x_{1}, \ldots, x_{m} satisfy

$$
\sum_{k=1}^{m} \frac{C_{k} \rho_{k}}{C_{k}+C_{i}}\left(x_{i}+x_{k}\right)=x_{i}-1 \quad \text { and } \quad \sum_{k=1}^{m} \frac{C_{k} \rho_{k}}{C_{k}+C_{j}}\left(x_{j}+x_{k}\right)=x_{j}-1
$$

Without loss of generality, we assume $i<j$, so that

$$
\begin{align*}
x_{i}-x_{j} & =\sum_{k=1}^{m} \frac{C_{k} \rho_{k} x_{k}}{C_{k}+C_{i}}-\frac{C_{k} \rho_{k} x_{k}}{C_{k}+C_{j}}+\sum_{k=1}^{m} \frac{C_{k} \rho_{k} x_{i}}{C_{k}+C_{i}}-\frac{C_{k} \rho_{k} x_{2}}{C_{k}+C_{j}} \\
& >\sum_{k=1}^{m} \frac{C_{k} \rho_{k} x_{k}}{C_{k}+C_{i}}-\frac{C_{k} \rho_{k} x_{k}}{C_{k}+C_{j}}+\sum_{k=1}^{m} \frac{C_{k} \rho_{k} x_{i}}{C_{k}+C_{i}}-\frac{C_{k} \rho_{k} x_{j}}{C_{k}+C_{i}}=A_{0}+B_{0}\left(x_{i}-x_{j}\right) . \tag{EC.6}
\end{align*}
$$

Hence we can obtain that $x_{i}-x_{j}>A_{0} /\left(1-B_{0}\right)$, where $A_{0}=\sum_{k=1}^{m} C_{k} \rho_{k} x_{k} /\left(C_{k}+C_{i}\right)-C_{k} \rho_{k} x_{k} /\left(C_{k}+\right.$ $\left.C_{j}\right), B_{0}=\sum_{k=1}^{m} C_{k} \rho_{k} /\left(C_{k}+C_{i}\right)$. Because $B_{0}<\sum_{k=1}^{m} \rho_{k}=\rho<1$ and $A_{0}>0$, it is obvious to see that $x_{i}-x_{j}>0$.
(iii) We assume $\rho_{i}>0$ for all $i=1,2, \ldots, m$ (If $\rho_{k}=0$ for some k, the m-grade case degenerates to the $(m-1)$-grade case). Because $\mathbf{A x}=\mathbf{e}$, multiplying C_{i} to the $i^{\text {th }}$ row and dividing by C_{j} for the $j^{\text {th }}$ column of \mathbf{A} yields
$\left(\left(\begin{array}{ccc}\rho_{1} & \cdots & \rho_{m} \\ \vdots & \ddots & \vdots \\ \rho_{1} & \cdots & \rho_{m}\end{array}\right)+\left(\begin{array}{cccc}\sum_{i=1}^{m} a_{1, i}-1-a_{1,1} & -a_{1,2} & \cdots & -a_{1, m} \\ -a_{2,1} & \sum_{i=1}^{m} a_{2, i}-1-a_{2,2} & \cdots & -a_{2, m} \\ \vdots & \cdots & \ddots & \vdots \\ -a_{m, 1} & -a_{m, 2} & \cdots & \sum_{i=1}^{m} a_{m, i}-1-a_{m, m}\end{array}\right)\right) \cdot\left(\begin{array}{c}x_{1} \\ C_{2} x_{2} \\ \vdots \\ C_{m} x_{m}\end{array}\right)=\left(\begin{array}{c}-1 \\ -C_{2} \\ \vdots \\ -C_{m}\end{array}\right)$.

Omitting the last row (after some algebraic steps), we have

$$
\left(\begin{array}{cccc}
-b_{1,1} & b_{1,2} & \cdots & -b_{1, m} \tag{EC.8}\\
-b_{2,1} & -b_{2,2} & \cdots & -b_{2, m} \\
\vdots & \vdots & \ddots & \vdots \\
-b_{m-1,1} & -b_{m-1,2} & \cdots & b_{m-1, m}
\end{array}\right)\left(\begin{array}{c}
x_{1} \\
C_{2} x_{2} \\
\vdots \\
C_{m} x_{m}
\end{array}\right)=\left(\begin{array}{c}
C_{2}-1 \\
C_{3}-C_{2} \\
\vdots \\
C_{m}-C_{m-1}
\end{array}\right)
$$

where $b_{i, j} \geq 0$ and

$$
\begin{align*}
& b_{k, i}=\left(\frac{1}{C_{k}+C_{i}}-\frac{1}{C_{k+1}+C_{i}}\right) C_{i} \rho_{i}, \quad k \neq i, i-1 \\
& b_{k, k}=1-\left(\sum_{i=1}^{m} \frac{C_{i} \rho_{i}}{C_{k}+C_{i}}\right)+\left(\frac{1}{C_{k}+C_{k}}-\frac{1}{C_{k+1}+C_{k}}\right) C_{k} \rho_{k}, \quad k=1, \ldots, m-1 \tag{EC.9}\\
& b_{k, k+1}=\sum_{j \neq k+1} b_{k, j}, \quad k=1, \ldots, m-1
\end{align*}
$$

Because $C_{k+1}>C_{k}$ and $b_{k, k+1}=\sum_{j \neq k+1} b_{k, j}$ for $k=1, \ldots, m-1$, (EC.8) implies that

$$
\begin{aligned}
& \sum_{j=1}^{m} b_{1, j} C_{2} x_{2}>\sum_{j=1}^{m} b_{1, j} C_{j} x_{j}, \\
& \sum_{j=1}^{m} b_{k, j} C_{k+1} x_{k+1}>\sum_{j=1}^{m} b_{k, j} C_{j} x_{j}, \quad k=2, \ldots, m-2 \\
& \sum_{j=1}^{m} b_{m-1, j} C_{m} x_{m}>\sum_{j=1}^{m} b_{m-1, j} C_{j} x_{j}
\end{aligned}
$$

It is easy to find that $C_{k} x_{k}(k \geq 2)$ is not the smallest one among $x_{1}, C_{2} x_{2}, \ldots, C_{m} x_{m}$, otherwise we have $\sum_{j=1}^{m} b_{k-1, j} C_{k} x_{k} \leq \sum_{j=1}^{m} b_{k-1, j} C_{j} x_{j}$, which contradicts to the inequalities above. Therefore, we must have $x_{1}<C_{i} x_{i}(i \geq 2)$. Next, we will prove $C_{2} x_{2}<C_{i} x_{i}$ for $i=3, \ldots, m$ in a similar way. In (EC.8), dividing by $C_{i+1}-C_{i}$ in $i^{\text {th }}$ row for $i=1, \ldots, m-1$ and subtracting $t_{i}=b_{i, 1}\left(C_{2}-\right.$ 1) $/\left[b_{1,1}\left(C_{i+1}-C_{i}\right)\right]$ times of the first row in $i^{\text {th }}$ row for $i=2, \ldots, m-1$ leads to

$$
\left(\begin{array}{cccc}
-b_{1,1}^{\prime} & b_{1,2}^{\prime} & \cdots & -b_{1, m}^{\prime} \tag{EC.10}\\
0 & -b_{2,2}^{\prime}-t_{2} b_{1,2}^{\prime} & \cdots & -b_{2, m}^{\prime}+t_{2} b_{1, m}^{\prime} \\
\vdots & \vdots & \ddots & \vdots \\
0 & -b_{m-1,2}^{\prime}-t_{m-1} b_{1,2}^{\prime} & \cdots & b_{m-1, m}^{\prime}+t_{m-1} b_{1, m}^{\prime}
\end{array}\right)\left(\begin{array}{c}
x_{1} \\
C_{2} x_{2} \\
\vdots \\
C_{m} x_{m}
\end{array}\right)=\left(\begin{array}{c}
1 \\
1-t_{2} \\
\vdots \\
1-t_{m-1}
\end{array}\right)
$$

where $b_{i, j}^{\prime}=b_{i, j} /\left(C_{i+1}-C_{i}\right)$. In order to find the relationships among $C_{2} x_{2}, C_{3} x_{3} \ldots, C_{m} x_{m}$, we rewrite the above equations as

$$
\left(\begin{array}{cccc}
-C_{2,2} & C_{2,3} & \cdots & -C_{2, m} \tag{EC.11}\\
-C_{3,2} & -C_{3,3} & \cdots & -C_{3, m} \\
\vdots & \vdots & \ddots & \vdots \\
-C_{m-1,2} & -C_{m-1,3} & \cdots & C_{m-1, m}
\end{array}\right)\left(\begin{array}{c}
C_{2} x_{2} \\
C_{3} x_{3} \\
\vdots \\
C_{m} x_{m}
\end{array}\right)=\left(\begin{array}{c}
a_{2} \\
a_{3} \\
\vdots \\
a_{m-1}
\end{array}\right)
$$

where

$$
\begin{align*}
& C_{k, 2}=\frac{b_{1,1} b_{k, 2}+b_{1,2} b_{k, 1}}{\left(C_{k+1}-C_{k}\right) b_{1,1}}>0, \quad k=2, \ldots, m-1 ; \\
& C_{k, k+1}=\frac{b_{1,1} b_{k, k+1}+b_{1, k+1} b_{k, 1}}{\left(C_{k+1}-C_{k}\right) b_{1,1}}>0, \quad k=2, \ldots, m-1 ; \tag{EC.12}\\
& C_{k, j}=\frac{b_{1,1} b_{k j}-b_{1, j} b_{k, 1}}{\left(C_{k+1}-C_{k}\right) b_{1,1}}, \quad j \neq 2, k+1 ; \\
& a_{k}=1-t_{k}, \quad k=2, \ldots, m-1 .
\end{align*}
$$

Based on the definition of $C_{i, j}$, it is easy to verify that $C_{k, k+1}=\sum_{j \neq k+1} C_{k, j}$ for $k=2, \ldots, m-1$. The structure of (EC.11) is similar to (EC.8). If $a_{k}>0$ and $C_{k, j}>0$, we have

$$
\begin{aligned}
& \sum_{j=2}^{m} C_{2, j} C_{3} x_{3}>\sum_{j=2}^{m} b_{2, j} C_{j} x_{j}, \\
& \sum_{j=2}^{m} C_{k, j} C_{k+1} x_{k+1}>\sum_{j=2}^{m} b_{k, j} C_{j} x_{j}, \quad k=3, \ldots, m-2 \\
& \sum_{j=2}^{m} C_{m-1, j} C_{m} x_{m}>\sum_{j=2}^{m} b_{m-1, j} C_{j} x_{j} .
\end{aligned}
$$

Hence, we can deduce $C_{2} x_{2}<C_{i} x_{i}$ for $i=3, \ldots, m$. Therefore, it is sufficient to complete the proof by showing that $a_{k}>0$ and $C_{k, j}>0$.
Because $\left(C_{2}-1\right) /\left[\left(C_{k+1}+1\right)\left(C_{k}+1\right)\right]<1 /\left(C_{2}+1\right)$, we have

$$
\begin{equation*}
b_{1,1}-\frac{b_{k, 1}\left(C_{2}-1\right)}{C_{k+1}-C_{k}}>1-\left(\rho_{1}+\sum_{i=2}^{m} \frac{C_{i}}{1+C_{i}} \rho_{i}\right)>1-\rho>0, \tag{EC.13}
\end{equation*}
$$

which implies that $a_{k}>0$ for $k=2, \ldots, m-1$.
Note that we have $C_{k, 2}>0$ and $C_{k, k+1}>0$ from (EC.12), it remains to show that $C_{k, j}>0$ for $2 \leq k \leq m-1$ and $j \notin\{2, k+1\}$, we consider the following cases:
(1) When $j=k$, we need to prove $b_{1,1} b_{k, k}>b_{1, k} b_{k, 1}$, that is

$$
\begin{aligned}
& \left(\frac{1}{1+C_{k}}-\frac{1}{C_{2}+C_{k}}\right) C_{k} \rho_{k}\left(\frac{1}{1+C_{k}}-\frac{1}{1+C_{k+1}}\right) \rho_{1} \\
< & {\left[1-\sum_{i=1}^{m} \frac{C_{i}}{1+C_{i}} \rho_{i}+\left(\frac{1}{2}-\frac{1}{1+C_{2}}\right) \rho_{1}\right]\left[1-\sum_{i=1}^{m} \frac{C_{i}}{C_{k}+C_{i}} \rho_{i}+\left(\frac{1}{2}-\frac{C_{k}}{C_{k}+C_{k+1}}\right) \rho_{k}\right] . }
\end{aligned}
$$

It is straightforward to verify that

$$
\begin{aligned}
& 1-\sum_{i=1}^{m} \frac{C_{i}}{1+C_{i}} \rho_{i}+\frac{\rho_{1}}{2}+\frac{C_{k} \rho_{k}}{C_{k}+1}>1-\sum_{i=1}^{m} \rho_{i}+\rho_{1}+\rho_{k} \\
& 1-\sum_{i=1}^{m} \frac{C_{i}}{C_{k}+C_{i}} \rho_{i}+\frac{\rho_{k}}{2}+\frac{\rho_{1}}{C_{k}+1}>1-\sum_{i=1}^{m} \rho_{i}+\rho_{1}+\rho_{k} .
\end{aligned}
$$

By letting $Y \equiv 1-\rho+\rho_{1}+\rho_{k}$, we have

$$
\begin{aligned}
& {\left[1-\sum_{i=1}^{m} \frac{C_{i}}{1+C_{i}} \rho_{i}+\left(\frac{1}{2}-\frac{1}{1+C_{2}}\right) \rho_{1}\right]\left[1-\sum_{i=1}^{m} \frac{C_{i}}{C_{k}+C_{i}} \rho_{i}+\left(\frac{1}{2}-\frac{C_{k}}{C_{k}+C_{k+1}}\right) \rho_{k}\right] } \\
> & {\left[Y-\left(\frac{\rho_{1}}{C_{2}+1}+\frac{C_{k} \rho_{k}}{1+C_{k}}\right)\right]\left[Y-\left(\frac{\rho_{1}}{C_{k}+1}+\frac{C_{k} \rho_{k}}{C_{k}+C_{k+1}}\right)\right]>\left[1-\left(\frac{x}{C_{2}+1}+\frac{C_{k} y}{1+C_{k}}\right)\right]^{2} Y^{2} }
\end{aligned}
$$

and

$$
\left(\frac{1}{1+C_{k}}-\frac{1}{C_{2}+C_{k}}\right) C_{k} \rho_{k}\left(\frac{1}{1+C_{k}}-\frac{1}{1+C_{k+1}}\right) \rho_{1}<\frac{C_{k}}{1+C_{k}} y \frac{x}{1+C_{k}} Y^{2}
$$

where $x=\rho_{1} / Y, y=\rho_{k} / Y$.
Therefore, it is sufficient to show that $[1-(2 / x+\bar{a} y)]^{2}>\bar{a}(1-\bar{a}) x y$, where $\bar{a} \equiv C_{k} /\left(C_{k}+1\right), \bar{a} \in$ $(1 / 2,1)$, i.e. $2 / x+\bar{a} y+\sqrt{\bar{a}(1-\bar{a}) x y}<1$. Define $\phi(x) \equiv 2 / x+\bar{a}(1-x)+\sqrt{\bar{a}(1-\bar{a}) x(1-x)}>$ $2 / x+\bar{a} y+\sqrt{\bar{a}(1-\bar{a}) x y}$ so that $\phi^{\prime}(x)=[1 / 2-\bar{a}+(\sqrt{\bar{a}(1-\bar{a})}(1-2 x)) /(2 \sqrt{x(1-x)})]$. Setting $\bar{A} \equiv(2 \bar{a}-1)^{2} /[\bar{a}(1-\bar{a})]$, we find that (i) when $0<x<1 / 2-\sqrt{\bar{A} /(4 \bar{A}+16)}, \phi^{\prime}(x)>0$ and (ii) when $1 / 2-\sqrt{\bar{A} /(4 \bar{A}+16)}<x<1, \phi^{\prime}(x)<0$, then we derive that $2 / x+\bar{a} y+\sqrt{\bar{a}(1-\bar{a}) x y}<\phi(x) \leq$ $\max \phi(x)=f(1 / 2-\sqrt{\bar{A} /(4 \bar{A}+16)})=(\bar{a}+1) / 2<1$.
(2) When $j \neq k$, we need to prove $b_{1,1} b_{k, j}>b_{1, j} b_{k, 1}$, that is

$$
\frac{C_{2}-1}{\left(C_{k}+1\right)\left(C_{k+1}+1\right)} \frac{\left(C_{k+1}+C_{j}\right)\left(C_{k}+C_{j}\right)}{\left(1+C_{j}\right)\left(C_{2}+C_{j}\right)} \rho_{1}<1-\sum_{i=1}^{m} \frac{C_{i}}{1+C_{i}} \rho_{i}+\left(\frac{1}{2}-\frac{1}{1+C_{2}}\right) \rho_{1} .
$$

Define $\Psi(x)=\left(C_{k+1}+x\right)\left(C_{k}+x\right) /\left[\left(C_{k+1}+1\right)\left(C_{k}+1\right)\right]-(1+x)\left(C_{2}+x\right) /\left(C_{2}+1\right)$. We have

$$
\Psi^{\prime}(x)=2 x\left(\frac{1}{\left(C_{k+1}+1\right)\left(C_{k}+1\right)}-\frac{1}{C_{2}+1}\right)+\frac{C_{k}+C_{k+1}}{\left(C_{k+1}+1\right)\left(C_{k}+1\right)}-1<0
$$

for all $x \geq 1$. Then $\Psi(x)$ is decreasing in $x \geq 1$. Notice that $\Psi(1)=-1$, then $\Psi(x)<0$ for $x \geq 1$, which gives that $\Psi\left(C_{j}\right)<0$ for $j \neq k$. Then we can get that

$$
\begin{aligned}
\frac{\Psi\left(C_{j}\right)}{\left(1+C_{j}\right)\left(C_{2}+C_{j}\right)}<0 & \Leftrightarrow \frac{1}{\left(C_{k}+1\right)\left(C_{k+1}+1\right)} \frac{\left(C_{k+1}+C_{j}\right)\left(C_{k}+C_{j}\right)}{\left(1+C_{j}\right)\left(C_{2}+C_{j}\right)}<\frac{1}{C_{2}+1}, \\
& \Leftrightarrow \frac{C_{2}}{\left(C_{k}+1\right)\left(C_{k+1}+1\right)} \frac{\left(C_{k+1}+C_{j}\right)\left(C_{k}+C_{j}\right)}{\left(1+C_{j}\right)\left(C_{2}+C_{j}\right)}<\frac{C_{2}}{C_{2}+1}
\end{aligned}
$$

which implies that

$$
\frac{C_{2}-1}{\left(C_{k}+1\right)\left(C_{k+1}+1\right)} \frac{\left(C_{k+1}+C_{j}\right)\left(C_{k}+C_{j}\right)}{\left(1+C_{j}\right)\left(C_{2}+C_{j}\right)}+\frac{1}{C_{2}+1}<1
$$

Therefore, we have

$$
\begin{aligned}
& 1-\sum_{i=1}^{m} \frac{C_{i}}{1+C_{i}} \rho_{i}+\left(\frac{1}{2}-\frac{1}{1+C_{2}}\right) \rho_{1}-\frac{C_{2}-1}{\left(C_{k}+1\right)\left(C_{k+1}+1\right)} \frac{\left(C_{k+1}+C_{j}\right)\left(C_{k}+C_{j}\right)}{\left(1+C_{j}\right)\left(C_{2}+C_{j}\right)} \rho_{1} \\
> & 1-\rho_{1}-\sum_{i=2}^{m} \frac{C_{i}}{1+C_{i}} \rho_{i}>1-\rho>0
\end{aligned}
$$

which completes our proof.
Proof of Theorem 2 Our proof has two steps. First, we show the sub-optimality of m-grade case; second, derive the optimal SSRD parameters for the 2-grade case.

Step 1: Sub-optimality of cases $m \geq 3$. The optimization problem (14) can be rewritten as

$$
\begin{array}{ll}
\min & \sum_{i=1}^{m} \rho_{i} \sqrt{x_{i}\left(\rho_{1}, \ldots, \rho_{m}\right)} \\
\text { s.t. } & \sum_{i=1}^{m} \rho_{i}=\rho<1 \tag{EC.14}\\
& \rho_{i} \geq 0, \quad i=1,2, \ldots, m,
\end{array}
$$

where $x_{i}\left(\rho_{1}, \ldots, \rho_{m}\right)$ is a function of $\left(\rho_{1}, \ldots, \rho_{m}\right)$ and it is the solution of the linear equation $\mathbf{A x}=$ -e. We apply the first-order Kuhn-Tucker condition to obtain the optimal work load $\rho_{1}^{*}, \ldots, \rho_{m}^{*}$. Let $\lambda \geq 0, \mu_{i} \geq 0$ for $i=1, \ldots, m$ be the Lagrange multipliers (Luenberger and Ye 2008). The corresponding Lagrangian of (EC.14) is

$$
\begin{equation*}
L\left(\rho_{1}, \ldots, \rho_{m}, \lambda, \mu_{1}, \ldots, \mu_{m}\right)=\sum_{i=1}^{m} \rho_{i} \sqrt{x_{i}\left(\rho_{1}, \ldots, \rho_{m}\right)}-\beta\left(\sum_{i=1}^{m} \rho_{i}-\rho\right)+\sum_{i=1}^{m} \alpha_{i} \rho_{i} . \tag{EC.15}
\end{equation*}
$$

The Kuhn-Tucker condition implies that if the minimizers $\rho_{1}^{*}, \ldots, \rho_{m}^{*}$ exist, there exist $\beta \geq 0$, $\alpha_{i} \geq 0, i=1, \ldots, m$ such that

$$
\begin{equation*}
\frac{\partial L}{\partial \rho_{i}}=0, \quad \alpha_{i} \rho_{i}=0, \quad \rho_{i}, \alpha_{i} \geq 0, \quad i=1, \ldots, n, \tag{EC.16}
\end{equation*}
$$

which is equivalent to

$$
\begin{equation*}
\sqrt{x_{i}}+\frac{1}{2}\left(\frac{x_{1 i} \rho_{1}}{\sqrt{x_{1}}}+\frac{x_{2 i} \rho_{2}}{\sqrt{x_{2}}}+\cdots+\frac{x_{m i} \rho_{m}}{\sqrt{x_{m}}}\right)-\beta+\alpha_{i}=0, \quad \alpha_{i} \rho_{i}=0, \quad \rho_{i}, \alpha_{i} \geq 0, \quad i=1, \ldots, m \tag{EC.17}
\end{equation*}
$$

where $x_{i, j}=\partial x_{i} / \partial \rho_{j}$, which solves the linear equation

$$
\begin{equation*}
\mathbf{A} \mathbf{b}_{i}=-\mathbf{B}_{i} \mathbf{x} \tag{EC.18}
\end{equation*}
$$

with $\mathbf{b}_{i}=\left(x_{i, 1}, \ldots, x_{i, m}\right)^{T}, \mathbf{e}=(1, \ldots, 1)^{T}$,

$$
\mathbf{B}_{1}=\left(\begin{array}{cccc}
2 c_{1,1} & 0 & \cdots & 0 \tag{EC.19}\\
c_{2,1} & c_{2,1} & 0 & 0 \\
\vdots & \vdots & \ddots & \vdots \\
c_{m, 1} & 0 & 0 & c_{m, 1}
\end{array}\right), \quad \ldots, \quad \mathbf{B}_{m}=\left(\begin{array}{cccc}
c_{1, m} & 0 & \cdots & c_{1, m} \\
0 & c_{2, m} & 0 & c_{2, m} \\
0 & \vdots & \ddots & \vdots \\
0 & 0 & 0 & 2 c_{m, m}
\end{array}\right), \quad c_{i, j}=\frac{C_{j}}{C_{i}+C_{j}} .
$$

For all $\rho_{i}>0$, we have $\mathbf{b}_{i}=\mathbf{A}^{-1} \mathbf{B}_{i} \mathbf{A}^{-1} \mathbf{e}$.

We first consider the case $m=3$ and later extend to the case of general $m \geq 3$ by induction. If the optimal $\rho_{1}^{*}, \rho_{2}^{*}, \rho_{3}^{*}$ are all strictly greater than 0 , we find that $\alpha_{i}=0, i=1,2,3$ from Kunh-Tucker conditions. Then $\rho_{1}^{*}, \rho_{2}^{*}, \rho_{3}^{*}$ satisfy the following equations

$$
\begin{align*}
& f_{1}\left(\rho_{1}, \rho_{2}, \rho_{3}\right)=2\left(\sqrt{x_{1}}-\sqrt{x_{2}}\right)-\mathbf{a}\left(\mathbf{b}_{1}-\mathbf{b}_{2}\right)=0 \\
& f_{2}\left(\rho_{1}, \rho_{2}, \rho_{3}\right)=2\left(\sqrt{x_{1}}-\sqrt{x_{3}}\right)-\mathbf{a}\left(\mathbf{b}_{1}-\mathbf{b}_{3}\right)=0 \tag{EC.20}
\end{align*}
$$

where $\mathbf{a}=\left(\rho_{1} / \sqrt{x_{1}}, \rho_{2} / \sqrt{x_{2}}, \rho_{3} / \sqrt{x_{3}}\right)$. Note that

$$
\mathbf{b}_{1}-\mathbf{b}_{2}=\mathbf{A}^{-1}\left(\mathbf{B}_{1}-\mathbf{B}_{2}\right) \mathbf{A}^{-1} \mathbf{e}=\mathbf{A}^{-1}\left(\begin{array}{ccc}
c_{2,1} & c_{2,1}-1 & 0 \tag{EC.21}\\
c_{2,1} & c_{2,1}-1 & 0 \\
c_{3,1} & -c_{3,2} & c_{3,1}-c_{3,2}
\end{array}\right) \mathbf{A}^{-1}\left(\begin{array}{l}
1 \\
1 \\
1
\end{array}\right) .
$$

Define the matrix

$$
\mathbf{A}^{-1}=\left(\begin{array}{ccc}
d_{1,1} & d_{1,2} & d_{1,3} \\
d_{2,1} & d_{2,2} & d_{2,3} \\
d_{3,1} & d_{3,2} & d_{3,3}
\end{array}\right)
$$

where $d_{i j} \leq 0$ from (i) of Lemma 1. Because $\mathbf{A x}=-\mathbf{e}$, we have

$$
\begin{aligned}
& \mathbf{A}^{-1}\left(\begin{array}{lll}
c_{2,1} & c_{2,1}-1 & 0 \\
c_{2,1} & c_{2,1}-1 & 0 \\
c_{3,1} & -c_{3,2} & c_{3,1}-c_{3,2}
\end{array}\right) \mathbf{A}^{-1}\left(\begin{array}{l}
1 \\
1 \\
1
\end{array}\right)=-\mathbf{A}^{-1}\left(\begin{array}{lll}
c_{2,1} & c_{2,1}-1 & 0 \\
c_{2,1} & c_{2,1}-1 & 0 \\
c_{3,1} & -c_{3,2} & c_{3,1}-c_{3,2}
\end{array}\right) \mathbf{x} \\
= & -\left(\begin{array}{l}
x_{1}\left[\left(d_{1,1}+d_{1,2}\right) c_{2,1}+d_{1,3} c_{3,1}\right]-x_{2}\left[\left(d_{1,1}+d_{1,2}\right) c_{1,2}+d_{1,3} c_{3,2}\right]+x_{3}\left(c_{3,1}-a_{3,2}\right) d_{1,3} \\
x_{1}\left[\left(d_{2,1}+d_{2,2}\right) c_{2,1}+d_{2,3} c_{3,1}\right]-x_{2}\left[\left(d_{2,1}+d_{2,2}\right) c_{1,2}+d_{2,3} c_{3,2}\right]+x_{3}\left(c_{3,1}-a_{3,2}\right) d_{2,3} \\
x_{1}\left[\left(d_{3,1}+d_{3,2}\right) c_{2,1}+d_{3,3} c_{3,1}\right]-x_{2}\left[\left(d_{3,1}+d_{3,2}\right) c_{1,2}+d_{3,3} c_{3,2}\right]+x_{3}\left(c_{3,1}-a_{3,2}\right) d_{3,3}
\end{array}\right) .
\end{aligned}
$$

From (iii) of Lemma 1, we have $x_{1} c_{2,1}-x_{2} c_{1,2}=x_{1} /\left(C_{2}+1\right)-C_{2} x_{2} /\left(C_{2}+1\right)<0$, and

$$
\begin{aligned}
x_{1} c_{3,1}-x_{2} c_{3,2}+x_{3} c_{3,1}-x_{3} c_{3,2} & =\left(\frac{x_{1}}{C_{3}+1}-\frac{C_{2} x_{2}}{C_{3}+C_{2}}\right)-\left(\frac{C_{3} x_{3}}{C_{3}+1}-\frac{C_{3} x_{3}}{C_{3}+C_{2}}\right) \\
& <\left(\frac{C_{2} x_{2}}{C_{3}+1}-\frac{C_{2} x_{2}}{C_{3}+C_{2}}\right)-\left(\frac{C_{3} x_{3}}{C_{3}+1}-\frac{C_{3} x_{3}}{C_{3}+C_{2}}\right) \\
& =\left(C_{2} x_{2}-C_{3} x_{3}\right)\left(\frac{1}{C_{3}+1}-\frac{1}{C_{3}+C_{2}}\right)<0,
\end{aligned}
$$

where the inequalities hold because from $C_{2} x_{2}<C_{3} x_{3}$ (part (iii) of Lemma 1). Since $d_{i, j} \leq 0$, we have $\left(x_{1} c_{2,1}-x_{2} c_{1,2}\right)\left(d_{i, 1}+d_{i, 2}\right)+\left[x_{1} c_{3,1}-x_{2} c_{3,2}+x_{3} c_{3,1}-x_{3} c_{3,2}\right] d_{i, 3}>0$ for $i=1,2,3$. Hence,

$$
\mathbf{A}^{-1}\left(\begin{array}{ccc}
c_{2,1} & c_{2,1}-1 & 0 \tag{EC.22}\\
c_{2,1} & c_{2,1}-1 & 0 \\
c_{3,1} & -c_{3,2} & c_{3,1}-c_{3,2}
\end{array}\right) \mathbf{A}^{-1}\left(\begin{array}{l}
1 \\
1 \\
1
\end{array}\right)<0
$$

Therefore, we have $\mathbf{b}_{1}-\mathbf{b}_{2}<0$, leading to $\mathbf{a}\left(\mathbf{b}_{1}-\mathbf{b}_{2}\right)<0$ (note that $\mathbf{a}>0$). According to (ii) of Lemma 1, we have $x_{1}>x_{2}$, which implies that

$$
f_{1}\left(\rho_{1}, \rho_{2}, \rho_{3}\right)=2\left(\sqrt{x_{1}}-\sqrt{x_{2}}\right)-\mathbf{a}\left(\mathbf{b}_{1}-\mathbf{b}_{2}\right)>0
$$

which cannot satisfy the optimal condition (EC.20). This shows that ($\rho_{1}^{*}, \rho_{2}^{*}, \rho_{3}^{*}$) cannot be attained in the region $\left\{\left(\rho_{1}, \rho_{2}, \rho_{3}\right) \mid \rho_{1}>0, \rho_{2}>0, \rho_{3}>0\right\}$. Therefore, we must have $\rho_{i}=0$ for some $i \in\{1,2,3\}$. If there are $\rho_{i}=\rho_{j}=0$ for $i, j \in(1,2,3)$ and $i \neq j$, it degenerates to the homogenous service case. Because we have shown that SSRD policy outperforms the homogeneous policy, there should be only one $\rho_{i}=0$ (the grade- 2 case).

We next treat the general case $m \geq 3$. We assume that this structure holds for the i case, $i \leq m$, that is, if there are in total m service grades, the optimal SSRD allocation is to allocate the arriving customers with two classes. We consider the $m+1$-grade case. If $\rho_{i}^{*}>0$ for $i=1, \ldots, m+1$, similar to (EC.20), we have

$$
\begin{equation*}
f_{k}\left(\rho_{1}, \ldots, \rho_{m+1}\right)=2\left(\sqrt{x_{1}}-\sqrt{x_{k+1}}\right)-\mathbf{a}\left(\mathbf{b}_{1}-\mathbf{b}_{k+1}\right)=0, \quad k=1, \ldots, m \tag{EC.23}
\end{equation*}
$$

When $k=1$, similar to (EC.21), we have

$$
\mathbf{b}_{1}-\mathbf{b}_{2}=\mathbf{A}^{-1}\left(\mathbf{B}_{1}-\mathbf{B}_{2}\right) \mathbf{A}^{-1} \mathbf{e}=-A^{-1}\left(\begin{array}{ccccc}
c_{2,1} & c_{2,1}-1 & 0 & \cdots & 0 \\
c_{2,1} & c_{2,1}-1 & 0 & \cdots & 0 \\
c_{3,1} & -c_{3,2} & c_{3,1}-c_{3,2} & \cdots & 0 \\
\vdots & \vdots & 0 & \ddots & 0 \\
c_{m, 1} & -c_{m, 2} & 0 & \cdots & c_{m, 1}-c_{m, 2}
\end{array}\right) \mathbf{x}
$$

where B_{1} and B_{2} are defined as (EC.19) analogically. Denote $d_{i, j}$ as the $(i, j)^{\text {th }}$ entries of \mathbf{A}^{-1}. From (i) of Lemma 1, we have $d_{i, j} \leq 0$. Because $x_{1} c_{2,1}-x_{2} c_{1,2}<0$, the $k^{\text {th }}$ element of the vector

$$
\mathbf{A}^{-1}\left(\begin{array}{ccccc}
c_{2,1} & c_{2,1}-1 & 0 & \cdots & 0 \\
c_{2,1} & c_{2,1}-1 & 0 & \cdots & 0 \\
c_{3,1} & -c_{3,2} & c_{3,1}-c_{3,2} & \cdots & 0 \\
\vdots & \vdots & 0 & \ddots & 0 \\
c_{m, 1} & -c_{m, 2} & 0 & \cdots & c_{m, 1}-c_{m, 2}
\end{array}\right) \mathbf{x}
$$

satisfies

$$
\begin{aligned}
& x_{1}\left[\left(d_{k, 1}+d_{k, 2}\right) c_{2,1}+\sum_{i=3}^{m} d_{k, i} c_{i, 1}\right]-x_{2}\left[\left(d_{k, 1}+d_{k, 2}\right) c_{1,2}+\sum_{i=3}^{m} d_{k, i} c_{i, 2}\right]+x_{i} \sum_{i=3}^{m}\left(c_{i, 1}-c_{i, 2}\right) d_{k, i} \\
\geq & \sum_{i=3}^{m} d_{k, i} c_{i, 1} x_{1}-d_{k, i} c_{i, 2} x_{2}+d_{k, i} c_{i, 1} x_{i}-d_{k, i} c_{i, 2} x_{i} \\
= & \sum_{i=3}^{m} d_{k, i}\left[\frac{x_{1}}{C_{1}+1}-\frac{C_{2} x_{2}}{C_{i}+C_{2}}+\frac{x_{i}}{C_{i}+1}-\frac{C_{2} x_{i}}{C_{i}+C_{2}}\right] \\
= & \sum_{i=3}^{m} d_{k, i}\left[\frac{x_{1}}{C_{1}+1}-\frac{C_{2} x_{2}}{C_{i}+C_{2}}+\frac{C_{i} x_{i}}{C_{i}+C_{2}}-\frac{C_{i} x_{i}}{C_{i}+1}\right] \geq \sum_{i=3}^{m} d_{k, i}\left(C_{2} x_{2}-C_{i} x_{i}\right)\left(\frac{1}{C_{i}+1}-\frac{1}{C_{i}+C_{2}}\right)>0
\end{aligned}
$$

Therefore, we have $\mathbf{b}_{1}-\mathbf{b}_{1}<0$, which implies that $f_{1}\left(\rho_{1}, \ldots, \rho_{m}\right)>0$, because $\mathbf{a}\left(\mathbf{b}_{1}-\mathbf{b}_{2}\right)<0$ and $\sqrt{x_{1}}>\sqrt{x_{2}}\left((\mathrm{i})\right.$ of Lemma 1). This means that $\rho_{i}>0$ for all i can not be optimal for $(m+1)$-grade case, so that we must have $\rho_{i}=0$ for some i. Hence, the $m+1$ case degenerates to the k-grade case for some $k \leq m$.

Step 2: Treating the $m=2$ case. For the 2-grade case with $C=\theta_{2} / \theta_{1}$, the optimal allocation probability can be derived directly from Proposition 1, namely,

$$
\begin{equation*}
p_{1}^{*}(C, \boldsymbol{\rho})=\frac{\rho_{1} \sqrt{1+C-C \rho}}{\rho_{1} \sqrt{1+C-C \rho}+\rho \sqrt{1+C-\rho}}, \quad p_{2}^{*}(C, \boldsymbol{\rho})=\frac{\rho \sqrt{1+C-\rho}}{\rho_{1} \sqrt{1+C-C \rho}+\rho \sqrt{1+C-\rho}} . \tag{EC.24}
\end{equation*}
$$

We next develop the optimal policy for $\rho_{1}^{*}(C)$ and $\rho_{2}^{*}(C)$ by unconditioning on ρ. Substituting (EC.24) into (14), our minimization problem becomes

$$
\begin{align*}
\min _{\rho_{1}, \rho_{2}} & \frac{\left(\rho_{1} \sqrt{1+C-\rho}+\rho_{2} \sqrt{1+C-C \rho}\right)^{2}}{1+C-C \rho+(C-1) \rho_{1}} \tag{EC.25}\\
& \text { s.t. } \quad \rho_{1}+\rho_{2}=\rho<1 .
\end{align*}
$$

We can give the optimal SSRD results (as a function of C and ρ) below.
Let $E=1+C-C \rho, F=1+C-\rho, \rho_{1}=z$ and $\rho_{2}=\rho-z$. Define $g(z) \equiv(\sqrt{F} z+(\rho-z) \sqrt{E})^{2} /[E+$ $(C-1) z]$. Then the first-order derivative of $g(z)$ with respect to z is

$$
\begin{equation*}
\frac{d g(z)}{d z}=\frac{((\sqrt{F}-\sqrt{E}) z+\sqrt{E} \rho) \cdot((C-1)(\sqrt{F}-\sqrt{E}) z-((C-1) \sqrt{E} \rho-2((\sqrt{F}-\sqrt{E}) E)))}{(E+(C-1) z)^{2}} \tag{EC.26}
\end{equation*}
$$

Because $F>E$ and $C>1$, it is easy to verify that $(C-1)(\sqrt{F}-\sqrt{E}) x>0$ and $(C-1) \sqrt{E} \rho-$ $2(\sqrt{F}-\sqrt{E}) E>0$. So we conclude that

$$
\frac{d g(z)}{d z}\left\{\begin{array}{lll}
<0, & \text { when } & 0<z<\frac{\sqrt{E} \rho}{\sqrt{F}-\sqrt{E}}-\frac{2 E}{C-1} ; \\
>0, & \text { when } & \frac{\sqrt{E} \rho}{\sqrt{F}-\sqrt{E}}-\frac{2 E}{C-1}<z<\rho .
\end{array}\right.
$$

Hence, $z^{*}=\sqrt{E} \rho /(\sqrt{F}-\sqrt{E})-2 E /(C-1)$ is the unique minimizer in $(0, \rho)$. Substituting it into $p_{1}^{*}(C, \rho)$ and $p_{2}^{*}(C, \rho)$ in (EC.24) yields $\left(p_{1}^{*}(C, \rho), p_{2}^{*}\left(C_{2}, \rho\right)\right)=(E / E+F, F / E+F)$. The corresponding optimal SSRD parameters ($\left.\boldsymbol{\rho}^{*}, \mathbf{p}^{*}, \boldsymbol{\mu}^{*}, \boldsymbol{\theta}^{*}\right)$ and delay $w^{*}(C, \rho)$ can be obtained, accordingly, by replacing ρ_{1} with z^{*}.
We have showed that, if there are $m \geq 2$ "candidate" grades, it is optimal to consider 2 grades. It remains to argue that we should choose grade 1 and grade m, not any other grade $j, 1<j<m$. For a 2-grade SSRD policy with a fixed $\rho>0, w^{*}(C, \rho)$ is decreasing in C (see Proposition 2). Hence, we have $w^{*}\left(C_{m}, \rho\right)<w^{*}\left(C_{m-1}, \rho\right)<\cdots<w^{*}\left(C_{1}, \rho\right)$. This concludes that it is optimal to to allocate all customers to the classes having the maximum retrial rate (case m) and the minimal retrial rate (case 1) (none to any other classes).
Proof of Proposition 2 Plugging the optimal SSRD parameters $\rho_{1}^{*}, \rho_{2}^{*}$ and p_{1}^{*}, p_{2}^{*} into (9), we obtain that the expected waiting time as a function of C :

$$
w^{*}(C, \rho)=\frac{2 \rho^{2}\left(c_{v}^{2}+1\right)}{(1-\rho) \lambda_{0}}\left(\frac{\sqrt{(1+C-C \rho)(1+C-\rho)}}{(\sqrt{1+C-C \rho}+\sqrt{1+C-\rho})^{2}}\right)+\frac{\rho}{(1-\rho) \theta_{0}},
$$

which has the derivative with respect to C

$$
\begin{equation*}
\frac{d w^{*}(C, \rho)}{d C}=-\frac{\left(c_{v}^{2}+1\right)(2-\rho) \rho^{4}(C-1)}{2 \sqrt{1+C-\rho} \sqrt{1+C-C \rho}(\sqrt{1+C-\rho}+\sqrt{1+C-C \rho})^{4}(1-\rho) \lambda_{0}} . \tag{EC.27}
\end{equation*}
$$

Since $C>1$ and $\rho<1$, we can easily validate that $d w^{*}(C, \rho) / d C<0$, so that $w^{*}(C, \rho)$ is decreasing in $C \geq 1$. Letting $C \rightarrow \infty$ in (15)-(17) yields (19)-(20).

Proof of Proposition 3 Let $E=1+C-C \rho$ and $F=1+C-\rho$, we have

$$
\lim _{C \rightarrow \infty} w^{*}(C, \rho)=\lim _{C \rightarrow \infty}\left(w_{0}^{B}\left(\frac{4 \sqrt{E F}}{(\sqrt{E}+\sqrt{F})^{2}}\right)+w_{0}^{I}\right)=w_{0}^{B}\left(\frac{\sqrt{1-\rho}}{(\sqrt{1-\rho}+1)^{2}}\right)+w_{0}^{I} .
$$

Next, for any $\rho \in(0,1)$, we have

$$
\lim _{C \rightarrow \infty}\left(w^{*}(C, \rho)-w_{0}^{I}-w_{0}^{B} \frac{\sqrt{1-\rho}}{(\sqrt{1-\rho}+1)^{2}}\right) C=\frac{(2-\rho) \rho^{2}}{2 \sqrt{1-\rho}(1+\sqrt{1-\rho})^{4}}<\infty .
$$

Thus we have $w^{*}(C, \rho)=w_{0}^{I}+w_{0}^{B} \sqrt{1-\rho}\left(1 /(\sqrt{1-\rho}+1)^{2}+O(1 / C)\right)$. That is, $w^{*}(C, \rho)$ converges to $w_{0}^{B}\left(\frac{\sqrt{1-\rho}}{(\sqrt{1-\rho}+1)^{2}}\right)+w_{0}^{I}$ when $C \rightarrow \infty$ in the order of $O(1 / C)$. Substituting the optimal allocation into (21) yields

$$
\begin{equation*}
R_{D}(C, \rho)=\frac{w_{0}-w^{*}(C, \rho)}{w_{0}}=\frac{1-\left(\frac{4 \sqrt{E F}}{(\sqrt{E}+\sqrt{F})^{2}}\right)}{1+2 \mu_{0} /\left(\theta_{0}\left(c_{v}^{2}+1\right)\right)} . \tag{EC.28}
\end{equation*}
$$

It is sufficient to prove that $(E+F) / \sqrt{E F}$ is increasing in C and ρ, namely,

$$
\begin{aligned}
& \frac{d(E+F) / \sqrt{E F}}{d C}=\frac{(2-\rho)(C-1) \rho^{2}}{2(1+C-\rho)^{3 / 2}(1+C-C \rho)^{3 / 2}}>0 \\
& \frac{d(E+F) / \sqrt{E F}}{d \rho}=\frac{(C-1)^{2}(1+C) \rho}{2(1+C-\rho)^{3 / 2}(1+C-C \rho)^{3 / 2}}>0 .
\end{aligned}
$$

Therefore, $R_{D}(C, \rho)$ is increasing in C and ρ. For any given μ_{0} and θ_{0}, as $C \rightarrow \infty$ and $\rho \rightarrow 1$, we obtain the desired result. In addition, the asymptotic order of growth in the homogeneous case is $O(1 /(1-\rho))$ because $w_{0}=\left(1 / \theta_{0}+\left(c_{v}^{2}+1\right) / 2 \mu_{0}\right) \rho /(1-\rho)$. For the waiting time under SSRD, it is decreasing in ratio C. When $C \rightarrow \infty$, by substituting $C=\infty$ into E and F in (17), we have $w^{*}(\infty, \rho)=O(1 / \sqrt{1-\rho})+O(1 /(1-\rho))$. Therefore, $w_{0}-w^{*}(\infty, \rho)=O(1 /(1-\rho))-O(1 / \sqrt{1-\rho})$, which gives

$$
\frac{w_{0}-w^{*}(C, \rho)}{w_{0}}=\frac{O(1 /(1-\rho))-O(1 / \sqrt{1-\rho})}{O(1 /(1-\rho))}=\frac{1}{1+2 \mu_{0} /\left(\theta_{0}\left(c_{v}^{2}+1\right)\right)} .
$$

Proof of Proposition 4 For fixed $C=\theta_{2} / \theta_{1}>1, \theta_{0}$ and ρ, the average number of retrials under SSRD (Theorem 2) and homogeneous service are given by

$$
r^{*}(C, \rho)=\frac{\left(c_{v}^{2}+1\right) \rho^{2} \theta_{0}}{(1-\rho) \lambda_{0}}\left(\frac{\sqrt{E F}(C E+F)(C+1)}{C(E+F)(\sqrt{E}+\sqrt{F})^{2}}\right)+\frac{\rho}{1-\rho} \quad \text { and } \quad r_{0}=\frac{\rho \theta_{0}}{(1-\rho) \mu_{0}}+\frac{\rho}{1-\rho} .
$$

Therefore, we have

$$
\begin{equation*}
R_{T}(C, \rho)=\frac{r_{0}-r^{*}(C, \rho)}{r_{0}}=\frac{1-\frac{2 \sqrt{r_{p}}\left(C+r_{p}\right)(C+1)}{C\left(1+r_{p}\right)\left(1+\sqrt{r_{p}}\right)^{2}}}{1+2 \mu_{0} /\left(\theta_{0}\left(c_{v}^{2}+1\right)\right)} \tag{EC.29}
\end{equation*}
$$

In order for our SSRD policy to outperform the homogeneous service policy, we need

$$
\frac{2 \sqrt{r_{p}}\left(C+r_{p}\right)(C+1)}{C\left(1+r_{p}\right)\left(1+\sqrt{r_{p}}\right)^{2}}<1,
$$

or equivalently,

$$
4(1+C-\rho)(1+C-C \rho)\left(1+C-\rho+C^{2}(1+C-C \rho)\right)^{2}<C^{2}(1+C)^{4}(2-\rho)^{4}
$$

We define

$$
\begin{equation*}
h(C, \rho) \equiv C^{2}(1+C)^{4}(2-\rho)^{4}-4(1+C-\rho)(1+C-C \rho)\left(1+C-\rho+C^{2}(1+C-C \rho)\right)^{2} . \tag{EC.30}
\end{equation*}
$$

By taking the first and second partial derivatives of $h(C, \rho)$ with respect to ρ, we have

$$
\begin{aligned}
\frac{\partial h(C, \rho)}{\partial \rho} & =4\left(C^{2}-1\right)^{2}\left(3\left(C^{4}+1\right)(1-\rho)^{2}+C^{2}\left(14-22 \rho+9 \rho^{2}+\rho^{3}\right)-2 C\left(1+C^{2}\right)\left(-5+9 \rho-6 \rho^{2}+2 \rho^{3}\right)\right), \\
\frac{\partial h^{2}(C, \rho)}{\partial \rho^{2}} & =4\left(C^{2}-1\right)^{2}\left(6\left(1+C^{4}\right)(\rho-1)+C^{2}\left(-22+18 \rho+3 \rho^{2}\right)-2 C\left(1+C^{2}\right)\left(9-12 \rho+6 \rho^{2}\right)\right) .
\end{aligned}
$$

For any $C>1$, we have $\rho<1,-22+18 \rho+3 \rho^{2}<0$ and $9-12 \rho+6 \rho^{2}=6(\rho-1)^{2}+3>0$, which imply $\partial h^{2}(C, \rho) / d \rho^{2}<0$. Because $\partial h(C, \rho) /\left.d \rho\right|_{\rho=0}>0$ and $\partial h(C, \rho) /\left.d \rho\right|_{\rho=1}>0, h(C, \rho)$ must be increasing in $\rho \in[0,1]$. It is also noted that $h(C, 0)=-4(1+C)^{4}\left(C^{2}-1\right)^{2}<0$ and $h(C, 1)=C^{2}(1+C)^{2}(C-$ $1)^{2}>0$. Therefore, there exists a unique $\bar{\rho}_{C}$ such that $R_{T}(C, \rho)>0$ when $\rho>\bar{\rho}_{C}$ for any given $C>1$. The value of $\bar{\rho}_{C}$ can be found by solving $f(C, \rho)=0$. If $\lim _{\rho \rightarrow 1, C \rightarrow \infty} C^{2 / 3} \cdot(1-\rho)=\vartheta \in[0, \infty]$, then $\lim _{\rho \rightarrow 1, C \rightarrow \infty} r_{p} / C^{2 / 3}=\frac{(1-\rho) / C+1}{C^{2 / 3}(1-\rho)+C^{-1 / 3}}=1 / \vartheta$, which leads to

$$
\begin{aligned}
\lim _{\rho \rightarrow 1, C \rightarrow \infty} \frac{2 \sqrt{r_{p}}\left(C+r_{p}\right)(C+1)}{C\left(1+r_{p}\right)\left(1+\sqrt{r_{p}}\right)^{2}} & =\lim _{\rho \rightarrow 1, C \rightarrow \infty} \frac{2 C^{1 / 3}\left(C+\vartheta C^{2 / 3}\right)(C+1)}{C \sqrt{\vartheta}\left(1+C^{2 / 3} / \vartheta\right)\left(1+C^{1 / 3} / \sqrt{\vartheta}\right)^{2}}, \\
& =\lim _{\rho \rightarrow 1, C \rightarrow \infty} \frac{2 \sqrt{\vartheta}\left(C^{1 / 3}+1 / \vartheta\right)(C+1)}{\left(1+1 / \vartheta C^{2 / 3}\right) C^{2 / 3}}=2 \sqrt{\vartheta},
\end{aligned}
$$

yielding $\lim _{\rho \rightarrow 1, C \rightarrow \infty} R_{T}(C, \rho)=(1-2 \sqrt{\vartheta}) /\left(1+2 \mu_{0} /\left[\theta_{0}\left(c_{v}^{2}+1\right)\right]\right)$.
Next we will identify the maximal $R_{T}(C, \rho)$. First, we will show that $R_{T}(C, \rho)$ is increasing in $\rho \in(0,1)$ for any $C>1$. Then it is sufficient to prove that $u\left(r_{p}\right) \equiv \frac{2 \sqrt{r_{p}}\left(C+r_{p}\right)(C+1)}{C\left(1+r_{p}\right)\left(1+\sqrt{r_{p}}\right)^{2}}$ is decreasing in r_{p}, because $r_{p}=\frac{1-\rho+C}{1+C(1-\rho)} \geq 1$ is increasing in $\rho \in(0,1)$. The derivative of $u\left(r_{p}\right)$ is

$$
\frac{d u\left(r_{p}\right)}{d r_{p}}=\frac{C+1}{C} \cdot\left[\frac{\bar{\phi}\left(r_{p}\right)}{\sqrt{r_{p}}\left(1+\sqrt{r_{p}}\right)^{3}\left(1+r_{p}\right)^{2}}\right]
$$

where $\bar{\phi}\left(r_{p}\right)=r_{p}\left(3+\sqrt{r_{p}}+r_{p}-r_{p}^{3 / 2}\right)-C\left(r_{p}+\sqrt{r_{p}}+3 r_{p}^{3 / 2}-1\right)$. Because $\bar{\phi}(1) \leq 0$ and

$$
\begin{aligned}
\frac{d \bar{\phi}\left(r_{p}\right)}{d r_{p}} & =\frac{6 \sqrt{r_{p}}+3 r_{p}+4 r_{p}^{3 / 2}-5 r_{p}^{2}-C\left(1+2 \sqrt{r_{p}}+9 r_{p}\right)}{2 \sqrt{r_{p}}} \\
& \leq \frac{6 \sqrt{r_{p}}+3 r_{p}-C\left(1+2 \sqrt{r_{p}}+9 r_{p}\right)}{2 \sqrt{r_{p}}} \leq \frac{4 \sqrt{r_{p}}-6 r_{p}-1}{2 \sqrt{r_{p}}}<0
\end{aligned}
$$

we conclude that $\bar{\phi}\left(r_{p}\right) \leq 0$, and more important, $u\left(r_{p}\right)$ is decreasing in r_{p}. Taking $\rho \rightarrow 1$, we have

$$
\begin{equation*}
R_{T}(C, 1)=\frac{r_{0}-r^{*}(C, \rho)}{r_{0}}=\frac{1-\frac{4 \sqrt{C}}{(1+\sqrt{C})^{2}}}{1+2 \mu_{0} /\left(\theta_{0}\left(c_{v}^{2}+1\right)\right)} . \tag{EC.31}
\end{equation*}
$$

Because $R_{T}(C, 1)$ increases in $C>1$, it can be asymptotically maximized when $C \rightarrow \infty$ (the upper bound can be attained at $\vartheta=0$).

Proof of Proposition 5 We consider the asymptotic value of $R_{S}(C, \rho)$ as $\rho \rightarrow 1, C \rightarrow \infty$. First, note that $\lim _{\rho \rightarrow 1, C \rightarrow \infty} 1-\rho=\lim _{\rho \rightarrow 1, C \rightarrow \infty} 1 / C=\lim _{\rho \rightarrow 1, C \rightarrow \infty}(1-\rho) / C=\lim _{\rho \rightarrow 1, C \rightarrow \infty} \sqrt{r_{p}} /\left(1+r_{p}\right)=0$ and $\lim _{\rho \rightarrow 1, C \rightarrow \infty}=$ $C /[(1-\rho) C+1]=\infty$. With $\xi=\lim _{\rho \rightarrow 1, C \rightarrow \infty}(1-\rho) C$, we have

$$
\begin{aligned}
\lim _{\rho \rightarrow 1, C \rightarrow \infty} \frac{\gamma_{0}-\gamma^{*}(C, \rho)}{\gamma_{0}} & =\lim _{\rho \rightarrow 1, C \rightarrow \infty} 1-\frac{1+\frac{\rho}{1-\rho}\left[\frac{\left(C+r_{p} \sqrt{r_{p}}\right)\left(1+\sqrt{r_{p}}\right)}{\left(1+r_{p}\right) \theta_{0}\left(C+r_{p}\right)}+\frac{\left.\left(c_{v}^{2}+1\right) \sqrt{r_{p}}\right]}{\mu_{0}\left(1+r_{p}\right)}\right] E\left[S_{0}^{-1}\right]}{1+\frac{\rho}{1-\rho}\left(\frac{c_{v}^{2}+1}{2 \mu_{0}}+\frac{1}{\theta_{0}}\right) E\left[S_{0}^{-1}\right]} \\
& =\lim _{\rho \rightarrow 1, C \rightarrow \infty} 1-\frac{\frac{\left(C+r_{p} \sqrt{r_{p}}\right)\left(1+\sqrt{r_{p}}\right)}{\left(1+r_{p}\right) \theta_{0}\left(C+r_{p}\right)}+\frac{\left(c_{v}^{2}+1\right) \sqrt{r_{p}}}{\mu_{0}\left(1+r_{p}\right)}}{\frac{c_{v}^{2}+1}{2 \mu_{0}}+\frac{1}{\theta_{0}}} \\
& =\lim _{\rho \rightarrow 1, C \rightarrow \infty} \frac{\left.\frac{c_{v}^{2}+1}{2 \mu_{0}}+\frac{1}{\theta_{0}}-\frac{\left[1+\frac{1}{(1-\rho) C+1} \sqrt{(1-\rho)}\right.}{\left(1+\frac{C}{(1-\rho+1}\right)(1+\sqrt{(1-C+1})\left(1+\frac{1}{(1-\rho) C+1}\right) \theta_{0}}\right)}{\frac{\frac{c_{v}^{2}+1}{2}+\frac{1}{\theta_{0}}}{\theta_{0}}} \\
& =\lim _{\rho \rightarrow 1, C \rightarrow \infty} \frac{\frac{c_{v}^{2}+1}{2 \mu_{0}}+\frac{1}{\theta_{0}}-\frac{1}{(\xi+2) \theta_{0}}}{\frac{\frac{c_{v}^{2}+1}{2 \mu_{0}}+\frac{1}{\theta_{0}}}{\theta_{0}}=\lim _{\rho \rightarrow 1, C \rightarrow \infty} \frac{c_{v}^{2}+1+2[(\xi+1) /(\xi+2)] \mu_{0} / \theta_{0}}{c_{v}^{2}+1+2 \mu_{0} / \theta_{0}} .} .
\end{aligned}
$$

Proof of Corollary 3

In Proposition 3, we have showed that $R R D$ can be maximized as $C \rightarrow \infty$ and $\rho \rightarrow 1$. When $C=O\left(1 /(1-\rho)^{\alpha}\right)$ with $\alpha \in(1,3 / 2)$, we have $\lim _{C \rightarrow \infty, \rho \rightarrow 1} C^{2 / 3} \cdot(1-\rho)=0$ and $\lim _{C \rightarrow \infty, \rho \rightarrow 1} C \cdot(1-\rho)=\infty$, so that the maximum $R R T$ and $R R S$ can be attained, respectively.

Proof of Proposition 6

We first note that $\partial F\left(x_{C}, y_{C}, C\right) / \partial x_{C}=\partial F\left(x_{C}, y_{C}, C\right) / \partial y_{C}=0$. Then by taking the derivative of $d F\left(x_{C}, y_{C}, C\right)$ with respect to C, we have

$$
\begin{aligned}
& \frac{d F\left(x_{C}, y_{C}, C\right)}{d C} \\
= & \frac{\partial F\left(x_{C}, y_{C}, C\right)}{\partial x_{C}} \frac{\partial x_{C}}{\partial C}+\frac{\partial F\left(x_{C}, y_{C}, C\right)}{\partial y_{C}} \frac{\partial y_{C}}{\partial C}+\frac{\partial F\left(x_{C}, y_{C}, C\right)}{\partial C} \\
= & \frac{\partial F\left(x_{C}, y_{C}, C\right)}{\partial C} \\
= & \frac{\partial f\left(w_{1}\left(x_{C}, y_{C}, C\right)\right)}{\partial w_{1}\left(x_{C}, y_{C}, C\right)} \frac{\partial w_{1}\left(x_{C}, y_{C}, C\right)}{\partial C} x_{C}+\frac{\partial f\left(w_{2}\left(x_{C}, y_{C}, C\right)\right)}{\partial w_{2}\left(x_{C}, y_{C}, C\right)} \frac{\partial w_{2}\left(x_{C}, y_{C}, C\right)}{\partial C}\left(1-x_{C}\right) \\
= & \frac{\partial f\left(w_{1}\left(x_{C}, y_{C}, C\right)\right)}{\partial w_{1}\left(x_{C}, y_{C}, C\right)}\left(\frac{(2-\rho)\left(\rho-y_{C}\right)\left(\frac{y_{C}^{C}}{x_{C}}+\frac{\left(\rho-y_{C}\right)^{2}}{1-x_{C}}\right)}{\left(1-y_{C}+\left(1-\rho+y_{C}\right) C\right)^{2} \lambda_{0}(1-\rho)}+\frac{\left(1-x_{C}\right) \rho}{\left(x_{C}(C-1)+1\right)^{2} \theta_{0}(1-\rho)}\right) x_{C}
\end{aligned}
$$

$$
\begin{aligned}
& +\frac{\partial f\left(w_{2}\left(x_{C}, y_{C}, C\right)\right)}{\partial w_{2}\left(x_{C}, y_{C}, C\right)}\left(\frac{-y_{C}(2-\rho)\left(\frac{y_{C}^{2}}{x_{C}}+\frac{\left(\rho-y_{C}\right)^{2}}{1-x_{C}}\right)}{\left(1-y_{C}+\left(1-\rho+y_{C}\right) C\right)^{2} \lambda_{0}(1-\rho)}-\frac{x_{C} \rho}{\left(x_{C}(C-1)+1\right)^{2} \theta_{0}(1-\rho)}\right)\left(1-x_{C}\right) \\
& =\left(\frac{\partial f\left(w_{1}\left(x_{C}, y_{C}, C\right)\right)}{\partial w_{1}\left(x_{C}, y_{C}, C\right)} x_{C}\left(\rho-y_{C}\right)-\frac{\partial f\left(w_{2}\left(x_{C}, y_{C}, C\right)\right)}{\partial w_{2}\left(x_{C}, y_{C}, C\right)} y_{C}\left(1-x_{C}\right)\right) \frac{(2-\rho)\left(\frac{y_{C}^{2}}{x_{C}}+\frac{\left(\rho-y_{C}\right)^{2}}{1-x_{C}}\right)}{\left(1-y_{C}+\left(1-\rho+y_{C}\right) C\right)^{2} \lambda_{0}(1-\rho)} \\
& +\left(\frac{\partial f\left(w_{1}\left(x_{C}, y_{C}, C\right)\right)}{\partial w_{1}\left(x_{C}, y_{C}, C\right)}-\frac{\partial f\left(w_{2}\left(x_{C}, y_{C}, C\right)\right)}{\partial w_{2}\left(x_{C}, y_{C}, C\right)}\right) \frac{x_{C}\left(1-x_{C}\right) \rho}{\left(x_{C}(C-1)+1\right)^{2} \theta_{0}(1-\rho)} .
\end{aligned}
$$

Let $G \equiv \partial f\left(w_{1}\left(x_{C}, y_{C}, C\right)\right) / \partial w_{1}\left(x_{C}, y_{C}, C\right)-\partial f\left(w_{2}\left(x_{C}, y_{C}, C\right)\right) / \partial w_{2}\left(x_{C}, y_{C}, C\right)$, we consider the following three cases:
Case 1. If f is linear (i.e., $G=0$), we have $d F\left(x_{C}, y_{C}, C\right) / d C<0$, because $x_{C}\left(\rho-y_{C}\right)-y_{C}(1-$ $\left.x_{C}\right)=\lambda x_{C}\left(1-x_{C}\right)\left(1 / \mu_{2}-1 / \mu_{1}\right)<0$, which implies that $C^{*}=\infty$.

Case 2. If f is concave (i.e., $G<0$), we have $d F\left(x_{C}, y_{C}, C\right) / d C<0$ (which similar to the analysis in case 1).

Case 3. If f is convex (i.e., $G>0$), we know that $\frac{\partial f\left(w_{1}\left(x_{C}, y_{C}, C\right)\right)}{\partial w_{1}\left(x_{C}, y_{C}, C\right)}\left(\frac{\partial f\left(w_{2}\left(x_{C}, y_{C}, C\right)\right)}{\partial w_{2}\left(x_{C}, y_{C}, C\right)}\right)$ is increasing (decreasing) in C because $w_{1}\left(x_{C}, y_{C}, C\right)\left(w_{2}\left(x_{C}, y_{C}, C\right)\right)$ is increasing (decreasing) in C. It is evident that $\lim _{C \rightarrow \infty} \frac{d F\left(x_{C}, y_{C}, C\right)}{d C}=0$ and $\lim _{C \rightarrow \infty}\left|C^{2}\left(\frac{d F\left(x_{C}, y_{C}, C\right)}{d C}\right)\right|<\infty$. In particular, if $\lim _{C \rightarrow \infty} C^{2}\left(\frac{d F\left(x_{C}, y_{C}, C\right)}{d C}\right)>0$, it implies that $F\left(x_{C}, y_{C}, C\right)$ will keep increasing when C is large, hence the optimal ratio that minimizes $F\left(x_{C}, y_{C}, C\right)$ can only be attained at a certain finite value $C^{*} \in(0, \infty)$.
The limits $C \rightarrow \infty, \lim _{C \rightarrow \infty} x_{C}=x_{\infty}$ and $\lim _{C \rightarrow \infty} y_{C}=y_{\infty}$ can be derived by solving the equations (32)(33) with $C=\infty$. By substituting them into $w_{1}(\infty)=w_{1}\left(x_{\infty}, y_{\infty}, \infty\right)$ and $w_{2}(\infty)=w_{2}\left(x_{\infty}, y_{\infty}, \infty\right)$, we can obtain the resulting waiting times. Therefore, a sufficient condition that a finite C^{*} can be attained is

$$
\begin{align*}
\lim _{C \rightarrow \infty} C^{2} \cdot \frac{d F\left(x_{C}, y_{C}, C\right)}{d C}>0 \Leftrightarrow & \left(\frac{\partial f\left(w_{1}(\infty)\right)}{\partial w_{1}(\infty)} x_{\infty}\left(\rho-y_{\infty}\right)-\frac{\partial f\left(w_{2}(\infty)\right)}{\partial w_{2}(\infty)} y_{\infty}\left(1-x_{\infty}\right)\right) \frac{(2-\rho)\left(\frac{y_{\infty}^{2}}{x_{\infty}}+\frac{\left(\rho-y_{\infty}\right)^{2}}{1-x_{\infty}}\right)}{\left(1-\rho+y_{\infty}\right)^{2} \lambda_{0}(1-\rho)} \\
& +\left(\frac{\partial f\left(w_{1}(\infty)\right)}{\partial w_{1}(\infty)}-\frac{\partial f\left(w_{2}(\infty)\right)}{\partial w_{2}(\infty)}\right) \frac{\left(1-x_{\infty}\right) \rho}{x_{\infty} \theta_{0}(1-\rho)}>0 . \tag{EC.32}
\end{align*}
$$

Note that the condition (EC.32) always holds as long as $x_{\infty}\left(\rho-y_{\infty}\right)>y_{\infty}\left(1-x_{\infty}\right)$, or equivalently $x_{\infty} \rho>y_{\infty}$. From (33), we have

$$
\left(\frac{d f\left(w_{1}(x, y, C)\right)}{d w_{1}(x, y, C)}(1-\rho)(1-x)+\frac{d f\left(w_{2}(x, y, C)\right)}{d w_{2}(x, y, C)} x\right) \frac{\partial w_{1}(x, y, C)}{\partial y}=0 .
$$

Because $\partial w_{1}(x, y, C) / \partial y=0$ (due to the fact that $\left[d f\left(w_{1}(x, y, C)\right) / d w_{1}(x, y, C)\right](1-$ $\left.\rho)(1-x)+\left[d f\left(w_{2}(x, y, C)\right) / d w_{2}(x, y, C)\right] x>0\right)$, the equation above implies that $y_{C}=$ $\left[\sqrt{\left(1+x_{C}\right)^{2}(1-\rho)^{2}+4 x_{C} \rho(2-\rho)}-\left(1+x_{C}\right)(1-\rho)\right] / 2$, which yields

$$
\begin{aligned}
x_{\infty} \rho>y_{\infty} & \Leftrightarrow 2(2-\rho)<\sqrt{\left(1+x_{\infty}\right)^{2}(1-\rho)^{2}+4 x_{\infty} \rho(2-\rho)}-\left(1+x_{\infty}\right)(1-\rho) \\
& \Leftrightarrow\left(2(2-\rho)+\left(1+x_{\infty}\right)(1-\rho)\right)^{2}<\left(1+x_{\infty}\right)^{2}(1-\rho)^{2}+4 x_{\infty} \rho(2-\rho) \Leftrightarrow x_{\infty}>\frac{1-\rho}{1+\rho} .
\end{aligned}
$$

Proof of Lemma 7 Note that i and j are the numbers of customers in the buffer and orbit, respectively, we have the following balance equations for $1 \leq i \leq K-1$ and $j \geq 0$:

$$
\begin{align*}
\left(\lambda_{0}+j \theta_{0}\right) p_{(0, j)} & =\mu_{0} p_{(1, j)}, \tag{EC.33}\\
\left(\lambda_{0}+\mu_{0}+j \theta_{0}\right) p_{(i, j)} & =\mu_{0} p_{(i+1, j)}+(j+1) \theta_{0} p_{(i-1, j+1)}+\lambda_{0} p_{i-1, j}, \tag{EC.34}\\
\left(\lambda_{0}+\mu_{0}\right) p_{(K, j)} & =(j+1) \theta_{0} p_{(K-1, j+1)}+\lambda_{0} p_{K-1, j}+\lambda_{0} p_{K, j-1} . \tag{EC.35}
\end{align*}
$$

We will solve the above equations using the generating function below:

$$
\Pi_{i}(z)=\sum_{j=0}^{\infty} z^{j} p_{(i, j)}, \quad 1 \leq i \leq K-1 .
$$

Multiplying equations (EC.33)-(EC.35) by z^{j} and summing up over all $j \geq 0$, we obtain the balance equations of the generating functions:

$$
\begin{align*}
\lambda_{0} \Pi_{0}(z)+z \theta_{0} \Pi_{0}^{\prime}(z) & =\mu_{0} \Pi_{1}(z) \tag{EC.36}\\
\left(\lambda_{0}+\mu_{0}\right) \Pi_{i}(z)+z \theta_{0} \Pi_{i}^{\prime}(z) & =\mu_{0} \Pi_{i+1}(z)+\theta_{0} \Pi_{i-1}^{\prime}(z)+\lambda_{0} \Pi_{i-1}(z) \tag{EC.37}\\
\left(\lambda_{0}-\lambda_{0} z+\mu_{0}\right) \Pi_{K}(z) & =\theta_{0} \Pi_{K-1}^{\prime}(z)+\lambda_{0} \Pi_{K-1}(z) \tag{EC.38}
\end{align*}
$$

Multiplying equations in (EC.37) by z^{i} for $1 \leq i \leq K-1$ and then sum them over for (EC.36)(EC.38), we have

$$
\begin{align*}
& \lambda_{0} \Pi_{0}(z)+\left(\lambda_{0}+\mu_{0}\right) \sum_{i=1}^{K-1} \Pi_{i}(z) z^{i}+\left(\lambda_{0}-\lambda_{0} z+\mu_{0}\right) \Pi_{K}(z) z^{K} \\
& =\mu_{0} \Pi_{1}(z)+\sum_{i=1}^{K-1}\left(\mu_{0} \Pi_{i+1}(z)+\lambda_{0} \Pi_{i-1}(z)\right) z^{i}+\lambda_{0} \Pi_{K-1}(z) z^{K} \\
\Leftrightarrow & \lambda_{0}(1-z) \Pi_{0}(z)+\sum_{i=1}^{K}\left(\lambda_{0} z^{i}(1-z) \Pi_{i}(z)-\mu_{0} z^{i-1}(1-z) \Pi_{i}(z)\right)=0 \\
\Leftrightarrow & \lambda_{0} \Pi_{0}(z)+\sum_{i=1}^{K}\left(\lambda_{0} z-\mu_{0}\right) z^{i-1} \Pi_{i}(z)=0 . \tag{EC.39}
\end{align*}
$$

Setting $z=1$ in (EC.39) yields $\sum_{i=1}^{K} \Pi_{i}=\frac{\lambda_{0}}{\mu_{0}}$, which is the probability that the server is busy. Furthermore, by taking the derivative with respect to z in (EC.39) and letting $z=1$, we get

$$
\begin{aligned}
& \lambda_{0} \Pi_{0}^{\prime}(1)+\sum_{i=1}^{K}\left(\left(i \lambda_{0}-(i-1) \mu_{0}\right) \Pi_{i}+\left(\lambda_{0}-\mu_{0}\right) \Pi_{i}^{\prime}(1)\right)=0 \\
\Leftrightarrow & \mu_{0} \Pi_{0}^{\prime}(1)+\sum_{i=1}^{K}\left(i \lambda_{0}-(i-1) \mu_{0}\right) \Pi_{i}=\left(\mu_{0}-\lambda_{0}\right) \sum_{i=0}^{K} \Pi_{i}^{\prime}(1) \\
\Leftrightarrow & \quad N_{\text {orbit }}=\frac{\mu_{0}\left(\Pi_{1}-\rho_{0}\left(1-\rho_{0}\right)\right)}{\theta_{0}\left(1-\rho_{0}\right)}+\sum_{i=1}^{K} \frac{\left(i \rho_{0}-(i-1)\right) \Pi_{i}}{1-\rho_{0}}
\end{aligned}
$$

where $N_{\text {orbit }}=\sum_{i=0}^{K} \Pi_{i}^{\prime}(1)$ is the mean number of customers in the orbit.
Proof of Proposition 8 When the capacity of waiting line is K, we let $I(t)$ be the number of customers in line and $N(t)$ be the state of the waiting line, where $N(t) \in\left\{0,1, \ldots, 2^{K}\right\}$. When the state of waiting line is $N(t)$, the total number of customers in the buffer can be uniquely determined by $I(t)=\left\lfloor\log _{2}^{N(t)+1}\right\rfloor$, see Figure EC.1. Define $N_{I(t)}(t) \equiv N(t)$ and $N_{i-1}(t) \equiv\left\lfloor\left(N_{i}(t)-1\right) / 2\right\rfloor$ for $i=I(t), I(t)-1, \ldots, 1$. Then the $i^{\text {th }}$ customer in the waiting line is a type- 2 customer if and only if $N_{i}(t)$ is even. Therefore, the state of waiting line can be characterized by $N(t)$ uniquely. Then the system state under SSRD can be modeled by the continuous-time Markov chain (CTMC) $\left\{\left(I(t), N(t), Q_{1}(t), Q_{2}(t)\right) ; t \geq 0\right\}$, where $Q_{i}(t)$ is the number of type- i customer in orbit $i, i=1,2$. Its infinitesimal generator of the CTMC is given as follows:

$$
q_{\left(i, n, m_{1}, m_{2}\right),\left(i^{\prime}, n^{\prime}, m_{1}^{\prime}, m_{2}^{\prime}\right)}= \begin{cases}\mu_{\Gamma \frac{n}{2^{i-1} \cdot 3-2}}, & \text { if }\left(i^{\prime}, n^{\prime}, m_{1}^{\prime}, m_{2}^{\prime}\right)=\left(i-1, n-2^{i+\left\lceil\frac{n}{2^{i-1 \cdot 3-2}}\right\rceil-2}, m_{1}^{\prime}, m_{2}^{\prime}\right) \\ m_{1} \theta_{1}, & \text { if }\left(i^{\prime}, n^{\prime}, m_{1}^{\prime}, m_{2}^{\prime}\right)=\left(i+1,2 n+1, m_{1}^{\prime}-1, m_{2}^{\prime}\right) \\ m_{2} \theta_{2}, & \text { if }\left(i^{\prime}, n^{\prime}, m_{1}^{\prime}, m_{2}^{\prime}\right)=\left(i+1,2 n+2, m_{1}^{\prime}, m_{2}^{\prime}-1\right) \\ \lambda_{1}, & \text { if }\left(i^{\prime}, n^{\prime}, m_{1}^{\prime}, m_{2}^{\prime}\right)=\left(i+1,2 n+1, m_{1}^{\prime}, m_{2}^{\prime}\right) ; \\ \lambda_{2}, & \text { if }\left(i^{\prime}, n^{\prime}, m_{1}^{\prime}, m_{2}^{\prime}\right)=\left(i+1,2 n+2, m_{1}^{\prime}, m_{2}^{\prime}\right)\end{cases}
$$

Let $P(i, n)=\sum_{m_{1}} \sum_{m_{2}} p\left(i, n, m_{1}, m_{2}\right) z_{1}^{m_{1}} z_{2}^{m_{2}}$, through Kolmogorov equations for the stationary distributions, and take the summation for $m_{1} \geq 0, m_{2} \geq 0$, we have

$$
\begin{align*}
& \left(\lambda_{0}+\mu_{\left\lceil\frac{2 n+1}{2^{i-1} \cdot 3-2}\right\rceil}\right) P(i, 2 n+1)+\frac{z_{1} \partial P(i, 2 n+1) \theta_{1}}{\partial z_{1}}+\frac{z_{2} \partial P(i, 2 n+1) \theta_{2}}{\partial z_{2}} \\
& =\mu_{1} P\left(i+1,2 n+1+2^{i}\right)+\mu_{2} P\left(i+1,2 n+1+2^{i+1}\right)+\frac{\theta_{1} \partial P(i-1, n)}{\partial z_{1}}+\lambda_{1} P(i-1, n), \tag{EC.40}\\
& \left(\lambda_{0}+\mu_{\left\lceil\frac{2 n+2}{2^{i-1} \cdot 3-2}\right\rceil}\right) P(i, 2 n+2)+\frac{z_{1} \partial P(i, 2 n+2) \theta_{1}}{\partial z_{1}}+\frac{z_{2} \partial P(i, 2 n+2) \theta_{2}}{\partial z_{2}} \\
& =\mu_{1} P\left(i+1,2 n+2+2^{i}\right)+\mu_{2} P\left(i+1,2 n+2+2^{i+1}\right)+\frac{\theta_{2} \partial P(i-1, n)}{\partial z_{2}}+\lambda_{2} P(i-1, n), \tag{EC.41}\\
& \lambda_{0} P(0,0)+\frac{\partial P(0,0) \theta_{1}}{\partial z_{1}}+\frac{\partial P(0,0) \theta_{2}}{\partial z_{2}}=\mu_{1} P(1,1)+\mu_{2} P_{1,2}, \\
& \left(\lambda_{0}+\mu_{\left\lceil\frac{2 n+1}{\left.2^{i n-1 \cdot 3-2}\right\rceil}\right.}-\lambda_{1} z_{1}-\lambda_{2} z_{2}\right) P(K, 2 n+1)=\frac{\partial P(K-1, n) \theta_{1}}{\partial z_{1}}+\lambda_{1} P(K-1, n), \tag{EC.42}\\
& \left(\lambda_{0}+\mu_{\left\lceil\frac{2 n+2}{2^{i-1} \cdot 3-2}\right\rceil}-\lambda_{1} z_{1}-\lambda_{2} z_{2}\right) P(K, 2 n+2)=\frac{\partial P(K-1, n) \theta_{2}}{\partial z_{2}}+\lambda_{2} P(K-1, n), \tag{EC.43}
\end{align*}
$$

where $i \geq 1,2^{i-1} \leq n \leq 2^{i}-2$.
Multiplying $z_{1}^{i} \cdot\left(z_{2} / z_{1}\right)^{\sum_{j=0}^{i}\left\lfloor\frac{n+1-2^{i-1}}{2^{i}}\right\rfloor}, z_{1}^{i} \cdot\left(z_{2} / z_{1}\right)^{\sum_{j=0}^{i}\left\lfloor\frac{n+3 / 2-2^{i-1}}{2^{i}}\right\rfloor}, z_{1}^{K} \cdot\left(z_{2} / z_{1}\right)^{\sum_{j=0}^{K}\left\lfloor\frac{n+1-2^{i-1}}{2^{i}}\right\rfloor}$ and $z_{1}^{K} \cdot\left(z_{2} / z_{1}\right)^{\sum_{j=0}^{K}\left\lfloor\frac{n+3 / 2-2^{i-1}}{2^{i}}\right\rfloor}$ on the both sides of (EC.40), (EC.41), (EC.42) and (EC.43), and then summing them up over all $i=1,2, \ldots, K-1$ and $2^{i-1}-1 \leq n \leq 2^{i}-2$, we can eliminate all terms of $\frac{\partial P(i, n)}{\partial z_{1}}$ and $\frac{\partial P(i, n)}{\partial z_{1}}$. Letting $z_{1}=1$ and $z_{2}=z$, we can eliminate the $(1-z)$ on the both sides of the equation above. By letting $z=1$ and using $P_{0,0}+\sum_{i=1}^{K} \sum_{n=2^{i}-1}^{2^{i-1} \cdot 3-2} P(i, n)+$ $\sum_{i=1}^{K} \sum_{n=2^{i-1.3-2}}^{2^{i+1}-2} P(i, n)=1$, we have

$$
P(0,0) \lambda_{2}+\sum_{i=1}^{K} \sum_{n=2^{i}-1}^{2^{i-1} \cdot 3-2} P(i, n) \lambda_{2}+\sum_{i=1}^{K} \sum_{n=2^{i-1 \cdot 3-1}}^{2^{i+1}-2} P(i, n)\left(\lambda_{2}-\mu_{2}\right)=0
$$

$$
\begin{aligned}
& \Leftrightarrow \quad P(0,0) \lambda_{2}+\sum_{i=1}^{K} \sum_{n=2^{i}-1}^{2^{i-1} \cdot 3-2} P(i, n) \lambda_{2}+\sum_{i=1}^{K} \sum_{n=2^{i-1 \cdot 3-2}}^{2^{i+1}-1} P(i, n) \lambda_{2}=\sum_{i=1}^{K} \sum_{n=2^{i-1 \cdot 3-1}}^{2^{i+1}-2} P(i, n) \mu_{2} \\
& \Leftrightarrow \quad \lambda_{2}=\mu_{2} \sum_{i=1}^{K} \sum_{n=2^{i-1 \cdot 3-1}}^{2^{i+1}-2} P(i, n)
\end{aligned}
$$

Notice that $N(t) \in\left[2^{i-1} \cdot 3-1,2^{i+1}-2\right]$ for $i=1, \ldots, K$ implies that the service area is occupied by type- 2 customer, then the probability that the service area is occupied by type- 2 customer is $\sum_{i=1}^{K} \sum_{n=2^{i-1.3-1}}^{2^{i+1}-2} P(i, n)$, which gives $\rho_{2}=\sum_{i=1}^{K} \sum_{n=2^{i-1.3-1}}^{2^{i+1}-2} P(i, n)=\lambda_{2} / \mu_{2}$. Similarly, we can conclude that $\rho_{1}=\lambda_{1} / \mu_{1}$, which completes this proof.

Figure EC. 1 The system states in $M / M / 1 / K$ retrial model with SSRD

```
Algorithm 1
    Step 1. Set the initial value of \(K, M, C\) and the \(\lambda, \mu, \theta, \mathbf{p}\) under SSRD
    Step 2. Define the transition matrix \(\mathbf{Q}\)
    Step 3. Define an \(\mathbf{e}^{T}\) in an additional column of \(\mathbf{Q}\), and an additional 1 in a vector of 0 's, \(\mathbf{I}\).
    Step 4. Calculate \(\boldsymbol{\Pi}=\mathbf{I Q}^{-1}\).
    Step 5. Derive \(N_{1}, N_{2}\) and the expected queue length \(L\) in the buffer through \(\Pi\).
```


EC.2. The Preemptive SSRD

In the main paper, we have studied the non-preemptive SSRD policy, where high priority customers may not always receive service before low priority customers, but they have a higher probability to receive service first. As a result, the performance (delay and number of trials) of high priority customers are somewhat influenced by low priority customers. In this section, we assume that type1 customers may be preempted by type-2 customers. For tractability, we restrict our attention to 2 service groups. Artalejo et al. (2001) considered a retrial queueing system where retrial customers
have preemptive priority over customers in the waiting line. Here we consider two retrial groups among which one group prempts the other.

We make the following model assumptions:

- An arrival seeing an idle server immediately enters service;
- If a type-2 customer, upon arrival or retrial, finds a type- 1 customer in service, it immediately enters service by preempting that type-1 customer to the orbit queue;
- If a type- 2 customer, upon arrival or retrial, finds the server is occupied by another type-2 customer, she will be blocked and enter the orbit queue;
- If a type- 1 customer, upon arrival or retrial, finds the server is occupied by another customer (of type 1 or type 2), she will be blocked and enter the orbit queue.

We assume the retrial rates and service rates are θ_{1}, θ_{2} and μ_{1}, μ_{2} for the two classes. It is evident that performance of type- 2 customers are not affected by type- 1 customers, so that the expected waiting time for type- 2 customers are given by (6). In particular,

$$
\begin{equation*}
w_{2}=\frac{\rho_{2}}{1-\rho_{2}}\left(\frac{1}{\theta_{2}}+\frac{1}{\mu_{2}}\right) . \tag{EC.44}
\end{equation*}
$$

The main difficulty is to compute the expected delay for type- 1 customers. We will first obtain the stationary marginal distribution of the number of type- 1 customers via the principle of maximum entropy; and we will next derive the expected number of customers using generating functions. Specifically, we consider a three dimensional CTMC $\{X(t) ; t \geq 0\}=\left\{\left(L(t), N_{1}(t), N_{2}(t)\right) ; t \geq 0\right\}$, where $L(t)$ denotes the type of the customer in service (if any), and $N_{i}(t)$ is the number of type- i orbiting customers, $i=1,2$. The states $L(t)=0,1,2$ correspond to the case of an idle server, a type1 customer in service, and a type- 2 customer in service. For $m_{1}, m_{2} \geq 0$, we set up the following balance equations:

$$
\begin{align*}
\left(\lambda+m_{1} \theta_{1}+m_{2} \theta_{2}\right) p_{\left(0, m_{1}, m_{2}\right)}= & \mu_{1} p_{\left(1, m_{1}, m_{2}\right)}+\mu_{2} p_{\left(2, m_{1}, m_{2}\right)} \tag{EC.45}\\
\left(\lambda+\mu_{1}+m_{2} \theta_{2}\right) p_{\left(1, m_{1}, m_{2}\right)}= & \lambda_{1} p_{\left(0, m_{1}, m_{2}\right)}+\left(m_{1}+1\right) \theta_{1} p_{\left(0, m_{1}+1, m_{2}\right)} \tag{EC.46}\\
\left(\lambda+\mu_{2}\right) p_{\left(2, m_{1}, m_{2}\right)}= & \lambda_{2} p_{\left(0, m_{1}, m_{2}\right)}+\left(m_{2}+1\right) \theta_{2} p_{\left(0, m_{1}, m_{2}+1\right)}+\lambda_{2} p_{\left(1, m_{1}-1, m_{2}\right)} \\
& +\lambda_{1} p_{\left(2, m_{1}-1, m_{2}\right)}+\lambda_{2} p_{\left(2, m_{1}, m_{2}-1\right)} \tag{EC.47}
\end{align*}
$$

where $p_{\left(i,-1, m_{2}\right)}=p_{\left(i, m_{1},-1\right)}=0$ for $i=1,2$. We also define the following generating functions:

$$
\begin{aligned}
& \Pi_{0}\left(z_{1}, z_{2}\right)=\sum_{m_{1}=0}^{\infty} \sum_{m_{2}=0}^{\infty} z_{1}^{m_{1}} z_{2}^{m_{2}} p_{\left(0, m_{1}, m_{2}\right)} \\
& \Pi_{1}\left(z_{1}, z_{2}\right)=\sum_{m_{1}=0}^{\infty} \sum_{m_{2}=0}^{\infty} z_{1}^{m_{1}} z_{2}^{m_{2}} p_{\left(1, m_{1}, m_{2}\right)} \\
& \Pi_{2}\left(z_{1}, z_{2}\right)=\sum_{m_{1}=0}^{\infty} \sum_{m_{2}=0}^{\infty} z_{1}^{m_{1}} z_{2}^{m_{2}} p_{\left(2, m_{1}, m_{2}\right)}
\end{aligned}
$$

Multiplying equations (EC.45) and (EC.47) by $z_{1}^{m_{1}}$ and $z_{2}^{m_{2}}$, and summing up over all m_{1} and m_{2}, we obtain the following balance equations for the generating functions:

$$
\begin{align*}
z_{1} \theta_{1} \frac{\partial \Pi_{0}}{\partial z_{1}}+z_{2} \theta_{2} \frac{\partial \Pi_{0}}{\partial z_{2}}+\lambda \Pi_{0} & =\mu_{1} \Pi_{1}+\mu_{2} \Pi_{2} \tag{EC.48}\\
\Pi_{1}\left(\lambda+\mu_{1}\right)+z_{2} \theta_{2} \frac{\partial \Pi_{1}}{\partial z_{2}} & =\lambda_{1} \Pi_{0}+\theta_{1} \frac{\partial \Pi_{0}}{\partial z_{1}}+z_{1} \lambda_{1} \Pi_{1} \tag{EC.49}\\
\Pi_{2}\left(\lambda+\mu_{2}\right) & =\lambda_{2} \Pi_{0}+\theta_{2} \frac{\partial \Pi_{0}}{\partial z_{2}}+z_{1} \theta_{2} \frac{\partial \Pi_{1}}{\partial z_{2}}+\lambda_{2} z_{1} \Pi_{1}+\lambda_{1} z_{1} \Pi_{2}+\lambda_{2} z_{2} \Pi_{2} \tag{EC.50}
\end{align*}
$$

Comparing the two workloads ρ_{1} and ρ_{2} yields the following result.
Proposition EC.1. Considering the preemptive $M / M / 1$ retrial queues having two customer classes. The workloads are $\rho_{1}=\lambda_{1} / \mu_{1}$ and $\rho_{2}=\lambda_{2} / \mu_{2}$.

Proof. First, we have $\rho_{i}=\Pi_{i}$ for $i=1,2$. In order to find Π_{1} and Π_{2}, we multiply (EC.49) and (EC.50) by z_{1} and z_{2} respectively and substract them from (EC.48), which yields
$\left(\lambda-z_{1} \lambda_{1}-z_{2} \lambda_{2}\right) \Pi_{0}+\left(z_{1}\left(\lambda+\mu_{1}\right)-z_{1}^{2} \lambda_{1}-\lambda_{2} z_{1} z_{2}-\mu_{1}\right) \Pi_{1}+\left(\left(\lambda+\mu_{2}\right) z_{2}-\left(\lambda_{1} z_{1}+\lambda_{2} z_{2}\right) z_{2}-\mu_{2}\right) \Pi_{2}=0$.

Letting $z_{1}=1$ and $z_{2}=1$, and removing $\left(1-z_{2}\right)$ and $\left(1-z_{1}\right)$ on the both sides of (EC.51) yield

$$
\begin{align*}
& \lambda_{2} \Pi_{0}+\lambda_{2} \Pi_{1}+\left(\lambda_{2} z_{2}-\mu_{2}\right) \Pi_{2}=0 \tag{EC.52}\\
& \lambda_{1} \Pi_{0}-\left(\mu_{1}-z_{1} \lambda_{1}\right) \Pi_{1}+\lambda_{1} \Pi_{2}=0 \tag{EC.53}
\end{align*}
$$

Setting $\lambda_{2}=\lambda_{1}=1$ in (EC.52) and (EC.53), we have $\Pi_{1}=\lambda_{1} / \mu_{1}$ and $\Pi_{2}=\lambda_{2} / \mu_{2}$.
Proposition EC. 1 shows that the steady-state workloads of the two classes remain unchanged when the service policy becomes preemptive. Hence the fixed-capacity constraints in (2) continue to hold under the preemptive rule. When $L(t)=j$, we denote the expected number of type- i customers in orbit i as $L_{j, i}=\partial \Pi_{j} /\left.\partial z_{i}\right|_{z_{i}=1}$ for $j=0,1,2$ and $i=1,2$. Therefore, the mean number of type- 1 customers satisfies $N_{1}=L_{0,1}+L_{1,1}+L_{2,1}$. We next explain how to compute N_{1}.

Proposition EC.2. Considering the preemptive $M / M / 1$ retrial queues having two customer classes, the expected number of type-1 orbiting customers is

$$
\begin{equation*}
N_{1}=A \cdot L_{2,1}+B \tag{EC.54}
\end{equation*}
$$

where

$$
\begin{aligned}
& A=\frac{\mu_{1} \theta_{1}-\mu_{2} \theta_{2}}{-\lambda_{1} \theta_{1}+\mu_{1} \theta_{1}-\lambda_{2} \theta_{2}}, \\
& B=\frac{\lambda_{1}^{2}\left(\lambda_{2}-\mu_{2}\right) \mu_{2}\left(\mu_{1}+\theta_{1}\right)+\lambda_{1} \lambda_{2}\left(-\mu_{2}\left(\mu_{1}+\mu_{2}\right)\left(\mu_{1}+\theta_{2}\right)+\lambda_{2}\left(\mu_{1}^{2}+\mu_{2} \theta_{2}\right)\right)}{\mu_{1} \mu_{2}\left(\lambda_{2}-\mu_{2}\right)\left(-\lambda_{1} \theta_{1}+\mu_{1} \theta_{1}-\lambda_{2} \theta_{2}\right)} .
\end{aligned}
$$

Proof. Because type-2 customers are not affected by type-1 customers and $N_{2}=L_{0,2}+L_{1,2}+L_{2,2}$, we have $L_{0,2}+L_{1,2}=\lambda_{2}^{2} /\left(\theta_{2} \mu_{2}\right)$ and $L_{2,2}=\left(\theta_{2}+\lambda_{2}\right) \lambda_{2}^{2} /\left(\mu_{2} \theta_{2}\left(\mu_{2}-\lambda_{2}\right)\right)$. From (EC.49) and (EC.50), we have

$$
\begin{equation*}
L_{0,2}=\frac{\lambda\left(1-\Pi_{0}\right)-\theta_{1} L_{0,1}}{\theta_{2}}, \quad L_{1,2}=\frac{\theta_{1} L_{0,1}+\lambda_{1} \Pi_{1}+\lambda_{1} \Pi_{0}-\Pi_{1}\left(\lambda+\mu_{1}\right)}{\theta_{2}} \tag{EC.55}
\end{equation*}
$$

That is, both $L_{0,2}$ and $L_{1,2}$ are functions of $L_{0,1}$. Differentiating (EC.53) on both sides with respect to z_{1} and and setting $z_{1}=1$ yield

$$
\begin{equation*}
\lambda_{1} L_{0,1}-\left(\mu_{1}-\lambda_{1}\right) L_{1,1}+\lambda_{1} \Pi_{1}+\lambda_{1} L_{2,1}=0 \tag{EC.56}
\end{equation*}
$$

Letting $z_{1}=z_{2}=z$ in (EC. 51), we have

$$
\begin{align*}
& \lambda(1-z) \Pi_{0}+\left(z\left(\lambda+\mu_{1}\right)-z^{2} \lambda-\mu_{1}\right) \Pi_{1}+\left(\left(\mu_{2}+\lambda\right) z-\lambda z^{2}-\mu_{2}\right) \Pi_{2}=0 \\
\Leftrightarrow & \lambda \Pi_{0}+\left(\lambda z-\mu_{1}\right) \Pi_{1}+\left(\lambda z-\mu_{2}\right) \Pi_{2}=0 \\
\Leftrightarrow & \lambda\left(L_{01}+L_{02}\right)+\lambda \Pi_{1}+\left(\lambda-\mu_{1}\right)\left(L_{11}+L_{12}\right)+\left(\lambda-\mu_{2}\right)\left(L_{21}+L_{22}\right)+\lambda \Pi_{2}=0 . \tag{EC.57}
\end{align*}
$$

Plugging (EC.55) into (EC.57) and combining (EC.56) and (EC.57), we can express both $L_{0,1}$ and $L_{1,1}$ as functions of $L_{2,1}$. Equation (EC.54) is obtained using the relation $N_{1}=L_{0,1}+L_{1,1}+L_{2,1}$.

It now remains to compute L_{21}. In the rest of this section, we develop a procedure to compute the stationary distribution of $p_{\left(2, m_{1}, m_{2}\right)}$ for $m_{1}, m_{2} \geq 0$. We define the marginal distribution as

$$
p_{\left(0, \cdot, m_{2}\right)}=\sum_{m_{1} \geq 0} p_{\left(0, m_{1}, m_{2}\right)}, \quad p_{\left(1, \cdot, m_{2}\right)}=\sum_{m_{1} \geq 0} p_{\left(1, m_{1}, m_{2}\right)}, \quad p_{\left(2, \cdot, m_{2}\right)}=\sum_{m_{1} \geq 0} p_{\left(2, m_{1}, m_{2}\right)}
$$

The exact marginal distribution for type-2 customers is given as follow (Artalejo et al. (2001)):

$$
\begin{align*}
p_{\left(2, \cdot, m_{2}\right)} & =\sum_{m_{1} \geq 0} p_{\left(2, m_{1}, m_{2}\right)}=\frac{\rho_{2}^{m_{2}+1}}{m_{2}!\theta_{2}^{m_{2}}}\left(1-\rho_{2}\right)^{1+\frac{\lambda_{2}}{\theta_{2}}} \prod_{n=1}^{m_{2}}\left(\lambda_{2}+n \theta_{2}\right) \tag{EC.58}\\
p_{\left(0, \cdot, m_{2}\right)}+p_{\left(1,,, m_{2}\right)} & =\sum_{m_{1} \geq 0} p_{\left(2, m_{1}, m_{2}\right)}=\frac{\rho_{2}^{m_{2}}}{m_{2}!\theta_{2}^{m_{2}}}\left(1-\rho_{2}\right)^{1+\frac{\lambda_{2}}{\theta_{2}}} \prod_{n=0}^{m_{2}-1}\left(\lambda_{2}+n \theta_{2}\right) . \tag{EC.59}
\end{align*}
$$

We truncate the type- 1 and type- 2 orbit queues by K and M, respectively. For a given large number K and a certain prespecified error parameter $\epsilon>0$, the minimal M can be determined as follow

$$
\begin{equation*}
M=\min \left\{M \mid \sum_{m_{1}=0}^{M} p_{\left(0, \cdot, m_{2}\right)}+p_{\left(1, \cdot, m_{2}\right)}+p_{\left(2, \cdot, m_{2}\right)}>1-\epsilon\right\} \tag{EC.60}
\end{equation*}
$$

We write (EC.45)-(EC.47) in the vector notations:

$$
\begin{align*}
& \mathbf{p}_{0, m_{2}} \mathbf{A}_{m_{2}}=\mu_{1} \mathbf{p}_{1, m_{2}}+\mu_{2} \mathbf{p}_{2, m_{2}} \tag{EC.61}\\
& \mathbf{p}_{1, m_{2}} \mathbf{B}_{m_{2}}=\mathbf{p}_{0, m_{2}} C_{m_{2}} \tag{EC.62}\\
& \mathbf{p}_{2, m_{2}} \mathbf{D}_{m_{2}}=\lambda_{2} \mathbf{p}_{0, m_{2}}+\mathbf{p}_{0, m_{2}+1} \mathbf{E}_{m_{2}}+\mathbf{p}_{1, m_{2}} \mathbf{F}_{m_{2}}+\lambda_{2} \mathbf{p}_{2, m_{2}-1}+\mathbf{p}_{1, m_{2}+1} \mathbf{G}_{m_{2}} \tag{EC.63}
\end{align*}
$$

where $m_{2}=0,1, \ldots, M$ and $\mathbf{p}_{i, m_{2}}=\left(p_{\left(i, 0, m_{2}\right)}, p_{\left(i, 1, m_{2}\right)}, \ldots, p_{\left(i, K, m_{2}\right)}\right), i=0,1,2, \mathbf{A}_{m_{2}}^{(i, j)}=\lambda+(i-1) \theta_{1}+$ $m_{2} \theta_{2}$ for $i=j$ and $1 \leq i \leq K+1, \mathbf{E}_{m_{2}}^{(i, j)}=\left(m_{2}+1\right) \theta_{2}$ for $i=j$ and $1 \leq i \leq K+1, \mathbf{F}_{m_{2}}^{(i, j)}=\lambda_{2}$ for $j=i+1$ and $1 \leq i \leq K, \mathbf{G}_{m_{2}}^{(i, j)}=\left(m_{2}+1\right) \theta_{2}$ for $j=i+1$ and $1 \leq i \leq K$,

$$
\begin{aligned}
& \mathbf{B}_{m_{2}}^{(i, j)}= \begin{cases}\lambda+\mu_{1}+m_{2} \theta_{2}, & \text { for } i=j \text { and } 1 \leq i \leq K+1 ; \\
-\lambda_{1}, & \text { for } j=i+1 \text { and } 1 \leq i \leq K ; \\
0, & \text { else. }\end{cases} \\
& \mathbf{C}_{m_{2}}^{(i, j)}= \begin{cases}\lambda_{1}, & \text { for } i=j \text { and } 1 \leq i \leq K+1 \\
(i-1) \theta_{1}, & \text { for } i=j+1 \text { and } 2 \leq i \leq K+1 ; \\
0, & \text { else. }\end{cases} \\
& \mathbf{D}_{m_{2}}^{(i, j)}= \begin{cases}\lambda_{2}+\mu_{2}, & \text { for } i=j \text { and } 1 \leq i \leq K+1 ; \\
-\lambda_{1}, & \text { for } j=i+1 \text { and } 1 \leq i \leq K ; \\
0, & \text { else. }\end{cases}
\end{aligned}
$$

From (EC.61) and (EC.62), we have

$$
\begin{align*}
& \mathbf{p}_{0, m_{2}}=\mu_{2} \mathbf{p}_{2, m_{2}}\left(\mathbf{A}_{m_{2}}-\mathbf{C}_{m_{2}} \mathbf{B}_{m_{2}^{-1}} \mu_{1}\right)^{-1} \tag{EC.64}\\
& \mathbf{p}_{1, m_{2}}=\mu_{2} \mathbf{p}_{2, m_{2}}\left(\mathbf{A}_{m_{2}}-\mathbf{C}_{m_{2}} \mathbf{B}_{m_{2}^{-1}} \mu_{1}\right)^{-1} \mathbf{C}_{m_{2}} \mathbf{B}_{m_{2}}^{-1} \tag{EC.65}
\end{align*}
$$

Substituting (EC.64) and (EC.65) into (EC.63), we can obtain

$$
\begin{equation*}
\mathbf{p}_{2, m_{2}} \Theta_{m_{2}}=\mathbf{p}_{2, m_{2}+1} \Delta_{m_{2}+1}+\lambda_{2} \mathbf{p}_{2, m_{2}-1} \tag{EC.66}
\end{equation*}
$$

for $0 \leq m_{2} \leq M, \quad$ where $\Theta_{m_{2}}=\mathbf{D}_{m_{2}}-\lambda_{2}\left(\mu_{2}\left(\mathbf{A}_{m_{2}}-\mathbf{C}_{m_{2}} \mathbf{B}_{m_{2}}^{-1} \mu_{1}\right)^{-1}\right)-\left(\mu_{2}\left(\mathbf{A}_{m_{2}}-\right.\right.$ $\left.\left.\mathbf{C}_{m_{2}} \mathbf{B}_{m_{2}}^{-1} \mu_{1}\right)^{-1}\right) \mathbf{C}_{m_{2}} \mathbf{B}_{m_{2}}^{-1} \mathbf{F}_{m_{2}} \quad$ and $\quad \Delta_{m_{2}+1}=\left(\mu_{2}\left(\mathbf{A}_{m_{2}+1}-C_{m_{2}+1} \mathbf{B}_{m_{2}+1}^{-1} \mu_{1}\right)^{-1}\right)\left(\mathbf{E}_{m_{2}} \quad+\right.$ $\left.\mathbf{C}_{m_{2}+1} \mathbf{B}_{m_{2}+1}^{-1} \mathbf{G}_{m_{2}}\right)$.

In summary, we can compute the distribution $\mathbf{p}_{2, m_{2}}$ for $0 \leq m_{2} \leq M$ by follow Algorithm 2 below.

```
Algorithm 2
    Step 1. Calculate \(p_{\left(2, \cdot, m_{2}+1\right)}\) and \(p_{\left(0, \cdot, m_{2}+1\right)}+p_{\left(1, \cdot, m_{2}+1\right)}\) for \(0 \leq m_{2} \leq M\) from (EC.58) and (EC.59),
    where \(M\) is determined by (EC.60) for any given small \(\epsilon\).
    Step 2. Let \(\mathbf{p}_{2, M+1}^{*}=\frac{p_{2,,, M+1}}{M+1} e^{T}\).
    Step 3. Take \(\bar{\Theta}_{M-1}=\frac{\Theta_{M}}{\lambda_{2}}, \bar{\Theta}_{M-2}=\bar{\Theta}_{M-2} \frac{\Theta_{M-1}}{\lambda_{2}}-\frac{\Delta_{M}}{\lambda_{2}}\).
Step 4. Calculate \(\bar{\Theta}_{m_{2}}=\frac{\bar{\Theta}_{m_{2}+1} \Theta_{m_{2}+1}-\bar{\Theta}_{m_{2}+2} \Delta_{m_{2}+2}}{\lambda_{2}}\) and \(\bar{\Delta}_{m_{2}}=\frac{\bar{\Delta}_{m_{2}+1} \Theta_{m_{2}+1}-\bar{\Delta}_{m_{2}+2} \Delta_{m_{2}+2}}{\lambda_{2}}\) for \(0 \leq\) \(m_{2} \leq M-3\)
Step 5. \(\mathbf{p}_{2, M}^{*}=\left(\bar{\Delta}_{1} \Delta_{1}-\bar{\Delta}_{0} \Theta_{0}\right)\left(\bar{\Theta}_{0} \Theta_{0}-\bar{\Theta}_{1} \Delta_{1}\right)^{-1}\).
Step 6. \(\mathbf{p}_{2, m_{2}}^{*}=\mathbf{p}_{2, M}^{*} \bar{\Theta}_{i}+\bar{\Delta}_{i}\) for \(0 \leq m_{2} \leq M-1\).
Step 7. \(L_{21}=\sum_{m_{2}=0}^{M} \mathbf{p}_{2, m_{2}}^{*} \cdot \beta\), where \(\beta=(0,1,2, \ldots, K)^{T}\).
The initial value in Step 2 of Algorithm 2 can be estimated via the principle of the maximum entropy. We consider an example to illustrate this algorithm. For \(\theta_{1}=0.6111, \theta_{2}=1.8333\),
```

$\lambda_{1}=0.21083, \lambda_{2}=0.2917, \mu_{1}=0.9097, \mu_{2}=1.0763, p_{1}=0.4167, p_{2}=0.5833$, the approximate distribution and exact distribution are given in Table EC.1, with the error parameter $\epsilon=0.005$ $(M=5, K=35)$.

Table EC. 1 The comparison between approximated distribution and stationary distribution when $\rho=0.5$

	$p_{2, \cdot, 0}$	$p_{2, \cdot, 1}$	$p_{2, \cdot, 2}$	$p_{2, \cdot, 3}$	$p_{2, \cdot, 4}$	$p_{2,,, 5}$
Approximate distribution	0.1851	0.0581	0.0170	0.0049	0.0014	$3.8357 \mathrm{E}-4$
Exact distribution	0.1879	0.0590	0.0173	0.0049	0.0014	$3.8803 \mathrm{E}-4$

Table EC. 1 shows that the desired accuracy can be achieved when $M=5$, which also implies that $L_{2,1}=0.4078$ and $N_{1}=1.0022$. It is noted that the approximated distribution are less than the stationary distributions, i.e., $\mathbf{p}_{2, m}^{*} \leq \mathbf{p}_{2, m}$, due to the finite truncation of the orbit queue. To normalize the probabilities so that they add up to 1 , we may add an additional step between Step 6 and Step 7, namely, $\mathbf{p}_{2, m}^{*}=\left(p_{2, ; m} / \mathbf{p}_{2, m}^{*} \mathbf{e}\right) \mathbf{p}_{2, m}^{*}$.

However, when ρ is large, the value of the truncation K and M should be more carefully selected. For example, when $\rho=0.9$, we set $K=200$ and $M=15$ to keep the error within the tolerance, in which $L_{21}=11.7592, N_{1}=20.7155$. Therefore, by carefully selecting the truncated values K and M, desired accuracy can be achieved.

Plugging $L_{2,1}$ into (EC.54), we obtain the expected number of type-1 customers N_{1}. Next, the mean delay of type- 1 customers can be determined using Little's law $w_{1}=N_{1} / \lambda_{1}$. Following (EC.44), the expected total orbiting time and total number of trials for all customers can be derived as $w_{S S R D}^{P}=w_{1} p_{1}+w_{2} p_{2}$ and $r_{S S R D}^{P}=w_{1} \theta_{1} p_{1}+w_{2} \theta_{2} p_{2}$. In Figure EC.2, we plot delays and number of trials as a function of C, with $\rho=0.7,0.9$. Because C ranges from 0.01 to 100 , the case $C<1$ $(C>1)$ represents the case where class 1 (class 2$)$ has a higher priority.

REmark EC.1. Considering the preemptive $M / M / 1$ retrial queues with two customer types.

- If type-2 customers receive a higher priority, then

$$
w_{S S R D}^{P}>w_{0}>w_{S S R D}, \quad r_{S S R D}^{P}<r_{0}<r_{S S R D}
$$

- If type-1 customers receive a higher priority, then

$$
w_{S S R D}^{P}<w_{S S R D}<w_{0}, \quad r_{S S R D}^{P}>r_{S S R D}>r_{0}
$$

Specifically, a preemptive priority (with type-2 customers receiving a higher priority) can reduce the number of trials but increases the overall delay. On the other hand, a preemptive priority (with type-1 customers receiving a higher priority) will increase the number of trials but reduce the overall delay. In summery, the preemptive differentiation policy cannot reduce both the delay and number of trials simultaneously as in our non-preemptive SSRD policy.

Figure EC. 2 The comparison of preemptive and non-preemptive case under SSRD

EC.3. Comparison to Xu et al. (2015)

EC.3.1. Monotonicity of variability

To support the discussion in Part (c) of Remark 5, we compare the variance of delay in the $M / G / 1$ model in Xu et al. (2015) and in our $M / G / 1$ retrial model under SSRD.

First, following $\S 4.1$ of Kella and Yechiali (1988), we obtain the variance of delay in Xu et al. (2015) by $\operatorname{Var}[W]=\sum_{k=1}^{m} p_{k}\left(E\left[W_{k}^{2}\right]-E^{2}\left[W_{k}\right]\right)$, where

$$
\begin{aligned}
E\left[W_{k}\right] & =\frac{\sum_{i=1}^{m} \lambda_{i} E\left[S_{i}^{2}\right]}{2\left(1-\sum_{i=1}^{k} \rho_{i}\right)\left(1-\sum_{i=1}^{k-1} \rho_{i}\right)}, \\
E\left[W_{k}^{2}\right] & =\left[\left(\frac{\sum_{i=1}^{k} \lambda_{i} E\left[S_{i}^{2}\right]}{1-\sum_{i=1}^{k} \rho_{i}}+\frac{\sum_{i=1}^{k-1} \lambda_{i} E\left[S_{i}^{2}\right]}{1-\sum_{i=1}^{k-1} \rho_{i}}\right) E\left[W_{k}\right]+\frac{\sum_{i=1}^{m} \lambda_{i} E\left[S_{i}^{3}\right]}{3\left(1-\sum_{i=1}^{k} \rho_{i}\right)\left(1-\sum_{i=1}^{k-1} \rho_{i}\right)}\right] \frac{1}{\left(1-\sum_{i=1}^{k-1} \rho_{i}\right)} .
\end{aligned}
$$

Figure EC. 3 Mean and variance of delay of the $M / M / 1$ model in Xu et al. (2015) as a function of the service grade m, with $\mu_{0}=1$ and $\lambda_{0}=0.9$.

Figure EC. 3 illustrates the mean and variance of delay when $\mu_{0}=1$ and $\lambda_{0}=0.9$. We observe that the mean and variance of delay are decreasing and increasing in the number of service grades m, respectively, under the optimal differentiation policy (Corollary 3 and (24) of Xu et al. (2015)). That is, the delay can be further reduced when the variance increases (which occurs when the service grades m increases).

Next we study the monotonicity of the variance of delay for our $M / G / 1$ retrial queue under SSRD. Consider $m \geq 2$ service grades, with the maximum ODR $C=\theta_{m} / \theta_{1}$. Let $C_{i}=1+(i-1)(C-$ 1) $/(m-1)$ and $\rho_{i}=\rho / m$ for $i=1,2, \ldots, m$. According to the optimal allocation (13) and constraint (2), we have $p_{i}=\left(1 / \sqrt{x_{i}}\right) /\left(\sum_{j=1}^{m} 1 / \sqrt{x_{j}}\right), \mu_{i}=\lambda_{i} / \rho_{i}=m \lambda_{0} p_{i} / \rho$ and $\theta_{i}=C_{i} \theta_{0} \sum_{j=1}^{m} p_{i} / C_{i}$. For $C=$ 5 , we examine the mean and variance of delay as functions of the number of service grades m. Figure EC. 4 shows that the mean (variance) of delay significantly decreases (increases) as $m=1$ increases from 1 to 2 . However, the variance (mean) of delay becomes decreasing (increasing) in m when $m \geq 2$. Indeed, the minimum mean delay is achieved at $m=2$ (which is consistent with our main result in Theorem 2), which yields the maximum variance of delay. Similar to results in Xu et al. (2015), the reduction of delay benefits from the increased variance, which now decreases as m increases when $m \geq 2$.
Finally, we use simulations to demonstrate the growth of the variance of delay in C. Figure EC. 5 shows that, under the optimal SSRD given by Theorem 2 with $m=2$, the variance of delay is increasing in the ORD C, then the mean of delay is decreasing in C, which is consistent with Proposition 2.

EC.3.2. Limiting distribution of the random service rate in Xu et al. (2015)

We hereby provide support to Part (b) of Remark 5. It has been shown in Xu et al. (2015) that creating service variability can reduce the mean waiting time in an $M / G / 1$ queue. Especially, the

Figure EC. 4 Mean and variance of delay of the $M / M / 1$ retrial model under SSRD as a function of the service grade m, with $\theta_{0}=\mu_{0}=1$ and $\lambda_{0}=0.9$

Figure EC. 5 Mean and variance of delay of the $M / M / 1$ retrial model under SSRD as a function of C, with $\theta_{0}=\mu_{0}=5$ and $\lambda_{0}=0.9$
optimal performance can be achieved when the number of service grade $m \rightarrow \infty$. We discovered that the optimal case $(m \rightarrow \infty)$ yields a nice continuous distribution for the random service rate.

Proposition EC. 3 (Limiting continuous service-rate distribution in Xu et al. (2015)). Under the optimal service allocation policy in $X u$ et al. (2015), the service provider offers a random service rate \mathcal{M}, where \mathcal{M} is a random variable following a continuous distribution with bounded support, having probability density

$$
\begin{equation*}
f_{\mathcal{M}}(a)=\frac{2-\rho}{2 \rho \mu_{0}^{2}} a, \quad a \in \mathbb{S} \equiv\left(\underline{\mu}_{\rho}, \bar{\mu}_{\rho}\right) \equiv\left(\frac{2 \mu_{0}(1-\rho)}{2-\rho}, \frac{2 \mu_{0}}{2-\rho}\right) \tag{EC.67}
\end{equation*}
$$

Remark EC.2. First, it is easy to check that the density function given above is indeed well defined, that is, $\int_{a \in \mathbb{S}} f_{\mathcal{M}}(a) d a=1$. Apparently the base service rate μ_{0} is in the interior of \mathbb{S}, because $\frac{2 \mu_{0}(1-\rho)}{2-\rho}<\mu_{0}<\frac{2 \mu_{0}}{2-\rho}$. The spread of the support increases in ρ. Specifically, \mathbb{S} becomes the interval $\left(0,2 \mu_{0}\right)$ as $\rho \rightarrow 1$, and \mathbb{S} degenerates to a single point μ_{0} as $\rho \rightarrow 0$.

Proof: Suppose there are K customer grades. By (24) of Proposition 4 (p.241) in Xu et al. (2015), we know that the optimal service rate assignment satisfies

$$
\begin{equation*}
p_{k}=p_{1}\left[(1-\rho)^{\frac{2}{m}}\right]^{k-1} \tag{EC.68}
\end{equation*}
$$

$$
\begin{equation*}
\mu_{k}=\mu_{1}\left[(1-\rho)^{\frac{1}{m}}\right]^{k-1}, \quad 1 \leq k \leq m-1 \tag{EC.69}
\end{equation*}
$$

Normality of p_{1}, \ldots, p_{K} implies

$$
\begin{equation*}
1=p_{1}+\cdots+p_{m}=p_{1}\left[1+(1-\rho)^{\frac{2}{m}}+\ldots+(1-\rho)^{\frac{2(k-1)}{m}}\right] \quad \Rightarrow \quad p_{1}=\frac{1-(1-\rho)^{\frac{2}{m}}}{1-(1-\rho)^{2}} \tag{EC.70}
\end{equation*}
$$

Similarly, the equal mean condition, along with (EC.68)-(EC.70) imply that

$$
\begin{equation*}
\frac{1}{\mu_{0}}=\frac{p_{1}}{\mu_{1}}+\cdots+\frac{p_{m}}{\mu_{m}}=\frac{p_{1}}{\mu_{1}} \sum_{k=1}^{m}(1-\rho)^{\frac{k-1}{m}} \quad \Rightarrow \quad \mu_{1}=\frac{\mu_{0} \rho}{1-(1-\rho)^{2}} \cdot \frac{1-(1-\rho)^{\frac{2}{m}}}{1-(1-\rho)^{\frac{1}{m}}} \tag{EC.71}
\end{equation*}
$$

Let $\mu_{1}(m)$ be the μ_{1} in (EC.71), we have

$$
\begin{align*}
\lim _{m \rightarrow \infty} \mu_{1}(m) & =\frac{\mu_{0} \rho}{1-(1-\rho)^{2}} \lim _{m \rightarrow \infty} \frac{1-(1-\rho)^{\frac{2}{m}}}{1-(1-\rho)^{\frac{1}{m}}}=\frac{\mu_{0} \rho}{1-(1-\rho)^{2}} \lim _{x \rightarrow 0} \frac{1-(1-\rho)^{2 x}}{1-(1-\rho)^{x}} \\
& =\frac{\mu_{0} \rho}{1-(1-\rho)^{2}} \lim _{x \rightarrow 0} \frac{-2(1-\rho)^{2 x} \log (1-\rho)}{-(1-\rho)^{x} \log (1-\rho)}=\frac{2 \mu_{0} \rho}{1-(1-\rho)^{2}}=\frac{2 \mu_{0}}{2-\rho} \equiv \mu_{1}(\infty) \tag{EC.72}\\
\lim _{m \rightarrow \infty} \mu_{m}(m) & =\lim _{m \rightarrow \infty} \mu_{1}(m)\left[(1-\rho)^{\frac{1}{m}}\right]^{m-1}=\mu_{1}(\infty)(1-\rho) \tag{EC.73}
\end{align*}
$$

Now let the random variable \mathcal{M}_{m} denote the random service rate offered to an arbitrary customer where there are m service grades. According to (EC.72)-(EC.73), we know that as $m \rightarrow \infty$, \mathcal{M}_{m} asymptotically has a bounded domain \mathbb{S} given by (EC.67).

We next show that $\mathcal{M}_{m} \Rightarrow \mathcal{M}_{\infty} \equiv \mathcal{M}$ as $m \rightarrow \infty$, where the limiting random variable \mathcal{M}_{∞} has a continuous support in \mathbb{S}. Pick $a \in \mathbb{S}$ and a small $h>0$, then

$$
P\left(\mathcal{M}_{m} \in(a, a+h)\right)=\sum_{k=1}^{m} \mathbf{1}_{\left\{\mu_{k}(m) \in(a, a+h)\right\}} \cdot p_{k}(m),
$$

where $\mu_{k}(m)$ and $p_{k}(m)$ are the μ_{k} and p_{k} given in (EC.68) and (EC.69). According to (EC.69), we have

$$
a<\mu_{k}=\mu_{1}(m)(1-\rho)^{\frac{k-1}{m}}<a+h \quad \Leftrightarrow \quad \bar{k}_{m} \equiv \frac{m \log \left(\frac{a}{\mu_{1}(m)}\right)}{\log (1-\rho)}+1>k>\frac{m \log \left(\frac{a+h}{\mu_{1}(m)}\right)}{\log (1-\rho)}+1 \equiv \underline{k}_{m}
$$

Hence, we have

$$
\begin{aligned}
\mathbb{P}\left(\mathcal{M}_{m} \in(a, a+h)\right) & =\sum_{k=\underline{k}_{m}+1}^{\bar{k}_{m}} \frac{1-(1-\rho)^{\frac{2}{m}}}{1-(1-\rho)^{2}}\left[(1-\rho)^{\frac{2}{m}}\right]^{k-1} \\
& =\frac{1-(1-\rho)^{\frac{2}{m}}}{1-(1-\rho)^{2}}\left[(1-\rho)^{\frac{2}{m}}\right]^{\underline{k}_{m}} \cdot \frac{1-\left[(1-\rho)^{\frac{2}{m}}\right]^{\bar{k}_{m}-\underline{k}_{m}-1}}{1-(1-\rho)^{\frac{2}{m}}} \\
& =\frac{(1-\rho)^{\frac{2 \log \left(\frac{a+h}{\mu_{1}(m)}\right)}{\log (1-\rho)}}}{1-(1-\rho)^{2}}\left(1-(1-\rho)^{2\left[\log \left(\frac{a}{\mu_{1}(m)}\right)-\log \left(\frac{a+h}{\mu_{1}(m)}\right)\right]}\right) \\
& =\frac{\left(\frac{a+h}{\mu_{1}(m)}\right)^{2}}{1-(1-\rho)^{2}}\left(1-\left(\frac{a}{a+h}\right)^{2}\right)
\end{aligned}
$$

Now letting $m \rightarrow \infty$ yields
$\mathbb{P}(\mathcal{M} \in(a, a+h))=\lim _{m \rightarrow \infty} \mathbb{P}\left(\mathcal{M}_{m} \in(a, a+h)\right)=\frac{\left(\frac{a+h}{\mu_{1}(\infty)}\right)^{2}}{1-(1-\rho)^{2}}\left(1-\left(\frac{a}{a+h}\right)^{2}\right)=\frac{\left(\frac{(a+h)(2-\rho)}{2 \mu_{0}}\right)^{2}}{1-(1-\rho)^{2}} \frac{(2 a+h) h}{(a+h)^{2}}$,
where the last equality holds by (EC.72). The probability density function of \mathcal{M} is given by

$$
f_{\mathcal{M}}(a)=\lim _{h \downarrow 0} \frac{\mathbb{P}(\mathcal{M} \in(a, a+h))}{h}=\lim _{h \downarrow 0} \frac{\left(\frac{(a+h)(2-\rho)}{2 \mu_{0}}\right)^{2}}{1-(1-\rho)^{2}} \frac{(2 a+h)}{(a+h)^{2}}=\frac{2-\rho}{2 \rho \mu_{0}^{2}} a, \quad a \in \mathbb{S} .
$$

EC.4. Additional Simulations

Nonexponential retrial times. In this paper, we have treated a retrial model with general service times but exponential orbit times. We have showed that the dominance condition (10) is independent with the structure of the service-time distribution beyond its mean. Hence, we conjecture that condition (10) continues to hold for nonexponential orbit times. In the future, we plan to extend to models with nonexponential orbit times. We conduct simulation experiments in Table EC. 2 for the $M / H_{2} / 1$ model with 2-phase hyperexponential $\left(H_{2}\right)$ service times (mixture of two exponential distributions) and H_{2} orbit times with $\operatorname{SCV} c_{s}^{2}=c_{r}^{2}=4, \theta_{0}=\mu_{0}=1$. Table EC. 2 shows that SSRD achieves a smaller average delay than homogeneous service when the traffic intensity ρ is close to 1 . Specifically, the RRD of SSRD with respect to homogeneous service is $13.3 \%(13.7 \%, 4.6 \%)$ for $\rho=0.972(0.95,0.9)$. But RRD is negative when $\rho \leq 0.8$.

Table EC. 2 Comparing SSRD and homogeneous service for the $M / H_{2} / 1$ model with H_{2} retrial times.

ρ	Homogeneous service			Differentiated service		
	E [No. waiting]	$E[$ No. in service]	E [delay]	E [No. waiting]	$E[$ No. in service $]$	E [delay]
$\begin{aligned} & 0.975 \\ & \text { rel. diff. } \end{aligned}$	100.94 ± 9.67	$0.97 \pm 4.1 \mathrm{E}-3$	105.03 ± 10.20	$\begin{gathered} 94.86 \pm 8.67 \\ 6.02 \% \end{gathered}$	$\begin{gathered} 0.97 \pm 4.1 \mathrm{E}-3 \\ 0 \% \end{gathered}$	$\begin{gathered} 91.03 \pm 9.07 \\ \mathbf{1 3 . 3 3 \%} \end{gathered}$
$\begin{aligned} & 0.95 \\ & \text { rel. diff. } \end{aligned}$	65.17 ± 7.15	$\begin{gathered} 0.95 \pm 5.4 \mathrm{E}-3 \\ - \end{gathered}$	$\begin{gathered} 68.92 \pm 7.54 \\ - \end{gathered}$	$\begin{gathered} 57.26 \pm 5.64 \\ 12.14 \% \end{gathered}$	$\begin{gathered} 0.95 \pm 5.5 \mathrm{E}-3 \\ 0 \% \end{gathered}$	$\begin{gathered} 59.45 \pm 5.65 \\ \mathbf{1 3 . 7 4 \%} \end{gathered}$
$\begin{aligned} & 0.9 \\ & \text { rel. diff. } \end{aligned}$	29.20 ± 2.06	$\begin{gathered} 0.90 \pm 6.4 \mathrm{E}-3 \\ - \end{gathered}$	32.02 ± 2.22	$\begin{gathered} 27.92 \pm 2.10 \\ 4.42 \% \end{gathered}$	$\begin{gathered} 0.90 \pm 6.6 \mathrm{E}-3 \\ 0 \% \end{gathered}$	$\begin{gathered} 30.55 \pm 2.19 \\ \mathbf{4 . 6 1 \%} \end{gathered}$
$\begin{aligned} & 0.8 \\ & \text { rel. diff. } \end{aligned}$	11.57 ± 0.60	$0.80 \pm 6.4 \mathrm{E}-3$	14.53 ± 0.77	$\begin{gathered} 11.86 \pm 0.66 \\ -2.51 \% \end{gathered}$	$\begin{gathered} 0.80 \pm 6.5 \mathrm{E}-3 \\ 0 \% \end{gathered}$	$\begin{gathered} 14.72 \pm 0.75 \\ -1.38 \% \end{gathered}$
$\begin{aligned} & 0.7 \\ & \text { rel. diff. } \end{aligned}$	6.26 ± 0.27 -	$0.70 \pm 6.4 \mathrm{E}-3$	8.97 ± 0.37	$\begin{gathered} \hline 6.43 \pm 0.28 \\ -2.64 \% \end{gathered}$	$\begin{gathered} 0.70 \pm 6.7 \mathrm{E}-3 \\ 0 \% \end{gathered}$	$\begin{gathered} 9.15 \pm 0.38 \\ -1.97 \% \end{gathered}$

Multiple server. Multiserver queueing models have been proven more practical for modeling realistic service systems. Therefore, in the future we plan to extend our service-differentiation policy from single-server framework to multi-server models. We next conduct a simulation example for an $M / M / 2$ retrial queueing system. In Table EC. 3 we observe that SSRD helps reduce the average delay when the traffic intensity is close to 1 . All simulations are conducted with 95% confidence intervals.

Table EC. 3 Comparing performance of SSRD and homogeneous service for the 2-server $M / M / 2$ model.

	Pure service				Differentiated service		
ρ	$E[$ No. waiting $]$	$E[$ No. in service $]$	$E[$ delay $]$		$E[$ No. waiting $]$	$E[$ No. in service $]$	$E[$ [delay $]$
0.975	77.43 ± 3.71	$1.95 \pm 2.0 \mathrm{E}-3$	39.71 ± 1.89		72.32 ± 3.50	$1.95 \pm 2.1 \mathrm{E}-3$	36.94 ± 1.77
rel. diff.	-	-	-		6.61%	0%	$\mathbf{6 . 9 6 \%}$
0.95	36.16 ± 0.91	$1.90 \pm 2.1 \mathrm{E}-3$	19.08 ± 0.48		34.71 ± 0.90	$1.90 \pm 2.1 \mathrm{E}-3$	18.26 ± 0.48
rel. diff.	-	-	-		3.95%	0%	$\mathbf{4 . 3 0 \%}$
0.9	15.83 ± 0.23	$1.80 \pm 2.1 \mathrm{E}-3$	8.82 ± 0.13		15.54 ± 0.23	$1.80 \pm 2.2 \mathrm{E}-3$	8.64 ± 0.12
rel. diff.	-	-	-		1.83%	0%	$\mathbf{2 . 1 1 \%}$
0.8	$6.09 \pm 5.2 \mathrm{E}-2$	$1.60 \pm 2.4 \mathrm{E}-3$	$3.80 \pm 3.2 \mathrm{E}-2$		$6.11 \pm 5.4 \mathrm{E}-2$	$1.60 \pm 2.4 \mathrm{E}-3$	$3.81 \pm 3.5 \mathrm{E}-2$
rel. diff.	-	-	-	-0.36%	0%	-0.42%	
0.7	$2.94 \pm 1.9 \mathrm{E}-2$	$1.40 \pm 2.0 \mathrm{E}-3$	$2.10 \pm 1.3 \mathrm{E}-2$	$2.99 \pm 2.0 \mathrm{E}-2$	$1.40 \pm 2.3 \mathrm{E}-3$	$2.14 \pm 1.6 \mathrm{E}-2$	
rel. diff.	-	-	-	-1.50%	0%	-1.81%	

