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Abstract
A functional law of the iterated logarithm (LIL) and its corresponding LIL are established
for a multiclass single-server queue with first come first served (FCFS) service discipline.
The functional LIL and its LIL quantify the magnitude of asymptotic stochastic fluctuations
of the stochastic processes compensated by their deterministic fluid limits. The functional
LIL and LIL are established in three cases: underloaded, critically loaded and overloaded,
for performance measures including the total workload, idle time, queue length, workload,
busy time, departure and sojourn time processes. The proofs of the functional LIL and LIL
are based on a strong approximation approach, which approximates discrete performance
processes with reflected Brownian motions. Numerical examples are considered to provide
insights on these limit results.

Keywords Functional law of the iterated logarithm · Law of the iterated logarithm ·
Multi-class queue · First come first served service discipline · Strong approximation

Mathematics Subject Classification 60K25 · 60F17 · 60B10 · 90B22

1 Introduction

In this paper,we develop a functional lawof the iterated logarithm (LIL) and its corresponding
LIL for a multi-class batch-arrival (GI B/GI )K /1/FCFS queue, which has one server, K
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customer classes and first come first served (FCFS) service discipline, a renewal batch-arrival
process (the first GI ) and independent and identically distributed service times (the second
GI ).

In the literature of queueing theory, the multi-class batch-arrival queueing system under
FCFS service discipline largely captured researchers’ attention in recent 30 years because
these queueing models are closely related to many actual applications in life, including data
packetization in communication system, central processing unit (CPU) scheduling in com-
puter system and packet-switched communication networks, see Kulkarni and Glazebrook
(2002) andWhitt (1983a). Many stochastic approximation theories have been established for
this type of queueing networks with arrival in batches and FCFS service discipline, includ-
ing stationary probability distribution for single-server queue (Van Ommeren 1990) and
infinite-server queue (Falin 1994; Whitt 1983b), and for multi-class discrete-time queueing
system (Clercq et al. 2013), fluid approximation for multiclass queueing networks (Chen and
Zhang 1997) and many-server queue (Whitt and Talreja 2008), diffusion approximation for
multiclass queueing networks (Chen and Zhang 2000; Pang andWhitt 2012), strong approx-
imation for feedforward queueing network (Chen and Shen 2000; Chen and Yao 2001),
stationary optimal policies under a linear cost structure (Lee and Srinivasan 1989), and the
auto-covariance analysis (Liu and Templeton 1993), etc. We mainly develop our results of
functional LIL and its LIL with the help of strong approximations, so the most associated
previous work to the current paper is Chen and Shen (2000), which obtained the strong
approximation for multi-class (GI/GI )K /1/FCFS model, and induce us to find the strong
approximation for multi-class (GI B/GI )K /1/FCFS queueing system.

The LIL and functional LIL are belong to the field of stochastic process limit, which is
the most commonly used method for the performance analysis of non-Markov queue. The
(GI B/GI )K /1/FCFS queueing model considered here is a standard non-Markov queue.
Hence, our work is related to the stochastic process limit. The first scientists to work in
this direction include Kingman (1962), Prohorov (1963), Borovkov (1976, 1984), etc. These
older generation of scientists provided the basic theoretical framework of performance anal-
ysis for the non-Markov queue by the stochastic process limits, which pointed out a scientific
direction of queues for us until today. Base on these fundamental research frameworks and
outcomes, later scientists did lots of excellent works in this topic. Iglehart and Whitt (1970a)
studied the asymptotic performance of multiple channel queues in heavy traffic. Karpelevich
and Kreinin (1981) investigated solution of diffusion equations for the two-phase queuing
system GI/G/1 → G ′/1/∞ in heavy traffic. Grigelionis and Mikulevic̆ius (1987) investi-
gated application of martingale methods in queueing system in heavy traffic, also see Pang
et al. (2007). A separate direction was the recursive methods for the queueing LIL developed
by Sakalauskas and Mikulevičius in multiphase systems (see Minkevičius and Steišūnas
2003) and open networks (see Minkevičius 2014; Sakalauskas and Minkevičius 2000) oper-
ating under different load conditions. This separate topic is very similar with our paper, the
difference between them is the used method because we prove the LIL and functional LIL
based on the strong approximation rather than the recursive method.

The functional LIL result was firstly developed by Strassen (1964) and established for
the standard k-dimensional Brownian motion, denoted be W . Let {Wn(t), n = 3, 4, . . . } be
a sequence of scaled k-dimensional Brownian motion with Wn(t) = W (nt)/

√
n log log n,

Strassen showed that, with probability one, the sequence {Wn, n ≥ 3} is relatively compact
(that is, every subsequence has its own convergent subsequence) in [0, 1] and that the limits
of the convergent subsequences are contained in compact set, which is the set of absolutely
continuous k-dimensional functions x satisfying x(0) = 0 and

∫ 1
0 [ẋ(t)]2 dt ≤ 1, where the
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square is the inner product, ẋ(t) denotes the derivative of x at t . In words, the compact set of
all limit points is defined as

{

x ∈ C
k[0, 1] : x(0) = 0,

∫ 1

0
[ẋ(t)]2 dt ≤ 1

}

,

where C
k[0, 1] denotes the functional space of continuous functions defined on [0, 1].

Strassen’s result of the functional LIL is the basis for this issue research, and has many
applications in different research. Caramellino (1998) used Strassen’s result to find the func-
tional LIL of diffusion process. Tsai (2000) applied Strassen’s result to Markov chain with a
countable state space. For queues, Iglehart (1971) adopted Strassen’s result to obtain the func-
tional LIL for queue lengths, departures and waiting times of the multiple channel queueing
systems in heavy traffic.

The LIL is an earlier result than the functional LIL and was developed by Lévy (1937,
1948). Compared with the functional LIL, the LIL give us more intuitively numerical repre-
sentation. This earliest LIL is also for a standard Brownian motion W , that is, for a standard
Brownian motion W ,

lim sup
t→∞

W (t)√
2t log log t

= − lim inf
t→∞

W (t)√
2t log log t

= 1, (1.1)

with probability one. The LIL in form (1.1) is called the strong version because the LIL in
(1.1) provides an explicit value “1” on the right-hand side to quantify the asymptotic rate of
the increasing variability for a standard Brownian motion. Based on the LIL for Brownian
motion, various LIL results have later been developed for performance functions in queueing
systems, such as multiple channel queues in heavy traffic (Iglehart 1971) by a method based
on renewal process, the strictly overloaded tandem queueing model (assuming all queues are
strictly overloaded) (Minkevičius and Steišūnas 2003) using a recursive method, the strictly
overloaded generalized Jackson network (Minkevičius 2014; Sakalauskas and Minkevičius
2000), and queues with customer priorities (Guo and Liu 2015; Guo et al. 2018) based on
strong approximation.

Supplement to the strong version of LIL (1.1) above, a weak version of LIL received
researchers’ wide attention in the literature. In contrast to the strong form in (1.1), Chen and
Yao (2001) provided a weak form of LIL for the queue length process Q (centered by its
fluid function Q̄) of the GI/GI/1 queue: they showed that sup0≤t≤T

∣
∣Q(t) − Q̄(t)

∣
∣ is in the

same order of the function
√
T log log T as T → ∞. That is, sup0≤t≤T

∣
∣Q(t) − Q̄(t)

∣
∣ =

O(
√
T log log T ) with probability one. The result is called the weak form because the LIL

limit [as in (1.1)] was not clearly identified. Beyond an independent theoretical result, the
weak LIL is usually used as a tool to prove the strong approximation for queueing networks.
See Chen and Mandelbaum (1994), Chen and Shen (2000) and Chen and Yao (2001) for
more results on weak LILs.
Our contributions We summarize our contributions in three directions.

• First, we establish a functional LIL in Strassen’s version and a LIL in Lévy’s version as
in (1.1) for the key system functions of the (GI B/GI )K /1/FCFS queue, including the
total workload, idle time, queue length, workload, busy time, departure and sojourn time
processes (see Sect. 2 for their definitions).

• Second, we cover all three cases of the traffic intensity ρ: (i) underloaded with ρ < 1,
(ii) critically loaded with ρ = 1 and (iii) overloaded with ρ > 1. In terms of the model
input parameters, we identify the LIL and the functional LIL of the above performance
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measures as simple absolutely-continuous function sets and analytic functions, respec-
tively.

• Third, our results on the functional LIL and the LIL limits provide interesting and some-
times counterintuitive observations. For example, Theorem 3.2 shows us that the Little’s
law between the queue length and the workload processes in the functional LIL version
(the function-set-version) generally holds in the under loaded and overloaded cases and
fails in the critically loaded case, and Theorem3.3 presents a similar insight on the Little’s
law in the LIL version (the functional version)

The strong approximation approach We obtain the functional LIL and the LIL results
based on the strong approximations. We first relate the functional LILs of the performance
functions to the functional LILs of their strong approximations; we next is to obtain the
desired functional LIL limits by analyzing the (reflected) Brownian motions given by the
strong approximations. We briefly demonstrate the idea of strong approximation using a
renewal process {N (t), t ≥ 0} with rate λ > 0 and interrenewal-time variance σ 2 < ∞. Let
N̄ (t) ≡ λ t and Ñ be the SA for N . We write

N (t) ≈ Ñ (t) ≡ N̄ (t) + λ3/2σW (t), (1.2)

for a large t > 0, where W (t) is a standard Brownian motion. In addition, the error of the
strong approximation N (t) − Ñ (t) is a higher order infinitesimal of t1/r with some r > 2,
see Horváth (1984a, b). Strong approximations have been developed for various stochastic
processes, such as random walks (Csörgő et al. 1987) and renewal-related processes (Csörgő
and Révész 1981; Csörgő and Horváth 1993). There is a large volume of literature using the
strong approximation to study queueing models, including the GI/GI/1 queue (Chen and
Yao 2001),GI/GI/∞ queue (Glynn andWhitt 1991a), multiple channel queue (Zhang et al.
1990), tandem-queue network (Glynn andWhitt 1991b), generalized Jackson network (Chen
and Mandelbaum 1994; Horváth 1992; Zhang 1997), non-preemptive priority queue (Zhang
and Hsu 1992), time-dependentMarkovian network queues (Mandelbaum andMassey 1995;
Mandelbaum et al. 1998) and feedforward queueing networks (Chen and Shen 2000; Chen
and Yao 2001).
Organization of the paper In Sect. 2, we formally introduce the (GI B/GI )K /1/FCFS
queue, and review its fluid limit, which are used to construct the FLILs and LILs. In Sect. 3,
we present our main results Theorems 3.2 and 3.3 . We also provide insights of these results.
In Sect. 4, we give the proofs of the main results and other supporting results. In Sect. 5, we
provide concrete numerical examples to give some insights from an engineering perspective.
Finally, we draw conclusions in Sect. 6.
Notations We now summarize all notations used below. All random variables and processes
are defined on a common probability space (�,F, P). We reserve E(·) for expectation and
Var(·) for variance. We write X =d Y if X and Y have the same distribution. We use
R
k and R

k+ to denote the k-dimensional spaces of real and nonnegative real numbers. All
vectors in Rk are understood to be column vectors, and the transpose of a vector or a matrix
is denoted by a prime. Let a ∨ b ≡ max{a, b}, a+ ≡ max{a, 0} and �a
 be the largest
integer less than or equal to a. Let Dk[a, b] be the k-dimensional space of right-continuous
functions on [a, b] having left limits, endowed the Skorohod topology (e.g., see Ethier and
Kurtz 1986). Let Ck[a, b] be the k-dimensional space of continuous functions. We say that
fn ⇒ K f with probability 1 (w.p.1.) if the sequence of { fn, n ≥ 1} is relatively compact (i.e.,
every subsequence has a convergent subsubsequence) and the set of all limit points is the
compact set K f . Let ‖ f ‖T ≡ sup0≤t≤T | f (t)| be the uniform norm of f . We say fn → f
uniformly on compact sets (u.o.c.) if ‖ fn − f ‖T → ∞, as n → 0. We say f (t) = O(g(t))
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as t → ∞ if lim supt→∞ | f (t)/g(t)| ≤ M for some M > 0 and f (t) = o(g(t)) as t → ∞
if limt→∞ | f (t)/g(t)| = 0. We let ϕ(t) = √

2t log log t for all t > e and η(t) = 0 for all
t ≥ 0.

2 The (GIB/GI)K/1 queueingmodel

The model (GI B/GI )K /1 is a single-server station queue serving K classes of jobs, K ≥ 1.
Customers of all classes arrive exogenously in batches, wait for service and leave the system
after service completion. A FCFS service discipline is enforced among K classes, that is,
customers in different batches are served in the order of arrival, and customers in the same
batch are numbered by 1, 2, . . . , and served in the order of the numbering. We assume the
FCFS service discipline is work-conserving, i.e., the server can not stay idle if there is any
customer waiting for service.
Primitive data For each class k, consider three independent and identically distributed
sequences of nonnegative random variables u = {uk(n), n = 1, 2, . . .}, ξ = {ξk( j), j =
1, 2, . . .} and v = {vk(i), i = 1, 2, . . .}, where uk(n) is the interarrival time between
the (n − 1)th and nth batch arrivals, ξk( j) is the j th batch size (number of customers
in the j th batch), and vk(i) is the service time of the i th customer. Suppose that u, ξ

and v are mutually independent. Let the means E[uk(1)] ≡ 1/λk , E[vk(1)] ≡ 1/μk and
E[ξk(1)] ≡ mk , variances Var [uk(1)],Var [vk(1)] and Var [ξk(1)], and squared coeffi-
cients of variation c2a,k ≡ Var [uk(1)]/(E[uk(1)])2, c2s,k ≡ Var [vk(1)]/(E[vk(1)])2 and

c2b,k ≡ Var [ξk(1)]/(E[ξk(1)])2, respectively. Define the following partial sums

Uk(n) ≡
n∑

i=1

uk(i), Bk(n) ≡
n∑

i=1

ξk(i) and Vk(n) ≡
n∑

i=1

vk(i), n = 1, 2, . . . ,(2.1)

where Uk(n) is the arrival time of the nth class-k batch, Vk(n) is the total service time of
the first n class-k customers and Bk(n) is the total number of class-k customers of the first n
batches. Define the two renewal counting processes

Ak(t) ≡ max{n ≥ 0 : Uk(n) ≤ t} and Sk(t) ≡ max{n ≥ 0 : Vk(n) ≤ t}, (2.2)

where Ak(t) counts the total number of batches arriving in [0, t] and Sk(t) denotes the number
of class-k service completions in [0, t] if the server always serves the kth class. Therefore,
Bk(Ak(t)) is the total number of class-k customers arriving in [0, t].

Define the traffic intensity

ρ ≡
K∑

k=1

ρk where ρk ≡ mkλk

μk
, k = 1, 2, . . . , K . (2.3)

We say the system is underloaded when ρ < 1, critically loaded when ρ = 1 and overloaded
when ρ > 1.
Performance measures For k = 1, 2, . . . , K , at time t , let queue length Qk(t) be the number
of class k customers in system,Wk(t) be the workload (that is the amount of unfinished work)
of class k customers, Z(t) =∑K

k=1 Wk(t) be the total workload, Tk(t) be the total amount of
time that the server serves class-k customers in [0, t], Y (t) = t −∑K

k=1 Tk(t) be the server’s
total idle time in [0, t], Dk(t) = Sk(Tk(t)) be the number of class-k departures in [0, t].
Define the potential sojourn time Tk,i (t) as the sojourn time (total time in the system) of the
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i th customer in a class-k batch which arrives at t , i = 1, 2, . . . . These performance measures
satisfy the following equations

Qk(t) = Bk(Ak(t)) − Dk(t) ≥ 0, (2.4)

Wk(t) = Vk(Bk(Ak(t))) − Vk(Dk(t)) − νk(t) ≥ 0, (2.5)
∫ ∞

0
Z(t)dY (t) = 0, (2.6)

Tk,i (t) = Z(t) +
i∑

j=1

v∗
k ( j), k = 1, 2, . . . , K , i = 1, 2, . . . , (2.7)

where νk(t) is the elapsed service time of the customer in service if the server is serving a
class-k customer at t and is 0 otherwise, and {v∗

k ( j), j ≥ 1} is a copy of vk(1) and is assumed
to be independent and identically distributed.

Remark 2.1 [Explanation for (2.4)–(2.7)] Equations (2.4) and (2.5) hold byflowconservation.
Equation (2.6) holds because the service discipline is work conserving, namely, when the
server is idle at time t (i.e., Y (t) increases) only when the system is empty (i.e., Z(t) = 0).
We note that an equivalent representation for Y (t) and Z(t) is

Z(t) = 
(N )(t), Y (t) = �(N )(t), and N (t) ≡
K∑

k=1

Vk(Bk(Ak(t))) − t, (2.8)

where the two functions (�,
) defined by

�(x)(t) = sup
0≤s≤t

[−x(s)]+ and 
(x)(t) = x(t) + �(x)(t),

are known as the one dimensional oblique reflection mapping [see Harrison (1985) for dis-
cussions on the oblique reflection mapping]. Finally, Eq. (2.7) means that if a class-k batch
arrives at time t , the sojourn time of the i th customer in that batch is the workload Z(t) plus
the total service times of the first i customers in that batch.

Fluid limits of performance measures In order to define the LIL- and functional LIL-
scaling, we next introduce the the fluid limits of the performance measures, which is from
the functional strong law of large numbers for renewal process. In order to find the fluid limits,
we need other performance measure: the arrival time of the last customer who has finished
service by t , denoted by τ(t), whose fluid scaling process is defined to be τ̄ (n)(t) ≡ τ(nt)/n.
Define other fluid-scaled processes as

Z̄ (n)(t) ≡ 1

n
Z(nt), Ȳ (n)(t) ≡ 1

n
Y (nt), N̄ (n)(t) ≡ 1

n
N (nt), T̄ (n)

k,i (t) ≡ 1

n
Tk,i (nt),

Q̄(n)
k (t) ≡ 1

n
Qk(nt), W̄ (n)

k (t) ≡ 1

n
Wk(nt), T̄ (n)

k (t) ≡ 1

n
Tk(nt), D̄(n)

k (t) ≡ 1

n
Dk(nt),

for all k = 1, 2, . . . , K and i = 1, 2, . . . . We next summarize the fluid limits of the system
(GI B/GI )K /1, see Chen and Zhang (2000) and Dai (1995) for proof and more general
cases.

Lemma 2.1 [Fluid limits for the (GI B/GI/1)K queue (Chen and Shen 2000)] Assume
E[uk(1)] < ∞ and E[vk(1)] < ∞. If the system is initially empty, then for all k = 1, . . . , K,
i = 1, 2, . . .,

(
Z̄ (n), Ȳ (n), N̄ (n), τ̄ (n), Q̄(n)

k , W̄ (n)
k , D̄(n)

k , T̄ (n)
k , T̄ (n)

k,i

)
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→ (
Z̄ , Ȳ , N̄ , τ̄ , Q̄k, W̄k, D̄k, T̄k, T̄k,i

) ≡ X̄k, u.o.c., w.p.1, as n → ∞,

where X̄k(t) satisfies

T̄k(t) ≡ mkλk

μk(1 ∨ ρ)
t, Q̄k(t) ≡ μk W̄k(t) ≡

(

1 − 1

ρ

)+
mkλk t, D̄k(t) ≡ mkλk τ̄ (t) ≡ mkλk

1 ∨ ρ
t,

Z̄(t) ≡ T̄k,i (t) ≡ (ρ − 1)+t, Ȳ (t) ≡ (1 − ρ)+t, N̄ (t) ≡ (ρ − 1)t, τ̄ (t) ≡ t

1 ∨ ρ
. (2.9)

The objective of the rest of the paper is to establish the LIL and functional LIL for
performance functions

(
Z , Y , Qk,Wk, Tk, Dk, Tk,i , 1 ≤ k ≤ K , i = 1, 2, . . .

)
and identify

the LIL and functional LIL limits as functions of the model input data

D ≡ (λk,mk, μk, c
2
a,k, c

2
b,k, c

2
s,k, 1 ≤ k ≤ K

)
. (2.10)

3 Main results

We now establish the LIL and the functional LIL for the (GI B/GI )K /1 queue. We first
define the LIL and functional LIL scalings in Sect. 3.1; next in Sect. 3.2 we develop the
results of the LIL and functional LIL in the underloaded, critically loaded and overloaded
cases. All proofs are postponed in Sect. 4. For the convenience of readers, we gives several
remarks immediately following main results.

3.1 The LIL and functioinal LIL scaling

LIL limits We define

Z∗
sup = lim sup

t→∞
Z(t) − Z̄(t)

ϕ(t)
and Z∗

inf = lim inf
t→∞

Z(t) − Z̄(t)

ϕ(t)
. (3.1)

Similar to (3.1), for k = 1, 2, . . . , K and i = 1, 2, . . . , we define the following upper and
lower LIL limits:

Y ∗
sup, Q

∗
k,sup,W

∗
k,sup, T

∗
k,sup, D

∗
k,sup, T

∗
k,i,sup, Y

∗
inf , Q

∗
k,inf ,W

∗
k,inf , T

∗
k,inf , D

∗
k,inf , T

∗
k,i,inf .

(3.2)

We try to express all the LIL limits (3.2) in terms of the input data D in (2.10).
Functional LIL limits For k = 1, 2, . . . , K and i = 1, 2, . . . , let

Zn(t) = Z(nt) − Z̄(nt)

ϕ(n)
and T n

k,i (t) = Tk,i (nt) − T̄k,i (nt)
ϕ(n)

. (3.3)

We define the functional LIL-scaled processes Qn
k (t), X

n(t), Dn
k (t),W

n
k (t), T n

k (t) and Yn(t)
in the same token of (3.3). We try to develop the functional LIL results in the following form:
for k = 1, 2, . . . , K and i = 1, 2, . . . , as n → ∞,
(
Zn, Yn, Qn

k ,W
n
k , T n

k , Dn
k , T

n
k,i

)
⇒
(
KZ ,KY ,KQk ,KWk ,KTk ,KDk ,KTk,i

) ≡ K∗
k , (3.4)

w.p.1., where all setsKZ ,KY ,KQk ,KWk ,KTk ,KDk ,KTk,i are compact sets expressed by the
data D in (2.10) and some compact set G defined as follows.

123

Author's personal copy



Annals of Operations Research

Spaces of functional LIL limits For δ > 0, let Gk(δ) be the space of absolutely continuous
functions having quadratic variations no larger than δ2, in particular,

Gk(δ) ≡
{

x ∈ C
k[0, 1] : x(0) = 0,

∫ 1

0
[ẋ(t)]2 dt ≤ δ2

}

, (3.5)

where the square denotes inner product, and ẋ(t) denotes the derivative of x(t) which exists
almost everywhere with respect to Lebesgue measure. We let G ≡ G1.

For instance, x1(t) = δat belongs toG(δ) fora ≤ 1because x1(0) = 0 and
∫ 1
0 [ẋ1(t)]2dt =

a2δ2 ≤ δ2; x2(t) ≡ (δb1t, δb2t)′ belongs to G2(δ) for b21 + b22 ≤ 1, because x2(0) = 0 and
∫ 1
0 [ẋ2(t)]2dt = δ2(b21 + b22) ≤ δ2.

The setGk(δ) defined above is a compact set inCk [0, 1]: for x ∈ Gk(δ) and 0 ≤ c ≤ d ≤ 1,

|x(d) − x(c)| =
∣
∣
∣
∣

∫ d

c
ẋ(t)dt

∣
∣
∣
∣ ≤

(∫ d

c
[ẋ(t)]2dt

)1/2

≤ δ(d − c)1/2, (3.6)

where | · | denote the Euclidean norm in Rk .

Remark 3.1 (Scaling of LIL and the functional LIL) The LIL limits provide asymptotic upper
and lower bounds because they are established by letting the time t → ∞ [as in (3.1)]. As
opposed to the constant LIL limit, the functional LIL limits are obtained as compact functional
spaces containing the limits of all convergent subsequences, as the scaling n → ∞. The
functional LIL provides asymptotic bounds for all possible functional limits. In this sense,
the LIL limits can be considered special cases of the functional LIL limits.

3.2 The LIL and functional LIL Limits

Throughout the rest of the paper, suppose that, for all k = 1, 2, . . . , K , for some r > 2,

E
[
uk(1)

r ] < ∞, E
[
vk(1)

r ] < ∞ and E
[
ξk(1)

r ] < ∞. (3.7)

We first present the LIL and the functional LIL of the batch arrival process.

Theorem 3.1 (The LIL and functional LIL for compound renewal arrival processes) Suppose
(3.7) holds. For Ak, Bk defined above, we have, w.p.1,

lim sup
t→∞

Bk(Ak(t)) − λkmk

ϕ(t)
= − lim inf

t→∞
Bk(Ak(t)) − λkmk

ϕ(t)
= mk

√

λk

(
c2a,k + c2b,k

)
,

Bk(Ak(nt)) − λkmk

ϕ(n)
⇒ mk

√

λk

(
c2a,k + c2b,k

)
G(1), as n → ∞. (3.8)

Next, we give the functional LIL results for performance measures Z , Y , Qk ,Wk , Tk , Dk ,
Tk,i , k = 1, 2, . . . , K and i = 1, 2, . . . in three cases: underloaded, critically loaded and
overloaded. Let c2k ≡ mk(c2a,k+c2b,k)+c2s,k be the variability coefficient for class k (capturing

the variabilities of the arrival, batch and service distributions). Let ρ̂K ≡∑K
k=1 ρkc2k/μk ,

d∗2
k ≡

(

1 − ρk

ρ

)2 m2
kλk

(
c2a,k + c2b,k

)

ρ
+ ρ3

kμkc2s,k
ρ3 + m2

kλ
2
k

ρ3

∑

i �=k

ρi c2i
μi

, (3.9)
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q∗2
k ≡

[

1 − 1√
ρ

(

1 − ρk

ρ

)]2
λkm

2
k

(
c2a,k + c2b,k

)+ ρ3
k

ρ3 μkc
2
s,k + λ2km

2
k

ρ3

∑

i �=k

ρi c2i
μi

,

(3.10)

w∗2
k ≡

[

1 − 1√
ρ

(

1 − ρk

ρ

)]2 ρkc2k
μk

+ ρ2
k

ρ3

∑

i �=k

ρi c2i
μi

, (3.11)

t∗2k ≡
(

1 − ρk

ρ

)2 ρkc2k
ρμk

+ ρ2
k

ρ3

∑

i �=k

ρi c2i
μi

. (3.12)

Theorem 3.2 (The functional LIL for the (GI B/GI )K /1 queue) Suppose (3.7) holds. (i) If
ρ < 1, then the functional LIL in (3.4) holds with

K∗
k =

⎧
⎨

⎩

⎛

⎝η,
√

ρ̂K x, η, η,

√
ρkc2k
μk

x,mkλ
1/2
k

√
c2a,k + c2b,k x, η

⎞

⎠ : x ∈ G(1)

⎫
⎬

⎭
, (3.13)

where η is a zero operator, that is, η(x) = 0 for all x ∈ G(δ) with δ > 0.
(ii) If ρ = 1, the functional LIL in (3.4) holds with

(
KZ ,KY ,KQk ,KWk ,KDk ,KTk,i

)

=
{(


(x),�(x), λkmk
(x), ρk
(x),Gd
k (y, z),
(x)

)
: x ∈ G

(√
ρ̂K

)
, (y, z) ∈ G2

(√
ρ̂K

)}
,

where Gd
k (x, y)(t) ≡ μk x(t) − λkmk
(x + y)(t). (3.14)

For Tk, if K > 1, then KTk =
{
Gd

k (y, z)/μk : (y, z) ∈ G2
(√

ρ̂K

)}
, k = 1, 2, . . . , K; if

K = 1, then KT1 = {−�(x) : x ∈ G
(
c1/

√
μ1
)}
.

(iii) If ρ > 1, then the functional LIL in (3.4) holds with

K∗
k =

{(√
ρ̂K x, η, q∗

k x, w
∗
k x, t

∗
k x, d

∗
k x,
√

ρ̂K x
)

: x ∈ G(1)
}

, (3.15)

where dk, qk, wk and tk are defined in (3.9)–(3.12).

We give the following remark to help readers to understand Theorem 3.2.

Remark 3.2 (Understanding the functional LIL limits in three cases) (i) Workload In the
underloaded case, the stochastic variation of the workload is zero because the total workload
is stochastically bounded. The functional LIL limits for queue length and workload are zero
sets. In the critically loaded case, the stochastic variation of the total workload is the sum
of those of all classes, in addition, we observe a functional LIL-version Little’s Law for the
queue length andworkload, namely,KQk = μkKWk . The functional LIL limit of the departure
process is given by a two-dimensional set, which is consistent with Iglehart (1971). Results
become somewhat less intuitive in the overloaded case: First, the LIL of the total workload is
not simply the aggregation of those of all classes, because stochastic fluctuations ofworkloads
are not independent across classes. Moreover, the functional LIL-version Little’s Law fails,
unless all the squared coefficients of variation of service times are zeros. (ii) Idle time The
variation of the idle time relates to busy times of all classes. For example, see the relation
ρ̂K =∑K

k=1 ρkc2k/μk given in (3.13) in the underloaded case (The relation is more complex
in the critically loaded case; see (3.15)). In the overloaded case, the idle time is stochastically
bounded for all servers and thus asymptotically negligible. This is in sharp contrast to the
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results of the busy times, where the stochastic variation of one class symmetrically affect all
other classes. (iii) Sojourn time The stochastic variability of sojourn times is asymptotically
independent with the class k (1 ≤ k ≤ K ) and customer index i (i = 1, 2, . . .), because the
functional LIL limit of the sojourn times KTk,i coincides with the functional LIL limit of the
workload KZ for all i = 1, 2, . . . and 1 ≤ k ≤ K . This is so because customers are served
under FCFS and the batch sizes become asymptotically negligible as the scale increases.

Next, we consider theGI/GI/1 queue, which is a special of (GI B/GI )K /1 with K = 1,
ξ1(1) = 1 and c21 = c2a,1 + c2s,1. In the special case, we note that T1,1(t) = Z(t) + v∗

1(1) =
W (t) + v∗

1(1), and as a result, the corresponding limit sets satisfy KZ = KW1 = KT1,1 for
v∗
1(1) = o(ϕ(n)) w.p.1 as n → ∞. Hence, the functional LIL result in (3.4) simplifies to

(
Zn, Yn, Qn

1, T
n
1 , Dn

1

)
⇒
(
KZ ,KY ,KQ1 ,KT1 ,KD1

) ≡ K∗−, w.p.1. (3.16)

The corollary below is proved by letting mk = 1, cb,k = 0, K = 1 in Theorem 3.2.

Corollary 3.1 (Functional LIL for the GI/GI/1 queue) Suppose (3.7) holds, K = 1 and
ξ1(n) = 1 for all n ≥ 1. (i) If ρ < 1, the functional LIL in (3.16) holds with

K∗− =
{(

η,
λ
1/2
1 c1
μ1

x, η,
λ
1/2
1 c1
μ1

x, λ1/21 c1,ax

)

: x ∈ G(1)

}

. (3.17)

(ii) If ρ = 1, then with Gd
1 defined in (3.14), the functional LIL in (3.16) holds with

K∗− =
{(


(x),�(x), μ1
(x),−�(x),Gd
1(y, z)

)
: x ∈ G

(
c1√
μ1

)

, (y, z) ∈ G2
(

c1√
μ1

)}

.

(3.18)

(iii) If ρ > 1, then the functional LIL in (3.16) holds with

K∗− =
{(

λ1/2c1
μ1

x, η, q∗
1 x, η, d∗

1 x

)

: x ∈ G(1)

}

, (3.19)

where q∗
1 =

√
λ1c2a,1 + μ1c2s,1, d

∗
1 =

√
μ1c2s,1.

In the overloaded case, it is evident from (3.19) that Little’s law fails, that is,μ1KZ �= KQ1 ;
The asymptotical variation for departure does not depend on the arrival because the departure
process is only determined by the service in the overloaded case. Next, we expect some sort
of “seesaw” effect between the busy time T1 and idle time I1: T1(t) is negatively correlated
with I1(t) at the same level (but different signs) of stochastic fluctuations (if T1(t) is larger
than themean value T̄1(t) by t0, caused by temporarily frequent arrivals or long service times,
then I1(t) will be t0 time less than Ī1(t)). This explains why KT1 = KI1 . Especially, in the
overloaded case the server is almost busy all the time, the busy time deviates from its mean
by a asymptotic finite value, which gives the functional LIL of the busy time is zero set,
which also explains why KI1 = {η}.

We now give the LIL limits in (3.2) using input data D in (2.10).

Theorem 3.3 (LIL for the (GI B/GI )K /1 queue) Suppose (3.7) holds. (i) If ρ < 1, then for
k = 1, 2, . . . , K and i = 1, 2, . . . ,

Z∗
sup = Z∗

inf = Q∗
k,sup = Q∗

k,inf = W ∗
k,sup = W ∗

k,inf = T ∗
k,i,sup = T ∗

k,i,inf = 0,

Y ∗
sup = −Y ∗

inf =
√

ρ̂K , T ∗
k,sup = −T ∗

k,inf =
√

ρkc2k/μk,
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D∗
k,sup = −D∗

k,inf = mkλ
1/2
k

√
c2a,k + c2b,k . (3.20)

(ii) If ρ = 1, then, for k = 1, 2, . . . , K and i = 1, 2, . . . ,

Z∗
inf = Y ∗

inf = T ∗
k,i,inf = Q∗

k,inf = W ∗
k,inf = 0,

ρ

λk
Q∗

k,sup = ρ

ρk
W ∗

k,sup = Z∗
sup = Y ∗

sup = T ∗
k,i,sup =

√
ρ̂K . (3.21)

(iii) If ρ > 1, then, for k = 1, 2, . . . , K and i = 1, 2, . . . ,

Z∗
sup = −Z∗

inf = T ∗
k,i,sup = −T ∗

k,i,inf =
√

ρ̂K , Y ∗
sup = Y ∗

inf = 0, D∗
k,sup = −D∗

k,inf = d∗
k ,

Q∗
k,sup = −Q∗

k,inf = q∗
k , W ∗

k,sup = −W ∗
k,inf = w∗

k , T ∗
k,sup = −T ∗

k,inf = t∗k . (3.22)

Remark 3.3 (The Little’s law) The superior and inferior limit version Little’s law holds in the
underloaded and critically loaded cases, that is, Q∗

k,sup = μkW ∗
k,sup and Q∗

k,inf = μk Z∗
k,inf ,

which means that the maximum and minimum asymptotical variations of Qk and Wk keep
the proportional relation. However, this version Little’s law fails in the overloaded, because
the workload processWk keeps track of the total amount of unfinished service times of class k
while the queue length process Qk only counts the number of the unfinished class k customers.
Although, as time goes to infinity, some class k customers will almost “never” be served in
the overloaded case, their service variability will still make an impact to the workload: if the
class k service times are highly variable, it does not affect its queue lengths because almost
no one will enter service, but it will make the workload process highly variable because the
customer’s service time will be added to the workload process immediately upon its arrival.
But the superior and inferior limit version Little’s law holds in the critically loaded case if
the coefficients of variation cs,k = 0 by (3.10) and (3.11), which means that it is the variation
of service times that make the LIL-version Little’s law fail.

Corollary 3.2 (LIL for the GI/GI/1 queue) Suppose (3.7) holds, K = 1 and ξ1(n) = 1 for
all n ≥ 1. (i) If ρ < 1, then

Z∗
sup = Z∗

inf = Q∗
1,sup = Q∗

1,inf = 0, D∗
1,sup = −D∗

1,inf = λ
1/2
1 ca,1,

Y ∗
sup = −Y ∗

inf = T ∗
1,sup = −T ∗

1,inf = λ
1/2
1 c1
μ1

. (3.23)

(ii) If ρ = 1, then

Z∗
sup = Y ∗

sup = −T ∗
1,inf = λ

1/2
1 c1
μ1

, Q∗
1,sup = λ

1/2
1 c1, Z∗

inf = Y ∗
inf = T ∗

1,sup = Q∗
1,inf = 0.

(3.24)

(iii) If ρ > 1, then

Z∗
sup = −Z∗

inf = λ
1/2
1 c1
μ1

, Y ∗
sup = Y ∗

inf = T ∗
1,sup = −T ∗

1,inf = 0,

Q∗
1,sup = −Q∗

1,inf =
√

λ1c2a,1 + μ1c2s,1, D∗
1,sup = −D∗

1,inf = μ
1/2
1 cs,1. (3.25)

The LIL limits for queue, workload and departure qualify their asymptotic variation more
distinct via number value not function set. In the underloaded case, the whole system is
in light traffic, and all customers are quickly served upon arrival, which explains why the
LIL limits for queue and workload are zero and for departure are independent of service. In
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the critically case, the LIL limits for queue and workload is influenced by both arrival and
service, and satisfy the Little’s law. In the overloaded case, the server is almost busy all the
time, which explains why the departure LIL only depends on the service; the LIL limits of
queue and workload capture the parameters of arrival and service, however, they deviate the
Little’s law, the reason refers to Remark 3.3.

The “seesaw” effect between the busy and idle times is presented by the LIL limits. In the
underloaded case, the superior and inferior limits are presented as a pair of opposite numbers
capturing the arrival and service parameters; In the critically case, since T (t) ≤ t , we have
T ∗
1,sup < 0 by the LIL scaling (3.1), however T ∗

1,sup = 0 explains that the server are almost
busy in the critically heavy traffic; In the overloaded case, the server is busy all the time,
which gives T ∗

1,sup = T ∗
k,inf = Y ∗

sup = Y ∗
inf = 0.

4 Proofs

In this section,wefirstly proveTheorem3.2 byStrassen’s result (Strassen 1964) and the strong
approximations (Chen and Shen 2000), then Theorem 3.3 with the help of the compact sets
in Theorem 3.2.

4.1 Preliminaries

Strassen (1964) firstly developed the functional LIL for Brownian motion as follows.

Lemma 4.1 (Strassen’s functional LIL) Suppose that W1,W2 are two mutually independent
one-dimensional standard Brownian motions, σ1 > 0, σ2 > 0 are two positive constants, we
have, for any t ∈ [0.1], w.p.1,

σ1W1(nt)√
2n log log n

⇒ G(σ1),

(
σ1W1(nt)√
2n log log n

,
σ2W2(nt)√
2n log log n

)

⇒ G2
(√

σ 2
1 + σ 2

2

)

.

Our proof is mainly based on the strong approximation of all the performance measures.
The strong approximations approximate a discrete process (i.e. Q) into a continuous process
consisting of the deterministic fluid function (i.e. Q̄) and standard Brownian motion. As
a result, the original discrete system is approximated into a continuous Brownian system,
whose mean values and fluctuation are embodied in the fluid limits and Brownian motion,
respectively.

Lemma 4.2 presents the strong approximations for the queueing system, its proof is similar
to Chen and Shen (2000) and is omitted.

Lemma 4.2 [Strong approximations (Chen and Shen 2000)] If (3.7) holds, then, for r > 2,
w.p.1,

∣
∣
∣
∣Z − Z̃

∣
∣
∣
∣
T = o(T 1/r ),

∣
∣
∣
∣Y − Ỹ

∣
∣
∣
∣
T = o(T 1/r ),

∣
∣
∣
∣Qk − Q̃k

∣
∣
∣
∣
T = o(T 1/r ),

∣
∣
∣
∣Tk − T̃k

∣
∣
∣
∣
T = o(T 1/r )

∣
∣
∣
∣Wk − W̃k

∣
∣
∣
∣
T = o(T 1/r ),

∣
∣
∣
∣Dk − D̃k

∣
∣
∣
∣
T = o(T 1/r ),

∣
∣
∣
∣Tk,i − T̃k,i

∣
∣
∣
∣
T = o(T 1/r ),

(4.1)

for k = 1, 2, . . . , K , i = 1, 2, . . . , where

Z̃ = 
(Ñ ), Ỹ = �(Ñ ), T̃k(t) = 1

μk

[
D̃k(t) − Ŝk(T̄k(t))

]
,
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Ñ (t) = N̄ (t) +
K∑

k=1

[
mk

μk
Âk(t) + 1

μk
B̂k(λk t) + V̂k(mkλk t)

]

,

D̃k(t) = D̄k(t) + mk Âk(τ̄ (t)) + B̂k(λk τ̄ (t)) − mkλk

ρ
[Ỹ (t) − Ȳ (t)]

−mkλk

ρ

K∑

i=1

[
mi

μi
Âi (τ̄ (t)) + 1

μi
B̂i (λi τ̄ (t)) + V̂i (D̄i (t))

]

Q̃k(t) = mkλk t + mk Âk(t) + B̂k(λk t) − D̃k(t), T̃k,i (t) = Z̃k(t),

W̃k(t) = ρk t + mk

μk
Âk(t) + 1

μk
B̂k(λk t) + V̂k(mkλk t) − V̂k(D̄k(t)) − 1

μk
D̃k(t), (4.2)

Âk(t) = λ
1/2
k ca,kWa,k(t), Ŝk(t) = μ

1/2
k cs,kWs,k(t), B̂k(t) = mkcb,kWb,k(t) and V̂k(t) =

−Ŝk(t/μk)/μk , and Wa,k , Ws,k and Wb,k are mutually independent Brownian motions asso-
ciated with the arrival, service and batch processes for class k, respectively, and 
 and �

are defined in (2.8).

4.2 Proofs of Theorems 3.1, 3.2 and 3.3

Proof of Theorem 3.1 First of all, we note that E[Bk(Ak(t))] = mkλk t for any t ≥ 0. Next
we first prove the functional LIL and then the LIL. By Lemma 2.3 (iv) in Chen and Shen
(2000),

sup
0≤t≤T

[
Bk(Ak(t)) − mkλk t − mk Âk(t) − B̂k(λk t)

]
= o(T 1/r ), w.p.1,

then for any t ∈ [0, 1],

lim
n→∞

∣
∣
∣Bk(Ak(nt)) − mkλknt − mk Âk(nt) − B̂k(λknt)

∣
∣
∣

ϕ(n)

≤ lim
n→∞

sup0≤t≤n

∣
∣
∣Bk(Ak(t)) − mkλk t − mk Âk(t) − B̂k(λk t)

∣
∣
∣

ϕ(n)
= 0 w.p.1. (4.3)

Since

Bk(Ak(nt)) − mkλknt

ϕ(n)

= Bk(Ak(nt)) − mkλknt − mk Âk(nt) − B̂k(λknt)

ϕ(n)
+ mk Âk(nt) + B̂k(λknt)

ϕ(n)
,

and

mk Âk(nt) + B̂k(λknt)

ϕ(n)
⇒ mk

√
λk(c2a,k + c2b,k)G(1), w.p.1,

then the functional LIL holds.
For the LIL, we note that supx∈G(1) x(1) = 1 and inf x∈G(1) x(1) = −1, where the supre-

mum and infimum are actually attained for the functions x(t) = t and x(t) = −t respectively.
Hence, (3.8) holds. ��
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Proof of Theorem 3.2 For all t ∈ [0, 1] and n = 3, 4, . . . , define

Z̃ n(t) = Z̃(nt) − Z̄(nt)

ϕ(n)
. (4.4)

Similar we define Ỹ n(t), Ñ n(t), Q̃n
k (t), W̃

n
k (t), D̃n

k (t), T̃
n
k (t) and T̃ n

k,i (t) in the same token
of (4.4) for k = 1, 2, . . . , K and i = 1, 2, . . . .

By Lemma 4.2, since T 1/r = o(ϕ(T )) for all r > 2, we have, for all t ∈ [0, 1],

lim
n→∞

∣
∣Z(nt) − Z̃(nt)

∣
∣

ϕ(n)
≤ lim sup

n→∞
sup0≤t≤n

∣
∣Z(t) − Z̃(t)

∣
∣

ϕ(n)
= 0, w.p.1.

So, for all t ∈ [0, 1],

lim
n→∞

Z(nt) − Z̃(nt)

ϕ(n)
= 0, w.p.1. (4.5)

Note that

Zn(t) = Z(nt) − Z̃(nt)

ϕ(n)
+ Z̃ n(t),

This, and (4.5), implies that it suffices to prove Z̃ n ⇒ KZ if one tries to prove Zn ⇒ KZ .
Similar results hold for Yn(t), Qn

k (t),W
n
k (t), Dn

k (t), T
n
k (t), T n

k,i (t) for k = 1, 2, . . . , K and
i = 1, 2, . . . . In words, we transfer the original problem (3.4) into, w.p.1,

(
Z̃ n, Ỹ n, Q̃n

k , W̃
n
k , T̃ n

k , D̃n
k , T̃

n
k,i

)
⇒ K∗. (4.6)

We firstly note that, for all t ∈ [0, 1], w.p.1,

Ñ n(t) =
∑K

i=1

[
mi
μi

Âi (nt) + 1
μi
B̂i (λi nt) + V̂i (miλi nt)

]

ϕ(n)
⇒
√

ρ̂KG(1), (4.7)

because the variance

Var

(
K∑

i=1

[
mi

μi
Âi (t) + 1

μi
B̂i (λi t) + V̂i (miλi t)

])

= ρ̂K t . (4.8)

Next, we prove (4.6) in three cases: The underloaded, critically loaded and overloaded
regimes.
The underloaded case We first note that if ρ < 1, then by (2.9), for any t ≥ 0,

X̄k(t) = (η, (1 − ρ)t, (ρ − 1)t, t, η, η,mkλk t, ρk t, η) . (4.9)

For the functional LIL for Z , by (4.2) and (4.9), Z̃ is reflected Brownianmotion with negative
drift ρ −1, then it follows from Theorem 6.3 in Chen and Yao (2001) that sup0≤t≤T |Z̃(t)| =
O(log T ) w.p.1. This implies that, for all t ∈ [0, 1],

lim
n→∞ Z̃ n(t) = lim

n→∞

∣
∣Z̃(nt)

∣
∣

ϕ(n)
≤ lim

n→∞
sup0≤t≤n

∣
∣Z̃(t)

∣
∣

ϕ(n)
= 0, w.p.1.

So, Z̃ n(t) ⇒ 0 w.p.1. For the functional LIL of Y , by (4.2) and (4.7) we have

Ỹ n(t) = Z̃(nt) + Ñ (nt) − N̄ (nt)

ϕ(n)
= Z̃ n(t) + Ñ n(t) ⇒

√
ρ̂KG(1), w.p.1.
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For the functional LIL of Dk , by (4.2) and (4.9),

D̃k(t) − D̄k(t) = mk Âk(t) + B̂k(λk t) − mkλk

ρ
[Ỹ (t) − Ȳ (t)] − mkλk

ρ
[Ñ (t) − N̄ (t)]

= mk Âk(t) + B̂k(λk t) − mkλk

ρ
[Z̃(t) − Z̄(t)],

so, for all t ∈ [0, 1], w.p.1.,

D̃n
k (t) = D̃k(nt) − D̄nk(t)

ϕ(n)

= mk Âk(nt) + B̂k(λknt)

ϕ(n)
− mkλk

ρ
Z̃ n(t) ⇒ mkλ

1/2
k

√
c2a,k + c2b,kG(1).

For the functional LIL of Qk , by (4.2) and (4.9),

Q̃n
k (t) = Q̃k(nt)

ϕ(n)
= mk Âk(nt) + B̂k(λknt)

ϕ(n)
− D̃n

k (t) = mkλk

ρ
Z̃ n(t) ⇒ 0, w.p.1.

For the functional LIL of Wk , by (4.2) and (4.9),

W̃k(t) = ρk t + mk

μk
Âk(t) + 1

μk
B̂k(λk t) − 1

μk
D̃k(t) = ρk

ρ
Z̃(t),

so, W̃ n
k (t) = ρk Z̃ n(t)/ρ ⇒ 0 w.p.1. For the functional LIL of Tk , by (4.2) and (4.9),

T̃k(t) − T̄k(t) = 1

μk

[

D̄k(t) + mk Âk(t) + B̂k(λk t) − mkλk

ρ
Z̃(t) − Ŝk(T̄k(t))

]

− T̄k(t)

= 1

μk

[

mk Âk(t) + B̂k(λk t) − mkλk

ρ
Z̃(t) − Ŝk(ρk t)

]

,

so, with (4.8),

T̃ n
k (t) = 1

μk

mk Âk(nt) + B̂k(λknt) − Ŝk(ρknt)

ϕ(n)
− ρk

ρ
Z̃ n(t) ⇒

√
ρkc2k
μk

G(1), w.p.1,

because Z̃ n(t) → 0 w.p.1. For the functional LIL of Tk,i , by (4.2) and (4.9), T̃ n
k,i (t) =

Z̃ n
k (t) ⇒ 0, w.p.1.

The critically loaded case If ρ = 1, then by Lemma 2.1,

X̄k(t) = (η, η, η, t, η, η,mkλk t, ρk t, η) . (4.10)

For the functional LILs of Z and Y , by (4.2), (4.7) and (4.10), and the continuity of 


and �, we have, for all t ∈ [0, 1], w.p.1, Ỹ n(t) = �(Ñ n)(t) ⇒
√

ρ̂K�(G(1)), Z̃ n(t) =

(Ñ n)(t) ⇒

√
ρ̂K
(G(1)). For the functional LIL of Dk , by (4.2) and (4.10),

D̃k(t) − D̄k(t)

= mk Âk(t) + B̂k(λk t) − mkλk Ỹ (t) − mkλk

K∑

i=1

[
mi Âi (t) + B̂i (λi t)

μi
+ V̂i (miλi t)

]

= mk Âk(t) + B̂k(λk t) + mkλk inf
0≤s≤t

{
K∑

i=1

[
mi Âi (s) + B̂i (λi s)

μi
+ V̂i (miλi s)

]}
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− mkλk

K∑

i=1

[
mi

μi
Âi (t) + 1

μi
B̂i (λi t) + V̂i (miλi t)

]

= μk
mk Âk(t) + B̂k(λk t)

μk
+ mkλk inf

0≤s≤t

{[
mk Âk(s) + B̂k(λks)

μk

]

+
∑

i �=k

[
mi Âi (s) + B̂i (λi s)

μi
+ V̂i (miλi s)

]

+ V̂k(mkλks)

⎫
⎬

⎭

− mkλk

⎧
⎨

⎩
mk Âk(t) + B̂k(λk t)

μk
+
∑

i �=k

[
mi Âi (t) + B̂i (λi t)

μi
+ V̂i (miλi t)

]

+ V̂k(mkλk t)

⎫
⎬

⎭

= Gd
k

⎛

⎝mk Âk(t) + B̂k(λk t)

μk
,
∑

i �=k

[
mi Âi (t) + B̂i (λi t)

μi
+ V̂i (miλi t)

]

+ V̂k(mkλk t)

⎞

⎠ ,

(4.11)

where Gd
k is defined in (3.14). By Lemma 4.2, for all t ∈ [0, 1], w.p.1.,

⎛

⎝
mk Âk (nt)+B̂k (λknt)

μk

ϕ(n)
,

∑
i �=k

[
mi Âi (nt)+B̂i (λi nt)

μi
+ V̂i (miλi nt)

]
+ V̂k(mkλknt)

ϕ(n)

⎞

⎠⇒ G2

(√
ρ̂K

)
.

Because Gd
k is a continuous mapping, we have, for all t ∈ [0, 1],

D̃n
k (t) =

Gd
k

(
mk Âk (nt)+B̂k (λknt)

μk
,
∑

i �=k

[
mi Âi (nt)

μi
+ B̂i (λi nt)

μi
+ V̂i (miλi nt)

]
+ V̂k(mkλknt)

)

ϕ(n)

⇒ Gd
k (G2(

√
ρ̂K )), w.p.1.

For the functional LIL of Qk , by (4.2) and (4.10),

Q̃k(t) = mkλk Ỹ (t) + mkλk

K∑

i=1

[
mi

μi
Âi (t) + 1

μi
B̂i (λi t) + V̂i (mkλi t)

]

= mkλk
[
Ỹ (t) + Ñ (t)

] = mkλk Z̃(t).

So, for all t ∈ [0, 1], w.p.1., Q̃n
k (t) = mkλk Z̃ n(t) ⇒ mkλk


(√
ρ̂KK(1)

)
. For the functional

LIL of Wk , by (4.2) and (4.10),

W̃k(t) = ρk t + mk

μk
Âk(t) + 1

μk
B̂k(λk t) − 1

μk
D̃k(t),

= 1

μk

[
D̄k(t) + mk Âk(t) + B̂k(λk t) − D̃k(t)

]
= ρk

[
Ỹ (t) + Ñ (t)

] = ρk Z̃(t),

so, for all t ∈ [0, 1], w.p.1., W̃ n
k (t) = ρk Z̃ n(t) ⇒ ρk


(√
ρ̂KG(1)

)
. For the functional LIL

of Tk , by (4.2) and (4.10),

T̃k(t) − T̄k(t) = 1

μk

[
D̃k(t) − Ŝk(T̄k(t))

]
− T̄k(t)

= −ρk Ỹ (t) − ρk

K∑

i=1

[
mi

μi
Âi (t) + 1

μi
B̂i (λi t) + V̂i (miλi t)

]
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+ mk Âk(t) + B̂k(λk t) − Ŝk(ρk t)

μk

= ρk inf
0≤s≤t

{
K∑

i=1

[
mi

μi
Âi (s) + 1

μi
B̂i (λi s) + V̂i (miλi s)

]}

− ρk

K∑

i=1

[
mi

μi
Âi (t) + 1

μi
B̂i (λi t) + V̂i (miλi t)

]

+ 1

μk

[
mk Âk(t) + B̂k(λk t) − Ŝk(ρk t)

]

= ρk inf
0≤s≤t

{
K∑

i=1

1

μi

[
mi Âi (s) + B̂i (λi s) − Ŝi (ρi s)

]
}

− ρk

K∑

i=1

1

μi

[
mi Âi (t) + B̂i (λi t) − Ŝi (ρi t)

]
+ 1

μk

[
mk Âk(t) + B̂k(λk t) − Ŝk(ρk t)

]

=
⎧
⎨

⎩

1
μk

Gd
k (

mk Âk (t)+B̂k (λk t)−Ŝk (ρk t)
μk

,
∑

i �=k
mi Âi (t)+B̂i (λi t)−Ŝi (ρi t)

μi
), K > 1,

1
μ1

Gd
1(

m1 Â1(t)+B̂1(λ1t)−Ŝ1(ρ1t)
μ1

, 0) = −�(
m1 Â1(·)+B̂1(λ1·)−Ŝ1(·)

μ1
)(t), K = 1.

(4.12)

where 
 and Gd
k is defined in (2.8) and (3.14) respectively. Notice that, for all t ∈ [0, 1],
1

μ1

[
m1 Â1(t) + B̂1(λ1t) − Ŝ1(t)

]
⇒ G

(√
c21/μ

)

, w.p.1,

and for K > 1, w.p.1.,

⎛

⎝
1
μk

[
mk Âk(nt) + B̂k(λknt) − Ŝk(ρknt)

]

ϕ(n)
,

∑
i �=k

1
μi

[
mi Âi (t) + B̂i (λi t) − Ŝi (ρi t)

]

ϕ(n)

⎞

⎠

⇒ G2
(√

ρ̂K

)
,

so, for all t ∈ [0, 1], if K = 1, then

T̃ n
1 (t) = −�

(
1

μ1

[
m1 Â1(·) + B̂1(λ1·) − Ŝ1(·)

])

(t)

⇒ −�

(

G
(√

c21/μ

))

, w.p.1,

if K > 1, then w.p.1., we have

T̃ n
k (t) = 1

μk

Gd
k

(
mk Âk (nt)+B̂k (λknt)−Ŝk (ρknt)

μk
,
∑

i �=k
mi Âi (t)+B̂i (λi t)−Ŝi (ρi t)

μi

)

ϕ(n)

⇒ 1

μk
Gd

k

(
G2
(√

ρ̂K

))
.

For the functional LILs of Tk,i , by (4.2) and (4.10), for all t ∈ [0, 1], w.p.1. we have T̃ n
k,i (t) =

Z̃ n
k (t) ⇒

√
ρ̂K
(G(1)).
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The overloaded case If ρ > 1, then by (2.9), for any t ≥ 0,

X̄k(t)=
(

(ρ − 1)t, η, (ρ−1)t,
t

ρ
,

(

1− 1

ρ

)

mkλk t,

(

1− 1

ρ

)

ρk t,
mkλk t

ρ
,
ρk t

ρ
, (ρ−1)t

)

.

(4.13)

We first show the functional LIL of Y . By (4.2) and (4.13), since Ñ is a Brownian motion
with positive drift (ρ − 1). Then limt→∞ Ñ (t)/t = +∞ w.p.1, and

sup
t≥0

Ỹ (t) = sup
t≥0

�(Ñ )(t) < +∞ and Ỹ n(t) = Ỹ (nt)

ϕ(n)
≤ supt≥0 Ỹ (t)

ϕ(n)
→ 0, w.p.1

as n → ∞, for all t ≥ 0. As a direct result, we have, for all t ∈ [0, 1], Ỹ n(t) ⇒ 0. For the
functional LIL of Z , by (4.2) and (4.13), Z̃(t)− Z̄(t) = Ñ (t)− N̄ (t)+ Ỹ (t), and with (4.7),
for all t ∈ [0, 1], w.p.1.

Z̃ n(t) = Ñ n(t) + Ỹ n(t) ⇒
√

ρ̂K G(1). (4.14)

For the functional LIL of Dk , by (4.2) and (4.13),

D̃k(t) − D̄k(t) = mk Âk

(
t

ρ

)

+ B̂k

(
λk t

ρ

)

− mkλk

ρ
Ỹ (t)

− mkλk

ρ

K∑

i=1

[
mi

μi
Âi

(
t

ρ

)

+ 1

μi
B̂i

(
λi t

ρ

)

+ V̂i

(
miλi t

ρ

)]

≡ D̃′
k(t) − mkλk

ρ
Ỹ (t), (4.15)

where

D̃′
k(t) =

(

1 − ρk

ρ

)[

mk Âk

(
t

ρ

)

+ B̂k

(
λk t

ρ

)]

− mkλk

ρ

⎧
⎨

⎩

∑

i �=k

mi Âi

(
t
ρ

)
+ B̂i

(
λi t
ρ

)

μi
−

K∑

i=1

Ŝi
(

ρi t
ρ

)

μi

⎫
⎬

⎭

is a driftless Brownian motion with variance parameter (d∗
k )2 defined in (3.9). So, for all

t ∈ [0, 1], we have,

D̃n
k (t) = D̃′

k(nt)

ϕ(n)
− λk

ρ
Ỹ n(t) ⇒ G(d∗

k ), w.p.1,

where the convergence holds because Ỹ n(t) ⇒ 0 w.p.1.
For the functional LIL of Qk , by (4.2) and (4.13), mkλk t − Q̄k(t) = D̄k(t), and

Q̃k(t) − Q̄k(t) = mk Âk(t) + B̂k(λk t) − [D̃k(t) − D̄k(t)
] ≡ Q̃′

k(t) + mkλk

ρ
Ỹ (t),

where

Q̃′
k(t) = mk Âk(t) + B̂k(λk t) −

{
mk Âk(τ̄ (t)) + B̂k(λk τ̄ (t))

−mkλk

ρ

K∑

i=1

[
mi

μi
Âi (τ̄ (t)) + 1

μi
B̂i (λi τ̄ (t)) + V̂i (D̄i (t))

]}
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= mk Âk(t) + B̂k(λk t) − mk Âk

(
t

ρ

)

− B̂k

(
λk t

ρ

)

+ 1

ρ
mkλk

K∑

i=1

[
mi

μi
Âi

(
t

ρ

)

+ 1

μi
B̂i

(
λi t

ρ

)

+ V̂i

(
miλi t

ρ

)]

= mk Âk(t) + B̂k(λk t) −
{

−mkλk

ρμk

[

mk Âk

(
t

ρ

)

+ B̂k

(
λk t

ρ

)

− Ŝk

(
ρk t

ρ

)]

+
[

mk Âk

(
t

ρ

)

+ B̂k

(
λk t

ρ

)]

−mkλk

ρ

∑

i �=k

[
mi

μi
Âi

(
t

ρ

)

+ 1

μi
B̂i

(
λi t

ρ

)

− 1

μi
Ŝi

(
ρi t

ρ

)]
⎫
⎬

⎭

=d

[

1 − 1 − ρk
ρ√

ρ

]
[
mk Âk(t) +√λk B̂k(t)

]
− ρk

√
ρk

ρ
√

ρ
Ŝk(t)

+ mkλk

ρ

∑

i �=k

[
mi

μi
Âi

(
t

ρ

)

+ 1

μi
B̂i

(
λi t

ρ

)

− 1

μi
Ŝi

(
ρi t

ρ

)]

is a driftless Brownian motion with variance parameter (q∗
k )2 defined in (3.10). So, for all

t ∈ [0, 1],

Q̃n
k (t) = Q̃′

k(nt)

ϕ(n)
+ λk

ρ
Ỹ n(t) ⇒ G(q∗

k ), w.p.1,

where the convergence holds because Ỹ n(t) ⇒ 0 w.p.1.
For the functional LIL of Wk , by (4.2) and (4.13), ρk t − W̄k(t) = D̄k(t)/μk , and

W̃k(t) − W̄k(t) = mk

μk
Âk(t) + 1

μk
B̂k(λk t) + V̂k(mkλk t)

− V̂k

(
mkλk t

ρ

)

− 1

μk

[
D̃k(t) − D̄k(t)

]

≡ W̃ ′
k(t) + ρk

ρ
Ỹ (t),

where as Q̃′
k(t),

W̃ ′
k(t) = mk

μk
Âk(t) + 1

μk
B̂k(λk t) − 1

μk
Ŝk(ρk t) + 1

μk
Ŝk

(
ρk t

ρ

)

− mk

μk
Âk

(
t

ρ

)

− 1

μk
B̂k

(
λk t

ρ

)

+ ρk

ρ

{
1

μk

[

mk Âk

(
t

ρ

)

+ B̂k

(
λk t

ρ

)

− Ŝk

(
ρk t

ρ

)]

+
∑

i �=k

1

μi

[

mi Âi

(
t

ρ

)

+ B̂i

(
λi t

ρ

)

− Ŝi

(
ρi t

ρ

)]
⎫
⎬

⎭

= 1

μk

[

1 − 1√
ρ

(

1 − ρk

ρ

)] [
mk Âk(t) +√λk B̂k(t) − √

ρk Ŝk(t)
]
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+ ρk

ρ
√

ρ

∑

i �=k

1

μi

[
mi Âi (t) +√λi B̂i (t) − √

ρi Ŝi (t)
]
,

is a driftless Brownian motion with variance parameter (w∗
k ) defined in (3.11). So, for all

t ∈ [0, 1], by Ỹ n(t) ⇒ 0 w.p.1, we have

W̃ n
k (t) = W̃ ′(nt)

ϕ(n)
+ ρk

ρ
Ỹ n(t) ⇒ G(w∗

k ), w.p.1.

For the functional LIL of Tk , by (4.2), (4.13) and (4.15), T̄k(t) = D̄k(t)/μk , and

T̃k(t) − T̄k(t) = 1

μk

[
D̃k(t) − D̄k(t)

]− 1

μk
Ŝk

(
ρk t

ρ

)

≡ T̃ ′
k(t) − ρk

ρ
Ỹ (t),

where as Q̃′
k(t),

T̃ ′
k(t) = 1

μk

[

mk Âk(τ̄ (t)) + B̂k(λk τ̄ (t)) − Ŝk

(
ρk t

ρ

)]

− mkλk

μkρ

K∑

i=1

[
mi Âi (τ̄ (t))

μi
+ B̂i (λi τ̄ (t))

μi
+ V̂i (D̄i (t))

]

= 1

μk

[

mk Âk

(
t

ρ

)

+ B̂k

(
λk t

ρ

)

− Ŝk

(
ρk t

ρ

)]

− ρk

ρμk

[

mk Âk

(
t

ρ

)

+ B̂k

(
λk t

ρ

)

− Ŝk

(
ρk t

ρ

)]

− ρk

ρ

∑

i �=k

1

μi

[

mi Âi

(
t

ρ

)

+ B̂i

(
λi t

ρ

)

− Ŝi

(
ρi t

ρ

)]

= 1

μk
√

ρ

(

1 − ρk

ρ

)[
mk Âk(t) +√λk B̂k(t) − √

ρk Ŝk(t)
]

− ρk

ρ
√

ρ

∑

i �=k

1

μi

[
mi Âi (t) +√λk B̂i (t) − √

ρi Ŝi (t)
]

is a driftless Brownian motion with variance parameter (t∗k )2 defined in (3.12). So, for

all t ∈ [0, 1], together with Ỹ n(t) ⇒ 0 w.p.1, we have T̃ n
k (t) = T̃ ′

k (nt)
ϕ(n)

− ρk
ρ
Ỹ (nt) ⇒

G(t∗k ), w.p.1. For the functional LILs of Tk,i , by (4.2), (4.13) and (4.14), T̃ n
k (t) = Z̃ n

k (t) ⇒√
ρ̂K G(1), w.p.1. ��

Proof of Theorem 3.3 Case ρ < 1. By (3.13), sinceKZ = KQk = KWk = KTk,i = 0, we have
for k = 1, 2, . . . , K and i = 1, 2, . . . , Z∗

sup = Z∗
inf = Q∗

k,sup = Q∗
k,inf = W ∗

k,sup = W ∗
k,inf =

T ∗
k,i,sup = T ∗

k,i,inf = 0. For Y , Tk and Dk , we firstly observe that supx∈G(δ) x(1) = δ and
inf x∈G(δ) x(1) = −δ for any δ > 0, where the supremum and infimum are actually attained
for the functions x(t) = δt and x(t) = −δt respectively. This and (3.13) imply that (3.20)
holds.

Case ρ = 1. For some δ > 0, we have supx∈
(G(δ)) x(1) = δ and inf x∈
(G(δ)) x(1) =
0, where the supremum and the infimum are actually attained for the functions x(t) = δt
and x(t) = 0 respectively. Taking δ = √ρ̂K yields Z∗

sup and Z∗
inf given in (3.21). As a direct

result, we also get Q∗
k,sup, Q

∗
k,inf ,W

∗
k,sup,W

∗
k,inf and T ∗

k,i,sup, T
∗
k,i,inf given in (3.21).
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For the LIL limits of Y , we first consider the set �(G(δ)) for some δ > 0. On the
one hand, by (3.6) |y(b)| ≤ δ

√
b ≤ δ for any y ∈ G(δ) and 0 ≤ b ≤ 1, then,

supx∈�(G(δ)) x(1) = supy∈G(δ) sup0≤s≤1{−y(s)} = δ, where the supremum is attained for
the function y(s) = −s. On the other hand, notice y(0) = 0 for any y ∈ G(δ), then
inf x∈�(G(δ)) x(1) = inf y∈G(δ) sup0≤s≤1{−y(s)} = 0, where the infimum is attained for the

function y(s) = 0. Taking δ = √ρ̂K yields Y ∗
sup and Y ∗

inf given in (3.21).
Case ρ > 1. The analysis for the case ρ > 1 is similar with the case ρ < 1. ��

Proof of Corollary 3.2 We only show T ∗
1,sup and T ∗

1,inf in the critically loaded. As the proof of
Theorem 3.3 supx∈�(G(c1/

√
μ1))

x(1) = c1/
√

μ1 and infx∈�(G(c1/
√

μ1)) x(1) = 0, where the
supremumand the infimumare actually attained for the functions x(t) = c1t/

√
μ1 and x(t) =

0 respectively. This, together with Theorem 3.2 (ii): KT1 = {−�(x) : x ∈ G
(
c1/

√
μ1
)}
,

implies that T ∗
1,sup = 0, T ∗

1,inf = − λ
1/2
1
μ1

c1. ��

5 Numerical examples

We consider two numerical examples to obtain insights of the LIL limits in Theorem 3.3.

5.1 Sensitivity to the traffic intensity�

Example 5.1 (Discontinuity of the LIL limits in the traffic intensity) We consider the model
(GI B/GI )5/1/FCFS in Sect. 2, let the first-order parameters λk = 0.2 for k = 2, 3, 4, 5,
μk = mk = 1 for k = 1, 2, . . . , 5, and the second-order parameters ca,k = cb,k = cs,k = 1
for all k = 1, 2, . . . , 5, and increase λ1 from zero. The idea is to increase the ρ = λ1 + 0.8
from 0.8 so that we can walk through the underloaded, critically loaded and overloaded cases
in Theorem 3.3. We plot the LIL limits in Fig. 1.

Example 5.1 show us that λ1 = 0.2 (or ρ = 1) is a unique point of discontinuity of the LIL
limits Z∗

sup, Q
∗
k,sup,W

∗
k,sup, Z

∗
inf , Q

∗
k,inf ,W

∗
k,inf as functions of λ1. More explicit numerical

details of Example 5.1 is given to supplement Sect. 5.

5.2 Impact from the second-order parameters

Example 5.2 (Impact of the LIL limits from the second-order parameters) We consider
(GI B/GI )5/1with the first-order parametersmk = μk = 1 and ca,k = ca, cb,k = cb, cs,k =
cs for all k = 1, 2, . . . , 5. We try to see the dependence of the LIL limits in Theorem 3.3
on the second-order parameters ca, cb, cs for λ1 = 0.1 (underloaded), λ1 = 0.2 (critically
loaded) and λ1 = 0.4 (overloaded) through varying one of ca, cb, cs with others being fixed.

(i) The superior and inferior limits as functions of ca are in Table 1.

q∗
1 =

√√
√
√
[

0.4

(

1 − 2

3
√
1.2

)2

+ 2

27

]

ca,

q∗
k =

√√
√
√
[

0.2

(

1 − 5

6
√
1.2

)2

+ 1

43.2

]

ca, k �= 1.
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(a) (b)

 (c)  (d)

(e) (f) 

Fig. 1 The LILs as functions of λ

(ii) The superior and inferior limits as functions of cs are in Table 2.

w∗
1,sup =

√(
43

27
− 4

3
√
1.2

)

cs, w∗
k,sup =

√√
√
√
[(

1 − 5

6
√
1.2

)2

+ 5

36

]

cs, k �= 1.

Remark 5.1 (For Example 5.2) (i) In Example 5.2, we do not show the impact from cb,k
because it is similar with ca,k . The corresponding numerical data are in Table 1 with ca
replaced by cb. (ii) All the LIL limits are unary linear functions of second-order parameters
ca or cs . (iii) The LIL-version Little’s law, Q∗

k,sup = μkW ∗
k,sup and Q∗

k,inf = μk Z∗
k,inf with

μk = 1, holds in the underloaded and critically loaded cases and fails in the overloaded case
with cs �= 0, seeTable 2. (iv) TheLIL-version relation betweenworkloads Z andWk is clear in
the underloaded and critically loaded cases by Z∗

sup =∑5
k=1 W

∗
k,sup and Z∗

inf =∑5
k=1 W

∗
k,inf

and is unclear in the overloaded case. (v) The LIL-version relation between busy time Tk and
idle time Y is clear in the underloaded case by Y ∗2

sup = ∑5
k=1 T

∗2
k,sup and Y ∗2

inf = ∑5
k=1 T

∗2
k,inf
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and is unclear in the overloaded case. (vi) The LIL-version relation between busy time Tk
and departure Dk is proportional in the underloaded and the overloaded with cs = 0, that is,
D∗
k,sup = μkT ∗

k,sup and D∗
k,inf = μkT ∗

k,inf with μk = 1 and is unclear in the overloaded case.

6 Conclusion

We have developed the functional LIL and its corresponding LIL in (1.1) for the
(GI B/GI )K /1 queueing model for the total workload, idle time, queue length, workload,
busy time, departure and sojourn time processes. Refining the functional strong law of large
numbers and the corresponding limiting fluid functions which are often used to approximate
the mean values, the functional LIL and its corresponding LIL provide estimates for the
asymptotic rate of the increasing stochastic variability of these performance functions in two
forms: the functional and numerical. We have identified these functional LIL and its corre-
sponding LIL limits as explicit functional sets and functions of the first and second moments
of the interarrival and service times of the primitive data. Our results, Theorems 3.2 and 3.3
, present all the functional LILs and its corresponding LIL limits covering all three regimes:
the underloaded, the critically loaded, and the overloaded, categorized by the traffic intensity.
For every case in the proof, we operate the strong approximation method in two steps: the
first is for the functional LIL and the second is for the corresponding LIL by the obtained
functional LIL sets.
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