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Abstract. There are two basic queue structures commonly adopted in service systems: the
pooled structure, where waiting customers are organized into a single queue served by a
group of servers, and the dedicated structure, where each server has her own queue.
Although the pooled structure, known to minimize the servers’ idle time, is widely used in
large-scale service systems, this study reveals that the dedicated structure, along with the
join-the-shortest-queue routing policy, could be more advantageous for improving certain
performance measures, such as the probability of a customer’s waiting time being within a
delay target. The servers’ additional idleness resulting from the dedicated structure will be
negligible when the system scale is large. Using a fluid model substantiated by asymptotic
analysis, we provide a performance comparison between the two structures for a mod-
erately overloaded queueing system with customer abandonment. We intend to help
service system designers answer the following question: To reach a specified service-level
target, which queue structure will be more cost effective? Aside from structure design, our
results are of practical value for performance analysis and staffing deployment.
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1. Introduction
In designing service systems, it is a common practice
to organize customers with similar service require-
ments into a single queue served by a group of
servers. This pooled queue (PQ) structure (see the left
panel of Figure 1) is deemed highly efficient because
each customer can be served by any available server,
which will minimize the servers’ idleness, thus re-
ducing customers’waiting times (see, e.g., chap. 5.1 in
Kleinrock (1976)). Such a structure is prevalent in call
centers, emergency departments, outpatient clinics, etc.

In certain service systems, customers are assigned
to specific servers upon arrival—that is, each server
has her own queue for waiting customers. Such a
dedicated queue (DQ) structure (see the right panel of
Figure 1) is prevalent in supermarkets, immigration
checkpoints, toll collection stations, etc. Clearly, the
DQ structure is less efficient in terms of capacity utili-
zation because servers could be idle while there are

customers waiting in other servers’ queues. However,
pooling queues may not always improve a service
system’s performance, possible reasons for which
include heterogeneous service requirements, cus-
tomer reaction, and increased service times and costs
(Rothkopf and Rech 1987). In particular, combining
multiple streams of customers whose service time
distributions are significantly different will prolong
the mean customer waiting time (Smith and Whitt
1981, Mandelbaum and Reiman 1998, Whitt 1999). A
service system’s queue structure may also have a
psychological influence on the servers’ productivity.
Recent empirical findings reveal that with their own
queues, servers tend to work faster in certain service
systems such as emergency departments and super-
markets (Song et al. 2015, Wang and Zhou 2018). It
could thus be advantageous to adopt theDQ structure
if the resulting improvement in service productivity
outweighs the loss of capacity utilization.
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In this paper,we compare the two queue structures for
designing large-scale service systems. Because customer
abandonment is ubiquitous in service systems (e.g.,
corresponding to callers’ hanging up in call centers
or patients’ leaving without being seen in emergency
departments), we assume that each customer has a
patience time to model this phenomenon. When the
waiting time exceeds the patience time, a customer
will leave the system without being served. In service
operations, a service level is typically defined as the
percentage of customers served within a given delay.
Service contracts often specify performance targets
for service levels, such as “at least 80% of calls should
be answered within 20 seconds” (which is widely
known as the “80/20 rule”) and “at least 70% of pa-
tients should be seen by physicians within 30 min-
utes.” Bymeans of asymptotic analysis, we demonstrate
that when the system is moderately overloaded (see
condition (1)), it could achieve a lower probability of
delay or a higher service level under the DQ struc-
ture by using the join-the-shortest-queue (JSQ) routing
policy, whereas the induced loss of capacity utiliza-
tion is negligible. Hence, to meet a certain service-
level objective, a large-scale service system may need
fewer servers under the DQ structure than under the
PQ structure. In this sense, the DQ–JSQ design could
be more efficient when staffing costs are expensive.
Such a phenomenon is somewhat surprising at first
glance, as it is a common belief that resource pooling
would generally reduce staffing expenses. By con-
verting the commonly used pooled structure into the

dedicated structure, the resulting cost reduction could
be even greater if the latter design may improve the
servers’ productivity. For example, the DQ structure
may allow agents in a call center to access their own
waiting customers’ background information while
serving other customers. As pointed out by Song et al.
(2015), the more certain ownership of customers can
help agents improve their service rates without com-
promising the quality of service.
To illustrate a queueing system’s performance under

the two queue structures, let us consider a Markovian
model that has a Poisson arrival process and expo-
nentially distributed service and patience times. The
systemhas n � 100 servers, the customer arrival rate is
λ � 60 per minute, the mean service time is 1/μ � 2.0
minutes, and the mean patience time is 1/θ � 4.0
minutes. The system is overloaded with traffic in-
tensity ρ � 1.2. In Table 1, we report some perfor-
mance statistics under the two structures obtained by
simulation. Under the PQ structure, the probability of
delay (denoted by P(De) in the table) is nearly 100%,
and thus almost all customers have to wait before
being served. The JSQ policy is used under the DQ
structure. Because the system is moderately over-
loaded with ρ � 1.2, there are many queues having no
waiting customers in the steady state. When a server
who has no waiting customers completes a service,
the next incoming customer will immediately enter
service without needing to wait. Therefore, we may
expect the probability of delay to be much smaller
than 100% under the DQ–JSQ design: by simulation,
about one-half of customers join idle servers and
receive service immediately. Similarly, if we consider
the percentage of customers whose waiting times are
within 20 seconds (dubbed the “20-second service
level”), wemay expect a higher service level under the
DQ–JSQ design as well: in Table 1, the service levels
are 37.0% and 55.4% under the PQ and DQ structures,
respectively. The simulation results show that the prob-
abilities of customer abandonment (denoted by P(Ab) in
the table) are nearly identical under the two queue struc-
tures. Hence, the servers’ idleness induced by the DQ
structure is negligible when the JSQ policy is used.
When queues are dedicated, the mean potential

waiting time (PWT) of a delayed customer is about
1/μ � 2.0 minutes, greater than the mean PWT under
the PQ structure (about 44 seconds). That is to say,

Figure 1. Service Systems with a Pooled Queue (Left) and
with Dedicated Queues (Right)

Table 1. Performance of a Markovian Queueing System Under the PQ and DQ Structures

Design P(De) (%) 20-second service level (%) P(Ab) (%) Mean PWT (in seconds)

PQ 99.6 37.0 16.7 44
DQ–JSQ 52.5 55.4 17.2 61

Notes. The arrival rate is λ � 60 customers per minute, the mean service time is 1/μ � 2.0 minutes, and
the mean patience time is 1/θ � 4.0 minutes. The JSQ routing policy is used under the DQ structure.
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although about one-half of customers may join idle
servers upon arrival under the JSQ policy, almost all
other customers will join servers with exactly one
customer, having to wait until their servers complete
the current services. The benefit of no delay for some
customers under the DQ–JSQ design is gained at the
price of making others wait longer. Therefore, the DQ
structure may not be appropriate for systems where
the service discipline must be globally first-come,
first-served (FCFS). Instead, the DQ structure could
be more relevant to service systems where customers
are relatively patient and queues are completely or
partially invisible, such as service-oriented call cen-
ters and emergency departments (Mandelbaum et al.
2001, Armony et al. 2015). Nevertheless, the JSQ
policy may help to address this “fairness” issue by
placing each customer in one of the best queue po-
sitions upon arrival (see, e.g., Raz et al. (2005) for how
the JSQpolicymay improve service fairness under the
DQ structure without customer abandonment).

Because exact analysis is generally difficult, we
exploit asymptotic analysis by proving a fluid limit
for the queue length process under the DQ–JSQ de-
sign. Compared with the fluid model for the PQ
structure (see, e.g., Whitt (2004)), our fluid model has
two distinct features: First, the fluid queue length
process must be multidimensional to track the DQ–
JSQ fluidmodel’s state, whereas the PQ fluidmodel is
one dimensional. Second, theDQ–JSQfluidmodel can
be used to characterize and approximate the distribution
of customer waiting times, whereas the PQ fluid model
can only be used to estimate the mean waiting time. In
particular, the DQ–JSQ fluid model allows us to derive
approximate formulas for service levels; by contrast,
more refined diffusion models are required to estimate
service levels under the PQ structure.

The influence of the queue structure on the system’s
performance could be distinct in different operational
regimes. When a many-server system is underloaded
(i.e., the traffic intensity is strictly less than 1), few
customers will experience delay under the PQ structure.
TheDQ–JSQ systemwill be asymptotically equivalent
to the PQ system as the number of servers increases.
When a many-server system is critically loaded (i.e.,
the traffic intensity is about 1), we expect the mean
PWT and the probability of abandonment to be close
to 0 under both designs. Although the probability of
delay is expected to be close to 0 in theDQ–JSQ system
(see Eschenfeldt and Gamarnik (2018) for the analysis
of DQ–JSQ systems without abandonment), it will be
strictly between 0 and 1 in the PQ system (Halfin and
Whitt 1981, Garnett et al. 2002). The asymptotic
analysis in this paper reveals essential differences in
performance under the two queue structures when
the system is moderately overloaded (i.e., condition
(1) holds). As a rigorous basis for the observations

from Table 1, Theorem 5 in Section 5.2 points out that
when the traffic intensity satisfies

1 < ρ < 1 + θ

μ
, (1)

where θ/μ is the ratio of the abandonment rate to the
service rate, there will be a proportion of servers
having no waiting customers under the DQ–JSQ
design. Because such a serverwill be idle upon service
completion, the probability of delay turns out to be
strictly between 0 and 1 under the DQ–JSQ design, as
opposed to being close to 1 under the PQ structure.
That is to say, the DQ–JSQ design allows an over-
loaded system that satisfies condition (1) to achieve
comparable delay performance to a critically loaded
system under the PQ structure (see Remark 1 in
Section 4.1 and Remark 3 in Section 5.1 for more
discussion). If the traffic intensity satisfies ρ ≥ 1 + θ/μ,
the probability of delay will also approach 1 in the
DQ–JSQ system, whereas some other performance
measures still remain distinct under the two queue
structures (see Section EC.5 of the e-companion for
the performance comparison of the two queueing
designs for all ρ > 1).

1.1. Our Contributions
First, this study provides theoretical support for the
DQ–JSQ design in large-scale service systems. We
develop a fluid model for many-server queueing
systemswith customer abandonment, andwe prove a
limit theorem for both process-level and steady-state
convergence to justify the fluid model. Second, using
the fluid model for the DQ–JSQ system, we obtain
approximate formulas not only formean performance
measures but also for service levels. By comparing the
system performance under the two queue structures,
we provide new insights into queueing design: when
there are many servers in the system, the loss of ca-
pacity utilization induced by the DQ structure will
become negligible by employing the JSQ policy, which
strives to balance workload across servers upon the
arrival of each customer. Therefore, the DQ structure
could be beneficial even when servers are identical and
customers are homogeneous. Such results complement
the predominant insights in the literature that the DQ
structure could be advantageous when customers
are heterogeneous (Smith and Whitt 1981), when it
has a positive influence on the servers’ productivity
(Shunko et al. 2018), or when jockeying between
queues is allowed (Rothkopf and Rech 1987). Third,
we solve a staffing problem subject to a service-level
constraint and obtain an asymptotically optimal so-
lution using fluid analysis. Even with a lower staffing
level, the optimal DQ–JSQ design may still be less
sensitive than the optimal PQ design to forecasting
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errors in the customer arrival rate. Although the PQ
structure is prevalent in large-scale service systems,
this study would suggest considering the DQ struc-
ture as well, especially when staffing costs are expen-
sive and fairness may not be a serious concern. Aside
from the above-mentioned contributions, we also dem-
onstrate by numerical experiments that serving as low-
overhead alternatives to the JSQ policy, the power-of-d
policy and the join-idle-queues (JIQ) policymay achieve
comparable performance under the DQ structure.

As queueing design is much more complex in
practice, it is not our intention to assert that one queue
structure would be superior to the other. Instead, we
suggest system designers consider different queue
structures so that their service systems may achieve
performance objectives in a more efficient manner.

1.2. Organization of the Rest of the Paper
Section 2 is devoted to the review of related literature.
We describe the Markovian queueing system under
the DQ–JSQ design in Section 3. In Section 4, we in-
troduce and analyze the fluid model, which is justi-
fied by a limit theorem.We compare the system’s per-
formance under the two queue structures in Section 5
and compare optimal staffing levels subject to a
service-level constraint in Section 6. We evaluate the
performance of the power-of-d policy and the JIQ
policy in Section 7. The paper is concluded in Sec-
tion 8. We leave the proofs of all theorems and propo-
sitions, along with additional numerical examples, in
the e-companion.

2. Related Literature
We sketch related studies in the literature to position
ourwork. Both the literature on the JSQ routing policy
and the literature on asymptotic analysis of many-
server queueing systems are well established. It is not
our intention to be exhaustive.

2.1. Exact and Asymptotic Analysis of
the JSQ Policy

The optimality of the JSQ policy was investigated by
Winston (1977), Weber (1978), and Whitt (1986). It is
well known that when the service time distribution
has a nondecreasing hazard rate, the JSQ policy will
minimize each customer’s individual expectedwaiting
time and the system’s long-run average waiting time.
The asymptotic analysis of this policy in the con-
ventional heavy-traffic regime was studied by Foschini
and Salz (1978), Reiman (1984), Zhang and Wang
(1989), and Zhang et al. (1995). These papers dem-
onstrate that by adopting the JSQ policy, a queueing
system with multiple servers can achieve complete
resource pooling in heavy traffic, thus becoming as-
ymptotically equivalent to a single-server system
having the same service capacity. A recent study by

Eschenfeldt and Gamarnik (2018) is the most relevant
to our work. They established a multidimensional
diffusion limit for the Markovian queueing model
without abandonment when the JSQ policy is used in
the Halfin–Whitt regime. The probability of delay is
proved to be close to 0 in this critically loaded regime.
Their paper proposes a novel representation of the
queue length process by counting servers according
to their respective customer numbers. This approach
enables tractable asymptotic analysis of themany-server
system. Following their work, Braverman (2020)
proved the steady-state convergence using Stein’s
method, Banerjee and Mukherjee (2019) established
the steady-state tail asymptotics of the diffusion limit,
and Mukherjee et al. (2016) analyzed a class of load
balancing policies including the JSQ policy as a special
case. Considering the Markovian queueing model in
the nondegenerate slowdown (NDS) regime, Gupta
and Walton (2019) obtained a diffusion limit for the
customer-count process when the JSQ policy is used.
By diffusion analysis, they demonstrated that in the
NDS regime, the mean sojourn time in the DQ–JSQ
system is at most 14% longer than that in the PQ
system. They also proved that with much less com-
munication overhead, the policy that prioritizes idle
servers first and then servers with one customer is
asymptotically equivalent to the JSQ policy.
To prove the limit theorem,we also adopt the queue

length representation introduced by Eschenfeldt and
Gamarnik (2018). Our work is distinguished from
other recent studies in the following aspects: First, as
an important phenomenon in service systems, cus-
tomer abandonment is investigated in our queueing
models, whereas this feature is not considered in the
previous studies. Second, we focus on overloaded
systems; they studied systems in the Halfin–Whitt
regime or the NDS regime, both of which are critically
loaded regimes. The presence of customer aban-
donment is essential to stabilizing an overloaded
system. Third, from the methodological perspective,
performance analysis in this paper relies on fluid
approximations, whereas the aforementioned studies
are mainly concerned with diffusion approximations.

2.2. Asymptotic Analysis of Many-Server PQ
Systems with Abandonment

One may refer to Ward (2012) for a comprehensive
survey on the asymptotic analysis of many-server PQ
systems. From the long list of brilliant papers on this
topic,wewill name a few that are closely related to our
work. By analyzing a diffusion limit for the M/M/n +M
system with many servers, Garnett et al. (2002) and
Whitt (2004) extended the framework proposed by
Halfin andWhitt (1981) to the Markovian model with
customer abandonment. Whitt (2004) provided use-
ful performance formulas for overloaded systems,
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some of which are used in this paper for comparison.
The asymptotic analysis of many-server systems with
customer abandonment has been extended to general
patience time distributions (Zeltyn and Mandelbaum
2005, Liu andWhitt 2014, Huang et al. 2017, Liu 2018)
and to general service time distributions (Whitt 2006,
Dai et al. 2010, Kang and Ramanan 2012, Aras et al.
2018, He 2020) under various assumptions and in
different regimes.

2.3. Psychological and Behavioral Influence of
Queue Structures

By revealing the psychological and behavioral in-
fluence of queue structures, recent empirical and
methodological studies have added a new dimension
to queueing design for service systems. Jouini et al.
(2008) reported performance improvement in the
call center of a French telecommunications company,
after the queueing configuration had been converted
from a single queue served by all agents into multiple
queues served by independent agent clusters. The
authors argued that the new configuration had mo-
tivated agents to improve their service rates and
quality. They also proposed queueing models to
justify their findings, assuming each agent cluster to
have its own stream of customer arrivals. Unlike in
our study, the JSQ routing policy is not considered in
their paper. Song et al. (2015) examined a set of patient
flow data from an emergency department. When
patients were sent to physicians under the DQ structure,
the mean length of stay was reduced by 17% and the
mean waiting time was reduced by 9% compared with
the statisticsunder thePQstructure.This studyattributes
the performance improvement to physicians’ more
definite ownership of patients under the DQ struc-
ture, which enables them to proactively retrieve pa-
tient information, manage assessment and treatment,
and optimize the patient flow, thus accelerating their
service rates. Wang and Zhou (2018) analyzed a set of
transaction data from a supermarket, along with the
associated queue information collected from video
recordings. Under the DQ structure, cashiers in this
supermarket were 10.7% faster than working under
the PQ structure. Social loafing is believed to be the
main cause of lower productivity when queues are
pooled. Shunko et al. (2018) designed behavioral
experiments to study the impact of the queue struc-
ture on service rates. In their experiments, pooling
queues also slowed down the servers. To better un-
derstand the psychological influence of queue struc-
tures, Armony et al. (2018) proposed a game-theoretic
model in a Markovian queueing system. In their
setting, the DQ structure will reduce the expected
work-in-process when the servers have discretion
over their service rates and exhibit high degrees of
workload aversion or low degrees of busyness aversion.

In contrast to these studies, our paper demonstrates that
the DQ structure may still help improve service levels in
large-scale service systems even if the service rates re-
main unchanged.
The influence of queue structures on customers’

behavior was investigated by Sunar et al. (2018). As in
our paper, their study assumes identical servers and
homogeneous customers. In their setting, customers
must decide whether to join the system based on
queue length information upon arrival. Because the
JSQ policy also requires all queues to be observable,
our paper conveys a similar message as theirs: the DQ
structure may enable us to exploit the queue length of
each server (as opposed to the total number of cus-
tomers under the PQ structure) so that certain per-
formance measures will be improved. (In Section 7,
wewill study the performance of routing policies that
exploit partial queue length information under the
DQ structure.) Although both papers are concerned
with delay-sensitive customers, they remain distinct in
the following aspects: First, we consider customer
abandonment, whereas they considered balking, under
the two queue structures. Second, our study focuses on
how the DQ–JSQ design may render the loss of ca-
pacity utilization negligible and improve service levels;
they focused on how customers’ rational balking de-
cisions may lead to a shorter mean sojourn time and a
greater social welfare under the DQ structure.

3. The DQ–JSQ System
Consider a queueing system with n parallel servers.
Each server has her own queue for waiting customers
who are served on the FCFS basis. Customers arrive
according to a Poisson process with rate λ, and ser-
vice times are independent and exponentially dis-
tributed with mean 1/μ. The system’s traffic intensity
is ρ :� λ/(nμ). Each customer has a random patience
time. When the waiting time exceeds the patience
time, a customer will abandon the system without
being served. Patience times are independent and
exponentially distributed with mean 1/θ. The se-
quences of interarrival, service, and patience times are
mutually independent. We assume that customers
follow the JSQ policy, joining a server that has the
fewest customers upon arrival. Jockeying between
queues is not permitted. Such a queueing system is
referred to as the DQ–JSQ system.
We follow the representationproposedbyEschenfeldt

and Gamarnik (2018) to describe the system’s dynam-
ics. LetQi(t) be the number of serverswho have at least i
customers at time t, eitherwaiting or being served. Then,

0 ≤ Qi+1 t( ) ≤ Qi t( ) ≤ n for i ∈ N0 and t ≥ 0, (2)
where N0 is the set of nonnegative integers. In par-
ticular, Q0(t) � n for t ≥ 0, and Q1(t) is the number of
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busy servers at time t. LetQ(t) :� (Qi(t) : i ∈ N), where
N is the set of positive integers. We refer to Q as the
augmented queue length process.

Let A(t) be the number of customer arrivals by time t.
Wemust track thenumbers of arrivals atdifferentqueues
to describe the dynamics of the augmented queue length
process. To this end, we use Ui(t) to denote the cu-
mulative number of customers by time t whose servers
had at least i customers right before their arrivals. If
someone joins a server having i customers, all servers
must have at least i customers by the JSQ policy.
Therefore, Ui(t) can be represented by

Ui t( ) :�
∫ t

0
1 Qi u−( )�n{ } dA u( ) for i ∈ N0. (3)

In particular,

U0 t( ) � A t( ) for t ≥ 0. (4)
By this definition, we have∫ ∞

0
1 Qi t−( )<n{ } dUi t( ) � 0 for i ∈ N0. (5)

Then by (2),

ΔUi+1 t( ) ≤ ΔUi t( ) for i ∈ N0 and t ≥ 0, (6)
where ΔUi(t) :� Ui(t+) −Ui(t−) is the increment at
time t. We define the augmented arrival process U
by U(t) :� (Ui(t) : i ∈ N0).

Let {Si, Fi : i ∈ N} be a set of independent Poisson
processes with rate 1. Because Qi(u) −Qi+1(u) is the
number of servers having exactly i customers at time
u, the cumulative number of service completions by
time t from servers having i customers can be rep-
resented by

Di t( ) :� Si μ

∫ t

0
Qi u( ) −Qi+1 u( )( )du

( )
for i ∈ N. (7)

Similarly, the cumulative number of abandoning cus-
tomers by time t from servers having i customers can
be represented by

Gi t( ) :� Fi θ i − 1( )
∫ t

0
Qi u( ) −Qi+1 u( )( )du

( )
for i ∈ N. (8)

The augmented departure process D is given by D(t) :�
(Di(t) : i ∈ N), and the augmented abandonment process
G is given by G(t) :� (Gi(t) : i ∈ N).

By (3), Ui−1(t) −Ui(t) is the cumulative number of
customers who joined servers having exactly i − 1
customers by time t. Under the JSQ policy, Qi(t) may
increase only when a customer joins a server having
i − 1 customers. Hence,

Qi t( ) � Qi 0( ) +Ui−1 t( ) −Ui t( ) −Di t( ) − Gi t( ) for i ∈ N.

(9)

LetX(t)be the total number of customers in the system
at time t, withX(0) < ∞ by convention. BecauseQi(t) −
Qi+1(t) is the number of servers having i customers at
time t, we may write X(t):�∑∞

i�1 i(Qi(t)−Qi+1(t)), which
is equivalent to X(t) :� ∑∞

i�1 Qi(t). By (4) and (7)–(9),

X t( ) � X 0( ) + A t( ) − S μ

∫ t

0
Q1 u( )du

( )

− F θ

∫ t

0
X u( ) −Q1 u( )( )du

( )
, (10)

where S and F are two independent Poisson processes
with rate 1.

4. Fluid Approximations
We investigate a fluid model for the DQ–JSQ system.
This model is presented in Section 4.1, and the lim-
iting state is studied in Section 4.2.We establish a limit
theorem in Section 4.3 to justify the fluid model.

4.1. A Fluid Model for the DQ–JSQ System
Because the exact analysis of the DQ–JSQ system is
difficult, we rely on an approximate model to in-
vestigate the system’s performance. By the functional
law of large numbers, the normalized augmented
queue length process is expected be close to a de-
terministic process when n is large. We would thus
seek a deterministic process Q̄ such thatQ(t)/n ≈ Q̄(t)
for t ≥ 0, where Q̄(t) :� (Q̄i(t) : i ∈ N). In other words,
Q̄i(t) is used to approximate the proportion of servers
having at least i customers at time t. We refer to Q̄ as
the fluid queue length process. To represent this process,
we use a deterministic process Ū to approximate the
normalized augmented arrival process, with Ū(t) :�
(Ūi(t) : i ∈ N0). We expect the pair (Q̄, Ū) to satisfy the
following system of dynamical equations corresponding
to (2)–(9) for the DQ–JSQ system:

Q̄i(t) � Q̄i(0) + Ūi−1(t) − Ūi(t) − (μ + θ(i − 1))
× ∫ t

0 (Q̄i(u) − Q̄i+1(u))du, (11)
Ū0(t) � ρμt, (12)
Ūi(0) � 0, (13)∫ ∞
0 1{Q̄i(t−)<1} dŪi(t) � 0, (14)

0 ≤ Q̄i+1(t) ≤ Q̄i(t) ≤ 1, (15)
0 ≤ Ū′

i (t) ≤ Ū′
i−1(t), (16)

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩
for i ∈ N, where f ′(t)denotes the derivative at t ≥ 0 (if it
exists) of a real-valued function f defined on [0,∞).
The dynamical system given by (11)–(16) character-
izes the fluid model for the DQ–JSQ system. The pair
(Q̄, Ū) is said to be a fluid solution if it is a solution to
(11)–(16) for t ≥ 0 almost everywhere. (The existence
and uniqueness of a fluid solution under a certain
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condition is stated in Theorem 1.) Let X̄(t) :� ∑∞
i�1 Q̄i(t)

be the total fluid content at time t. By (11) and (12),

X̄ t( ) � X̄ 0( ) + ρμt −
∫ t

0
μQ̄1 u( ) + θ X̄ u( ) − Q̄1 u( )( )( )

du.

(17)
To study the behavior of the fluid model, we write

q :� μ ρ − 1
( )+

θ
, q̄ :� 	q
 + 1, r :� q − 	q
, (18)

where 	q
 is the greatest integer that is less than or
equal to q. Let us consider the DQ–JSQ system with n
servers and traffic intensity ρ > 1. By conservation of
flow, the total abandonment rate from the queueing
system should satisfy

θ × the mean number of waiting customers ≈ λ − nμ

� n ρ − 1
( )

μ,

which implies that q can be used to approximate the
mean number of waiting customers in each queue.
Because most queues differ by at most one customer
under the JSQ policy, they have either 	q
 or q̄waiting
customers. By the fact that q � rq̄ + (1 − r)	q
, the frac-
tion of servers having q̄waiting customers is about r.

Remark 1. When condition (1) holds, we obtain 0<q<1
by (18), in which case the fraction of servers having no
waiting customers is about 1 − r > 0. Upon service
completion, such a server will be idle so that the next
incoming customer will enter service without delay.
Then, the probability of delay should be strictly less
than 1 under this moderate overloading condition.

It is worth mentioning that when θ is close to 0, the
traffic intensity should be close to 1 in order for
condition (1) to hold. Because customers’ patience
times are relatively long in this case, there will be a
proportion of servers having no waiting customers
only if the traffic intensity is just “slightly” greater
than 1 (i.e., the system is in a critically loaded regime
rather than in an overloaded regime). We provide
numerical examples when θ is small in Section EC.10
of the e-companion.

Let S :� {(xi : i ∈ N) : 0 ≤ xi ≤ 1 and xi+1 ≤ xi for i ∈ N}
and SN :� {(xi : i ∈ N) ∈ S : xi � 0 for i ≥ N} for N ∈ N.
For technical convenience,we imposean initial condition
on the fluid model:

Q̄ 0( ) ∈ SN for some N > q̄ + 1. (19)
Because Q̄i(0) approximates the proportion of servers
having at least i customers at time 0, then roughly
speaking, condition (19) corresponds to the assump-
tion that the initial queue lengths of all servers in the

DQ–JSQ system are bounded by N. With this con-
dition, we can show that Q̄(t) ∈ SN for all t ≥ 0 (see
Theorem 1), so that the fluid queue length process is
essentially finite dimensional.

Theorem 1. Assume that condition (19) holds. Then, there
exists a unique solution (Q̄, Ū) to (11)–(16) for t ≥ 0 almost
everywhere. This solution has the following properties:
(i) both Q̄i and Ūi are Lipschitz continuous for i ∈ N, and
(ii) Q̄(t) ∈ SN for t ≥ 0.

Please refer to Section EC.1 for the proof of Theo-
rem 1. If the initial condition of the fluid model is not
far from the invariant state (see Theorem 2 in Sec-
tion 4.2), the fluid solution may have a closed-form
expression as specified in the following proposition,
the proof of which is given in Section EC.8.

Proposition 1. Assume that ρ > 1. If Q̄i(0) � 1 for i ≤ q̄
and Q̄i(0) � 0 for i ≥ q̄ + 2, the fluid solution (Q̄, Ū) is
given by

Q̄i t( ) �
1 1 ≤ i ≤ q̄,

r + Q̄i 0( ) − r
( )

e−θt i � q̄ + 1,
0 i ≥ q̄ + 2,

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

Ūi t( ) �
ρμt 0 ≤ i ≤ q̄ − 1,
μ + θq̄
( )

rt + θ−1 μ + θ q̄ − 1
( )( )

× Q̄q̄+1 0( ) − r
( )

1 − e−θt
( )

, i � q̄,

0 i ≥ q̄ + 1.

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

4.2. The Limiting State
Let q∗ :� (q∗i : i ∈ N) and u∗(t) � (u∗i (t) : i ∈ N0) for
t ≥ 0, where

q∗i �
1 1≤ i≤ q̄,

r i� q̄+1,
0 i≥ q̄+2,

and u∗i t( ) �
ρμt 0≤ i≤ q̄−1,
μ+θq̄
( )

rt i� q̄,

0 i≥ q̄+1.

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩
⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

With Q̄(0) � q∗ and ρ > 1, the fluid solution is given
by Q̄(t) � q∗ and Ū(t) � u∗(t) for t ≥ 0. In other words,
q∗ is an invariant state of the fluid model. The next
theorem states that as the unique invariant state, q∗ is
also the limiting state of the fluid model as t increases.

Theorem 2. Assume that ρ > 1 and that condition (19)
holds. Then, q∗ is the unique invariant state in SN . More-
over, there exists some c > 0 such that

|Q̄i t( ) − q∗i | ≤ c · e−θt for i � 1, . . . ,N − 1 and t ≥ 0.

(20)
By this theorem, limt→∞ Q̄(t) � q∗ in SN . Please refer to
Section EC.2 for the proof.

Let us illustrate the transient and limiting behavior
of the fluid model by a numerical example.
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Example 1. Take ρ � 1.6, μ � 1, and θ � 0.5. This set of
parameters produces q � 1.2, q̄ � 2, and r � 0.2. We
consider two different initial conditions: (i) Q̄(0) � 0
(i.e., the system is initially empty), and (ii) Q̄(0) �
(1, 0.8, 0.8, 0.8, 0.7, 0, 0, . . .).

In case (i), we plot the fluid queue length process on
the top panel of Figure 2. The system is initially
empty. By (14), Ū′

i (0) � 0 for i ≥ 1, making Q̄1 increase
while Q̄2 and Q̄3 remain at 0. At time T1 � 0.981, Q̄1
reaches 1.0 and stays there (q∗1 � 1.0). Correspond-
ingly, Ū′

1 is positive. Because Q̄2 is strictly below 1.0,
Ū′

i must be 0 for i ≥ 2. As a result, Q̄2 begins to increase
while Q̄3 remains at 0. At time T2 � 4.564, Q̄2 reaches
1.0 and stays there (q∗2 � 1.0). After T2, Q̄3 begins to
increase and will eventually converge to its invariant
value q∗3 � r � 0.2. Moreover, Q̄i(t) � 0 for all t ≥ 0
and i ≥ 4.

In case (ii), the fluid queue length process exhibits
more complex dynamics. For instance, the path of Q̄3
is not monotone, first increasing and then decreasing.
Nevertheless, the fluid queue length process will
converge to the same invariant state regardless of the
initial condition. Because Q̄1(t) � 1.0 for all t ≥ 0, the

total fluid content X̄ is an exponential function as the
solution to (17). This fact is consistent with the bottom
plot of Figure 2.

4.3. A Limit Theorem
To justify the fluid model by asymptotic analysis, we
consider a sequence of DQ–JSQ systems indexed by
the number of servers n. In each system, the initial
augmented queue length, the arrival process, the
sequence of service times, and the sequence of pa-
tience times are all mutually independent. These
systems have the same service time distribution with
mean 1/μ and the same patience time distribution
with mean 1/θ. Let λn be the arrival rate of the nth
system. To establish the asymptotic framework, we
assume that these arrival rates satisfy

lim
n→∞

λn

nμ
� ρ > 1. (21)

By convention, we add a superscript n to some pro-
cesses introduced in Section 3 to denote the corre-
sponding processes in the nth DQ–JSQ system, such
as Qn, Un, and Xn. Their fluid-scaled versions are
given by

Q̄n t( ) :� 1
n
Qn t( ), Ūn t( ) :� 1

n
Un t( ), X̄n t( ) :� 1

n
Xn t( ).

Both Q̄n(t) and Ūn(t) are random vectors taking values
in R∞. To study related continuity and convergence
results, we define a metric d on R∞ by

d y, z
( )

:� ∑∞
i�1

2−i |yi − zi| ∧ 1
( )

,

where y :� (yi : i ∈ N) ∈ R∞ and z :� (zi : i ∈ N) ∈ R∞.
Let D and D∞ be the respective spaces of real-valued
and R∞-valued functions defined on [0,∞) that are
right continuous on [0,∞) and have left limits on
(0,∞). The space D is endowed with the Skorohod
metric σ (see, e.g., section 12 in Billingsley (1999)), and
the space D∞ is endowed with a metric σ∞ defined by

σ∞ Y,Z( ) :� ∑∞
i�1

2−i σ Yi,Zi( ) ∧ 1( ),

where Y :� (Yi : i ∈ N) ∈ D∞ and Z :� (Zi : i ∈ N) ∈ D∞.
A functional weak law of large numbers for the se-

quence of DQ–JSQ systems is presented in the next
theorem, where we also establish the convergence of
the normalized steady-state augmentedqueue lengths to
the invariant state of the fluid model. Please refer to
Section EC.3 for the proof.

Theorem 3.
(i) Assume that Q̄n(0) ⇒ Q̄(0) in R∞ as n → ∞ for

some Q̄(0) that satisfies condition (19). If condition (21)

Figure 2. (Color online) Two Sample Paths of the Fluid
Queue Length Process

Cao et al.: Queueing Design for Large-Scale Service Systems
8 Operations Research, Articles in Advance, pp. 1–20, © 2020 INFORMS



holds, then (Q̄n, Ūn) ⇒ (Q̄, Ū) in D∞ as n → ∞, where
(Q̄, Ū) is the fluid solution (i.e., the unique solution to
(11)–(16) for t ≥ 0 almost everywhere).

(ii) Assume that condition (21) holds. For each n ∈ N,
there exists an R∞-valued random vector Q̄n(∞) such that
Q̄n(t) ⇒ Q̄n(∞) inR∞ as t → ∞.Moreover, Q̄n(∞) ⇒ q∗
in R∞ as n → ∞.

Let Xn(∞) be the steady-state number of customers
in the system. Then, the fluid-scaled version satisfies
X̄n(∞) � ∑∞

i�1 Q̄n
i (∞). Part (ii) of Theorem 3 implies

that X̄n(∞) ⇒ q + 1 as n → ∞. The number of cus-
tomers waiting in the queues should thus be about nq
in the steady state.

It is worth mentioning that one may also establish a
diffusion limit for the augmented queue length pro-
cess, which may serve as a refined approximate
model. We will briefly discuss that as a future re-
search topic in Section 8, where a numerical example
is given to illustrate the distribution of augmented
queue lengths in the DQ–JSQ system.

Remark 2. Because a server could be idle while there
are customers waiting in other servers’ queues, the DQ
structure is less efficient in terms of capacity utilization
than the PQ structure. However, by part (ii) of Theorem 3,
Q̄n

1(∞) ⇒ q∗1 � 1 as n → ∞—that is, when the number of
servers is large, almost all of them should be busy in the
steady state. Therefore, the system’s workload will be
well balanced across servers by the JSQ policy, and the
loss of capacity utilization induced by the DQ structure
will be negligible when n is large (also see Eschenfeldt
and Gamarnik (2018), Banerjee and Mukherjee (2019),
Gupta and Walton (2019), and Braverman (2020) for
DQ–JSQ systems without customer abandonment).

5. Performance Analysis of the DQ–JSQ
and PQ Designs

We compare the system’s performance under the two
queue structures in this section. In service systems
such as call centers, quality of service is usually
measured in terms of service level (i.e., the percentage
of customers served within a given delay target), the
percentage of abandoning customers, mean waiting
time, etc. (see, e.g., chap. 2 in Koole (2013) for a de-
tailed discussion). Among these measures, service
level is not only the most common performance in-
dicator specified in service contracts for call centers
(Milner and Olsen 2008, Baron and Milner 2009), but
also a crucial metric for quality of care in hospital
inpatient wards (Shi et al. 2016) and emergency de-
partments (Ding et al. 2019, He et al. 2019). As a sign
of customer dissatisfaction, abandonment should be
maintained at a low level. The probability of customer
abandonment is thus of great concern to service
system managers. Whether a customer will abandon

the system depends on both the patience time and the
PWT. Statistics of waiting times are also taken into
account in our analysis. Aside from the mean waiting
time, we consider the variance of waiting times as
well, because it is often used to measure “unfairness”
in queueing design (Kingman 1962, Avi-Itzhak and
Levy 2004). By the comparison of these performance
measures, we would help service system designers
better understand the two queue structures so that
they may choose a more efficient design according to
their needs.
We establish a limit for the steady-state PWTs

under the DQ–JSQ design in Section 5.1 and compare
the aforementioned performance measures under the
two designs in Section 5.2.

5.1. Potential Waiting Time in the Steady State
Let Wn be the steady-state PWT in the nth DQ–JSQ
system (i.e., an arbitrary customer’s waiting time for
service in the steady state if his patience time were
infinite). The PWT quantifies the effort that a customer
has to expend to receive service. The steady-state actual
waiting time (AWT) is given by Vn :� Wn ∧ R, where R
stands for a generic patience time independent ofWn.
To characterize Wn, let us consider a pure death

process on the state space N0, where the death rate of
state i is μ + θ(i − 1) for i ∈ N. Let {Ta(i) : i ∈ N0} be a
sequence of independent random variables, where
Ta(0) � 0 and Ta(i) is the time to absorption of the pure
death process starting from state i ∈ N. Clearly, Ta(i)
can be written as the sum of i independent expo-
nential random variables—that is, Ta(i) :� ∑i−1

k�0 ξi,k,
where ξi,k is exponentially distributed with mean
1/(μ + kθ). The Laplace transform of Ta(i) is given by

E e−sTa i( )[ ] � ∏i−1
k�0

μ + kθ
s + μ + kθ

for i ∈ N, (22)

and the complementary cumulative distribution func-
tion of Ta(i) is given by

P Ta i( ) > x( ) � ∑i

j�1
e− μ+ j−1( )θ( )x ∏i

k�1,k ��j

μ + k − 1( )θ
k − j
( )

θ

for x ≥ 0 (23)
(see, e.g., Amari andMisra 1997). If a customer joins a
server having i customers (either waiting or being
served), the PWT will have the same distribution as
Ta(i). By part (ii) of Theorem3,we obtain the following
limit of the steady-state PWTs.

Theorem 4. Let χ be a Bernoulli random variable with
p :� P(χ � 1) � r(μ + θq̄)/(ρμ). Assume that χ is inde-
pendent of Ta(q̄) and Ta(	q
) and that condition (21) holds.
Then, Wn ⇒W as n→∞, where W :�χ ·Ta(q̄) + (1−χ) ·
Ta(	q
).
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Please refer to Section EC.4 for the proof of Theorem 4.
By this theorem, we may use a mixture of Ta(q̄) and
Ta(	q
) to approximate the PWT. In the steady state, a
customer will join a server having q̄ customers (in-
cluding one being served and 	q
 waiting) with a
probability of about p or join a server having 	q
 cus-
tomers with a probability of about 1 − p. Wemay thus
estimate an arbitrary service level (i.e., the probability
of Wn not exceeding a given threshold x ≥ 0) by

P Wn ≤ x( ) ≈ p · P Ta q̄
( ) ≤ x

( ) + 1 − p
( ) · P Ta 	q
( ) ≤ x

( )
.

The approximate fraction p is interpreted as follows:
as we discussed in Section 4.1, with ρ > 1, almost all
servers in the DQ–JSQ system have either q̄ + 1 or q̄
customers (including one customer being served),
with the fraction of servers that have q̄ + 1 customers
being about r. By conservation of flow, the arrival rate
to servers having q̄ customers should be equal to the
sum of the service completion rate from servers having
q̄ + 1 customers and the abandonment rate from their
queues—that is,λnp ≈ nr(μ + θq̄)—bywhich, together
with (21), we obtain p � r(μ + θq̄)/(ρμ).

In the preceding discussion, we estimate the frac-
tion of servers with a specific number of customers
using fluid approximations; then by analyzing indi-
vidual queues,we obtain an approximate distribution
for the PWT. By combining a deterministic fluid
analysis with a stochastic queueing analysis, we obtain a
distributional performance measure for the DQ–JSQ
system. By contrast, using fluid approximations un-
der the PQ structure, we can only obtain mean per-
formance measures such as the mean PWT and the
mean queue length (Whitt 2006, Liu and Whitt 2012).
We have to rely on diffusion approximations to
estimate a distributional performance measure under
the PQ structure (Garnett et al. 2002, Whitt 2004).

Remark 3. Consider a DQ–JSQ system that satisfies the
moderate overloading condition (1). It follows from (18)
that 0 < q < 1, 	q
 � 0, q̄ � 1, and r � q. By Theorem 4
and the fact that Ta(0) � 0, the fraction of customers
getting into service upon arrival is about 1 − p. The
probability of delay is thus about p � r(μ + θ)/(ρμ) �
1 − (1 − r)/ρ, strictly less than 1, as we discussed in
Section 4.1. To achieve such performance under the PQ
structure, the queueing system must be critically loaded
(ρ ≈ 1), requiring more servers than under the DQ
structure (Halfin and Whitt 1981, Garnett et al. 2002).

5.2. Performance Comparison of Moderately
Overloaded Systems

We focus on the moderately overloaded regime and
compare the sequence of DQ–JSQ systems with a

sequence of PQ systems, the nth of which is an
M/M/n +M system having the same arrival rate, mean
service time, andmean patience time as the nth DQ–JSQ
system. To differentiate corresponding performance
measures, we add subscripts D and P to respective
quantities for the DQ–JSQ and PQ systems. The next
theorem provides performance formulas in the moder-
ately overloaded regime under the two queue struc-
tures. Some formulas for the PQ system are taken
from Whitt (2004).

Theorem 5. Assume that condition (21) holds with 1 <
ρ < 1 + θ/μ. Then, the performance of the nth DQ–JSQ
system and that of the M/M/n +M system have the fol-
lowing asymptotic relationships:
(i) For the mean fluid-scaled numbers of customers in

the system,

lim
n→∞E X̄n

D ∞( )[ ] � q + 1 � lim
n→∞E X̄n

P ∞( )[ ]
,

where 0 < q < 1.
(ii) For the probabilities of customer abandonment,

lim
n→∞Pn

D Ab( ) � ρ − 1
ρ

� lim
n→∞Pn

P Ab( ).

(iii) For the mean AWTs,

lim
n→∞E Vn

D

[ ] � q
ρμ

� lim
n→∞E Vn

P

[ ]
.

(iv) For the probabilities of delay,

lim
n→∞Pn

D De( ) � r μ + θ
( )
ρμ

< 1 � lim
n→∞Pn

P De( ).

(v) For the mean PWTs of delayed customers,

lim
n→∞E Wn

D|Wn
D > 0

[ ] � 1
μ
> w � lim

n→∞E Wn
P |Wn

P > 0
[ ]

,

where w :� ln(ρ)/θ.
(vi) For the mean PWTs,

lim
n→∞E Wn

D

[ ] � r μ + θ
( )
ρμ2 > w � lim

n→∞E Wn
P

[ ]
.

(vii) For the mean AWTs of served customers,

lim
n→∞E Vn

D|Wn
D ≤ R

[ ] � r
μ + θ

< w � lim
n→∞E Vn

P |Wn
P ≤ R

[ ]
.

(viii) For the mean AWTs of abandoning customers,

lim
n→∞E Vn

D|Wn
D > R

[ ] � 1
μ + θ

> −μw
θq

+ 1
θ
� lim

n→∞E Vn
P |Wn

P > R
[ ]

.
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(ix) For the variances of PWTs,

lim
n→∞Var Wn

D

( ) � r μ + θ
( )
ρμ3 2 − r μ + θ

( )
ρμ

( )
> 0 � lim

n→∞Var Wn
P

( )
.

The proof of Theorem5 is given in Section EC.5,where
we also provide performance comparison for all
ρ > 1. Before we discuss the comparison results, let us
examine the approximate formulas by a numeri-
cal example.

Example 2. We consider a queueing system with mean
service time 1/μ � 1.0, mean patience time 1/θ � 2.0,
and traffic intensity ρ � 1.2. The number of servers is
taken to be n � 400, 100, or 25. We summarize both
simulation results (with 95% confidence intervals) and
fluid approximations under the DQ–JSQ design in
Table 2. As implied by Theorem 5, fluid approxima-
tions turn out to be more and more accurate as n in-
creases. We also provide exact performance measures
for the PQ design, by which the comparison results
established in Theorem 5 are confirmed.

By adopting the JSQ policy, the loss of capacity
utilization induced by the DQ structure will vanish as
n increases. As implied by parts (i)–(iii) of Theorem 5,
the fluid-scaled number of customers, the probability
of customer abandonment, and themeanAWTwill be
approximately equal under the two designs.

As a special service level, the probability of delay
is a widely used metric for quality of service. Part (iv)
of Theorem 5 states that the limit of the probability of
delay is strictly less than 1 under the DQ–JSQ design,
as opposed to being equal to 1 under the PQ design.
Although almost all servers of the DQ–JSQ system are
busy in the steady state, one or several idle servers
may frequently appear for short periods, allowing a

proportion of customers to enter service without
delay. By contrast, idle servers barely appear in the
PQ system, and as a result, the probability of delay
must be close to 1 under the PQ structure (Garnett
et al. 2002, Whitt 2004).
Part (v) of Theorem 5 reveals the price for the

smaller probability of delay in the DQ–JSQ system:
because almost all delayed customers join servers
having one customer (who is being served), the mean
PWT of them are close to 1/μ, greater than that in the
PQ system. The benefit of no delay for a proportion of
customers in the DQ–JSQ system is gained at the
expense of making others wait longer.
We may obtain the approximate mean PWTs in

part (vi) of Theorem 5 using parts (iv) and (v). When n
is large, the mean PWT of all customers is also longer
in the DQ–JSQ system. With a proportion of cus-
tomers entering servicewithout delay, themeanAWT
of served customers is shorter in the DQ–JSQ system,
as stated in part (vii) of Theorem 5. Because the mean
AWTs are approximately equal under the two de-
signs, the mean AWT of abandoning customers must
be longer in the DQ–JSQ system, as stated in part (viii)
of Theorem 5.
The variance of PWTs in part (ix) of Theorem 5 is a

measure of unfairness in queueing design. In the PQ
system, the steady-state PWT converges in distribu-
tion to the constant w as n increases (Whitt 2004).
Accordingly, the variance of PWTs converges to 0.
Because every customer needs to wait almost the
same amount of time for service, the PQ design is able
to achieve “absolute” fairness when the system has
many servers. By contrast, the DQ structure is in-
trinsically unfair: whereas some customers may enter
service without delay, others may have to wait until
their servers complete the current services. The JSQ
policy could mitigate the unfairness induced by the

Table 2. Performance Comparison Between the DQ–JSQ and PQ Designs

Parameter

n � 400 n � 100 n � 25

DQ–JSQ PQ DQ–JSQ PQ DQ–JSQ PQ

Sim. App. Exact Sim. App. Exact Sim. App. Exact

P(De) 0.508 ± 0.003 0.500 1.000 0.525 ± 0.003 0.500 0.997 0.577 ± 0.003 0.500 0.928
P(Ab) 0.168 ± 0.002 0.167 0.167 0.174 ± 0.002 0.167 0.167 0.195 ± 0.002 0.167 0.174
E[X(∞)] 561.2 ± 0.4 560.0 560.0 141.0 ± 0.2 140.0 140.0 35.84 ± 0.06 35.00 35.23
E[W] 0.506 ± 0.004 0.500 0.366 0.520 ± 0.005 0.500 0.370 0.587 ± 0.004 0.500 0.400
E[W|W > 0] 0.996 ± 0.007 1.000 0.354 0.995 ± 0.007 1.000 0.371 1.011 ± 0.005 1.000 0.431
E[V] 0.338 ± 0.003 0.333 0.333 0.350 ± 0.003 0.333 0.334 0.390 ± 0.003 0.333 0.349
E[V|W < R] 0.272 ± 0.003 0.267 0.363 0.284 ± 0.003 0.267 0.360 0.324 ± 0.003 0.267 0.366
E[V|W > R] 0.663 ± 0.008 0.667 0.183 0.666 ± 0.008 0.667 0.202 0.672 ± 0.006 0.667 0.265
Var(W) 0.748 ± 0.014 0.750 0.005 0.762 ± 0.015 0.750 0.020 0.845 ± 0.013 0.750 0.070

Notes. The Markovian queueing system has 1/μ � 1.0; 1/θ � 2.0; ρ � 1.2; and n � 400, 100, and 25 under the
two queue structures. Both simulation results (with 95% confidence intervals) and fluid approximations are
provided for the DQ–JSQ design; exact results are provided for the PQ design.
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DQ structure by placing each customer in one of the
best queue positions upon arrival. However, it cannot
achieve the fairness provided by the PQ design: by
Theorem 4 and part (ix) of Theorem 5, the steady-state
PWT in the DQ–JSQ system converges in distribution
to a random variable with a positive variance, as
opposed to a constant as in the PQ system.

Remark 4. By part (ix) of Theorem 5, we may write the
limiting variance of PWTs in the DQ–JSQ system as

lim
n→∞Var Wn

D

( ) � p 2 − p
( )
μ2 ,

where p � r(μ + θ)/(ρμ). This limiting variance is in-
creasing in p for 0 < p < 1. By (18), we further have
p � (1 − 1/ρ)(1 + μ/θ), which is increasing in ρ—as a
result, so is the limiting variance of PWTs. By part (iv)
of Theorem 5, p is identical to the limiting probability
of delay. When the traffic intensity goes from 1 to
1 + θ/μ, the probability of delay will increase from 0
to 1, and correspondingly, the limiting variance of
PWTs will increase from 0 to 1/μ2. In addition, p is
decreasing in θ and so is the limiting variance of
PWTs. In other words, if the moderate overloading
condition holds with the traffic intensity being fixed,
the variance of PWTswill be reducedwhen customers
are less patient.

We take the variance of PWTs as the measure of
unfairness mainly because of its simplicity. In the
literature, there are other measures of unfairness that
may be relevant (see Avi-Itzhak et al. (2008) for a
survey). For example, using a measure introduced in
their earlier paper (Raz et al. 2004), Raz et al. (2005)
demonstrated that either combiningdedicated queues or
adopting the JSQ policy may improve service fairness in
queueing systems without customer abandonment. Al-
though such measures may capture more subtle aspects
in queueing design, it could be difficult to analyze them
for the DQ–JSQ system in the many-server setting. As
suggested by Milner and Olsen (2008), including
terms about the second moment (or the variance) of
waiting times in service contracts may mitigate the
fairness issue. We would thus employ this simple
statistic as the measure of unfairness for analyti-
cal purposes.

Example 3. To better illustrate delay performance under
the two designs, we simulate the system in Example 2
with n � 100 for 4.0 × 105 units of time, taking the first
1.0 × 105 units of time as the burn-in period before the
steady state. The simulation results of the probability
density functions of PWTs, AWTs, and AWTs of aban-
doning customers are plotted in Figure 3. Under the
DQ–JSQ design, a customer’s PWT could be either 0 or
another customer’s remaining service time. The proba-
bility density function of that appears to be an exponential

function with a point mass at 0 (which is truncated in
the figure). By contrast, the steady-state PWT exhibits
relatively low variability under the PQ design, con-
centrating on a much narrower range. The distribution
appears to be Gaussian (see formula (3.16) in Whitt
2004). Because PWTs have a smaller variance in the PQ
system, AWTs and AWTs of abandoning customers
also have smaller variances there. Moreover, almost all
abandoning customers in the PQ system have relatively
short patience times. By contrast, customers with much
longer patience times may still abandon the DQ–JSQ
system, because the remaining service times of their
servers could be long. This phenomenon is evident
from the bottom panel of Figure 3.

6. Staffing Under the DQ–JSQ
and PQ Designs

In this section, we compare the two queue structures
from a system designer’s perspective, considering a
staffing problem for meeting a service-level objective.
More specifically, we solve the optimal staffing problem
in Section 6.1 and compare the two designs for dif-
ferent threshold probabilities in Section 6.2.

6.1. Optimal Staffing Subject to a Service-
Level Constraint

Wewould like tofind theminimumnumber of servers
for a Markovian queueing system so that the proba-
bility of the steady-state PWT exceeding a given delay
target is below a specified threshold—that is, we
would solve the following problem:

n̂ λ,T, α( ) :� min n ∈ N : P Wn
λ > T

( ) ≤ α
{ }

for λ > 0, T ≥ 0, and 0 < α < 1,
(24)

where Wn
λ is the steady-state PWT when the arrival

rate is λ and the system has n servers. In particular,
n̂(λ, 0, α) is the minimum staffing level that keeps the
probability of delay not exceeding α. As in the pre-
vious section, we add subscripts D and P to staffing
levels under the DQ–JSQ and PQ designs, respec-
tively. Because it is difficult to obtain the closed-form
solution to (24), we rely on asymptotic analysis to
obtain an approximate solution. The optimal staffing
level under the DQ–JSQ design is characterized in the
next theorem, the proof of which is given in Sec-
tion EC.6.

Theorem 6. The optimal staffing level under the DQ–JSQ
design follows

n̂D λ,T, α( ) � μ+ θ κ T, α( ) + r0 T, α( )( )
μ+ θκ T, α( )( )

μ + θ κ T, α( ) + 1( )( ) · λ+ o λ( )
for λ > 0, T ≥ 0, and 0 < α < 1,

(25)
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where κ(T, α) :� max{i ∈ N0 : P(Ta(i) > T) ≤ α} and

r0 T, α( ) :� P Ta κ T, α( ) + 1( ) > T( ) − α

P Ta κ T, α( ) + 1( ) > T( ) − P Ta κ T, α( )( ) > T( ) .

In particular,

n̂D λ, 0, α( ) � 1 − α · θ

μ + θ

( )
· λ
μ
+ o λ( ). (26)

For comparison, the optimal staffing level under
the PQ design follows

n̂P λ,T, α( ) �
e−θT · λμ+

̅̅̅̅̅̅̅̅
θe−θT

√ · Φ̄−1 α( )
·

̅̅
λ
μ

√
+ o

̅
λ̅

√( )
, T > 0,

λ
μ+ β ·

̅̅
λ
μ

√
+ o

̅
λ̅

√( )
, T � 0,

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩
(27)

where the expression forT > 0 is obtainedby theorem4.4
inMandelbaum andZeltyn (2009) and that for T � 0 is
obtained by theorem 4 in Garnett et al. (2002). In this
formula, Φ̄−1 is the inverse survival function of the stan-
dard normal distribution, and β is the unique solution to

α �
̅̅̅̅̅̅̅
θ−1μ

√
h −β( )

̅̅̅̅̅̅̅
θ−1μ

√
h −β( ) + h β

̅̅̅̅̅̅̅
θ−1μ

√( ) ,
where h is the hazard rate function of the standard
normal distribution.
To illustrate the advantages of the DQ–JSQ design

in staffing, let us consider the special case of T � 0 and
0 < α < 1. By comparing (26) with (27), the number of
servers reduced by adopting the DQ–JSQ design follows

n̂P λ, 0, α( ) − n̂D λ, 0, α( ) � α · θ

μ + θ
· λ
μ
+ o λ( ).

Figure 3. (Color online) Estimates of the Probability Density Functions of PWTs, AWTs, and Abandoning Customers’ AWTs
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The fraction of reduced servers is given by

n̂P λ, 0, α( ) − n̂D λ, 0, α( )
n̂P λ, 0, α( ) � α · θ

μ + θ
+ o 1( ). (28)

Indeed, we may reduce the staffing level because
more customers will abandon the system under the
DQ–JSQ design: when the number of servers is close
to the optimal level, the probability of delay in the
DQ–JSQ system will be about α. In this case, the
system must operate in the moderately overloaded
regime (i.e., condition (1) holds), and almost all cus-
tomers who cannot be served immediately have to
wait until their respective servers complete the cur-
rent services. Because the service times and the pa-
tience times are exponentially distributed and mu-
tually independent, the probability of such a customer’s
PWT exceeding his patience time is θ/(μ + θ). There-
fore, the fraction of customers abandoning the DQ–
JSQ system will be about α · θ/(μ + θ). This implies
that in order for the probability of delay to be about α,
the number of servers in the DQ–JSQ system should
be about (1 − α · θ/(μ + θ)) · λ/μ, which is consistent
with (26). By contrast, the PQ system must operate in
the critically loaded regime, as long as the probability
of delay is required to be strictly between 0 and 1
(Garnett et al. 2002).With the number of servers being
about λ/μ, the customers’waiting times are generally
short, and only a very small fraction of customers will
abandon the PQ system. Hence, by allowing more
customers to abandon the system, the DQ–JSQ design
needs fewer servers than the PQ design to maintain a
given probability of delay. In addition, when cus-
tomers are less patient, the DQ–JSQ design may help
us save more servers because there is a greater pro-
portion of waiting customers abandoning the system.

This insight can be confirmed by (28), where the
fraction of reduced servers is approximately pro-
portional to both α and the ratio θ/(μ + θ). The per-
centage of reduction will tend to α as θ increases.
When T � 0, it follows from (26) that the optimal

staffing level under the DQ–JSQ design will change
with α at rate

∂n̂D λ, 0, α( )
∂α

≈ − θ

μ + θ
· λ
μ
,

which is proportional to both the offered loadλ/μ and
the ratio θ/(μ + θ). In order to reduce the probability
of delay by δ > 0, we should add about θ/(μ + θ) ·
(λ/μ) · δ servers. Clearly, more servers should be
added when customers are less patient.
In the next numerical example, we assess the ap-

proximate optimal staffing level under the DQ–JSQ
design and compare that with the optimal staffing
level under the PQ design.

Example 4. We consider a queueing system with ar-
rival rate λ � 400, mean service time 1/μ � 1.0, and
mean patience time 1/θ � 2.0. We would find the
minimumnumbers of servers tomeet various service-level
objectives with delay targets T� 1/6,0.5,1.0, and 1.5 and
threshold probabilities α� 0.2,0.5, and 0.8, respectively.
Both exact results and approximate results are summa-
rized in Table 3. We obtain approximate optimal staffing
levels under the DQ–JSQ design by (25) without the o(λ)
term, those under the PQdesign by (27)without the o( ̅

λ̅
√ )

term, and all exact optimal staffing levels using exhaustive
search by simulation. Below each approximate staffing
level, we provide the corresponding probability of the
steady-state PWT exceeding the delay target T (with 95%
confidence intervals), which is computed by simulation.

Table 3. Optimal Staffing Levels for Various Service-Level Objectives

Case Result type

α � 0.2 α � 0.5 α � 0.8

DQ–JSQ PQ DQ–JSQ PQ DQ–JSQ PQ

T � 1/6 Exact 372 380 322 368 273 357
App. 369 380 322 369 274 357

0.215 ± 0.005 0.196 ± 0.005 0.499 ± 0.006 0.495 ± 0.006 0.795 ± 0.004 0.800 ± 0.005
T � 0.5 Exact 359 323 292 312 219 302

App. 357 323 291 312 219 302
0.205 ± 0.005 0.201 ± 0.005 0.501 ± 0.006 0.492 ± 0.006 0.799 ± 0.005 0.796 ± 0.005

T � 1.0 Exact 329 252 237 241 167 233
App. 328 252 237 243 167 234

0.202 ± 0.005 0.199 ± 0.005 0.498 ± 0.005 0.454 ± 0.006 0.799 ± 0.004 0.786 ± 0.005
T � 1.5 Exact 281 197 192 190 128 181

App. 281 198 192 189 129 181
0.199 ± 0.004 0.183 ± 0.005 0.494 ± 0.005 0.504 ± 0.006 0.794 ± 0.005 0.797 ± 0.005

Notes. The Markovian queueing system has λ � 400, 1/μ � 1.0, and 1/θ � 2.0 under the two queue structures.
Exact results obtained by simulation are compared with approximations. The simulation results of
corresponding performance (with 95% confidence intervals) are provided below the approximate
optimal staffing levels.
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With the largest staffing error being about 0.8%, the
system’s delay performance is generally satisfactory
under the approximate optimal staffing levels given by
(25). In particular, the case of T � 1/6 and α � 0.2 cor-
responds to a scenario similar to the 80/20 rule in call
centers: if the mean service time is about 2 minutes, then
the delay target of 20 seconds is about 1/6 of the mean
service time. In this case, we can reduce about 2.1% of
servers under the DQ–JSQ design compared with the
commonly used PQ design. Such a reduction is consid-
erable when staffing costs are expensive.

Remark 5. As discussed in Remark 3 and justified by
Theorem 5, in order for the probability of delay to be
about α ∈ (0, 1), the system can be staffed either in the
moderately overloaded regime under the DQ–JSQ de-
sign or in the critically loaded regime under the PQ
design. In the latter case, a small increase in the arrival
rate may result in a significant change in delay per-
formance. If the arrival rate is estimated to be λ0, the
optimal staffing level under the PQ design follows
n̂P(λ0, 0, α) � λ0/μ + o(λ0). Under such a staffing level,
the system could be overloaded if the actual arrival rate
is λ � λ0(1 + ε) for some ε > 0. In this case, the prob-
ability of delay will be close to 1 even if ε is not large.
Based on the estimated arrival rate, the optimal staffing
level under the DQ–JSQ design satisfies n̂D(λ0, 0, α) �
(μ + θ(1 − α))/(μ(μ + θ)) · λ0 + o(λ0). By part (iv) of
Theorem 5, with the actual arrival rate λ � λ0(1 + ε),
the probability of delay will be about

PD De( ) ≈ α

1 + ε
+ ε μ + θ

( )
1 + ε( )θ

( )
∧ 1,

which is strictly below 1 for ε < θ(1 − α)/μ. Hence,
although the staffing level is lower, the delay per-
formance under the DQ–JSQ design is less sensitive to
estimation error in the arrival rate. In general, if a
service-level objective requires the system to be staffed in
the critically loaded regimeunder the PQdesign, it could
be more advantageous to adopt the DQ–JSQ design
instead, not only because it may reduce the staffing
level but also because it may mitigate the sensitivity
issue that is intrinsic to the PQ structure.

Example 5. To illustrate the sensitivity issue in queueing
design, we consider a system with mean service time

1/μ � 1.0, mean patience time 1/θ � 2.0, and estimated
arrival rate λ0 � 100.Wewould determine theminimum
number of servers so that the probability of delaywill not
exceed α � 0.5. By (26) and (27), the staffing level is set to
n � 84 under the DQ–JSQ design and n � 102 under the
PQ design. Then, we increase the customer arrival rate to
λ � λ0(1 + ε) with forecasting errors ε � 0, 0.05, 0.1,
and 0.15. In Table 4, we report the simulation results
of the probabilities of delay (with 95% confidence in-
tervals) under the DQ–JSQ design and compare them
with the exact results under the PQ design. The cor-
responding fluid approximations under the DQ–JSQ
design are also listed in the same table. As we dis-
cussed earlier, the probability of delay appears to be
less sensitive to a slight increase in the arrival rate
under the DQ–JSQ design.

6.2. Boundary Function for Threshold Probabilities
To understand how the service-level objective may
affect the queueing design, let us fix the delay target and
compare the two designs as the threshold probability
varies. To this end, we let

α̂ T( ) :� P Ta m T( ) + 1( ) > T( ) − ψ T( )
× P Ta m T( ) + 1( ) > T( ) − P Ta m T( )( ) > T( )( )

for T ≥ 0,

(29)
where m(T) :� 	μ(eθT − 1)/θ
 and

ψ T( ) :� 1
θ

μ + θm T( )( )
μ + θ m T( ) + 1( )( )

× e−θT

μ
− 1
μ + θ m T( ) + 1( )

( )
.

As implied by the next theorem, the function α̂
specifies the boundary for threshold probabilities,
above which the DQ–JSQ design may require fewer
servers than the PQ design.

Theorem 7. For T≥ 0, limλ→∞ n̂D(λ,T,α)/n̂P(λ,T,α) ≤ 1
if and only if α ≥ α̂(T). Moreover, α̂ is continuous and
strictly increasing on [0,∞) with

α̂ 0( ) � 0 and α̂ ∞( ) :� lim
T→∞ α̂ T( ) � γ μ/θ, μ/θ

( )
Γ μ/θ
( ) ,

Table 4. Probabilities of Delay Under the PQ and DQ–JSQ Designs

Design λ � 100.0 (ε � 0) λ � 105.0 (ε � 0.05) λ � 110.0 (ε � 0.1) λ � 115.0 (ε � 0.15)

PQ (n � 102) 0.503 0.727 0.887 0.966
DQ–JSQ (n � 84) 0.490 ± 0.004 0.594 ± 0.004 0.694 ± 0.004 0.782 ± 0.005
App. 0.480 0.600 0.709 0.809

Notes. The Markovian queueing system has 1/μ � 1.0, 1/θ � 2.0, and λ0 � 100 under the two queue
structures. Both simulation results (with 95% confidence intervals) and fluid approximations are
provided for the DQ–JSQ design; exact results are provided for the PQ design.
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where Γ is the gamma function (i.e., Γ(s) :� ∫ ∞
0 ts−1e−t dt

for s > 0) and γ is the lower incomplete gamma function
(i.e., γ(s, x) :� ∫ x

0 ts−1e−t dt for s > 0 and x ≥ 0).

Please refer to Section EC.7 for the proof of Theorem 7.
We illustrate this boundary function in Figure 4 for
1/μ � 1.0 and 1/θ � 2.0.With a sufficiently largeλ, the
DQ–JSQ design requires fewer servers when (T, α) is
above the curve (i.e., in the unshaded region), whereas
the PQ design requires fewer servers when (T, α) is
below the curve (i.e., in the shaded region). In par-
ticular, the fact that α̂(0) � 0 confirms that theDQ–JSQ
design is more efficient in achieving any given proba-
bility of delay α > 0. Because the boundary function is
continuous, with a small delay target T (e.g., in terms
of seconds in typical call centers), the DQ–JSQ design
will also be more efficient as long as α is not too small.
If the threshold probability satisfies α ≥ α̂(∞), the
monotonicity of α̂ implies that the DQ–JSQ design
must be more efficient, regardless of the value of T.

With μ > 0 and T ≥ 0 being fixed, the boundary
probability α̂(T) will change when θ takes different
values. In Figure 5, we plot α̂(T) as a function of θwith
1/μ � 1.0. For each fixed T, the difference between
α̂(∞) and α̂(T) gets smaller and smaller as θ increases.
We observe that it would be generally satisfactory to
use α̂(∞) to approximate α̂(T) when T ≥ 1.0 and
θ ≥ 2.0. Note thatm(T) grows exponentiallywith both
T and θ. When either T or θ is large, it may become
intractable to compute the exact value of α̂(T) by (23)
and (29). Because it is much simpler to evaluate the
regularized incomplete gamma function, α̂(∞)would
be an attractive approximation in this case.

By extensive numerical tests, we observed that α̂(T)
is strictly increasing in θ. However, it is difficult to
prove such monotonicity given the complicated ex-
pression in (29). Instead, we may prove monotonicity

and limit results for α̂(∞), as stated in the following
proposition.

Proposition 2. With a fixed μ > 0, α̂(∞) is strictly in-
creasing in θ on (0,∞), having limits

lim
θ↓0

α̂ ∞( ) � 1
2

and lim
θ→∞ α̂ ∞( ) � 1.

Proposition 2 may help us determine the queueing
design when the delay target is relatively long (e.g.,
several times longer than the mean service time).
Because α̂(∞) > 1/2, the PQ design is likely to bemore
efficient if α is well below 1/2, no matter how patient
customers would be (such a phenomenon is also
evident in Figure 4). If customers are highly impatient
(i.e.,θ is large), α̂(∞)will be closer to 1. In this case, the
PQdesign is also likely to bemore efficient as long asα
is not close to 1. Along with the earlier discussion, we
may summarize that the DQ–JSQ design is likely to be
more efficient when T is small and α is well above 0,
whereas the PQ design is likely to be more efficient
when T is large and α is well below α̂(∞).

7. The DQ Structure with
Partial Information

The JSQ policy requires complete state information
(i.e., the number of customers of each server) to make
routing decisions. When communication overhead
is a constraint, routing policies that are capable of
exploiting partial queue length informationmay become
more attractive. In this section,weevaluate thepower-of-
d policy and the JIQ policy under the DQ structure by
numerical experiments. The asymptotic analysis of
these two policies is beyond the scope of this study,
and we would like to investigate such topics in
the future.

Figure 4. (Color online) Boundary Function α̂
Figure 5. (Color online) Boundary Probability α̂(T) as a
Function of θ

Cao et al.: Queueing Design for Large-Scale Service Systems
16 Operations Research, Articles in Advance, pp. 1–20, © 2020 INFORMS



Instead of comparing all queue lengths of the n
servers, the power-of-d policy selects d servers at
random and dispatches each customer to one of the d
servers that has the fewest customers. This policy was
analyzed byMitzenmacher (2001), Chen and Ye (2012),
Ying et al. (2017), and Mukherjee et al. (2020) under
various settings. It is well known that the perfor-
mance of the power-of-d policy could be close to that
of the JSQ policy with d being much smaller than n
(Mitzenmacher 2001, Chen and Ye 2012). The JIQ
policy is another low-overhead alternative to the JSQ
policy. If there are idle servers available upon a
customer’s arrival, the JIQ policy will dispatch the
customer to an idle server; otherwise, the customer
will be dispatched to a server selected at random. The
JIQ policy may achieve comparable performance to
the power-of-d policy with much lower communica-
tionoverhead (seeLu et al. (2011) and Stolyar (2015), as
well as the following discussion).

Example 6. We consider a queueing system with 1/μ �
1.0, 1/θ � 2.0, ρ � 1.2, and n � 100. In Figure 6, we plot
the simulation results of several performance measures
under the power-of-d policy (denoted by Pod in the
figure) for d ranging from 1 to 30. These performance
measures include the mean number of customers in the
system, the mean PWT, the mean AWT, the probability
of delay, the probability of abandonment, the mean
number of idle servers (MNIS), and the probability of a
customer joining a shortest queue (denoted by P(JSQ) in
the figure).

The performance of the power-of-d policy con-
verges to that of the JSQ policy as d increases. The
power-of-d policy may achieve comparable perfor-
mance to the JSQpolicy for d ≥ 10. The performance of
the JIQ policy appears to be much better than the
power-of-d policy when d is not large. This is because
idle servers will frequently appear in the moderately
overloaded regime and the probability of joining an

Figure 6. (Color online) Performance Comparison of the Power-of-d (Pod), JSQ, and JIQ Policies
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idle server will be greater under the JIQ policy. The
performance of the JIQ policy appears to be very close
to that of the JSQ policy, with the probability of delay
being even smaller. This is because customers may
not join one of the shortest queues if there is no idle
server. Those shortest queues will thus go empty
more frequently, and more idle servers will appear.
As a result, we may find the probability of delay even
smaller than under the JSQ policy.

If servers are allowed to proactively send their
states to the dispatcher, the communication overhead
of the JIQ policy will be significantly lower than that
of the power-of-d policy. Because a server needs to
send a message to the dispatcher only when she
completes a service and becomes idle, the average
message exchange rate will not exceed one per cus-
tomer under the JIQ policy. By contrast, the dis-
patcher needs to send d messages for requesting

Table 5. Performance Comparison Between the JIQ and JSQ Policies

Parameter

ρ � 1.02 ρ � 1.2 ρ � 1.5

JIQ
JSQ

JIQ
JSQ

JIQ
JSQ

Sim. Sim. App. Sim. Sim. App. Sim. Sim. App.

P(De) 0.178 ± 0.002 0.188 ± 0.003 0.059 0.444 ± 0.003 0.525 ± 0.003 0.500 0.719 ± 0.003 0.940 ± 0.002 1.000
P(Ab) 0.064 ± 0.002 0.063 ± 0.002 0.020 0.178 ± 0.002 0.174 ± 0.002 0.167 0.336 ± 0.003 0.332 ± 0.003 0.333
E[X(∞)] 108.6 ± 0.2 108.4 ± 0.2 104.0 141.4 ± 0.2 141.0 ± 0.2 140.0 200.5 ± 0.2 200.2 ± 0.3 200.0
E[W] 0.199 ± 0.004 0.189 ± 0.003 0.059 0.570 ± 0.005 0.520 ± 0.005 0.500 1.141 ± 0.007 1.025 ± 0.005 1.000
E[W|W > 0] 1.110 ± 0.012 1.005 ± 0.011 1.000 1.280 ± 0.008 0.995 ± 0.007 1.000 1.586 ± 0.007 1.089 ± 0.005 1.000
E[V] 0.129 ± 0.002 0.126 ± 0.002 0.039 0.355 ± 0.003 0.350 ± 0.003 0.333 0.674 ± 0.004 0.670 ± 0.004 0.667
E[V|W < R] 0.089 ± 0.002 0.089 ± 0.002 0.027 0.268 ± 0.003 0.284 ± 0.003 0.267 0.585 ± 0.005 0.657 ± 0.004 0.667
E[V|W > R] 0.712 ± 0.014 0.674 ± 0.013 0.667 0.757 ± 0.008 0.666 ± 0.008 0.667 0.851 ± 0.007 0.699 ± 0.006 0.667
Var(W) 0.392 ± 0.011 0.346 ± 0.010 0.114 1.020 ± 0.019 0.762 ± 0.016 0.750 1.721 ± 0.029 1.116 ± 0.022 1.000
MNIS 4.496 ± 0.035 4.382 ± 0.035 — 1.293 ± 0.010 1.000 ± 0.010 — 0.395 ± 0.004 0.069 ± 0.002 —
P(JSQ) 0.971 ± 0.001 1.000 ± 0 1.000 0.850 ± 0.002 1.000 ± 0 1.000 0.582 ± 0.003 1.000 ± 0 1.000

Notes. The Markovian queueing system has 1/μ � 1.0; 1/θ � 2.0; ρ � 1.02, 1.2, and 1.5; and n � 100 under the JIQ and JSQ policies. Simulation
results (with 95% confidence intervals) are provided, along with fluid approximations for the JSQ policy.

Figure 7. (Color online) Estimates of the Steady-State Queue Length Distributions
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queue lengths, and the d servers need to send d re-
sponses to the dispatcher under the power-of-d pol-
icy. The message exchange rate is 2d messages per
customer. Because the JIQ policy could be more at-
tractive as a low-overhead alternative, let us compare
its performance with that of the JSQ policy more
closely in the next example.

Example 7. We consider a queueing system with
1/μ � 1.0; 1/θ � 2.0; n � 100; and ρ � 1.02, 1.2, 1.5.
Simulation results (with 95% confidence intervals)
under the JIQ and JSQ policies are summarized in
Table 5. With a lower communication overhead, the
JIQ policy may achieve comparable performance in
terms of the probability of abandonment, mean queue
length, and mean waiting times. (The fluid model
may not provide accurate approximations when the
system operates in the critically loaded regime. In this
table, fluid approximations for the JSQ policy appear
less accurate with ρ � 1.02. Please refer to Section
EC.10 of the e-companion for more discussion.) Be-
cause they may not join the shortest queues if no idle
servers are available, customers are not well balanced
across servers under the JIQ policy, having a greater
variance of PWTs. In this sense, the fairness issue is
more serious under the JIQ policy. As we discussed
earlier, the JIQ policy renders a lower probability of
delay, because more idle servers will be available for
incoming customers.

8. Concluding Remarks
We conducted an asymptotic analysis of the DQ–JSQ
system with customer abandonment, and we com-
pared the system’s performance with that of the PQ
system in a moderately overloaded regime. We dem-
onstrated that under the DQ–JSQ design, the queueing
system may achieve a lower probability of delay or a
higher service level, whereas the induced loss of ca-
pacity utilization is negligible. Therefore, the system
may need a lower staffing level under the DQ–JSQ
design to meet a certain service-level objective.

Although the fluid model may provide effective
performance approximations for the DQ–JSQ system,
such a model ignores stochastic fluctuations in the
arrival, service completion, and abandonment pro-
cesses. In Figure 7, we plot the estimates of the steady-
statedistributionofqueue lengths in theDQ–JSQ system
with 1/μ � 1.0; 1/θ � 2.0; ρ � 1.2; and n � 100, 400.
Both Q2(∞) and X(∞) appear to follow Gaussian
distributions, with the mean values close to the cor-
responding fluid approximations (represented by
solid vertical lines in the figure). To capture such
distributions, we need to establish a refined model
that takes into account the stochastic features of the
queueing system. In the future,wemayprove adiffusion
limit for theDQ–JSQ system. Instead of approximating

the queue length by Qn
i (t) � nQ̄i(t) + o(n), we expect

that Qn
i (t) � nQ̄i(t) + ̅̅

n
√

Q̃i(t) + o( ̅̅
n

√ ), where the dif-
fusion limit Q̃i(t) characterizes stochastic fluctuations
around the mean value, may provide more accurate
approximations. This refined model may enable us to
better estimate the distributions of queue lengths and
PWTs, so that wemay obtain more accurate solutions to
staffing problems.
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