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Abstract
Recent studies reveal significant overdispersion and autocorrelation in arrival data

at service systems such as call centers and hospital emergency departments. These

findings stimulate the needs for more practical non-Poisson customer arrival mod-

els, and more importantly, new staffing formulas to account for the autocorrelative

features in the arrival model. For this purpose, we study a multiserver queueing sys-

tem where customer arrivals follow a doubly stochastic Poisson point process whose

intensities are driven by a Cox–Ingersoll–Ross (CIR) process. The nonnegativity

and autoregressive feature of the CIR process makes it a good candidate for mod-

eling temporary dips and surges in arrivals. First, we devise an effective statistical

procedure to calibrate our new arrival model to data which can be seen as a specifi-

cation of the celebrated expectation–maximization algorithm. Second, we establish

functional limit theorems for the CIR process, which in turn facilitate the deriva-

tion of functional limit theorems for our queueing model under suitable heavy-traffic

regimes. Third, using the corresponding heavy traffic limits, we asymptotically solve

an optimal staffing problem subject to delay-based constraints on the service levels.

We find that, in order to achieve the designated service level, such an autoregres-

sive feature in the arrival model translates into notable adjustment in the staffing

formula, and such an adjustment can be fully characterized by the parameters of our

new arrival model. In this respect, the staffing formulas acknowledge the presence of

autoregressive structure in arrivals. Finally, we extend our analysis to queues having

customer abandonment and conduct simulation experiments to provide engineering

confirmations of our new staffing rules.
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1 INTRODUCTION

Poisson arrival is one of the most prevalent assumptions in

queueing theory. Evidence that supports its validity is pro-

vided by Brown et al. (2005) and Kim and Whitt (2014).

A Poisson input facilitates the mathematical analysis and

produces insights on capacity planning for service systems.

For example, the performance of an Mt/G/∞ model with

a nonhomogeneous Poisson arrival process and infinite ser-

vice capacity has a simple expression which gives rise to

the celebrated square-root-staffing rule. Although natural and

convenient from a mathematical point of view, the Poisson

assumption does not always align well with real-life data.

Indeed, a growing body of empirical research has shown that

the variance of the arrival count over a fixed time period

tends to dominate its mean, a common feature known as

overdispersion (see e.g., Jongbloed & Koole, 2001; Mathi-

jsen et al., 2018). This phenomenon violates the fundamental

property that underpins the Poisson input assumption and

can potentially affect performance evaluation and choice of

staffing rules. Indeed, it has been shown by He et al. (2016)

that, in order to achieve a desired quality-of-service level for
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queues with overdispersed arrivals, one must make significant

adjustments on the staffing level.

It is found that the overdispersion can sometimes be

explained by the strong autocorrelation of arrival counts

over successive periods during the day (Ibrahim et al., 2016;

Ibrahim & L’Ecuyer, 2013; Shen & Huang, 2008; Ye

et al., 2019). Such intraday dependencies may arise due to

a variety of reasons. For example, when a firm sends noti-

fication letters/emails to its group of customers, or runs a

promotion on social media, there could be a temporary surge

in the number of calls for the purpose of inquiry; in call cen-

ters designated for emergency services, a common event (e.g.,

a wide-scale power outage) may trigger bursts of calls within

a short period of time, resulting in a much higher call vol-

umes over that time duration. Redials and reconnects may also

give rise lead to a certain degree of dependency in call arrival

counts (see Ding et al., 2015). These features of dependencies

observed in practice serve as the primary motivation for this

work.

The central theme of this paper is to investigate how the

autocorrelation structure of an arrival process can affect the

performance of a stochastic service system. Specifically, we

model customer arrival process A(t) as a doubly stochastic

Poisson process (DSPP) of which the intensities are driven

by a possibly time-dependent Cox–Ingersoll–Ross (CIR) pro-

cess. Specifically, we assume

A(t) ≡ Πa

(
∫

t

0

𝜆(u)du
)

t ≥ 0, (1)

where Πa(⋅) is a unit-rate Poisson point process and 𝜆(t)
is a stochastic process satisfying the following stochastic

differential equation (SDE)

d𝜆(t) = 𝜅(𝛼 − 𝜆(t))dt + 𝜎
√
𝜆(t)d(t), (2)

where 𝜅, 𝜎 and 𝛼 are model parameters and (⋅) is a stan-

dard Brownian motion that is independent of the point process

Π(⋅). In fact, (2) represents the dynamics of a CIR process

with mean-reversion speed 𝜅, mean-reversion level 𝛼, and

volatility rate parameter 𝜎. For brevity, hereinafter we refer to

the above arrival process simply as MCIR.

To visualize the impact of the autoregressive feature of

the arrivals on the queueing performance, we consider an

MCIR/M/s example with different volatility parameters. See

Figure 1 for the simulation results of the waiting-time dis-

tributions. It is apparent from the plot that the degree of

variability can exert considerable influence on the system

performance. In particular, higher variability in arrival times

leads to heavier tails and hence longer waits. We will later

show that these parameters also play an important role in the

staffing decision.

The CIR process is typically used to model instantaneous

interest rates (see, e.g., Dias & Shackleton, 2011; Moreno

& Platania, 2015). Because of its nice properties, the CIR

process can be leveraged to model the randomly varying

intensities of a counting process. First, the CIR process will

FIGURE 1 Estimated waiting-time distributions of an MCIR/M/s queue

from computer simulation with 𝛼 = 100, 𝜅 = 1, s = 100, service rate 𝜇 = 1

[Colour figure can be viewed at wileyonlinelibrary.com]

never become negative under appropriate regularity condition

(known as the Feller condition). Second, the process period-

ically spikes but has a tendency to return to its mean level.

Lastly, the process is very amenable to statistical inference.

For example, the method of maximum likelihood estimation

can be easily implemented for this process (see, e.g., Over-

beck & Rydén, 1997). These properties make the CIR process

a natural candidate for modeling the unpredictable and tem-

porary fluctuations observed in arrival data at modern call

centers.

We are by no means the first to use the CIR process to model

the intensities of a counting process. The use of a stationary

CIR process to model the intensity of call arrivals has been

proposed by Zhang et al. (2013) and Zhang et al. (2014). In

Zhang et al. (2014) the authors demonstrate that the proposed

traffic model can faithfully reproduce the behavior of interest

observed in practice and derive the scaling limit for the arrival

process concerning “convergence in marginal distribution.”

By contrast, we show that the arrival process (with proper

scaling) converges weakly to a limit in the Skorokhod topol-

ogy, a stronger version of Theorem 2 in Zhang et al. (2014);

in addition, we propose practical staffing rules based on the

resulting heavy-traffic approximation.

Our paper relates to a growing body of research that con-

siders random arrival rate. Brown et al. (2001) develop an

autoregressive model for the arrival rate that can capture

the correlation across successive time periods. Built upon

the work of Harrison and Zeevi (2005) and Whitt (2006)

uses fluid-model analysis to derive staffing solutions for a

call center with uncertain arrival rate and employee absen-

teeism. Bassamboo et al. (2010) too consider a capacity sizing

problem for a call center facing significant uncertainty in call

volume. Our paper differs from theirs in three key aspects.

First, Bassamboo et al. focus on an “uncertainty-dominated”

regime meaning that the noise in arrival rate is in the same

order as the mean, whereas we assume the noise in arrival

http://wileyonlinelibrary.com


SUN AND LIU 3

rate to be of smaller magnitude relative to the mean value.

Second, the arrival models are different—despite assuming a

random arrival intensity, they consider the value of the arrival

rate to be fixed once it is realized; in contrast, we view the

arrival rate itself as a stochastic process possessing an autore-

gressive feature as encoded in the CIR model assumption.

Third, the mathematical treatments are different—they solve

the staffing problem by adopting a newsvendor formulation

whereas we seek to directly adjust the extant square-root

staffing rule to account for added variability via the approach

of heavy-traffic approximations. More recently, an economic

model to aid staffing decisions in the presence of random

arrival rates (with a co-sourcing option) has been developed

by Koçağa et al. (2015). In contrast, we do not consider eco-

nomic models; instead, we work directly with performance

measures associated with customer delays and abandonments.

Infinite-server models with Hawkes arrival process have been

studied in Gao and Zhu (2018), Daw and Pender (2018)

and Koops et al. (2017) analyze an infinite-server queue fed

by a Cox process of which the intensities are driven by a

short-rate process. Unlike Hawkes or short-rate process which

exhibits jumps and decays exponentially over time, our inten-

sity process is continuous, positive and mean-reverting. These

properties are especially suitable for modeling traffic sources

with smoothly changing intensity. Moreover, the CIR process

is more parsimonious as the main features are characterized

by fewer parameters, each having clear physical interpreta-

tion. It is worth noting that both Hawkes and CIR processes

are special cases of affined point processes as considered by

Zhang et al. (2015).

Moreover, instead of studying infinite-server models, we

deal exclusively with constrained systems in which customer

delay and abandonment can actually occur. Admittedly, an

infinite-server queue can sometimes be used to approximate

queueing systems with many servers, yet a model with infi-

nite capacity provides little indication of how the temporary

dips and surges in arrivals can affect delay-related metrics.

On the other hand, real-world service systems tend to oper-

ate in a resource-constrained environment. This is especially

true for modern call centers and healthcare settings where

the challenge is to translate service-quality metrics (often

expressed in terms of delay statistics) into concrete staffing

decisions. An analysis of large-scale constrained systems, as

we do here, sheds light on how the autocorrelation structure of

the arrival process affects key performance indicators such as

queue length and customer waiting time. Ultimately, we hope

that our findings can help service providers make informed

staffing decisions in the presence of stochastic demand fluc-

tuations.

Typically, arrival models that possess autoregressive fea-

tures are amenable to short-term forecasting, thereby being

useful for service systems where the staffing level can be eas-

ily adjusted in a real-time fashion to handle unexpected shifts

in demand. In the present study, we do not intend to incorpo-

rate forecasting into short-term capacity planning decisions;

we do, however, perceive this as an interesting area for future

research. In this respect, we feel that our proposed solutions

are more suitable for systems with inflexible staffing.

1.1 Our contributions

• First, we establish what we believe the first functional weak

law of large numbers (FWLLN) and functional central

limit theorem (FCTL) for the DSPP arrival process with

a CIR rate (see Lemmas 3.1 and 3.2). Because CIR pro-

cesses are widely used in many application domains, these

functional limit theorems can be of independent interest.

• Second, to investigate the impact of the DSPP arrivals

with CIR rate on the system performance and opti-

mal staffing decisions, we first provide the many-server
heavy-traffic (MSHT) FCLT limit for a critically loaded

MCIR/M/s model. In particular, we show that the limit of

the headcount process is a piecewise-linear Gaussian pro-

cess driven by a superposition of a Brownian motion and an

integrated Ornstein–Uhlenbeck (OU) process. Hence the

limit of the headcount process is not a diffusion process,

which stands in contrast to He et al. (2016) where despite

a general arrival process the limit of the headcount process

is indeed a diffusion process.

• Third, using the FCLT result of the MCIR/M/s queue, we

solve an optimal staffing problem for the MCIR/M/s queue

subject to a delay-based constraint, asymptotically as the

system scale increases. In particular, we show that the

traditional square-root staffing is ineffective in achieving

desired performance target in the presence of autoregres-

sive arrivals; accordingly, we propose a refined staffing

formula and illustrate through extensive numerical exper-

iments the effectiveness of the our new staffing rule. We

then extend the framework to an MCIR/M/s+M with cus-

tomer abandonment and discuss the implications of the

MCIR arrival on staffing decisions.

1.2 Organization

In Section 2.1, we formally introduce the DSPP with

CIR-driven intensities and describe the corresponding

MCIR/M/s model. In Section 2.2, we discuss possible ways

to simulate and calibrate DSPPs with CIR-driven intensi-

ties. In Section 3 we introduce the asymptotic framework and

establish the MSHT FCLT. In Section 4 we propose novel

staffing rules in the presence of autoregressive inputs based

on the FCLT and we confirm the effectiveness of our staffing

formulas by conducting numerical studies. In Section 5 we

extend our analysis to the MCIR/M/s+M model having cus-

tomer abandonment. All proofs are given in Section 6. We

give concluding remarks in Section 7.

1.3 Notations

We denote by R, R+, and N, respectively, the sets of all real

numbers, nonnegative reals and nonnegative integers. We use
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⌈a⌉ to denote the least integer that is greater than or equal to a
and z𝛼 denote the quantile value from a standard normal dis-

tribution at 𝛼. For a real-value function f , we write f [x1, x2]

as shorthand for f (x2)− f (x1). We use 𝔢 to denote the constant

function of one. Let (([0,∞),R), J1) denote the space of

càdlàg (right continuous with left limits) functions equipped

with the Skorokhod J1 topology, and write “⇒” for weak

convergence. All random entities introduced in this paper are

supported by a complete probability space (Ω, , P).

2 A QUEUEING MODEL WITH
AUTOREGRESSIVE ARRIVALS

In this section we formally introduce the MCIR/M/s model

fed by arrivals according to a DSPP with CIR-driven inten-

sities. We also discuss algorithms to simulation sample paths

of a DSPP with CIR intensity and explain how its model

parameters can be calibrated from arrival data.

2.1 The MCIR/M/s model

We study the MCIR/M/s queueing model having arrivals

according to a DSPP described by (1) with CIR-driven inten-

sity process 𝜆(⋅) given by (2), and i.i.d. service times follow-

ing an exponential distribution with rate 𝜇. Throughout, we

assume that the following Feller condition is satisfied so that

𝜆(⋅) is always positive.

Assumption 1 The model parameters 𝜅, 𝜎

and 𝛼 satisfy 2𝜅𝛼 ≥ 𝜎2.

To facilitate the presentation, we summarize below some

key properties of the DSPP that will prove useful in the

subsequent analysis.

1. (Markov property) The process (𝜆(t), A(t)) is

Markovian with respect to the natural filtra-

tion ( t)t≥ 0, and the intensity process 𝜆(t)
itself is also Markovian. For all time inter-

vals (t1, t2],

E[A[t1, t2]| t1 ]
a.s.
= E

[
∫

t2

t1
𝜆(u)du| t1

]
,

where we have defined A[t1, t2]≡A(t2)−A(t1).

2. (Martingale property) By the definition of

the intensity process 𝜆(⋅) in (2), we have

that A(t) − ∫ t
0
𝜆(u)du is a square integrable

martingale with quadratic variable given by

∫ t
0
𝜆(u)du, so that

(
A(t) − ∫

t

0

𝜆(u)du
)2

− ∫
t

0

𝜆(u)du

is also a martingale.

To proceed, we stipulate that the system adopts a

work-conserving policy; that is, no customers wait in queue

if there is an available server. Let Q(t) denote the number of

customers in queue at time t, Furthermore, we use E(t) to rep-

resent the number of customers that have entered service, all

up to time t. By flow conservation,

Q(t) = Q(0) + A(t) − E(t). (3)

In addition, let B(t) be the number of busy servers at time

t and D(t) be the cumulative number of customer that have

departed due to service completion up to time t. Again by flow

conservation, we have

B(t) = B(0) + E(t) − D(t). (4)

Finally, let X(t) denote the head-count process recording the

total number of customers in the system (both in queue and in

service). Adding up (3) and (4) yields

X(t) = Q(t) + B(t) = X(0) + A(t) − D(t). (5)

Alternatively, one can derive (5) directly from flow conser-

vation.

It remains to specify the staffing levels (number of servers).

In practice, staffing levels are selected to trade off oper-

ational efficiency and service quality. Here we follow a

constraint-satisfaction approach; that is, the system operator

or service provider specifies a performance metric and then

assigns the least staffing level that satisfies the target. Of

particular interest is a constraint on the probability of delay

P(V(t) > 0) ≤ 𝜚, (6)

where V(t) represent the potential waiting time at time t, that

is, the waiting time of an arriving customer at time t assuming

the customer has infinite patience. It has long been known that

to stabilize the delay probability, the system would have to be

critically loaded and has negligible delay (V(t)≈ 0)( see, e.g.,

Feldman et al., 2008; Garnett et al., 2002). For our purpose,

we propose a modified version of the classical square-root

staffing (SRS) rule as given below

s ≡ ⌈𝛼∕𝜇 +
√
𝛼c⋆⌉,

where c⋆ is some constant traditionally referred to as the

safety-staffing coefficient.

2.2 Simulation and calibration of DSPP with CIR
intensities

The CIR process is very easy to simulate. Indeed, there is

an exact simulation algorithm by sampling chi-square ran-

dom variables (see, e.g., Section 3.4 in Glasserman, 2013). To

develop an intuitive understanding of the CIR-driven arrival

process, in Figure 2 we depict the simulated sample paths

of three CIR intensity processes, one for each scenario as

covered in Figure 1. The sample path is obtained by adopt-

ing the exact simulation algorithm as detailed in Glasser-

man (2013, p. 124). Then arrivals are generated by using the
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FIGURE 2 Sample paths of CIR-driven intensity processes with 𝛼 = 100, 𝜅 = 1 and 𝜎 = 0.5,1,2 [Colour figure can be viewed at wileyonlinelibrary.com]

thinning method for nonhomogeneous Poisson process (see,

e.g., Ross, 1996, Chap. 2). We observe enlarging the parame-

ter value of 𝜎 would lead to an increase in the magnitude of the

random fluctuations, thereby bringing in more variability into

the system. Moreover, by increasing (decreasing) the param-

eter value of 𝜅, one can raise (reduce) the speed at which the

intensity reverts to the long-run mean. Therefore it follows

that the CIR process not only possesses analytical tractability

but also permits versatile correlation structure.

As mentioned in the introduction, estimation of param-

eters for a CIR process based on realized trajectories can

be done fairly easily. Parameter estimation for a DSPP with

CIR intensity based on observed arrival counts is, how-

ever, not so straightforward, due to the underlying intensity

process being not directly observable. To address this, one

may resort to various techniques dealing with missing data.

One typical example is the expectation–maximization (EM)

algorithm designed to infer parameters in statistical models,

where the model output depends on unobserved data (see,

e.g., Lange, 2010, Chap. 13). The algorithm iterates between

an expectation (E) step, which produces the expectation of

the log-likelihood evaluated using the current parameter esti-

mates, and a maximization (M) step, which seeks parameters

maximizing the expected log-likelihood found in the E step.

To apply the EM in the present setting, we may regard

the CIR intensity as roughly constant on a sufficiently small

time interval. As a result, we can divide the time horizon

into L smaller intervals and act as if the intensity equals

some (unknown) constant 𝜆l on interval l, for l = 1, … ,

L. Let Nl denote the number of arrivals observed on the

lth interval and write N≡ {N1, … , NL}. Similarly, we define

𝜆≡ {𝜆1, … , 𝜆L}. Now, for a set of unknown parameters

Θ≡ (𝜅, 𝜎, 𝛼), the likelihood function can be expressed as

(Θ; 𝜆,N) = p(𝜆|Θ)p(N|𝜆).
Note that the above likelihood function admits an analytical

expression, as both densities on the right-hand side, namely,

p(𝜆|Θ) and p(N| 𝜆), are in closed form. Given the current esti-

mates of the parameters Θ(k), the E step then calculates the

expected value of the log-likelihood function q(Θ|Θ(k))with

respect to the distribution of 𝜆 given Θ(k); that is,

q(Θ|Θ(k)) = E𝜆|Θ(k) [log(Θ; 𝜆,N].

Next, the M step seeks the parameters that maximize this

quantity; that is,

Θ(k+1) ≡ arg max
Θ

q(Θ|Θ(k)).

Once this iterative procedure converges, the final output Θ*

will be used as estimates for the unknown model parameters.

3 MANY-SERVER HEAVY-TRAFFIC
ANALYSIS

The presence of a stochastic arrival rate makes an exact anal-

ysis of the queueing system extremely difficult. This leads us

to apply fairly standard approximation techniques used in the

extant literature. In particular, we assume that the system is

facing high demand volume and has a large number of servers.

Below, we formally introduce our asymptomatic framework

http://wileyonlinelibrary.com
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and perform some preliminary analysis in Section 3.1. The

main results are presented in Section 3.2.

3.1 Asymptotic framework

We consider an asymptotic framework in which the long-run

average demand volume grows to infinity, that is, 𝛼→∞ for

𝛼 given as in (2). Following the convention in the literature,

we will use n in place of 𝛼 as the scaling parameter. More

precisely, we let

𝛼n ≡ n (7)

be the mean-reversion level of the intensity process in the

nth stochastic model. Accordingly, we subscript all relevant

notation with n to capture the dependence on this scaling

parameter n. For example, An denotes a DSPP with intensity

process 𝜆n satisfying

d𝜆n(t) = 𝜅(𝛼n − 𝜆n(t))dt + 𝜎
√
𝜆n(t)d(t). (8)

Note that 𝜅 and 𝜎 are fixed—this sequence of CIR pro-

cesses indexed by the scaling parameter n shares common

mean-reversion speed and volatility rate. It is readily checked

that with this scaling, the mean value of the intensity process

𝜆n(⋅) and the number of arrivals over any fixed time period

blow up linearly by a factor of n. The remainder of this section

is devoted to showing that a sequence of properly scaled inten-

sity processes converges weakly to a Gaussian process. For

that purpose, we define

𝜆n(t) ≡ 𝜆n(t)∕n and 𝜆n(t) ≡ √
n(𝜆n(t) − 1).

The result below establishes the FCLT for the sequence of

intensity processes.

Lemma 3.1 (FWLLN and FCLT for the

arrival intensity process). Suppose that the
intensity process for the nth model follows (8).
If, in addition, there is convergence of the initial
distribution at time 0, that is, if

𝜆n(0) ⇒ 𝜆(0) in R as n → ∞, (9)

then we have the joint convergence

(𝜆n(t), 𝜆n(t)) ⇒ (𝔢, 𝜆(t)) in 2 as n → ∞, (10)

where 𝜆(⋅) satisfies the stochastic integral
equation

𝜆(t) = 𝜆(0) − 𝜅 ∫
t

0

𝜆(u)du + 𝜎(t). (11)

Hence the limit of the arrival-rate process
is an OU process whose solution admits a
closed-form expression:

𝜆(t) = e−𝜅t𝜆(0) + 𝜎 ∫
t

0

e−𝜅(t−u)d(u). (12)

To proceed, we define the scaled versions of the arrival

process:

An(t) ≡ An(t)∕n and Ân(t) ≡ n−1∕2(An(t) − nt). (13)

Per our previous discussion, it is natural to center An(t)
around nt. We will show in Lemma 3.2 that this centering

indeed gives rise to meaningful limit.

Lemma 3.2 (FWLLN and FCLT for the

arrival process). The centered and normalized
version of the arrival process Ân satisfies a
FCLT:

Ân(t) ⇒ Â(t) ≡ 𝜆(t) +(t) in  as n → ∞ (14)

for

(t) ≡ ∫
t

0

𝜆(u)du, (15)

where 𝜆(⋅) is given in (11) and 𝜆(⋅) is a stan-
dard Brownian motion independent of (⋅).
As an immediate consequence, we have the
FWLLN

An(t) ⇒ t in  as n → ∞

jointly with (14).

According to Lemma 3.2, the diffusion-scaled arrival pro-

cess Ân(⋅) converges to a Gaussian process which is character-

ized by two independent terms. The first term is a Brownian

motion that arises from the inherent variability in the Poisson

processΠa, while the second term is an integrated OU process

that stems from the stochasticity of the intensity process. For

s≤ t the covariance between Â(s) and Â(t) can be computed

using the following formula

Cov(Â(s), Â(t)) = 𝜎2

𝜅3
(𝜅s − 1 + e−𝜅s + e−𝜅t)

− 𝜎2

2𝜅3
(e−𝜅(t−s) + e−𝜅(t+s)) + s.

In particular, the formula for the variance is given by

Var(Â(t)) =
(

1 + 𝜎2

𝜅2

)
t− 3𝜎2

2𝜅3
+ 2𝜎2

𝜅3
e−𝜅t − 𝜎2

2𝜅3
e−2𝜅t. (16)

When 𝜎 = 0, we have Var(An(t)) = nt. So with determin-

istic arrival rate, the variance of the number of arrivals up

to time t is equal to its mean. This is the level of variability

that staffing levels are typically chosen to handle. If, however,

𝜎 = 2 and 𝜅 = 1, then from (16) it follows that the variance

can be roughly five times the mean.

3.2 Many-server heavy-traffic limits

To proceed, it is convenient and natural to consider a sequence

of queueing systems, indexed by the scaling parameter n.

In the nth model, customers arrive to the system according

to An, that is, An(t) represents the number of arrivals over

[0, t]. The service rate 𝜇 is held fixed, but the staffing process

is allowed to grow linear with n, so that the corresponding

staffing function satisfies

sn = ⌈n∕𝜇 +
√

nc⌉, (17)
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where c is a design parameter to be determined to meet the

performance target (6).

3.3 Heavy-traffic scalings

For the headcount and queue-length processes, define their

centered and normalized versions as follows:

X̂n(⋅) ≡ n−1∕2(Xn(⋅) − sn), Q̂n(⋅) ≡ n−1∕2Qn(⋅) and

V̂n(⋅) ≡ √
nVn(⋅).

The theorem below establishes the FCLT results showing

that the above diffusion-scaled processes converge weakly to

their corresponding limits.

Theorem 3.1 (FCLT for the critically-loaded

MCIR/M/s model). Suppose customers arrive
according to the DSPP An(⋅) with intensity pro-
cess 𝜆n(⋅) given by (8), the system is staffed
according to (17). If in addition,

X̂n(0) ⇒ X̂(0)

jointly with (9), then

(X̂n, Q̂n, V̂n) ⇒ (X̂, Q̂, V̂) in 3 as n → ∞,

jointly with (10), in which V̂(t) = Q̂(t) =
[X̂(t)]+, and the limiting process X̂ satisfies

X̂(t) = X̂(0)−𝜇ct+𝜇 ∫
t

0

[X̂(u)]−du+(t)+
√

20(t), (18)

where  is given by (15), and 0 is a standard
Brownian motion, independent of .

Proof Theorem 3.1 is in agreement with

Theorem 2 of Halfin and Whitt (1981) except

for the additional term (⋅) that arises nat-

urally from the autoregressive assumption of

the arrival-rate process. The proof of FCLT

in Halfin and Whitt (1981) uses Stones crite-

ria. Here our proof of Theorem 3.1 is more

complex. Here Stone’s criteria does not apply

because X̂n is not a Markov process. For this

reason we resort to the martingale approach as

employed by Puhalskii (2013). The proof starts

by showing that the properly scaled arrival,

departure, and abandonment processes are all

stochastically bounded. The stochastic bound-

edness then implies required fluid limits or

FWLLN for random-time-changed stochastic

processes, needed for an application of the con-

tinuous mapping theorem with the composition

map. One major difference is that, unlike the

proof for an M/M/n+M system wherein the

scaled arrival processes converge weakly to a

Brownian motion, our scaled arrival processes

converge to a Gaussian process having two inde-

pendent terms as characterized by Lemma 3.2.

It is worth mentioning that the randomly vary-

ing arrival rates introduce additional variability

that propagates as time progresses. The addi-

tional source of randomness requires proper

handling in making staffing decisions. This

issue will be further explored in Section 4. ▪

4 OPTIMAL STAFFING SUBJECT TO
DELAY-BASED CONSTRAINT

A common approach for achieving prescribed performance

target is to use the square root staffing law to estimate the

amount of capacity needed assuming that call arrivals follow a

Poisson process with a fixed rate parameter (see Mandelbaum

& Zeltyn, 2009; also Liu & Whitt, 2017) for the case with

customer feedback. As we will demonstrate below, when the

arrival rates themselves are modeled as a random process, a

naive application of the square-root staffing rule can fail to

achieve the desired levels of service quality. Thus, it would

be worthwhile to investigate techniques for selecting staffing

levels in the context of stochastic arrival rates.

The proposition below, characterizing the stationary distri-

bution of the pair (X̂, 𝜆), follows from the general theory of

diffusion processes.

Proposition 4.1 The pair of limiting pro-
cesses (X̂, 𝜆) has a stationary distribution whose
density p(x, y; c) is continuous on the boundary
x = 0 and twice differentiable elsewhere, and
satisfy the following Fokker–Planck equation
(FPE):

− 𝜕

𝜕x
[(a(x) + y)p(x, y)] + 𝜅

𝜕

𝜕y
[yp(x, y)]

+ 𝜕2

𝜕x2
p(x, y) + 𝜎2

2

𝜕2

𝜕y2
p(x, y) = 0, (19)

where

a(x) ≡
{

−𝜇(c + x) if x ≤ 0,

−𝜇c if x > 0.

Remark 4.1 (Computational considerations).

Being a partial differential equation, the FPE in

general does not admit an analytical solution.

On the other hand, since the FPE involves just

two variables, it can solved very efficiently via

numerical schemes such as finite-difference and

finite-element methods.

Proposition 4.1 suggests that in order to stabilize the prob-
ability of delay (PoD) at the target value 𝜚 for a many-server

MCIR/M/s system, it suffices to adopt the SRS formula

s ≡ ⌈𝛼∕𝜇 +
√
𝛼c⌉. (20)



8 SUN AND LIU

0 0.5 1 1.5 2 2.5 3 3.5 4

c

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1
P

ro
ba

bi
lit

y 
of

 d
el

ay

CIR
(c): =0.5

CIR
(c): =1

CIR
(c): =2

CIR
(c): =5

HW
(c)

FIGURE 3 Comparing the two PoD functions 𝜁CIR(c) and 𝜁HW(c), with

𝜇 = 1, 𝜅 = 0.5, 𝜎 = 0.5,1,2,5 [Colour figure can be viewed at

wileyonlinelibrary.com]

with the constant c solving the equation

𝜚 = 𝜁 CIR(c) ≡ ∫
∞

0 ∫R

p(x, y; c)dydx

= P(X̂(∞) > 0) ≈ P(Xn(∞) ≥ sn). (21)

When 𝜎 = 0, the FPE given in (19) reduces to an ordinary

differential equation (ODE)

− 𝜕

𝜕x
[a(x)p(x)] + 𝜕2

𝜕x2
p(x) = 0,

from which we recover the Halfin–Whitt formula for the

limiting density

p(x) =
⎧⎪⎨⎪⎩

c
√
𝜇 exp{−c

√
𝜇x}𝜁HW(c), if x ≥ 0,

𝜙(c
√
𝜇+x)

Φ(c
√
𝜇)

(1 − 𝜁HW(c)), if x < 0,

where 𝜁HW(c) is the well-known Halfin–Whitt function,

defined as

𝜁HW(c) ≡
(

1 +
c
√
𝜇Φ(c

√
𝜇)

𝜙(c
√
𝜇)

)−1

; (22)

(see Halfin & Whitt, 1981). Before we test the performance

of the staffing formula (17) with c given by (21), we first

compare the two formulas. In Figure 3, we visualize that the

limiting PoD increases as 𝜎 increases by graphing 𝜁CIR(c) and

𝜁HW(c), with 𝜇 = 1, 𝜅 = 0.5, 𝜎 = 0.5,1,2,5. Indeed, in order to

asymptotically achieve the same PoD target, we need a bigger

c for a higher system variability. Our results here provide qual-

itative insights on how many extra servers would be needed

to account for the CIR feature in the arrival process.

We next conduct a computer simulation to test the staffing

formula using Equation (21). In Figure 4, we show the delay

probabilities obtained from computer simulation with targets

𝜚 = 0.25,0.5,0.75. We estimate these delay probabilities by

performing 2000 independent replications with the staffing

function specified by (20) and (21). We observe that for

each of the three cases the delay probabilities are remarkably

accurate and stable.

Finally, we quantify the consequence of neglecting the CIR

feature in the arrival process when making staffing deci-

sions. Specifically, we report estimations of the PoD for an

MCIR/M/s model with the staffing level determined as if it

were a corresponding M/M/s model (according to the staffing

formula (17) with c determined by the inversion of the func-

tion (22)). In Table 1, we consider PoD target 𝜚 = 0.3,0.5,0.7,

𝜅 = 𝜇 = 1, 𝜎 = 0.2,2, and 𝛼 ranging from 20 to 500. For

each PoD target 𝜚, we use the simulated PoD 𝜚̂ to quantify

the effectiveness of the staffing levels by giving the relative

error: (𝜚̂ − 𝜚)/𝜚 (“rel. err.” in the table). First, we observe

that the simulated PoD under the correct (CIR) staffing is

effective when the system scale 𝛼 is large, and it becomes

inaccurate as 𝛼 decreases (see column “CIR”). On the other

hand, we show that simply treating an MCIR/M/s model as an

M/M/s model leads to poor results; indeed, the simulated PoD

are higher than the corresponding target 𝜚 (so the system is

understaffed), especially when 𝜎 is not close to 0.

5 MODEL WITH CUSTOMER
ABANDONMENT

5.1 The MCIR/M/s+M model

We now consider an MCIR/M/s+M queueing which allows

waiting customers to abandon the queue, and assume the

abandonment times of successive arrivals to be i.i.d. exponen-

tial random variables with rate 𝜃. Moreover, we stipulate that

service times and abandonment times are mutually indepen-

dent, independent of the arrival processes.

We use R(t) to represent the number of customers that

have entered service and the number of abandonments from

the queue, up to time t. Due to the inclusion of customer

abandonment, Equations (3) and (5) are modified as

Q(t) = Q(0) + A(t) − E(t) − R(t) (23)

and

X(t) = Q(t) + B(t) = X(0) + A(t) − D(t) − R(t).

In addition, letting H(t) denote the head-of-line waiting

time at time t, that is, the waiting time of the customer who

has been waiting the longest (if there is any). Following Aras

et al. (2018) and Liu and Whitt (2014) we depict E(t) and Q(t)
as

E(t) =
A(t−H(t))∑

i=1

1{𝛾i>V(𝜏i)} and (24)

Q(t) =
A(t)∑

i=A(t−H(t))
1{𝜏i+𝛾i>t} for t ≥ 0, (25)

where the random variables 0≤ 𝜏1 ≤ 𝜏2 ≤ · · · denote arrival

epochs, and 𝛾1, 𝛾2, … represent the abandonment times of

successive customers that arrived to the system.

http://wileyonlinelibrary.com
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FIGURE 4 Probabilities of delay for 𝜚 = 0.25,0.5,0.75, with 𝛼 = 100, 𝜅 = 1, 𝜎 = 2, exponential services with rate 𝜇 = 1 [Colour figure can be viewed at

wileyonlinelibrary.com]

TABLE 1 Simulations of the PoD and relative error for the MCIR/M/s queue under the (a) traditional SRS staffing (column “SRS”) and (b) new CIR staffing
(column “CIR”), with α = 20,100,500, σ = 0.2,2, 𝜚 = 0.3,0.5,0.7

𝝔 = 0.3 𝝔 = 0.5 𝝔 = 0.7

𝜶 𝝈 SRS CIR SRS CIR SRS CIR

500 0.2 Staffing 519 519 512 512 507 507

PoD 0.303± 1.0E−2 0.303± 1.0E−2 0.480± 1.2E−2 0.480± 1.2E−3 0.655± 1.5E−3 0.655± 1.5E−3

rel. err 1.14% 1.14% −4.00% −4.00% −6.37% −6.37%

2 Staffing 519 527 512 517 507 509

PoD 0.456± 1.2E−2 0.321± 1.4E−2 0.610± 1.0E−2 0.497± 1.5E−3 0.739± 1.8E−2 0.698± 1.7E−2

rel. err 52.08% 7.13% 22.09% −0.70% 5.61% −0.25%

100 0.2 Staffing 109 109 106 106 103 103

PoD 0.279± 8.0E−3 0.279± 8.0E−3 0.447± 2.0E−3 0.447± 2.0E−3 0.690± 9.0E−3 0.690± 9.0E−3

rel. err −6.97% −6.97% −10.68% −10.68% −1.46% −1.46%

2 Staffing 109 112 106 108 103 104

PoD 0.454± 8.3E−3 0.338± 7.1E−3 0.595± 9.6E−3 0.494± 2.6E−3 0.781± 1.3E−2 0.709± 1.3E−2

rel. errr 51.23% 12.53% 18.89% −1.22% 11.55% 1.27%

20 0.2 Staffing 24 24 23 23 22 22

PoD 0.298± 6.4E−3 0.298± 6.4E−3 0.418± 1.6E−3 0.418± 1.6E−3 0.575± 1.1E−2 0.575± 1.1E−2

rel. errr −0.6% −0.6% −16.44% −16.44% −17.89% −17.89%

2 Staffing 24 26 23 24 22 22

PoD 0.481± 1.3E−2 0.324± 9.9E−3 0.589± 8.0E−3 0.479± 2.1E−3 0.700± 1.5E−3 0.700± 1.5E−3

rel. err 60.28% 8.03% 17.70% −4.18% 0.1% 0.1%

5.2 Many-server heavy-traffic analysis

Following the asymptotic framework and staffing formula

in Section 3.1, we will next give the MSHT FCLT for the

MCIR/M/s+M queue.

Theorem 5.1 (FCLT for the critically loaded

MCIR/M/s+M model). Suppose customers

arrive according to the DSPP An(⋅) with inten-
sity process 𝜆n(⋅) given by (8), the system is
staffed according to (17). If in addition

X̂n(0) ⇒ X̂(0)

jointly with (9), then

(X̂n, Q̂n, V̂n) ⇒ (X̂, Q̂, V̂) in 3 as n → ∞

http://wileyonlinelibrary.com


10 SUN AND LIU

jointly with (10), in which V̂(t) = Q̂(t) =
[X̂(t)]+, and the limiting process X̂ satisfies

X̂(t) = X̂(0) − 𝜇ct − ∫
t

0

m(X̂(u))du +(t) +
√

21(t),

where m(x)≡ −𝜇x− + 𝜃x+ and 1 is a standard
Brownian motion, independent of .

Theorem 5.1 is in agreement with Theorem 2 of Garnett

et al. (2002) except for the additional term (⋅) due to the

autoregressive assumption of the arrival-rate process. The

randomly varying arrival rates not only introduce additional

variability but also leads to non-Markovian heavy-traffic lim-

its as demonstrated in the preceding theorem.

Paralleling Proposition 4.1, we can formally characterize

the stationary distribution of (X̂, 𝜆), for X̂ given in (10),

through the solution to a partial differential equation.

Proposition 5.1 The pair of limiting pro-
cesses (X̂, 𝜆) given in Theorem 5.1 has a sta-
tionary distribution whose density p(x, y; c) is
continuous on the boundary x = 0 and twice dif-
ferentiable elsewhere, and satisfy the following
FPE:

− 𝜕

𝜕x
[(ã(x) + y)p(x, y)] + 𝜅

𝜕

𝜕y
[yp(x, y)]

+ 𝜕2

𝜕x2
p(x, y) + 𝜎2

2

𝜕2

𝜕y2
p(x, y) = 0, (26)

where

ã(x) ≡
{

−𝜇c − 𝜇x if x ≤ 0,

−𝜇c − 𝜃x if x > 0.

5.3 Optimal staffing

Similar to the no-abandonment case, the staffing problem

requires solving the FPE as specified by (26). Unfortunately,

the FPE does not admit no closed-form solution except for

very special cases. To gain greater simplicity and tractability,

we first focus attention on a special case where service rate

and the abandonment rate are equal, that is, 𝜃 = 𝜇. We next

provide a heuristic formula for the more general case 𝜃 ≠𝜇.

5.3.1 The special case: 𝜽 = 𝝁

If 𝜃 = 𝜇, we would get m(x)≡𝜇x− + 𝜃x+ = 𝜇x, and the

resulting FPE can be solved explicitly, yielding

p(x, y; c) = (2𝜋)(det D)−1∕2

× exp
(
−1

2
(x − c, y)D−1(x − c, y)⊤

)
, (27)

where D is a square matrix, given as

D ≡
⎛⎜⎜⎝

1

𝜇
+ 𝜎2

2𝜇𝜅(𝜇+k)
𝜎2

2𝜅(𝜇+k)
𝜎2

2𝜅(𝜇+k)
𝜎2

2𝜅

⎞⎟⎟⎠ .

Upon integrating out the variable y in (27), we arrive at the

following result.

Proposition 5.2 Suppose 𝜇 = 𝜃. Then, as
t→∞, the sequence of random variables X̂(t)
in (29) converges weakly to X̂(∞) which is a
Gaussian random variable with mean −c and
variance k where k is given by

k ≡ k(𝜇, 𝜅, 𝜎) ≡
√

1

𝜇
+ 𝜎2

2𝜇𝜅(𝜇 + 𝜅)
. (28)

To explain why Equation (26) leads to an explicit solution

for 𝜇 = 𝜃, we see that the limiting process X̂ can be solved

explicitly and expressed as

X̂(t) = e−𝜇t
(

X̂(0) − c𝜇 ∫
t

0

e𝜇udu

+ ∫
t

0

e𝜇u𝜆(u)du +
√

2∫
t

0

e𝜇ud2(u)
)
. (29)

From the above expression, it is easy to see that the mean

value E[X̂(t)] converges to −c as t goes to infinity. For the

variance, we have

Var(X̂(t)) = 𝜗1(t) + 𝜗2(t),

where

𝜗1(t) ≡ Var

(
∫

t

0

e−𝜇(t−u)𝜆(u)du
)

= 𝜎2

(𝜇 − 𝜅)2 ∫
t

0

(e−2𝜅(t−s) − 2e−(𝜅+𝜇)(t−s) + e−2𝜇(t−s))ds

= 𝜎2

(𝜇 − 𝜅)2

(
1

2𝜅
(1 − e−2𝜅t) − 2

𝜅 + 𝜇
(1 − e−(𝜅+𝜇)t)

+ 1

2𝜇
(1 − e−2𝜇t)

)
,

and

𝜗2(t) ≡ 2Var

(
∫

t

0

e−𝜇(t−u)d2(u)
)

= 2∫
t

0

e−2𝜇(t−u)du = 1

𝜇
(1 − e−2𝜇t).

Combining the above expressions and then sending t→∞
leads us to the same result as stated in Proposition 5.2.

Continuing our discussion on optimal staffing, we recall

that the number of servers was selected according to the

square-root staffing formula, as in (20). Then Proposition 5.2

states that when the mean-reversion level 𝛼 is large, we can

heuristically approximate the steady-state distribution of the

number of customers in the MCIR/M/s+M model having
equal service and abandonment rates as follows:

X(∞) = 𝛼∕𝜇 +
√
𝛼k , (30)

where  denotes a standard normal random variable. Com-

bining the square-root staffing formula and (30) yields a

simple normal approximation:

P(V(∞) > 0) = P(X(∞) > s) ≈ P( > c∕k).
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From this normal approximation we immediately under-

stand that, in order to stabilize the delay probability at the

target value 𝜌, one ought to choose

c = z1−𝜌 ⋅ k ≡ z1−𝜌 ⋅

√
1

𝜇
+ 𝜎2

2𝜇𝜅(𝜇 + 𝜅)
(31)

in the square-root staffing formula (20).

Relative to the no-abandonment case as discussed in

Section 4, the expression in (31) is fairly explicit and there-

fore generate clear-cut operational insights; it demonstrates

that ignoring a randomly varying arrival rate in making

staffing decisions can result in severe under-staffing. In other

words, in the presence of stochastic arrival rates, the use of

square-root staffing rule would lead to a higher safety staffing

level compared to the case where the arrival rate is deter-

ministic. This happens because of a mismatch between the

realized arrival rate and the number of servers available to

handle those demands. As a result, the service provider needs

to hire additional staff (corresponding to the second term

under the square root) to ensure that the system can handle

a larger-than-foreseen demand volume without jeopardizing

the quality of service.

5.3.2 The general case: 𝜽≠𝝁

It is widely recognized that a normal approximation may not

be appropriate when 𝜃 ≠𝜇; see, for example, the discussion in

Section 6 of Feldman et al. (2008). As previously alluded to,

the more general scenario (𝜃 ≠𝜇) requires numerically solv-

ing a two-dimensional partial differential equation. As a rule

of thumb, we propose the following staffing formula

s ≡ ⌈𝛼∕𝜇 +
√
𝛼c⌉

with the constant c solving the equation

𝜚 = 𝜁(c) ≡
[

1 +
h((c∕k)

√
𝜇∕𝜃)√

𝜇∕𝜃h(−c∕k)

]−1

, (32)

where k is as in (28). To see that this heuristic approximation

can deliver a good performance, consider the special scenario

with 𝜎 = 0, in which case the expression in (33) reduces to[
1 +

h((c
√
𝜇)
√
𝜇∕𝜃)√

𝜇∕𝜃h(−c
√
𝜇)

]−1

. (33)

The careful reader would notice that this is exactly the

delay-probability formula for M/M/n+M systems as estab-

lished in Garnett et al. (2002). The above formula can be

readily extended to GI/M/n+M systems by replacing c in (33)

with c′ ≡ c∕
√
(1 + c2

a)∕2 for ca being the coefficient of vari-

ation of the time between arrivals. This is because a greater

value of ca would increase system variability by a factor of√
(1 + c2

a)∕2.

On the other hand, the expression in (28) suggests that

the additional variability in the CIR intensity tends to inflate

system variability by a factor of
√

1 + 𝜎2∕(𝜅(𝜅 + 𝜇)). Thus,

thinking of the MCIR/M/s+M model as a GI/M/n+M system,

we should replace c in (33) with c′′ ≡ c∕
√

1 + 𝜎2∕(𝜅(𝜅 + 𝜇))
to achieve effective staffing, which leads up to the formula

given in (32). At this point we conjecture that the right-hand

side of (32) is equal to the integral ∫ ∞
0

∫Rp(x, y)dydx with p(x,

y) solving the FPE (26). Finally, as in Garnett et al. (2002), it

is easy to verify that by passing to the limit 𝜃→ 0, the function

𝜁(c) reduces to a modification of (22) given as

𝜁 ′
CIR

(c) ≡
(

1 +
c∕kΦ(c∕k)
𝜙(c∕k)

)−1

,

which serves as an approximation for 𝜁 CIR(c) given in (21).

To demonstrate that the approximating formula (32) can

achieve the desired time-stable performance. In Figure 5, we

plot the delay probabilities obtained from computer simula-

tion with targets 𝜚 = 0.1,0.3,0.5,0.7,0.9. These delay proba-

bilities are estimated by performing 2,000 independent repli-

cations with the staffing function specified by (20) and (32).

We observe that delay probabilities fluctuate around the tar-

get in each case., i.e., the probabilities of delay are stabilized

remarkably well.

To test the robustness of our staffing algorithm against

system scales, we also perform simulation experiments on

two (much) smaller systems, using the same set of delay

probability targets. Figure 6 illustrates the delay probabili-

ties estimated from 2,000 simulation runs with 𝛼 = 10, 20.

We see that our proposed staffing algorithm remains effective

when 𝛼 = 20 and becomes less efficient when 𝛼 = 10 (our

formula seems to be understaffing the MCIR/M/s+M model

when 𝛼 = 10).

6 PROOFS

In this section, we provide the proofs for Lemma 3.1,

Lemma 3.2, Proposition 4.1 and Theorem 5.1. Since

Theorem 3.1 is a special case of Theorem 5.1, its proof is

omitted.

Proof of Lemma 3.1 Dividing both sides of

(8) by n and in view of (7), we obtain

𝜆n(t) = 𝜆n(0) + 𝜅 ∫
t

0

(1 − 𝜆n(u))du + 𝜎n ∫
t

0

√
𝜆n(u)d(u),

(34)

where we have defined 𝜎n ≡ 𝜎/n. We prove the

FWLLN by arguing that the volatility term van-

ishes as n→∞. Because 𝜎n → 0 as n→∞, it

suffices to argue that the sequence {𝜆n; n ∈ N}
is stochastically bounded. For this purpose we

appeal to Lemma 3.9 of Whitt (2007). In par-

ticular, if the sequence has continuous sample

paths, then the proof of stochastic boundedness

amounts to verifying the modulus of continu-

ity condition (MCC). (We refer the reader to

Theorem 3.2 in Whitt (2007) or Theorem 16.8

in Billingsley (Billingsley, 2013) for a formal
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FIGURE 5 Probabilities of delay for five delay-probability targets 𝜚 = 0.1,0.3,0.5,0.7,0.9, with 𝛼 = 100, 𝜅 = 1, 𝜎 = 2, exponential services and

abandonments with rates 𝜇 = 1 and 𝜃 = 0.5, respectively [Colour figure can be viewed at wileyonlinelibrary.com]
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FIGURE 6 Probabilities of delay for five delay-probability targets 𝜚 = 0.1,0.3,0.5,0.7,0.9, with 𝛼 = 20, 10, 𝜅 = 1, 𝜎 = 2, exponential services and

abandonments with rates 𝜇 = 1 and 𝜃 = 0.5, respectively [Colour figure can be viewed at wileyonlinelibrary.com]

definition of MCC.) Towards that end, we ver-

ify the (sufficient) moment condition laid out in

Lemma 3.11 (ii.b) of Whitt (2007). Note that

E[(𝜆n(t + u) − 𝜆n(t))2| t]

≤ 2E

[(
∫

t+u

t
𝜅(1 − 𝜆n(s))ds

)2
]

+ 2𝜎2
nE

[(
∫

t+u

t

√
𝜆n(s)d(s)

)2
]

≤ 2uE

[
∫

t+u

t
𝜅2(1 − 𝜆n(s))2ds

]
+ 2𝜎2

nCpE

[
∫

t+u

t
𝜆n(s)ds

]

≤ 2u∫
T

0

𝜅2((1 + 2E[𝜆n(s)] + E[𝜆
2

n(s)])ds

+ 𝜎2
nCpu1∕4

(
1 + ∫

T

0

E[𝜆
2

n(s)]ds
)
,

where the first inequality follows from (34),

the second inequality follows by applying the

Cauchy–Schwartz inequality to the first term

and the Burkholder–Davis–Gundy inequality to

the second term, and the third inequality follows

by another application of the Cauchy–Schwartz

inquality. By Lemma 6.1 below we conclude

that both integrals on the right-hand side

approach zero as u→ 0, uniformly overall t and

http://wileyonlinelibrary.com
http://wileyonlinelibrary.com
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n. This shows that the MCC stated in Lemma

3.11 (ii.b) of Whitt (2007) is indeed satisfied.

Then by Lemma 3.9 in Whitt (2007), we obtain

the stochastic boundedness of {𝜆n; n ∈ N} from

which the desired WFLLN follows, namely,

𝜆n ⇒ 𝔢 in  as n → ∞. (35)

Next subtract 𝛼n from both sides of (34) and

scale up both sides of the resulting equation by√
n to get

𝜆n(t) = 𝜆n(0) − 𝜅 ∫
t

0

𝜆n(u)du + 𝜎 ∫
t

0

√
𝜆n(u)d(u). (36)

Note that the mapping g ∶ R ×  → 
taking (b, x) into y determined by the integral

representation

y(t) = b − 𝜅 ∫
t

0

y(u)du + 𝜎 ∫
t

0

√
x(u)d(u) for t ≥ 0

is continuous. We can therefore invoke the con-

tinuous mapping theorem with the established

weak convergence in (35) to obtain the desired

FCLT for the sequence {𝜆n; n ∈ N}. ▪

Lemma 6.1 If 𝜆n ≡ 𝜆n∕n, then for any finite
T > 0 and k∈N, we have

sup
n

sup
0≤t≤T

E[𝜆
k
n(t)] < ∞.

Proof of Lemma 6.1 Recall that

d𝜆n(t) = 𝜅(1 − 𝜆n(t))dt + 𝜎n

√
𝜆n(t)d(t),

where 𝜎n ≡ 𝜎/n. Applying Itô’s formula to the

smooth function f (x) = xk, we obtain

𝜆
k
n(t) = 𝜆

k
n(0) + k𝜅 ∫

t

0

𝜆
k−1

n (u)du − k𝜅 ∫
t

0

𝜆
k
n(u)du

+ k𝜎n ∫
t

0

𝜆
k−1∕2

n (u)d(u). (37)

An application of Young’s inequality yields

𝜆
k−1

n (u) ≤ (k − 1)𝜆
k
n(u)∕k + 1∕k.

Substituting the above into (37) gives

𝜆
k
n(t) ≤ 𝜆

k
n(0) + 𝜅 ∫

t

0

[(k − 1) − k]𝜆
k
n(u)du

+ 𝜅t + k𝜎n ∫
t

0

𝜆
k−1∕2

n (u)d(u).
Taking expectation on both sides, we get

E[𝜆
k
n(t)] ≤ E[𝜆

k
n(0)] + 𝜅 ∫

t

0

[(k − 1) − k]E[𝜆
k
n(u)]du + 𝜅t.

An application of the Gronwall’s inequality

allows us to conclude

E[𝜆
k
n(t)] ≤ C(k,T)eC(k,T)T .

The result immediately follows due to fact

that the bound on the right hand side is indepen-

dent of both t and n. ▪

Proof of Lemma 3.2 First use (13) to write

Ân(t) = Ân,1(t) + Ân,2(t)

where we defined

Ân,1(t) ≡ n−1∕2

(
An(t) − ∫

t

0

𝜆n(u)du
)

and

Ân,2(t) ≡ ∫
t

0

𝜆n(u)du. (38)

The first term is a square integrable martin-

gale with quadratic variation ∫ t
0
𝜆n(u)du con-

verging to t as n→∞. Appealing to the martin-

gale FCLT, we obtain

Ân,1(t) ⇒ 𝜆(t) in  as n → ∞.

For the second term, we obtain the conver-

gence Ân,2(t) ⇒ (t) by applying the continu-

ous mapping theorem with (10). To establish the

desired result, one would need to strengthen the

above individual convergence to joint conver-

gence. The joint convergence of multiple ran-

dom elements is equivalent to individual con-

vergence if they are independent. Here Ân,1 and

Ân,2 are not independent because both involves

the arrival-rate process. But they are condi-

tionally independent given the arrival intensity.

Hence one can establish the required joint con-

vergence by first conditioning and then uncon-

ditioning. In this way, the desired result follows

from yet another application of the continuous

mapping theorem. ▪

Proof of Theorem 5.1 As the proof is rela-

tively standard, we outline the key components

only. To start, subtract (5) by sn and divide

both sides by
√

n to get the stochastic inte-

gral equation satisfied by the diffusion-scaled

process X̂n

X̂n(t) = X̂n(0) − 𝜇ct − ∫
t

0

m(X̂n(u))du

+ Ân(t) − D̂n(t) − R̂n(t), (39)

where m(x)≡ −𝜇x− + 𝜃x+,

D̂n(t) ≡ n−1∕2

(
Dn(t) − 𝜇 ∫

t

0

Bn(u)du
)
,

R̂n(t) ≡ n−1∕2

(
Rn(t) − 𝜃 ∫

t

0

Qn(u)du
)
,

and Ân(t) is defined by (13). It follows eas-

ily that both D̂n and R̂n are square-integrable

martingales with respect to proper filtration. In
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particular, both {D̂n; n ∈ N} and {R̂n; n ∈ N}
are processes that are stochastically bounded.

Upon applying the Gronwall’s inequality to

(39), we conclude that the sequence of pro-

cesses {X̂n; n ∈ N} is stochastically bounded; as

an immediate consequence, the quadratic varia-

tions of D̂n and R̂n converge to the correspond-

ing limits, which in turn implies

D̂n(t) ⇒ 𝜇(t) in  and R̂n(t) ⇒ 0 in , (40)

where 𝜇 is a standard Brownian motion and

0 denotes the zero function. Appealing to

Theorem 4.1 in Pang et al. (2007) with (14)

and (40) yields the desired FCLT result for

{X̂n; n ∈ N}. The assertion Q̂n ⇒ Q̂ is fairly

straightforward and follows from the simple

relation between X̂n and Q̂n. Finally, the FCLT

for {V̂n; n ∈ N} follows from the well-known

snap-shot principle. ▪

7 CONCLUSIONS

Motivated by recent empirical findings on the autocorrela-

tive nature of the arrival data in service systems, we study the

MCIR/M/s model, a queueing model where customers arrive

according to a doubly stochastic Poisson point process with a

random arrival rate driven by a CIR process. We first establish

functional limit theorems for the CIR-driven arrival process,

based on which we develop functional limit theorems for the

queue length process of the MCIR/M/s model. These theoreti-

cal developments serve as a cornerstone of an optimal staffing

problem for the MCIR/M/s queue subject to delay-based con-

straints on the service levels. Our analysis acknowledges the

presence of autoregressive structure in arrivals and lead to

novel staffing rules. In addition, we extend our results to the

MCIR/M/s+M queue having customer abandonment.

There are several venues for future research. One nature

extension is to consider queueing models having MCIR

arrivals subject to service-level constraints based on the more

practical tail probability of delay (TPoD), which is defined as

the probability that the customer delay exceeds a customary

delay target, that is,

P(V(t) > w) ≤ 𝜌, (41)

where w is a pre-specified delay target. TPoD is widely used

as a performance metric in many real-world service systems.

Examples include the 80–20 rule in customer contact centers

and the Canadian triage and acuity scale (CTAS) guideline

that classifies patients in the emergency department into five

acuity levels (Liu, 2018; Liu et al., 2020). Another future

direction is to extend to models having multiple customer

classes where the manager has to concurrently determine

the required staffing level and scheduling policy (assigning

newly idle servers to a waiting customer from one of the

classes). It is especially interesting to investigate necessary

changes to conventional scheduling rules due to the MCIR

arrivals (as opposed to models with Poisson arrivals, e.g., Liu

et al., 2020).
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