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Abstract. In this article, we introduce a service grade differentiation policy for queueing
models with customer retrials. We show that the average waiting time can be reduced
through strategically allocating the rates of service and retrial times without needing
additional service capacity. Countering to the intuition that higher service variability
usually yields a larger delay, we show that the benefits of our simultaneous service-and-
retrial differentiation policy outweigh the impact of the increased service variability. We
present a necessary and sufficient condition under which the proposed policy reduces
the waiting time and a closed-form expression for the optimal allocation policy. In
heavy traffic, our policy can asymptotically reduce both the delay and the number of
customer retrials before entering service by a significant factor, which is a function of the
ratio of the service rate to the retrial rate.
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1. Introduction
Customer retrials commonly occur in many service
systems, such as healthcare, call centers, mobile net-
works, computer systems, and inventory systems (see
Tran-Gia andMandjes 1997,Wang et al. 2001, Ren and
Zhou 2008, Yom-Tov and Mandelbaum 2014, Li et al.
2015b, andWang et al. 2017). In general, there are two
types of customer retrials: (i) In certain service sys-
tems, such as call centers, excessive queueing delays
or a lack ofwaiting space can causewaiting customers
to temporarily leave the system before entering ser-
vice and return at a future time (Falin and Templeton
1997; Mandelbaum et al. 1999, 2002; Ding et al. 2015).
(ii) After completing service, customers may return at
a later time because their initial service was “un-
satisfactory.” For instance, the treatment of a patient
by a doctor in a hospitalmay naturally occur in stages,
starting with an initial screening and continuing later
after tests have been ordered and completed (Artalejo
et al. 2006; Liu and Whitt 2014, 2017; Yom-Tov and
Mandelbaum 2014). In this paper, we consider retrials
of the first type (i.e., retrials before service). We de-
velop a service differentiation policy that is beneficial
for models of this type because it reduces the average

waiting time without necessitating an increase in the
overall service capacity.
In conventional retrial models, customer behavior

is usually assumed to be homogeneous; such a sce-
nario is characterized by independent and identically
distributed (i.i.d.) service and retrial times with com-
mon service and retrial rates. In contrast, our service
differentiation policy works as follows: we randomly
classify the originally homogeneous customers into
heterogeneous customer groups with stochastically
shorter and longer service and retrial times while
maintaining a constant overall service capacity (the
average service time and retrial time are left un-
changed). At first glance, such a policy seems un-
appealing because of the general consensus that
customer differentiation increases service variability,
which is expected to prolong the waiting time, thus
leading to excessive system congestion. However, this
differentiation policy creates priorities among the
originally homogeneous customers, which can be used
to shorten the average total orbit time. We prove that,
if this differentiation policy is correctly implemented
(that is, if the heterogeneous service and retrial rates
are properly selected and paired), then the overall

1
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average delay can be significantly reduced while
holding the average service time unchanged.

We emphasize that our differentiation policy is
different from dynamic service control policies that
make use of system information, for example, a policy
in which the service provider speeds up (slows down)
the service process when the system is more (less)
congested (George and Harrison 2001). In some set-
tings, dynamic service control policies may become
impractical if the timely acquisition of the required
system state information becomes difficult or costly.
By contrast, from this perspective, our differentiation
policy is quite easy to implement in practice because it
is independent of the system state.

One potential application of the retrial model and
the aforementioned differentiation policy is a local
area network (LAN). In a LAN, a large number of ter-
minals are connected to a centralized internet service
provider. Upon receiving a job, a terminal attempts to
determine the state of the server (channel). If the server
is idle, the job is transmitted to the server from the
terminal; if the server is busy, the job is temporarily
stored at the terminal andwaits for a service attempt at a
later time. One widely adopted communication pro-
tocol in LANs is carrier sense multiple access with col-
lision detection (CSMA/CD), which has been proven
effective in rescheduling packets for future trans-
mission when collisions occur (see Fayolle et al. 1977,
Tobagi andHunt 1980, Choi et al. 1992, Li et al. 2015a).
CSMA/CD can be further classified into two types:
(i) nonpersistent and (ii) persistent. In the nonpersistent
CSMA/CD protocol, if the channel is currently idle,
the terminal initiates the transmission of a job; oth-
erwise, the terminal schedules a retransmission at a

future time. See Figure 1(a) for an illustration. In
contrast, in the persistent CSMA/CD protocol, if the
channel is found to be busy, the terminal continuously
attempts to transmit until the channel eventually
becomes free. See Fayolle et al. (1977), Choi et al.
(1992), Li et al. (2015a), and Tobagi and Hunt (1980)
for details of the persistent and nonpersistent
CSMA/CDprotocols. In the case of retrial systemswith
different retrial rates, we can regard the persistent
(nonpersistent) CSMA/CD protocol as representing a
customer group that makes more (less) frequent service
attempts, meaning that these customers have a higher
(lower) retrial rate. With the aim of improving the
overall system performance, we propose a new service
differentiation policy that considers a mixture of fre-
quent and infrequent retrials.
We focus on studying how service differentiation

influences the performance of retrial models. Our
findings reveal that the overall customer delay can be
reduced only when both the service rate and retrial rate
are simultaneously differentiated, not either one alone. To
obtain structural results and useful insights, we
mainly focus on a single-server M/G/1 retrial model
with Poisson arrivals (M), i.i.d. service times (G), i.i.d.
orbit times (times until the next retrial) that are ex-
ponentially distributed, and a buffer size of zero. We
later extend our analysis to a retrial system with a
finite buffer size, which is potentially suitable for
modeling more realistic service systems in practice.

1.1. Literature Review
1.1.1. Queueing Models with Retrials. There is a large
body of research on retrial queueing models. The
optimal retrial rate and routing policy for an M/M/1

Figure 1. Dynamics of the CSMA/CD Protocol with Homogeneous Service

Wang, Wang, and Liu: Differentiating Service in Retrial Queues
2 Operations Research, Articles in Advance, pp. 1–20, © 2020 INFORMS



retrial queue have been studied by Elcan (1994, 1999),
Hassin and Haviv (1996), Avrachenkov et al. (2015),
and Liang and Kulkarni (1999). Aissani and Phung-
Duc (2015) developed a call center retrial model with
two-way communications (i.e., including incoming
and outgoing calls). Artalejo (1997) considered an
M/G/1 retrial queue with service vacations and ob-
tained the optimal control policy for this queue under
the so-called N-policy (i.e., the server is turned off
when the system becomes empty and is turned on
again when the queue length reachesN). Gharbi et al.
(2009) investigated systems with multiclass retrial
customers. See Falin and Templeton (1997) and
Artalejo and Gómez-Corral (2008) for reviews of re-
trial models.

1.1.2. Service Rate Control Policies. There are two
types of service rate control policies: dynamic, inwhich
decisions aremade based on the real-time system state,
and static, which are independent of the system state.
Dynamic rate control problems have been proposed
and studied by George and Harrison (2001), Ata and
Shneorson (2006), and Adusumilli and Hasenbein
(2010); these authors focused on reducing the wait-
ing time by adjusting the service rates using system
information, such as queue lengths. Another related
line of research concerns how to balance the waiting
time and service value in a quality-based queueing
system; seeHopp et al. (2007), Anand et al. (2011), and
the references therein. Recently, Xu et al. (2015)
proposed a static service differentiation policy for a
single-serverM/G/1 queue. Their idea is to randomly
assign customers different service rates, thus creating
heterogeneous service grade information, which en-
ables the implementation of the shortest expected pro-
cessing time (SEPT) policy; see Schrage and Miller
(1966) for a further discussion of this policy. With
this differentiation policy, customers are scheduled
based on their absolute priorities; therefore, this pol-
icy can be regarded as a special case of the c-μ rule
(Smith 1956, Mendelson and Whang 1990). Xu et al.
(2015) showed that such a differentiation rule, if prop-
erly implemented, can reduce the average waiting
time without affecting the mean service time; in ad-
dition, they discovered that the performance of the
system can be improved by increasing the number
of service grades (a 5% improvement can be asymp-
totically achieved as the number of service grades ap-
proaches infinity).

In this paper, we develop a differentiation rule for
a service system with customer retrials. Our policy
simultaneously differentiates the service rate and
retrial rate, thereby creating relative priorities (rather
than absolute priorities as in Xu et al. (2015)) among
customer groups. To the best of our knowledge,
such a service-and-retrial differentiation policy has

never been studied before in the retrial queueing
literature.

1.2. Our Contributions
• For the first time to our knowledge, we study a

service-and-retrial differentiation policy for retrial
queueing systems. We prove that the overall mean
waiting time can be reduced by offering heteroge-
neous service and retrial rates to originally homo-
geneous customers while holding the total service
capacity unchanged. We present a necessary and
sufficient condition under which our differentiation
policy dominates the homogeneous service policy.
• In contrast to the results of Xu et al. (2015), in

which the performance improves as the number of
service grades increases, we show that the minimum
customer delay can be achieved by differentiating
customers into exactly two grades; moreover, the
system benefits from a high level of the differentiation
between these two customer grades. See Theorem 2
for the optimal structure of our policy, including the
differentiation probabilities,workloads, service rates,
and retrial rates for both service grades. See also
Remark 5 for further discussion and insight.
• We quantify the asymptotic performance gain

when the system is in heavy traffic (as the traffic in-
tensity approaches one). In addition to the mean
delay, our service differentiation rule can help reduce
the number of trials and the slowdown, which are also
considered useful service-level indicators. For ex-
ample, we show that it is possible to reduce both the
mean delay and the number of trials by a factor of
(c2v + 1)/(c2v + 1 + 2μ0/θ0) when the system is in heavy
traffic, where μ0/θ0 is the ratio of the service rate to
the retrial rate and c2v is the squared coefficient of
variation of the service times.
• We present numerical examples to verify the ef-

fectiveness of our differentiation policy. We report a
sensitivity analysis of the system performance (delay,
number of trials, etc.) with respect to the model pa-
rameters under the optimal service differentiation pol-
icy. To show that the insights gained from analyzing the
simpleM/G/1 retrial model are of practical value, we
also consider somemore general model settings, such
as the cases of a finite waiting room and a convex
delay cost; we discover that our service differentia-
tion rule can continue to be beneficial for improving
the system performance in these cases.

1.2.1. Organization of the Paper. In Section 2, we de-
scribe the single-server retrial queueing model and
introduce our new service differentiation policy. In
Section 3, we present a necessary and sufficient con-
dition under which our differentiation policy domi-
nates the homogeneous service policy. In Section 4, we
prove the suboptimality of the m-grade case (m ≥ 3)
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and present the optimal structure of the differentia-
tion policy with two service grades. In Section 5, we
quantify the asymptotic performance gain when the
system is in heavy traffic, using performance metrics
such as the mean delay and the number of trials. In
Section 6, we conduct numerical experiments and
sensitivity analysis. In Section 7, we extend our anal-
ysis to some more general model settings. We make
concluding remarks in Section 8. Supplementary
materials are provided in the e-companion.

2. The Model
Our base model is a single-server M/G/1 retrial
queueing system having Poisson arrivals with rate λ0,
i.i.d. service times with mean service time 1/μ0, and
zero waiting capacity. If an arriving customer finds
the server busy serving another customer, this cus-
tomer immediately enters an orbit queue of infinite
capacity. Customers in the orbit queue attempt to
reenter service at a rate of θ0, where the specific orbit
times after which they attempt reentry are i.i.d. fol-
lowing an exponential distribution. This model is
depicted in Figure 1(b). In the base model with ho-
mogeneous service, let S0 be a generic random service
time with mean E[S0] � 1/μ0 and squared coefficient of
variation (SCV) of c2v � Var(S0)/E[S0]2.

2.1. Simultaneous Service-and-
Retrial Differentiation

Our service differentiation policy is described as fol-
lows.We allow the server to offer a discrete set of service
rates µ ≡ (μ1, . . . , μm) and orbit rates θ ≡ (θ1, . . . , θm).
Upon arrival, a customer is immediately assigned
with service and orbit rates (μk, θk) with probability
(w.p.) pk, 1 ≤ k ≤ m such that

∑m
k�1 pk � 1. In this way,

the originally homogeneous customers with a single
service rate μ0 and a single orbit rate θ0 are manually
divided into heterogenous customer groups with
different service grades, in which the kth service grade
is characterized by the pair (μk, θk). Without loss
of generality, we assume that 0 < μ1 < · · · < μm. As
we see later, the optimal policy requires that 0 <
θ1 < · · · < θm. This should not be too surprising: in the
context of quality-based service systems, it is rea-
sonable to offer a longer waiting time (i.e., a lower
orbit rate θk) to a customer demanding higher service
quality, which is equivalent to a longer service time
(i.e., a lower service rate μk). In addition, we remark
that the value of the rate θk can be interpreted as a
measure of the relative priority level for customers of
class k (Haviv and Van Der Wal 1997).

To achieve differentiated service grades, we scale the
base random service time S0 defined previously while
maintaining the form of its distribution (Debo et al.
2008, Xu et al. 2015). Under them-grade simultaneous

service-and-retrial differentiation (SSRD) policy, a cus-
tomer’s service time S is given by

S ∼
S1 ≡ μ0

μ1

( )
S0, w.p. p1,

..

.

Sm ≡ μ0

μm

( )
S0, w.p. pm,

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩
(1)

where Si is the generic service time of class i. To ensure
that the overall expected service time and orbit time
remain unchanged, we impose the following fixed-
capacity constraints:

E[S] � ∑m
i�1

μ0

μi
E[S0]pi �

∑m
i�1

pi
μi

� 1
μ0

� E[S0] and

∑m
k�1

1
θk

pk � 1
θ0

, with
∑m
k�1

pk � 1, (2)

where 1/μ0 and 1/θ0 are the overall mean service time
and orbit time, respectively.
We emphasize that our service differentiation rule

is static; that is, the grade of a customer is determined
immediately upon that customer’s arrival, indepen-
dently of the state of the system. See Figure 2(b) for
an illustration of the M/G/1 retrial queue under the
SSRD policy (see also Figure 2(a) for the corre-
sponding LAN example with both frequent and in-
frequent retrials).
Next, we show that the SSRD policy dominates the

homogeneous service policy (m � 1) as long as the
parameters (μk, θk) are properly chosen.

3. Dominance of the SSRD Policy
In this section, we derive the dominance condition for
the SSRD policy. The treatment of the mean delay
under the SSRDpolicy requires computing the second
moment of the service time and the mean residual
workload in service, which are given by

E S2
[ ] � c2v + 1

2
β2 and

∑m
i�1

ρi
E S2i
[ ]

2E Si[ ] �
λ0E S2

[ ]
2

� λ0β2 c2v + 1
( )
4

, with β2 ≡
∑m
i�1

2pi
μ2
i
.

Let the traffic intensity be ρ ≡ λ0/μ0. We assume for
the rest of the paper that ρ < 1 (note that the system is
stable if and only if ρ < 1 regardless of the value of θ0;
see Falin and Templeton 1997). According to Falin
and Templeton (1997), the steady-state mean number
of customers of grade i in the orbit queue is

Ni ≡ λiρ

θi(1 − ρ) +
λiλ0β2 c2v + 1

( )
4

xi, i � 1, . . . ,m, (3)
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where λi ≡ λ0pi is the arrival rate of customers of
class i and x � (x1, . . . , xm)T is the unique solution to
the linear equation

Ax � −e or equivalently x � −A−1e, (4)
where e � (1, . . . , 1)T, the matrix A � (Ai,j)1≤i,j≤m has
off-diagonal entries Ai,j � ai,j and diagonal entries
Aj,j � ∑m

i�1 aj,i + aj,j − 1, ai,j � θjρj/(θi + θj) for 1 ≤ i, j ≤ m,
and ρi ≡ λi/μi is the traffic intensity for the ith grade.
We next compute the expected waiting time before a
customer enters service (i.e., the expected total orbit
time). Unlike in traditional work-conserving queueing
systems, an idle server and waiting (orbiting) cus-
tomers may coexist in retrial models. During the total
waiting time wi of a customer of class i (i.e., the total
time the customer spends orbiting before entering
service), the state of the server alternates between
busy and idle. Let wI

i (w
B
i ) represent the expected total

waiting time of a customer of class i when the server
is idle (busy). Little’s law and (3) imply that the ex-
pected waiting time for a customer of grade i is

wi � ρ

θi(1 − ρ) +
λ0β2(c2v + 1)

4
xi � wI

i + wB
i , (5)

where the second equality follows from a similar
analysis for a retrialmodelwith homogeneous service
(theorem 1 in Artalejo and Falin (1994)). Because
λ0β2(c2v + 1)/4 is the mean remaining workload in
service, xi represents the expected number of service
completions for which a customer of class i needs to
wait before entering service. In addition, the first
term wI

i → 0 as the retrial rate θi → ∞ (continuous
retrial for service).

Now, we are ready to derive the conditions under
which the two-grade SSRD policy (m � 2) dominates
the homogeneous service policy (m � 1) (note that the
two-grade SSRD policy is a special case of the general
m-grade SSRD policy withm ≥ 2) with the base model
parameters λ0, μ0, and θ0 held fixed. Because the ex-
pected service time 1/μ0 and arrival rate λ0 are fixed,
the SSRD and homogeneous service cases have the
same traffic intensity ρ � λ0/μ0, which is also the
probability that the server is busy. For the case of ho-
mogeneous service, the average waiting time is

w0 � wI
0 + wB

0 , where wI
0 ≡

ρ

θ0(1 − ρ) and

wB
0 ≡ ρ c2v + 1

( )
2μ0(1 − ρ) . (6)

For two-grade SSRD, solving (4) and (5) yields the
expected delays for grade 1 and grade 2 customers:

w1 � ρ

θ1(1 − ρ) +
λ0β2 c2v + 1

( )
4(1 − ρ) · (1 − ρ)θ1 + θ2

(1 − ρ1)θ1 + (1 − ρ2)θ2
,

(7)
w2 � ρ

θ2(1 − ρ) +
λ0β2 c2v + 1

( )
4(1 − ρ) · θ1 + (1 − ρ)θ2

(1 − ρ1)θ1 + (1 − ρ2)θ2
.

(8)
Hence, the overall expected delay is

wSSRD ≡ p1w1 + p2w2

� ρ

1 − ρ
( )

θ0
+ λ0β2 c2v + 1

( )
4 1 − ρ
( ) · θ1 + θ2 − ρ p1θ1 + p2θ2

( )
θ1 + θ2 − ρ1θ1 + ρ2θ2

( ) .
(9)

Figure 2. Dynamics of the CSMA/CD Protocol with SSRD Policy
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A careful comparison of (6) and (9) leads to the fol-
lowing necessary and sufficient condition. The proof
is given in EC.1.

Theorem 1 (Dominance of SSRD). Considering an M/G/1
retrial model with fixed model parameters λ0, θ0, and μ0, the
SSRD policy with two service grades satisfying (2) results in
a shorter waiting time than the homogeneous service policy
does if and only if

i. 1 <
μ2

μ1
<

1
1 − ρ

and

ii.
μ2/μ1 + ρ − 1

1 − (1 − ρ)μ2/μ1
<
θ2

θ1
< ∞. (10)

Remark 1 (Understanding Condition (10)). First, condi-
tion (i) of (10) gives an upper bound on the ratio μ2/μ1,
which measures the level of service differentiation. It
is evident that the difference in service level cannot be
too large; otherwise, the service time variability (and,
thus, the mean residual workload in service λ0β2(c2v +
1)/4) would be too large to be compensated for. Because
1/(1 − ρ) → ∞ as ρ increases, condition (i) becomes less

restrictive in a more congested system (see Proposition 3
for theheavy-trafficanalysisof theSSRDpolicyasρ → 1).

Next, condition (ii) of (10) indicates that, for a given
service ratio μ2/μ1, the differentiation level of cus-
tomer priority (measured by the ratio θ2/θ1) must be
sufficiently high. Indeed, the SSRD policy achieves a
smaller delay for the entire customer pool by assign-
ing a significantly higher priority to customers with
shorter service times. Because the lower bound in
condition (ii) is increasing in μ2/μ1, a higher priority
difference is required for a greater service difference.
Another interesting observation is that the condi-

tions in (10) are independent of the allocation prob-
abilities p1 and p2 (i.e., for any p1 and p2, we can always
find suitable parameters (μ1, μ2, θ1, θ2) such that (2)
and (10) are satisfied). In addition, the conditions in
(10) are insensitive to the service time distribution
because the form of this distribution is preserved
(although scaled) when the SSRD policy is adopted.
In Figure 3, we present an example to visualize the

conditions in Theorem 1. For μ0 � 1, θ0 � 1, and λ0 �
μ0ρ � ρ, we plot the dominance regions characterized

Figure 3. Dominance Region of SSRD over Homogenous Service for an M/G/1 Retrial Model with λ0 � ρ; μ0 � θ0 � 1; and
ρ � 0.8, 0.9, 0.95 and 0.99
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by the conditions in (10) as functions of μ2/μ1 and
θ2/θ1 (see the shadowed areas) for traffic intensities
ρ � 0.8, 0.9, 0.95, and 0.99. The dominance region
expands as the traffic intensity increases. In partic-
ular, when the system is in heavy traffic (i.e., ρ → 1),
the conditions in (10) degenerate to the lower triangle
of the first quadrant (i.e., the area below the 45° line
θ2/θ1 > μ2/μ1) as seen in panel (d) of Figure 3.

Corollary 1 (Necessity of Simultaneously Differentiating
Service and Retrial Rates). If μ1 � μ2, then the SSRD and
homogeneous service policies achieve the same expected
waiting time regardless of the values of θ1 and θ2. If θ1 � θ2,
the homogeneous service policy dominates the SSRD policy.

Remark 2 (Necessity of Simultaneous Differentiation of
Service and Orbit Rates). Corollary 1 shows that the
benefit of SSRD is not gained when either the service
rate or the retrial rate alone is differentiated but instead
relies on the combined effect of differentiating both. It is
straightforward to see that wI

SSRD ≡ p1wI
1 + p2wI

2 � wI
0

(this condition holds with any feasible SSRD param-
eters). Therefore, for SSRD to be beneficial, we need
wB

SSRD ≡ p1wB
1 + p2wB

2 < wB
0 . On the one hand, if the

service rate is homogeneous, we have θ1 + θ2 −
ρ(p1θ1 + p2θ2) � θ1 + θ2 − (ρ1θ1 + ρ2θ2); in this case,
SSRD does not help becausewB

SSRD is independent of θ1
and θ2 (see (9)). This explains why differentiating the
orbit rate alone is not helpful. On the other hand, if the
retrial rate is homogeneous, then wB

SSRD increases be-
cause of the increased mean remaining workload in
service, which is consistent with the conventional
wisdom that higher service variability leads to exces-
sive system congestion.

4. The Optimal SSRD Policy
In Section 3, we have shown that the SSRD policy, if
correctly implemented, can help reduce the waiting
time. In this section, we obtain the optimal SSRD
parameters for achieving the maximum delay re-
duction.We do so in two steps. First, we show that it is
sufficient to create two service grades; in other words,
generating any additional kth grade (k � 3, . . . ,m) does
not further reduce the overall customer delay. Sec-
ond, we compute the optimal parameters of the two-
grade SSRD policy.

4.1. Road Map of the Main Steps
For the general case with m ≥ 3, we begin by devel-
oping the optimal allocation probabilities p∗(C, ρ) for
fixed values of ρ � (ρ1, . . . , ρm) and C � (C1, . . . ,Cm),
where ρi � λi/μi is the traffic intensity for class i and
Ci � θi/θ1 is the orbit rate differentiation ratio (ODR),
i � 1, . . . ,m; see Proposition 1. Next, using the con-
ditionally optimal allocation probabilities p∗(C,ρ), we
derive the optimal workload ρ∗(C); see Theorem 2.

Finally, we show that the expected delay decreases as
the ODR increases; see Proposition 2. All proofs are
provided in the e-companion.
Using the expected waiting time formula in (5), we

now solve an optimization problemwith the objective
of minimizing the overall delay wSSRD � ∑m

i�1 wipi
subject to constraint (2). Namely we have

min
µ,p

wSSRD �∑m
i�1

ρ

θi 1 − ρ
( ) + λ0β2 c2v + 1

( )
4

xi

( )
pi

s.t.
∑m
i�1

pi
μi

� 1
μ0

,
∑m
i�1

pi
θi

� 1
θ0

,
∑m
i�1

pi � 1

Ax � −e, θi

θ1
� Ci

pi, xi ≥ 0, i � 1, . . . ,m, (11)
whereA is defined in (4). Note that c2v is a constant for
any given service time distribution. Therefore, by
substituting ρ for µ in (11) (i.e., μi � λ0pi/ρi,

∑m
i�1 pi/

μ2
i � ρ2

i /pi) and using the equation
∑m

i�1 pi/θi � 1/θ0,
we simplify (11) to

min
ρ,p

∑m
i�1

ρ2
i

pi

( )
· ∑m

i�1
xipi

( )

s.t.
∑m
i�1

ρi � ρ,
∑m
i�1

pi � 1

Ax � −e, θi

θ1
� Ci

pi, xi ≥ 0, i � 1, . . . ,m. (12)
Because x can be determined from ρ and C and is
irrelevant to p, (12) can be solved directly using the
Cauchy–Schwarz inequality

∑m
i�1

a2i
∑m
i�1

b2i ≥
∑m
i�1

aibi

( )2
,

where ai � ρi/
̅̅̅
pi

√
and bi � ̅̅̅̅̅

xipi
√

. In the following
proposition, we present the optimal allocation prob-
abilities conditional on ρ and C.

Proposition 1 (m-Grade Optimal Allocation Probabilities
Conditional on ρ and C). Considering an M/G/1 retrial
queue under the m-grade SSRD policy, for a given ρ and C,
the optimal allocation probabilities are

p∗i (C,ρ) �
ρi/

̅̅̅
xi

√
ρ1/

̅̅̅
x1

√ + · · · + ρm/
̅̅̅̅
xm

√ , i � 1, . . . ,m,

(13)
where x � (x1, . . . , xm) uniquely solves (4).

Computing the unconditional optimal parameters
for m-grade SSRD is less straightforward than it is for
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the two-grade case. Plugging p∗(C,ρ) in (13) into (12)
yields

min
ρ

∑m
i�1

ρi
̅̅̅
xi

√

s.t.
∑m
i�1

ρi � ρ < 1,Ax � −e
ρi, xi ≥ 0, i � 1, . . . ,m. (14)

Under the assumption that Cm � θm/θ1 is fixed, we
show that allocating any customer to grade i such that
i � 2, . . . ,m − 1 is not beneficial to the system perfor-
mance. In other words, it is optimal only to allocate
the originally homogeneous customers to grades 1
and m, not to any grade in between (i.e., ρ∗

2 � · · · �
ρ∗
m−1 � 0). The following lemma serves as a building

block for our main result.

Lemma 1. For any m-grade SSRD workloads ρ1, . . . , ρm

and retrial rates θ1 < . . . < θm, the following statements
hold:

i. The inverse of the matrix A is negative, that is,
A−1 < 0.

ii. The solution x � (x1, · · · , xm)T to Ax � −e satisfies
the following properties:

a. First, xi > 1 for i � 1, . . . ,m.
b. Second, x1 > x2 > · · · > xm.
c. Last, x1 < C2x2 < Cixi for i � 3, . . . ,m.

Although no explicit expression for x � (x1, . . . , xm)
is available, Lemma 1 exhibits useful structural prop-
erties of x, which facilitate the derivation of the op-
timal workload allocation form-grade SSRD. First, xi,
the expected number of service completions before a
customer of class i enters service, is strictly higher
than one. Next, xi is decreasing in i, which coincides
with our intuition that class j has a higher priority
than that of class k if j > k. According to (5), the mean
number of trials for customers of class i is θiwi �
ρ/(1 − ρ) + Cixi[λ0β2θ0(c2v + 1)/2]. Therefore, part (ii.c)
of Lemma 1 implies that a higher retrial rate results in
a shorter waiting time but a larger number of trials,
especially when i ≥ 3. This observation seems to
suggest that SSRD achieves a delay reduction at the
expense of increasing the number of trials. (We fur-
ther investigate the impact of SSRD on the total
number of trials in the next section.)

Theorem 2 (Optimal Service-and-Retrial Differentiation
Policy). For given traffic intensity ρ, retrial rate θ0, and
the condition of 1 < C2 < · · · < Cm, we consider an M/G/1
retrial queue operated under the m-grade (m ≥ 3) SSRD
policy and have the following results.

i. The optimal m-grade SSRD degenerates to the two-
grade SSRD, that is, we have that p∗i (C, ρ) � ρ∗

i (C, ρ) � 0
for i � 2, . . . ,m − 1.

ii. For grade-1 and grade-m customers, the optimal
allocation policy is given as follows:

The optimal probabilities are

p∗1 C, ρ
( )

, p∗m C, ρ
( )( ) ≡ 1

1 + rp
,

rp
1 + rp

( )
. (15)

The optimal workloads, service rates, and retrial rates
are

ρ∗
1 C, ρ
( )

, ρ∗
m C, ρ
( )( ) ≡ ρ

1 + ̅̅̅rp√ ,
ρ

̅̅̅rp√
1 + ̅̅̅rp√

( )
,

μ∗
1 C, ρ
( )

, μ∗
m C, ρ
( )( ) ≡ μ0

1 + ̅̅̅rp√
1 + rp

( )
, μ0

rp + ̅̅̅rp√
1 + rp

( )( )
,

θ∗
1 C, ρ
( )

, θ∗
m C, ρ
( )( ) ≡ θ0

Cm + rp
(1 + rp)Cm

( )
, θ0

Cm + rp
1 + rp

( )( )
.

(16)
The expected waiting time under the optimal SSRD pol-

icy is

w∗ C, ρ
( ) ≡ wSSRD p∗,µ∗,θ∗,C

( )
� wB

0 ·
4 ̅̅̅rp√

(1 + ̅̅̅rp√ )2
( )

+ wI
0 < w0, (17)

where rp ≡ p∗m(C, ρ)
p∗1(C, ρ)

� 1 + Cm − ρ

1 + Cm − Cmρ
.

Remark 3 (The Optimal SSRD Structure Has Two Service
Grades). In the M/G/1 priority model described in Xu
et al. (2015), increasing the number of service grades
increases the level of differentiation; consequently, the
optimal policy is one with infinite service grades. In
contrast to Xu et al. (2015), Theorem 2 indicates that it is
sufficient to differentiate customers into two groups
because creating a third customer group does not
improve system performance. In other words, given
m ≥ 2 service levels with retrial rates of θ1 < · · · < θm,
it is optimal to assign all customers to either class 1
(with the lowest retrial rate) or class m (with the
highest retrial rate) and none to any other class k,
2 ≤ k ≤ m − 1.

We present a numerical example with m � 3 to il-
lustrate the results of Theorem 2. In Figure 4, we plot
the average waiting time as a function of the work-
loads ρ1 and ρ2 withm � 3, ρ � 0.8, C1 � 1, C2 � 2, and
C3 � 3. Figure 4 shows that, for each fixed ρ1, the
waiting time increases in ρ2, meaning that the mini-
mum delay is attained when ρ2 � 0. This observation
confirms that only two grades are needed to achieve
the minimum delay. See also Section EC.3 for addi-
tional discussions.
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Because the optimal SSRD policy has two grades,
we let C ≡ Cm � θm/θ1. From now on we restrict our
attention to two-grade SSRD. It should be noted that
the optimal SSRD parameters are independent of
the service time SCV c2v (they depend only on the
service rate). In addition, the service time distribution
beyond its first two moments (characterized by μ0
and c2v) makes no impact on the optimal expected
waiting time. We know from Corollary 1 that dif-
ferentiating the service rate while leaving the retrial
rate homogeneous results in a longer waiting time,
that is,wSSRD(p∗,µ∗, θ0,C) > w0. Next,we quantify this
increase in the waiting time.

Corollary 2 (Quantifying the Influence of Differentiating
the Retrial Rate). Under the SSRD policy with parame-
ters (p∗,µ∗,θ∗) given in Theorem 2, we have

w0 − wSSRD(p∗,µ∗,θ∗,C) � wSSRD(p∗,µ∗, θ0,C) − w0.

(18)
Corollary 2 supplements Corollary 1 to quantify the
delay-saving effect of SSRD and the delay increase
incurred when differentiating only the service rate
with the case of homogeneous service being treated as
the benchmark. Interestingly, the delay reduction un-
der the optimal SSRD policy is equal to the delay in-
creasewhen the service rate alone is differentiated (with
the retrial rate remaining homogeneous). Corollary 2
suggests that there is a first-order benefit to dif-
ferentiating the retrial rates, whereas the cost of

differentiating the service rates is of second order. Next,
we show that the delay-saving effect of SSRD in (18) can
be further improved by increasing the ODR C.

Proposition 2 (Monotonicity in C and Asymptotic Limit).
Consider the M/G/1 retrial queue under the optimal two-
grade SSRD policy defined in Theorem 2.
i. For a fixed ρ < 1, the expected waiting time in (17)

decreases in C.
ii. As C → ∞, the limiting service and retrial rates,

allocation probabilities, and mean delay are

θ∗
1(ρ), θ∗

2(ρ)
( ) � θ0(1 − ρ)

2 − ρ
,∞

( )
,

μ∗
1(ρ), μ∗

2(ρ)
( ) � μ0 1 − ρ

( ) + ̅̅̅̅̅̅̅
1 − ρ

√( )
2 − ρ

,
μ0

̅̅̅̅̅̅̅
1 − ρ

√ + 1
( )

2 − ρ

( )
,

(19)
p∗1(ρ), p∗2(ρ)
( ) � 1 − ρ

2 − ρ
,

1
2 − ρ

( )
, and

w∗(ρ) � ρ

θ0(1 − ρ) +
ρ c2v + 1
( )

2μ0
̅̅̅̅̅̅̅
1 − ρ

√ ̅̅̅̅̅̅̅
1 − ρ

√ + 1
( )2 . (20)

Remark 4 (Further Increasing the Level of Differentiation).
As previously explained (see Theorem 2 and Remark 3),
for given ratios Ci � θi/θ1 (1 ≤ i ≤ m), the two-grade
case structurally “maximizes” the level of differentia-
tion. Proposition 2 shows that, for the two-grade SSRD
policy, increasing C � θ2/θ1 further increases the level

Figure 4. (Color online) The Impact of ρi on Average Waiting Time
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of differentiation. Unlike the policy considered in Xu
et al. (2015), the SSRD policy controls operations in
theM/G/1 retrialmodel based on a relative priority rule.
In other words, although unlikely, it is possible that
customers with lower priorities may be served before
those with higher priorities. Because low-priority cus-
tomers are assigned a lower service rate (and, thus, have
a longer mean service time), their services cause longer
waiting times for other customers. To prevent this from
happening, we can further increase the differentiation
level of customers’ retrial rates such that most high-
priority customers are served before low-priority cus-
tomers. Indeed, according to (15), the probability p∗2 �
rp/(1 + rp) is increasing in C; therefore, more customers
are assigned the higher retrial rate. In the next section,
we quantify the delay reduction achieved with SSRD
(compared with the homogeneous case) in heavy traffic
(as ρ → 1).

Remark 5 (Additional Comparisons with Xu et al. (2015)).
We compare our results with those of Xu et al. (2015)
from the following perspectives.

a. Relative priority versus absolute priority. Unlike
the absolute prioritization policy (i.e., SEPT) pre-
sented in Xu et al. (2015), the SSRD policy considered
here is based on the creation of relative priorities
(with 1 � C1 < C2 < · · · < Cm) because there is no
guarantee that a class with a higher retrial rate is
always served before those with lower retrial rates.
Obtaining an absolute prioritization such as that
considered in Xu et al. (2015) would require that
Ci+1/Ci → ∞ for all 1 ≤ i ≤ m − 1. In other words,
customerswith a higher service prioritywould need to
be able to retry infinitely more frequently than those
with a lower priority.

b. Two-point versus continuous distribution. It was
shown in Xu et al. (2015) that it is beneficial to increase
the number of service grades m. In fact, a closer look
at proposition 4 in Xu et al. (2015) reveals that, as
m → ∞, it is optimal to offer every customer a con-
tinuously distributed random service rate with a finite
support; see Proposition EC.3 in the e-companion of
this manuscript for details. (In Proposition EC.3, we
show that the continuous service rate has a simple linear
probability density function.) In contrast, Theorem 2
and Proposition 2 show that, under the SSRD policy,
it is optimal to offer every customer a two-point-
distributed random service rate, with which the values
of the two points and their probabilities are given by (19)
and (20). In addition, the relative priority for class 2
customers now becomes an absolute priority because
θ∗
2(ρ) � ∞ (with the orbit queue becoming a waiting

line in this limit).
c. Monotonicity of variability. Essentially, both the

SSRD policy presented here and the differentia-
tion policy presented in Xu et al. (2015) successfully

achieve delay reduction by introducing additional
variability into the service process, which increases
the variance of the delay.We now compare our results
with those of Xu et al. (2015) by computing the var-
iance of the delay and studying its monotonicity with
respect to the number of classesm and the ODR C; see
Section EC.3 for the related numerical experiments.
First, following section 4.1 of Kella and Yechiali (1988),
we can compute the variance of the delay for the
M/G/1 model under the SEPT policy as in Xu et al.
(2015). Specifically, Figure EC.3 shows that the var-
iance of the delay increases as the number of service
grades m increases. Second, for our M/G/1 retrial
model, we investigate the impact of m and C on the
variance of the delay. Our numerical examples reveal
that this variance is increasing in C (see Figure EC.5)
and decreasing in m (see Figure EC.4). These findings
provide some insight into why, for the SSRD policy,
which achieves a low expected delay when the var-
iance is high, it ismore beneficial to increase theODRC
and not the number of grades m.

5. System Performance in Heavy Traffic
Theorem 2 suggests that (i) it is sufficient to differ-
entiate customers into two groups and (ii) for a given
ρ < 1, the overall expected waiting time is mono-
tonically decreasing in the ODR C. In this section, we
quantify the performance improvement when the
system is in heavy traffic, that is, as ρ → 1.

5.1. Reduction in Delay
We define the relative reduction in delay (RRD) with
respect to the homogeneous service case as

RD(C, ρ) ≡ w0 − w∗(C, ρ)
w0

. (21)

Wedefine h(x) � O(g(x)) if 0 < K1 < h(x)/g(x) < K2 < ∞
for all x > x0 > 0. The following proposition gives the
maximum value of the RRD as well as the asymptotic
order of the waiting times in heavy traffic.

Proposition 3 (Maximum RRD in Heavy Traffic). Consider
the M/G/1 retrial model.
a. The expected waiting time under the optimal SSRD

policy can be expressed as

w∗(C, ρ) � wI
0 + wB

0

̅̅̅̅̅̅̅
1 − ρ

√ · 1̅̅̅̅̅̅̅
1 − ρ

√ + 1
( )2 +O 1/C( )

( )
,

where wB
0 and wI

0 are given in (6).

b. The RRDRD(C, ρ) in (21) is increasing in both ρ and
C. In addition,

lim
ρ→1,C→∞RD(C, ρ) � c2v + 1

c2v + 1 + 2μ0/θ0
.
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Proposition 3 shows that SSRD can significantly re-
duce the waiting time. As the traffic intensity ρ
increases, both w∗(ρ,C) and w0 increase. However,
SSRD becomes more advantageous (achieving a larger
RRD) when ρ and C are large. In particular, the first
term of w∗(C, ρ) is equal to wI

0 (the first term of w0).
However, the second term of w∗(C, ρ) is O(1/ ̅̅̅̅̅̅̅

1 − ρ
√ )

and, thus, grows more slowly than wB
0 � O(1/(1 − ρ))

(the second term of w0) does. In addition, the error
term (which isO(1/C)) vanishes rapidly, meaning that
SSRD quickly starts to outperform the homogeneous
case as C increases. For a fixed service time distri-
bution and c2v, when the system is in heavy traffic, the
RRD RD depends only on μ0/θ0; RRD increases when
μ0/θ0 is small (i.e., θ0 is large). In the extreme case of
μ0/θ0 ≈ 0 (i.e., θ0 is large), RD ≈ 100%. In addition,
the heavy-traffic RRD increases as the service time
SCV c2v increases. We present numerical examples in
Section 6 to demonstrate the behavior of RRD.

Remark 6 (The Optimal Two-Class Case in Xu et al.
(2015)). The level of prioritization is measured by C.
Indeed, class-2 customers receive an absolute priority
as C → ∞ (equivalent to forming a waiting line in front
of the server). In this case, the delays are

w1 � c2v + 1
( )(2 − ρ)ρ

(1 − ρ)3/2 ̅̅̅̅̅̅̅
1 − ρ

√ + 1
( )2

μ0

+ (2 − ρ)ρ
(1 − ρ)2θ0

� wB
1 + wI

1

and w2 � c2v + 1
( )(2 − ρ)ρ̅̅̅̅̅̅̅

1 − ρ
√ ̅̅̅̅̅̅̅

1 − ρ
√ + 1
( )2

μ0

� wB
2 .

Now, class-1 customers are the only orbiting cus-
tomers with an orbit delay of wI

1. Next, as θ0 → ∞, we
find that wI

1 → 0 (such that no one is orbiting any
longer) and w2/w1 → 1 − ρ. This behavior is consis-
tent with the results of the optimal two-class policy
reported in Xu et al. (2015).

5.2. Reduction in the Number of Trials
In a retrial queueing system, the number of trials a
customer undergoes before service begins is another
important metric of system congestion (Artalejo and
Lopez-Herrero 2007). For the M/G/1 retrial queue
with homogeneous service, the expected number of
trials can be derived by applying Little’s law and
Wald’s identity (Artalejo and Gómez-Corral 2008). In
particular,

r0 � w0θ0 � ρ

1 − ρ

1
2μ0/ θ0 c2v + 1

( )( ) + 1

( )
. (22)

The general understanding of retrial models implies
that the delay and number of trials are somewhat
“negatively correlated.” For example, when ρ is fixed,
if the retrial rate θ0 increases, the expected waiting

time w0 decreases (see (6)), and the expected number
of trials before entering service r0 increases (see (22)).
However,we claim that SSRD cannot only shorten the
average delay but also reduce the expected number of
trials.
The mean number of trials under the optimal SSRD

policy is

r∗(C, ρ) ≡ rSSRD(p∗,µ∗,θ∗,C) � w∗
1θ

∗
1p

∗
1 + w∗

2θ
∗
2p

∗
2

� ρ2θ0 c2v + 1
( )

(1 − ρ)λ0

̅̅̅rp√ C + rp
( )(C + 1)

C 1 + rp
( )(1 + ̅̅̅rp√ )2

( )
+ ρ

1 − ρ
.

(23)
Analogously to (21), we define the relative reduction in
the number of trials (RRT) as

RT(C, ρ) ≡ r0 − r∗(C, ρ)
r0

. (24)

Proposition 4 (Maximum RRT in Heavy Traffic). Consider
the M/G/1 retrial model.
a. The RRT RT(C, ρ) in (24) is increasing in ρ ∈ (0, 1),

and it is strictly positive when ρ > ρC, where 0 < ρC < 1 is
the unique solution to the following equation:

C 1 + rp
( )2� 2

̅̅̅
rp

√
rp + C2( )

,

where rp � (1 + C − ρ)/(1 + C − Cρ).
b. In addition, if the limit C2/3 · (1 − ρ) → ϑ ∈ [0,∞]

exists as ρ → 1 and C → ∞, then we have

lim
ρ→1,C→∞RT(C, ρ) � 1 − 2

̅
ϑ̅

√
1 + 2μ0/ θ0 c2v + 1

( )[ ] .
Unlike the RRD in (21), which is monotonic in both
C and ρ, the RRT in (24) is not monotonic in C;
therefore, its limit (if it exists) depends on the manner
in which ρ and C converge to one and∞, respectively.
In particular, if (1 − ρ) → 0 faster than C2/3 → ∞ (e.g.,
C2/3 · (1 − ρ) → ϑ < 1/4), then RT(C, ρ) is asymptoti-
cally positive. In fact, RRT is asymptotically maximal
at ϑ � 0. Otherwise, RT(C, ρ) can be asymptotically
negative; that is, SSRD may result in a larger number
of trials than that in the homogeneous service case.

5.3. Reduction in Slowdown
Compared with the sojourn time (the sum of the
waiting time and service time), the slowdown is often
considered a more practical metric for the congestion
level because it measures the relative sojourn time
normalized with respect to the service time. Specifi-
cally, the slowdown is defined as the ratio of the
sojourn time to the service time; see Hyytiä et al.
(2012) and Harchol-Balter (2013) for discussions of
the slowdown.
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Under the assumption that E[S−10 ] < ∞, the slow-
down in the homogeneous service case is

γ0 � E
W0 + S0

S0

[ ]
� 1 + w0E S−10

[ ]
� 1 + ρ

1 − ρ

c2v + 1
2μ0

+ 1
θ0

( )
E S−10
[ ]

, (25)

where the second equality holds because the delay is
independent of the service time; see also equation 1 in
Hyytiä et al. (2012). For two-grade SSRD, the slow-
down is

γSSRD � E
W1 + S1

S1

[ ]
p1 + E

W2 + S2
S2

[ ]
p2

� 1 + w1p1
μ1

μ0
+ w2p2

μ2

μ0

( )
E[S−10 ]. (26)

It is easy to verify that, under the optimal SSRD policy
given in Theorem 2,

γ∗(C, ρ) ≡ γSSRD(p∗,µ∗,θ∗,C) � 1

+
(
C+ rp

̅̅̅rp√ )(
1+ ̅̅̅rp√ )

ρ

1 + rp
( )

1− ρ
( )

θ0 C+ rp
( )+ c2v + 1

( )
ρ

̅̅̅rp√
1 − ρ
( )

μ0 1 + rp
( )⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
· E S−10

[ ]
.

We define the relative reduction in slowdown (RRS) as
follows:

RS(C, ρ) � γ0 − γ∗(C, ρ)
γ0

.

The following proposition gives the asymptotic upper
bound on the RRS in heavy traffic.

Proposition 5 (Maximum RRS Under Heavy Traffic).
Consider the M/G/1 retrial model. If the limit (1 − ρ)C →
ξ ∈ [0,∞] exists asρ → 1 andC → ∞, thentheRRSsatisfies

lim
ρ→1,C→∞RS(C, ρ) �

c2v + 1 + 2μ0

θ0
· ξ + 1
ξ + 2

c2v + 1 + 2μ0

θ0

.

If ξ � ∞ (i.e.,C → ∞ faster than ρ → 1), thenRS → 1 �
100%; if ξ � 0 (i.e., ρ → 1 faster than C → ∞), then
RS → c2v + 1 + μ0/θ0/c2v + 1 + 2μ0/θ0 ≡ R↓

S < 1. In addi-
tion, one can easily verify that, if the limit of (1 − ρ)C
does not exist, then 100% � lim supρ→1,C→∞ RS >

lim infρ→1,C→∞ RS � R↓
S. In other words, RS is asymp-

totically guaranteed to be at least R↓
S � c2v + 1 +μ0/θ0/

c2v + 1 + 2μ0/θ0.

A closer look at the results in Propositions 3–5 re-
veals that all three performance measures can be
maximized simultaneously if C is on the order of
1/(1 − ρ)α for some appropriate α.

Corollary 3. The RRD, RRT, and RRS can all be maximized
as C → ∞ and ρ → 1 if C � O(1/(1 − ρ)α) for α ∈ (1, 3/2).

6. Numerical Analysis
In this section, we provide numerical examples to
evaluate the effectiveness of SSRD. We compare the
performanceof SSRDwith that of homogeneous service.
We conduct a sensitivity analysis of the optimal system
performance with respect to various model parameters.

6.1. Expected Delay
We study the RRD RD of the optimal SSRD policy (as
defined in Theorem 2) with respect to the case of
homogeneous service. In particular, we consider an
M/M/1basemodelwith arrival rateλ0, service rateμ0,
and retrial rate θ0, that is, c2v � 1. In Figure 5, we first
plot the RRD as a function of the ORD C, 1 ≤ C ≤ 100.
For ρ � 0.9, we consider six cases: θ0 � 1, 2, and 10
with μ0 � 1 (panel (a)) andμ0 � 1, 2, and 10 with θ0 � 1
(panel (b)). Consistent with the results in Proposi
tions 2 and 3, we observe that the RRD is mono-
tonically increasing in C and decreasing in μ0/θ0.
Indeed, the SSRD policy achieves a significant RRD.
Next, we compute and report the asymptotic RRD

(as C → ∞) as a function of the traffic intensity ρ for
0 < ρ < 1. In the bottom panels of Figure 5, we con-
siderμ0 � 1withθ0 � 1, 2, and 10 (panel (c)) andθ0 � 1
with μ0 � 1, 2, and 10 (panel (d)). Figure 5 shows that
the RRD is increasing in ρ and approaches its upper
bound as ρ → 1. In particular, when μ0 � 1 and ρ → 1,
the RRD approaches 50%, 67%, and 91% for θ0 � 1, 2,
and 10, respectively. In contrast, when θ0 � 1, RRD
approaches 50%, 30%, and 9% for μ0 � 1, 2, and 10,
respectively. These findings are consistent with the
results in Proposition 3, namely that the asymp-
totic upper bound on the RRD is θ0/(θ0 + μ0) when
ρ → 1 and c2v � 1. In heavy traffic, the RRD is de-
creasing in the service rate μ0 and increasing in the
retrial rate θ0. If, in addition, θ0 → ∞, the RRD ap-
proaches 100%.

6.2. Expected Slowdown
We now consider the case of a lognormal service
distribution S0 � eμ̂+σ̂Z, where Z is a standard normal
distribution. By varying the parameters μ̂ and σ̂while
keeping the mean service time E[S0] � 1/μ0 � 1 fixed,
we plot the slowdown in Figure 6 as a function of ρ.
We consider three cases of the service time SCV:
(i) c2v � 0.5 (E[S−10 ] � 1.5), (ii) c2v � 1 (E[S−10 ] � 2), and
(iii) c2v � 2 (E[S−10 ] � 3) with μ0 � 1 and θ0 � 10. Fig-
ure 6 shows that the SSRDpolicy significantly reduces
the slowdown. In addition, the RRS is increasing in
both E[S−10 ] and ρ. The upper bound of one is attained
when ρ → 1.

6.3. Expected Number of Trials
We next investigate the RRT performance under the
optimal SSRDpolicy (Theorem 2) and compare it with
the case of homogeneous service. In Figure 7, we first
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plot the RRT as a function of the ORD C, 1 ≤ C ≤ 100.
For ρ � 0.975, we consider six cases: θ0 � 1, 2, and 10
withμ0 � 1 (panel (a)) andμ0 � 1, 2, and 10with θ0 � 1
(panel (b)) as before. Figure 7 shows that the RRT is
not monotonic in C. For a given traffic intensity (e.g.,
ρ � 0.975), the RRT first increases and later decreases,
eventually becoming negative as C increases. Specifi-
cally, when 1 ≤ C ≤ 80, the SSRD policy results in fewer
trials. Consistent with the results in Proposition 4, for
any C > 1, there exists a unique ρ′ such that RT < 0
when ρ ∈ [0, ρ′) andRT > 0when ρ ∈ [ρ′, 1); see panels
(c) and (d) of Figure 7.

In Figure 8, we compare the mean number of trials
in the case of homogeneous service (the straight line)
with that in the case of SSRD with ρ � 0.95, 0.96, 0.97,
and 0.98; μ0 � θ0 � 1; and 1 ≤ C ≤ 150. Figure 8 shows
that, as ρ increases toward one, SSRD outperforms
homogeneous service (i.e., r∗(C, ρ) < r0) over a wider
range ofC. In particular, when ρ � 0.98, SSRD achieves
a smaller number of trials than the homogeneous
service policy does when C ∈ (1, 100). Consistent with
Proposition 4, Figure 8 confirms that SSRD is effective
in reducing both the delay and the number of trials
when the system is under heavy traffic.

7. Extensions
We have shown that strategically differentiating the
service and retrial rates can help reduce the overall

customer delay. However, it is apparent that the
SSRD policy achieves delay reduction at the expense
of sacrificing fairness of the service among all cus-
tomers; specifically, it significantly increases the wait-
ing time and number of trials for certain customer
classes. In this section, we discuss the limitations of
SSRD and ways to address them.

7.1. Balancing the Delay and the Number of Trials
In Figure 8, we observe that SSRD can significantly
increase the number of trials before a customer finally

Figure 5. (Color online) RRD RD as a Function of C and ρ

Figure 6. (Color online) Reduction of Slowdown as a
Function of ρ
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enters service when the system is not nearly critically
loaded (i.e., when ρ is not close to one). Specifically,
when C � 100, SSRD increases the average number of
trials from 38 to 59 for ρ � 0.95 and from 48 to 65 for
ρ � 0.96. Therefore, in practice, it may not always be
optimal to choose a large C, especially from the
viewpoint of minimizing the total number of trials.
Motivated by Figure 8, we further explore the impact
of SSRD on the number of trials by considering an
alternative problem in which the objective is to min-
imize a weighted sum of the delay and the number of
trials. To facilitate the analysis, we restrict our atten-
tion to the two-grade SSRD case. In particular, we
consider the following problem:

min
µ,p

p1w1 + p2w2 + (p1w1θ1 + p2w2θ2)β

s.t.
p1
μ1

+ p2
μ2

� 1
μ0

,
p1
θ1

+ p2
θ2

� 1
θ0

, p1 + p2 � 1,

θ2

θ1
� C, (27)

where the second term in the objective function is
the average number of trials for all customers and the
coefficient β > 0 is the normalized weight (cost) of the

number of customer trials. When β � 0, this prob-
lem degenerates to our delay-based model. Plugging
(7) and (8) into (27) yields the following equivalent
problem:

min
ρ

ρ1
̅̅̅̅̅̅̅̅̅̅̅̅̅
1 − ρ + C

√ ̅̅̅̅̅̅̅̅̅̅
θ1β + 1

√̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅
1 − ρ1 + (1 − ρ2)C

√
+ ρ2

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅
1 + (1 − ρ)C√ ̅̅̅̅̅̅̅̅̅̅

θ2β + 1
√̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅

1 − ρ1 + (1 − ρ2)C
√

s.t.
ρ1

̅̅̅̅̅̅̅
1− ρ

√ ̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅
1− ρ1 + (1− ρ2)C

√
θ1

̅̅̅̅̅̅̅̅̅̅
θ1β+ 1

√ ̅̅̅̅̅̅̅̅̅̅̅̅
1− ρ+C

√
+ ρ2

̅̅̅̅̅̅̅
1− ρ

√ ̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅
1− ρ1 + (1− ρ2)C

√
Cθ1

̅̅̅̅̅̅̅̅̅̅̅̅
Cθ1β+ 1

√ ̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅
1+ (1− ρ)C√

� ρ1
̅̅̅̅̅̅̅
1− ρ

√ ̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅
1− ρ1 + (1− ρ2)C

√̅̅̅̅̅̅̅̅̅̅
θ1β+ 1

√ ̅̅̅̅̅̅̅̅̅̅̅̅
1− ρ+C

√(

+ρ2
̅̅̅̅̅̅̅
1− ρ

√ ̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅
1− ρ1 + (1− ρ2)C

√̅̅̅̅̅̅̅̅̅̅̅̅
Cθ1β+ 1

√ ̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅
1+ (1− ρ)C√ )

1
θ0

, ρ1 + ρ2 � ρ.

(28)
The transformed problem (28) is a one-dimensional
optimization problem. For a given C ≥ 1, the optimal
ρ∗
1 and ρ∗

2 can be numerically computed using a simple
recursive algorithm (e.g., Newton’s method).

Figure 7. (Color online) RRT RT as a Function of C and ρ
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We present numerical results to illustrate the struc-
ture of the optimal policy. In Figure 9, we plot the
optimal objective values for an M/M/1 retrial model
as a function of the differentiation level C ≥ 1
with λ0 � 0.8, θ0 � μ0 � 1, and 0.05 ≤ β ≤ 1.5. For
each given β, the optimal cost is unimodal in C. The
optimal differentiation levels are C∗ = 29.2, 19.4, 6.2,
and 1 when β � 0.05, 0.1, 0.6, and 1.5, respectively. In
addition, the optimal cost becomes a constant if
C ≥ C↑, where C↑ > 0 is some differentiation thresh-
old (e.g., C↑ � 19.4 when β � 0.6), indicating that
SSRD is no longer beneficial to the system (be-
cause the optimal workload allocated to class 2 is
ρ∗
2 � 0 when C > C↑, meaning that the SSRD policy

degenerates to the homogeneous case). Indeed, when
β � 1.5 (Figure 9(d)), homogeneous service becomes
the optimal policy. Figure 9 shows that service dif-
ferentiation can help reduce the cost when β is small
(i.e., when the number of trials makes an insignificant

contribution to the objective function). However, for a
large β, the rapid growth in the number of trials be-
comes too costly, outweighing the benefits of SSRD.

7.2. Convex Delay Cost
SSRD successfully reduces the overall customer delay
at the cost of sacrificing service fairness across customer
classes: while reducing the delay for high-priority clas-
ses, SSRD significantly increases the delay for other (low
priority) classes. To account for fairness of service, we
next extend our analysis to the case of a convex delay
cost. Because a convex delay cost function more harshly
penalizes longer delays, it helps reduce the variabil-
ity of customer delay, thus maintaining a certain level
of service fairness. See Guo and Zipkin (2007) and
Mandelbaum and Stolyar (2004) for models with con-
vex delay cost functions.
We consider a convex function f (·) that is non-

decreasing and differentiable. When the changes of

Figure 8. (Color online) Mean Number of Trials as a Function of C When θ0 � μ0 � 5
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variables p1 � x and ρ1 � y are applied to (7) and (8),
the mean waiting times for the two classes become

w1(x, y) � 1 − ρ + C
λ0(1 − ρ)(1 − y + (1 − ρ + y)C)
· y2

x
+ (ρ − y)2

1 − x

( )
+ Cρ
θ0(x(C − 1) + 1)(1 − ρ) ,

(29)
w2(x, y) � (1 − ρ)C + 1

λ0(1 − ρ)(1 − y + (1 − ρ + y)C)
· y2

x
+ (ρ − y)2

1 − x

( )
+ ρ

θ0(x(C − 1) + 1)(1 − ρ) ,
(30)

for a given C ≥ 1.We now aim tominimize the overall
delay cost

F(x, y, c) � p1f (w1(x, y)) + p2f (w2(x, y)). (31)
Under SSRD, the optimal x∗ and y∗ thatminimize F(x, y)
in (31) (if they exist) should necessarily satisfy the
conditions

∂F(x, y,C)
∂x

� ∂f (w1(x, y))
∂x

x + ∂f (w2(x, y))
∂x

(1 − x)
+ f (w1(x, y)) − f (w2(x, y)) � 0, (32)

∂F(x, y,C)
∂y

� ∂f (w1(x, y))
∂y

x + ∂f (w2(x, y))
∂y

(1 − x) � 0,

(33)
where 0 ≤ x∗ ≤ 1 and 0 ≤ y∗ ≤ ρ. If such an x∗ and y∗ do
not exist, the optimal performance is attained in the
homogeneous case. For a given C, we define xC and yC
as the minimizers of the delay cost.

Proposition 6 (Optimal C∗ for a Convex Delay Cost). For
an M/M/1 retrial queue under m-grade SSRD, a finite C∗
that minimizes the delay cost in (31) can be found if there
exists a C such that xC > (1 − ρ)/(1 + ρ) for C > C.

Proposition 6 is intuitive: it is no longer optimal to
increase C to ∞ (as in Proposition 2) because the in-
creased convex delay cost for those “sacrificed”
customers quickly outweighs the benefits of SSRD.
We test this result by considering an example with a
convex delay cost function f (x) � xα, where the pa-
rameter α > 1 quantifies the level of convexity (i.e., f
is more convex when α is larger). Similar to Figure 9,
Figure 10 shows the optimal delay cost as a func-
tion of C for α � 1.03, 1.09, 1.14, and 1.30. According
to Figure 10, the optimal C∗ decreases when f is
more convex (α increases). Indeed, when α is suffi-
ciently large (e.g., α � 1.30 in panel (d)), homogeneous

Figure 9. (Color online) The Optimal Costs of an M/M/1 Retrial Model: λ0 � 0.8; θ0 � μ0 � 1; and β � 0.05, 0.1, 0.6, 1.5
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service becomes the optimal policy, that is, SSRD is no
longer beneficial.

7.3. Finite Waiting Buffer
We now extend our analysis to a more realistic
M/M/1/K retrial queue with a finite waiting buffer.
Specifically, if an arriving customer finds a full waiting
line (seeing K customers in the system), then the
customer enters the orbit queue; otherwise, the cus-
tomer enters thewaiting line and be served later under
the first-come first-served rule. See Figure 11 for an
illustration. Retrial queueswith a finitewaiting buffer
are quite complex and not well studied. In this sec-
tion, we evaluate the performance of the two-grade
SSRD policy in a retrial queue with a finite buffer:
We first analyze the base model with homogeneous
service. The performance in the homogeneous case is
our benchmark. Next, we study the M/M/1/K retrial
queue under SSRD.

We consider a two-dimensional Markov process
{(L(t),N(t)); t ≥ 0}, where L(t) andN(t) are the numbers
of customers in the main queue (in service and in
queue) and in the orbit queue, respectively. Let p(i,j)
denote the steady-state probability P(L(∞) � i,N(∞) � j).
Next, we give formulas for the queue length and delay.

Proposition 7. Consider an M/M/1/K retrial model with
homogeneous service. The mean number of customers in the
orbit queue is

Norbit � μ0(Π1 − ρ0(1 − ρ0))
θ0(1 − ρ0) +∑K

i�1

(iρ0 − (i − 1))Πi

1 − ρ0
,

where Πi is the steady-state probability that there are i
customers in the waiting line. The mean customer delay is

w0 � Norbit +∑K
i�1(i/μ)

λ0
− 1
μ0

.

An interesting observation is that Norbit is determined
only by the steady-state probabilities Π0,Π1, . . . ,ΠK

(independent of the orbit information). When K � 1,
Norbit � (1/θ0 + 1/μ0)λ2

0/(μ0 − λ0),which coincideswith
the performance of our base retrial model with no wait-
ing line. When K ≥ 2, the probabilities Π∗

i � ∑M
k�0 p(i,k)

can be numerically computed by imposing a (large)
finite orbit capacity M. A numerical example with
various values of Norbit and w0 is given in Table 1.

We next study the M/M/1/K retrial model under
the SSRD policy. The main difficulty here is the
rapid increase in the number of states: when the buffer
size is K, the number of states becomes 2K (because we
need to keep track of the number of customers in
the queue and their types). We present the detailed

Figure 10. (Color online) The Optimal Convex Delay Cost for an M/M/1 Retrial Queue with λ0 � 0.8; θ0 � μ0 � 1; and α �
1.03, 1.09, 1.14, 1.30

Figure 11. (Color online) The M/M/1/K Retrial Model
with SSRD
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transition rate matrix in the appendix; see the proof of
Proposition 8 in Secion EC.1 for more details.

Proposition 8. For an M/M/1/K retrial model, the steady-
state probability that the server is serving a customer of type i
is ρi � λi/μi for i � 1, 2, and ρ0 � ρ1 + ρ2.

Proposition 8 shows that the class-dependent work-
load is consistent with the case ofK � 1; in other words,
ρi is independent of the capacityK and the retrial rate.
The total number of customers in the orbit queue
is NSSRD � N1 +N2, so the overall waiting time in
the orbit queue is wSSRD � p1[(N1 + L1)/λ1 − 1/μ1] +
p2[(N2 + L2)/λ2 − 1/μ2] � (NSSRD + LSSRD)/λ0 − 1/μ0,
where LSSRD � E[L(t)]. The expected number of trials
is RSSRD � p1N1θ1/λ1 + p2N2θ2/λ2 � (N1θ1 +N2θ2)/λ0.
Here, the number of states is (2K + 1) · (M + 1)2. Sim-
ilar to the homogeneous case, we can derive the
steady-state distribution under SSRD by truncating
the states at some large M. We present an algorithm
for computing the mean number of customers in the
orbit queue (see Algorithm 1 in Section EC.1).

Remark 7 (Effectiveness of SSRD with a Finite Waiting
Buffer). Table 2 compares the impact of C on the system
performance when K � 1, 2, 3 and ρ � 0.95. Here, the
case of C � 1 represents the case of homogeneous
service. We also show the relative reductions (ab-
breviated as “rel. red.”) in all three performance

metrics with respect to the homogeneous service
case (C � 1). Table 2 shows that SSRD successfully
reduces NSSRD and wSSRD and that a larger re-
duction is achieved as C increases. However, the
number of trials RSSRD is not necessarily mono-
tonically decreasing in C: when C < 6, RSSRD is
decreasing in C while RSSRD increases with C when
C > 6. This observation is consistent with the case of
K � 1 (no waiting line), see Figure 8. Table 2 shows that
SSRD continues to be effective in reducing the overall
customer delay for the M/M/1/K retrial model with a
finite waiting line. When C � 12, the RRD improves
from 10.87% to 15.50% as K increases from one to
three. In other words, in terms of the RRD, SSRD
seems to be more beneficial as K increases. In the
future, we plan to carefully study the benefit of SSRD
in finite-buffer queueing models.

8. Conclusions
For a retrial queueing model, we show that the aver-
age waiting time can be significantly reduced by
manually creating multiple service grades while
leaving the total service capacity unchanged. Unlike
dynamic service differentiation rules, our policy is
static (independent of the current state of the system),
so it is convenient to implement in practice. We show
that the benefits of our policy can be attributed to
the combined effects of service rate differentiation and
orbit (retrial) rate differentiation, not to either one
alone. In contrast to the results of Xu et al. (2015),
which suggest that the performance can be improved
by creating more grades, we show that it is suffi-
cient to differentiate customers into two groups. We
present numerical experiments conducted to evalu-
ate the effectiveness of SSRD.

Table 1. The Mean Number of Customers in Orbit Norbit

with Truncated M � 200 when λ0 � 0.95, θ0 � μ0 � 1

K 1 2 3 4 5 6

Norbit 36.10 18.49 16.60 15.63 14.82 14.07
w0 37.99 20.34 19.23 19.06 19.02 19.01
R0 37.99 19.46 17.47 16.45 15.59 14.81

Table 2. The System Performance in OrbitNorbit with TruncationM � 120When λ0 � 0.95,
θ0 � μ0 � 1

C 1 2 4 6 8 10 12

K � 1 NSSRD 36.01 35.59 34.48 33.64 33.02 32.54 32.16
rel. red. 1.16% 4.25% 6.58% 8.30% 9.64% 10.69%

wSSRD 37.99 37.46 36.29 35.41 34.75 34.25 33.86
rel. red. 1.40% 4.48% 6.79% 8.53% 9.85% 10.87%

RSSRD 37.99 37.68 37.22 37.04 37.06 37.20 37.43
rel. red. 0.82% 2.03% 2.52% 2.45% 2.08% 1.47%

K � 2 NSSRD 18.49 18.17 17.33 16.72 16.29 15.98 15.75
rel. red. 1.73% 6.27% 9.57% 11.90% 13.57% 14.82%

wSSRD 20.34 20.01 19.13 18.49 18.04 17.71 17.47
rel. red. 1.62% 5.95% 9.10% 11.30% 12.93% 14.11%

RSSRD 19.46 19.33 19.10 19.12 19.30 19.57 19.91
rel. red. 0.67% 1.85% 1.75% 0.82% −0.57% −2.31%

K � 3 NSSRD 16.60 16.10 15.32 14.69 14.28 13.99 13.76
rel. red. 3.01% 7.71% 11.51% 13.98% 15.72% 17.11%

wSSRD 19.23 18.70 17.88 17.22 16.79 16.49 16.25
rel. red. 2.76% 7.02% 10.05% 12.69% 14.25% 15.50%

RSSRD 17.47 17.14 16.95 16.92 17.10 17.39 17.72
rel. red. 1.89% 2.98% 3.15% 2.12% 0.46% −1.43%
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8.1. Future Directions
We have shown that the dominance condition (10) is
independent of the structure of the service time dis-
tribution and depends only on the mean service time.
Hence, we conjecture that condition (10) continues to
hold for nonexponential orbit times. Another future
direction of study is to investigate the benefits of
service differentiation in multiserver queues, which
have been proven to be more practical for modeling
realistic service systems. See Section EC.4 for the
preliminary numerical results of these extensions. The
simulations presented there show that SSRD continues
to help improve the system performance; see Table
EC.2 for the results for an M/H2/1 model with two-
phase hyperexponential (H2) service times (a mixture of
two exponential distributions) and H2 orbit times,
and see Table EC.3 for the results for a two-server
M/M/2 retrial queueing system.

8.2. Models with Relative Priorities
The idea of SSRD may also be applied to improve
performance in other types of queueing models. One
example is a queueing model with relative priority
(Haviv and Van Der Wal 1997). Once service for a
customer has been completed, the next customer to
enter service is selected from among all waiting
customers with probabilities that are proportional
to their relative priority parameters. Suppose that
there arem customer grades and that the customers of
grade i arrive following an independent Poisson ar-
rival process of rate λi, 1 ≤ i ≤ m. Let their relative
priority parameters be θi, 1 ≤ i ≤ m. If there are nj
customers of grade j upon a service completion, then
the probability that a customer of grade i is the next to
enter service is

niθi∑m
j�1 njθj

, 1 ≤ j ≤ m. (34)

We remark that, in a relative priority queue, the next
customer can be selected for service immediately
upon a service completion although, in a retrial
model, a waiting customer may have to wait until the
customer’s orbit clock expires even if the server is idle.
In particular, when the retrial rate θ0 → ∞, the per-
formance of a retrial queue approaches that of a
relative priority model. Then, the expected waiting
time for a customer of grade i becomes

wrp
i � λ0β2

2
xi, (35)

where λ0 � ∑m
i�1 λi, β2, and xi have been defined in

Section 3. See Haviv and Van Der Wal (2007) for a
more detailed discussion of models with relative
priority.
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Artalejo JR, Gómez-Corral A (2008) Retrial Queueing Systems:
A Computational Approach (Springer, Berlin).

Artalejo JR, Lopez-Herrero MJ (2007) On the distribution of the
number of retrials. Appl. Math. Model. 31(3):478–489.

Artalejo JR, Krishnamoorthy A, Lopez-Herrero MJ (2006) Numerical
analysis of (s, s) inventory systems with repeated attempts. Ann.
Oper. Res. 141(1):67–83.

Ata B, Shneorson S (2006) Dynamic control of an M/M/1 service
systemwith adjustable arrival and service rates.Management Sci.
52(11):1778–1791.

Avrachenkov K, Morozov E, Nekrasova R (2015). Optimal and
equilibrium retrial rates in single-server multi-orbit retrial sys-
tems. Jonsson M, Vinel A, Bellalta B, Tirkkonen O, eds. Multiple
Access Communications, MACOM 2015, Lecture Notes in Com-
puter Science, vol. 9305 (Springer, Cham, Switzerland), 135–146.

Choi BD, Shin YW, Ahn WC (1992) Retrial queues with collision
arising from unslotted CSMA/CD protocol. Queueing Systems
11(4):335–356.

Debo LG, Toktay LB, VanWassenhove LN (2008) Queuing for expert
services. Management Sci. 54(8):1497–1512.

Ding S, Remerova M, van der Mei RD, Zwart B (2015) Fluid ap-
proximation of a call center model with redials and reconnects.
Performance Evaluation 92(2):24–39.

Elcan A (1994) Optimal customer return rate for an M/M/1 queueing
system with retrials. Probab. Engrg. Inform. Sci. 8(4):521–539.

Elcan A (1999) Asymptotic bounds for an optimal state-dependent
retrial rate of the M/M/1 queue with returning customers. Math.
Comput. Model. 30(3):129–140.

Falin G, Templeton J (1997)Retrial Queues (CRCPress, BocaRaton, FL).
Fayolle G, Gelenbe E, Labetoulle J (1977) Stability and optimal

control of the packet switching broadcast channel. J. ACM
24(3):375–386.

George JM, Harrison JM (2001) Dynamic control of a queue with
adjustable service rate. Oper. Res. 49(5):720–731.

Gharbi N, Dutheillet C, Ioualalen M (2009) Colored stochastic petri
nets for modelling and analysis of multiclass retrial systems.
Math. Comput. Model. 49(7–8):1436–1448.

Guo P, Zipkin P (2007)Analysis and comparison of queueswith different
levels of delay information. Management Sci. 53(6):962–970.

Harchol-Balter M (2013) Performance Modeling and Design of Computer
Systems: Queueing Theory in Action (Cambridge University Press,
New York).

Wang, Wang, and Liu: Differentiating Service in Retrial Queues
Operations Research, Articles in Advance, pp. 1–20, © 2020 INFORMS 19



Hassin R, Haviv M (1996) On optimal and equilibrium retrial rates in
a queueing system. Probab. Engrg. Inform. Sci. 10(2):223–228.

Haviv M, Van Der Wal J (1997) Equilibrium strategies for processor
sharing and random queues with relative priorities. Probab.
Engrg. Inform. Sci. 11(4):403–412.

Haviv M, Van Der Wal J (2007) Waiting times in queues with relative
priorities. Oper. Res. Lett. 35(5):591–594.

Hopp WJ, Iravani S, Yuen GY (2007) Operations systems with dis-
cretionary task completion. Management Sci. 53(1):61–77.
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