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Abstract. Motivated by production systems with nonstationary stochastic demand, we
study a double-ended queueing model having back orders and customer abandonment.
One side of our model stores back orders, and the other side represents inventory. We
assume first-come-first-served instantaneous fulfillment discipline. Our goal is to deter-
mine the optimal (nonstationary) production rate over a finite time horizon tominimize the
costs incurred by the system. In addition to the inventory-related (holding and perishment)
and demand-related (waiting and abandonment) costs, we consider a cost that penalizes
rapid fluctuations of production rates. We develop a deterministic fluid-control problem
(FCP) that serves as a performance lower bound for the original queueing-control problem
(QCP). We further consider a high-volume system for which an upper bound of the gap
between the optimal values of the QCP and FCP is characterized and construct an as-
ymptotically optimal production rate for the QCP, under which the FCP lower bound is
achieved asymptotically. Demonstrated by numerical examples, the proposed asymp-
totically optimal production rate successfully captures the time variability of the non-
stationary demand.

Open Access Statement: This work is licensed under a Creative Commons Attribution 4.0 International
License. You are free to copy, distribute, transmit and adapt this work, but you must attribute this work
as “Stochastic Systems. Copyright © 2021 The Author(s). https://doi.org/10.1287/stsy.2019.0066, used
under a Creative Commons Attribution License: https://creativecommons.org/licenses/by/4.0/.”
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1. Introduction
One of the fundamental challenges that precludes desired dynamic behavior of stochastic systems is that of
nonstationarity. For instance, a number of service systems, such as production lines, call centers, hospitals, and
online trading, are subject to nonstationarity of customer demand, service times, and staffing levels. In a
pharmaceutical-industry context, factors such as consumer perceptions (e.g., from advertising or time since
entry), over-the-counter offerings, or ongoing market competition may lead to nonstationary demand be-
havior over time; for instance, figure 1 in Arcidiacono et al. (2013) shows monthly prescription fluctuations for
brand and generic drugs.

Our work is motivated by the recent attention of industry, government, and academia to continuous
manufacturing. In contrast to the traditional batch-production process, continuous manufacturing can produce
more reliable products, while achieving higher efficiency in cost. Recognizing its value, the Food and Drug
Administration approved in April 2016, for the first time, Janssen Products, LP’s change in their production
method from batch to continuous manufacturing; see Yu (2016). Moreover, continuous manufacturing allows
manufacturers to adjust for nonstationary (i.e., time-varying) demand much more quickly, hence, preventing a
potential shortage or large back-order quantities. The emerging question is: When and how much should one
change the production rate so that the nonstationary demand and resource capacities can be timely and
carefully balanced?

The goal of this paper is to address the above question for a class of production systems that exhibit the
following three features: (i) Product demand is stochastic and nonstationary; (ii) produced goods are perishable
and customers are impatient—that is, back orders are subject to cancellations; and (iii) rapid changes in
production rate incur operational cost, hence, the term inflexible production system. Mathematically, we model
the production system by a double-ended queue (see Figure 1), in which goods are produced according to a
Poisson process with time-varying production rate, and demands arrive according to another Poisson process
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with time-dependent and state-dependent arrival rate. Upon arrival of a demand, if there are available
products in the inventory, it will be fulfilled immediately, and if no product is available, it will be backlogged
and wait for the upcoming products. The system state can be described by a one-dimensional queue-
length process.

Our goal is to obtain an optimal (nonstationary) production rate over a finite-time production-planning
horizon to minimize the costs incurred by the system. These costs include the production cost; inventory-
related costs, consisting of holding and perishment costs; demand-related costs, consisting of waiting and
abandonment costs; and a cost that penalizes the rapid fluctuations of production rates, measured by the total
variation of the production-rate function.

Daunting challenges as they seem to be, we now describe our solution approaches and contributions to the
existing body of literature.

• We develop a (deterministic) fluid control problem (FCP) that serves as a lower bound for the original
queueing control problem (QCP) under any admissible control policy. Our result (Theorem 3.2) is established
without assuming any asymptotics. We construct an auxiliary control problem to tackle the difficulty arising
from the nonlinear drift of the expected queue-length process (Lemma 3.2). We believe our approach can be
potentially applied for other control problems for double-ended queues and matching queues with similar
nonlinear drift structure.

• We develop an asymptotic framework by considering high-volume systems, under which we characterize
the gap between the optimal values of the QCP and the corresponding FCP. Further, we construct an as-
ymptotically optimal production rate for the QCP based on the optimal solution of the FCP and show that the
FCP lower bound is achieved asymptotically under the proposed production rate. To consider an asymptotic
framework, we assume that the product demand is high and the system capacity can scale up large in re-
sponse to the demand. This enables us to pursue approximate solutions based on asymptotic analysis. We
show in Theorem 4.2 that the optimal value of the FCP serves asymptotically as a performance lower bound to
the fluid-scaled QCP as a scaling factor n (which measures the “size” of the system—for example, average
product demand rate) grows large. We then propose a production rate by using the optimal solution of the
FCP and show that under the proposed policy, the FCP lower bound is achieved asymptotically.

• We develop simple effective algorithms based on a linear programming (LP) formulation to numerically
solve the FCP and conduct various simulations to demonstrate the effectiveness of the proposed asymp-
totically optimal production rate for different system sizes. One salient feature of our control problem is the
consideration of production inflexibility cost—that is, the cost for rapidly increasing or decreasing production
levels. We use the total variation of a production-rate function as a quantitative measure for the production-
flexibility cost. As a result, the analytical solution of the FCP becomes intractable. Instead, we develop ef-
fective, yet simple, algorithms based on an LP formulation to numerically obtain the optimal production rates.
Our simulations demonstrate that the proposed policy based on the FCP solutions is optimal with error o(n).

• We solve the QCP numerically by formulating a dynamic programming (DP) problem and validate the
asymptotic optimality of the FCP solution. The simulated average optimal control path based on the optimal
DP policy is compared with the numerical solution of the FCP. Although our numerical studies are based on
academic-sized examples, we point out that the computational burden associated with the DP is tremendous.
To solve the DP problem with the system scale size n = 1,000, it requires 20 gigabytes of memory and six hours
of computing. Under the same hardware setting, the FCP obtains its optimal solution in less than a minute,
and the memory required is negligible compared with that of the DP case. For the small to moderate-size n, the
DP problem still requires significantly more computing resources. We acknowledge that when the system
scale is small, the FCP results do deviate significantly from the DP solutions. However, the difference de-
creases quickly as the system scale increases. An example with varying system scale is included in Section 6.

There are two streams of literature that are related to our work.

Figure 1. A Production/Inventory System Modeled by a Double-Ended Queue
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1.1. Double-Ended Queueing Models
Double-ended queues have been studied for many applications, including taxi-service systems, perishable-
inventory systems, organ-transplant systems, and finance (cf. Kaspi and Perry 1983, Zenios 1999, Prabhakar
et al. 2000, Boxma et al. 2011, Afeche et al. 2014, and He et al. 2018). In particular, Kaspi and Perry (1983)
studied a perishable-inventory system with Poisson arrivals for both supplies and demands. Supplies are
assumed to have constant lifetimes, and demands leave the system if not matched immediately. Extensions of
such perishable-inventory system were considered in Kaspi and Perry (1984) and Perry and Stadje (1999).
When renewal arrivals and/or generally distributed patience times are considered, exact analysis becomes
intractable. In Liu et al. (2015), rigorous fluid and diffusion models were developed for double-ended queues
with renewal arrivals and exponential patience times. Later on, Liu (2019) established the heavy traffic as-
ymptotics for the system with renewal arrivals and generally distributed patience times. Double-ended queues
are the simplest matching queues. Multiclass matching queues have also drawn attention recently—for ex-
ample, Gurvich and Ward (2014), Ozkan and Ward (2020), and Khademi and Liu (2019) study matching
systems with applications in assemble-to-order systems, ride-sharing systems, and organ-transplant systems
and focus on developing asymptotically optimal matching policies.

1.2. Staffing and Control of Time-Varying Queues
Heavy-traffic fluid and diffusion limits were developed by Mandelbaum et al. (1998) for time-varying
Markovian queueing networks with Poisson arrivals and exponential service times. Gaussian approxima-
tion methods for Markovian queues have been developed by Niyirora and Pender (2016) and Pender (2016).
Adopting a two-parameter queue-length descriptor, the pioneering work by Whitt (2006) studied the G/GI/s + GI
fluid model having nonexponential service and abandonment times. Extending the work by Whitt (2006), Liu
and Whitt (2012a) developed a fluid approximation for the Gt/GI/st + GI queue with time-varying arrivals and
nonexponential distributions; they later extended it to the framework of fluid networks (Liu and Whitt 2011,
Liu and Whitt 2014]. A functional weak law of large numbers (Liu and Whitt 2012b) was established to
substantiate the fluid approximation in Liu and Whitt (2012a), and a functional central limit theorem (Liu and
Whitt 2012c) was developed for the Gt/M/st + GI model with exponential service times.

Asymptotic optimal control for time-homogeneous queueing systems is well studied (cf. Harrison 2000, Ata
and Kumar 2005, and Budhiraja and Ghosh 2006). For time-inhomogeneous queueing systems, the asymptotic
control is usually considered under fluid scaling—cf. Bassamboo et al. (2005), Cudina and Ramanan (2011),
Ozkan and Ward (2020), and Khademi and Liu (2019), in all of which high-volume systems were considered,
and the FCP was shown to be the best performance bound for the original QCP asymptotically. In Armoney
et al. (2019), the authors considered the problem of scheduling appointments for a service facility with
customer no-shows. Therein, a similar scaling is considered, and the optimal fluid-limit path exhibits
piecewise linear drift in time variable. In Atar et al. (2019), the authors studied a load balancing for time-
varying systems and established subdiffusive balance, extending far beyond the heavy-traffic setting. A recent
paper (Liu et al. 2021) investigated a scheduling problem for a time-varying multiclass queueing model
under a dynamic prioritization rule that is both state-dependent and time-dependent, with an objective of
achieving stable and differentiated service levels measured by the so-called tail probability of delay (TPoD); also
see Liu (2018) for discussions of TPoD and its applications.

Without assuming any asymptotics, in many situations, deterministic models can also be shown to be the
best performance bound for the expected stochastic performance. Indeed, our Theorem 3.2 provides such
nonasymptotic lower bound on the finite time horizon cumulative costs. To the best of our knowledge, the
majority of the existing nonasymptotic results are established for systems with linear drift—for example, in
Gallego and Van Ryzin (1994), the deterministic revenue was shown to be the upper bound for its stochastic
counterparts. In our work, a piecewise linear drift appears in the fluid process, and our approach for such
nonlinearity can be potentially applied for other control problems.

It is worth mentioning that Bassamboo and Randhawa (2010) studied the accuracy of the M/M/s + GI fluid
model for capacity sizing, where they quantified the approximation errors and observed that fluid model does
not always serve as a lower bound.

1.2.1. Organization of the Paper. In Section 2, we introduce our double-ended queueing model with aban-
donment at both sides and formulate a finite time horizon QCP. In Section 3, we develop a deterministic FCP
that provides a lower bound for the QCP. In Section 4, we consider high-volume systems, for which we
characterize the asymptotic gap between the optimal values of the QCP and the corresponding FCP and con-
struct an asymptotically optimal production rate for the QCP based on the optimal solution of a suitable FCP.
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Scaling-limit theorems are provided to show the asymptotic optimality. Numerical examples to evaluate the
effectiveness of the FCP are presented in Section 5. In Section 6, we develop a numerical solution to the QCP
using a DP problem to validate the asymptotic optimality of the FCP numerical solution. Additional proofs are
given in Section 7, and a short conclusion is given in Section 8. And, last, the appendix collects numerical
methods to solve the FCP and the extensions considering some practical constraints.

2. Model Formulation
We are motivated by a production/inventory system, in which single commodities are produced according
to a Poisson process with a time-varying production rate, and demands arrive following another Poisson
process, whose rate also fluctuates over time and further depends on the inventory level. Upon the arrival of
demand, if there are available products in the inventory, it will be fulfilled immediately, and if no product is
available, it will be backlogged and wait for the upcoming products. Demand fulfillment follows the first-
come-first-served principle. We further assume that the products are perishable, and their lifetimes are
identically and independently distributed (i.i.d.) exponential random variables, demands are impatient, and
their patience times are also i.i.d. exponentially distributed. Such a system can be modeled as a double-ended
queueing system, which is schematically depicted in Figure 1.

Let (Ω,F ,P) be a complete probability space. All the random variables and stochastic processes in this
section are assumed to be defined on this space. The expectation under P will be denoted by E.

2.1. System Processes
A precise mathematical description of the system is given as follows. For t ≥ 0, let Ap(t) denote the number of
goods produced by time t, and Ad(t) denote the number of demands arrived by time t. Next, let Gp(t) count the
total number of perished products by time t, and Gd(t) the total number of abandoned demands by time t. Let
{Q(t); t ≥ 0} be the queue-length process, and at time t, there are Q+(t) number of products in the inventory,
and Q−(t) number of backlogged demands waiting in the system, where for x ∈ R, x+ ≡ max(x, 0) and
x− ≡ max(−x, 0), and, thus, Q+(t) and Q−(t) denote the positive and negative parts of Q(t), respectively.

Flow conservation yields

Q t( ) � Q 0( ) + Ap t( ) − Ad t( ) − Gp t( ) + Gd t( ), t ≥ 0. (1)
Let Ni, i � 1, 2, 3, 4 be four independent unit rate Poisson processes, and then we can formulate the system
processes as follows.

Ap t( ) ≡ N1

∫ t

0
λp s( )ds

( )
, Ad t( ) ≡ N2

∫ t

0
λd s,Q s( )( )ds

( )
,

Gp t( ) ≡ N3 θp

∫ t

0
Q+ s( )ds

( )
, Gd t( ) ≡ N4 θd

∫ t

0
Q− s( )ds

( )
, (2)

where λp : [0,∞) → [0,∞), λd : [0,∞) × R → [0,∞) are measurable functions that represent the production rate
and demand arrival rate, respectively. Parameters θp ≥ 0 and θd ≥ 0 are the goods-perishment and back-order-
abandonment rates (the reciprocals of the means of product shelf life and demand patience time). For
the production system with nonperishable goods or infinitely patient customers, we can let θp � 0 or θd � 0,
which is a special case of our model here. We allow the demand rate to depend on the inventory level; such
dependence may be attributed to the “selective effect” and “advertising effect” known in the marketing
literature; see Khmelnitsky and Gerchak (2002) and Corstjens and Doyle (1981).

2.2. A Queueing Control Problem
The goal of the production manager is to minimize the expected cost functional over a finite time horizon [0,T]
by controlling the production rate {λp(t); t ∈ [0,T]}. More precisely, denote by hp and hd the holding costs for
each product in inventory and each backlogged demand, cp and cd the penalty costs for each perished product
and lost demand, and C : [0,∞) → [0,∞) the convex cost function for production. Furthermore, to quantify the
degree to which the production rate varies, we denote the total variation of the production-rate function
{λp(t); t ∈ [0,T]} by

VT λp
( ) ≡ sup

∑n−1
i�0

λp ti+1( ) − λp ti( )⃒⃒ ⃒⃒
,

where the supremum runs over the set of all partitions {0 � t0 ≤ · · · ≤ tn � T}.
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We associate VT(λp) with a penalty cost cf to penalize the rapid fluctuations of the production rate.
Let M � (Q(0), λd,Λp, θp, θd,C, hp, hd, cp, cd, cf ) denote the input data of the system. Our QCP is to choose

{λp(t); t ∈ [0,T]} ∈ U to minimize

R λp;M
( ) ≡ E

∫ T

0
hpQ+ t( ) + hdQ− t( ) + C λp t( )( )[ ]

dt
( )

+ E cpGp T( ) + cdGd T( ) + cf VT λp
( )( )

, (3)

where U is the space of all admissible production-rate functions. A production-rate function {λp(t); t ∈ [0,T]} is
called admissible if it satisfies the following conditions:

i. (Nonanticipativity) For t ∈ [0,T],
λp t( ) ∈ F t ≡ σ Q s( ),Ap s( ),Ad s( ),Gp s( ),Gd s( )( )

; 0 ≤ s ≤ t
{ }

.

The σ-field F t collects all information available to the production manager at time t.
ii. (Boundedness) For t ∈ [0,T], 0 ≤ λp(t) ≤ Λp, where Λp > 0 is the maximum production rate.
iii. (Bounded Variation) E[VT(λp)] < ∞.
Unfortunately, the QCP is too complex to be analyzed directly. We, thus, develop an FCP in the next section,

which provides a lower bound for the QCP. We further develop an asymptotic framework, and derive an
asymptotically optimal production rate for (3) (see Section 4).

3. Fluid Control Problem
We formulate a deterministic FCP which is tied to the QCP by serving as a lower bound for (3) (see Theorem 3.2).
Structural properties of the FCP, including existence of optimal solutions (Theorem 3.1), linear scalability
(Proposition 3.1), and monotonicity of total variation (Proposition 3.2), are presented. The optimal solution of
the FCP will be used in Section 4, in which we consider an asymptotic framework and construct an as-
ymptotically optimal control for the QCP (3).

A natural way to develop a fluid model is to consider the expectations of the stochastic processes introduced
in Section 2 (see Liu and Whitt 2012b). We note that from (2), for t ≥ 0,

E Ap t( )( ) � ∫ t

0
E λp s( )[ ]

ds, E Ad t( )( ) �
∫ t

0
E λd s,Q s( )( )[ ]ds,

and

E Gp t( )( ) � ∫ t

0
θpE Q+ s( )[ ]ds, E Gd t( )( ) �

∫ t

0
θdE Q− s( )[ ]ds.

The objective function (3) can then be written as

R λp;M
( ) � ∫ T

0
hp + cpθp
( )

E Q+ t( )[ ] + hd + cdθd( )E Q− t( )[ ][ ]
dt

+
∫ T

0
E C λp t( )( )[ ]

dt + cfE VT λp
( )[ ]

.

Noting that the cost function C, the positive and negative part functionals, and the total variation functional
are all convex, from Jensen’s inequality, we have

E Q t( )+[ ] ≥ E Q t( )[ ]+, E Q t( )−[ ] ≥ E Q t( )[ ]−, (4)
E C λp t( )( )[ ] ≥ C E λp t( )[ ]( )

, E VT λp
( )[ ] ≥ VT E λp

[ ]( )
. (5)

This yields that R(λp;M) ≥ R̃(E[λp];M), where

R̃ E λp
[ ]

;M
( ) � ∫ T

0
hp + cpθp
( )

E Q t( )[ ]( )+ + hd + cdθd( ) E Q t( )[ ]( )−[ ]
dt

+
∫ T

0
C E λp t( )[ ]( )

dt + cf VT E λp
[ ]( )

.

(6)
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We next observe that the expected queue-length process E[Q(t)] satisfies the following equation. For t ∈ [0,T],

E Q t( )[ ] � E Q 0( )[ ] +
∫ t

0
E λp s( )[ ]

ds −
∫ t

0
E λd s,Q s( )( )[ ]ds

−
∫ t

0
θpE Q+ s( )[ ]ds +

∫ t

0
θdE Q− s( )[ ]ds. (7)

Note that, in general, E[Q+(s)] 	� (E[Q(t)])+ and E[Q−(s)] 	� (E[Q(t)])−, and, hence, {E[Q(t)]; t ∈ [0,T]} cannot be
determined by (7). However, to develop a fluid model, we will replace E[Q(t)] by a deterministic q(t), E[Q+(s)]
by q+(t), and E[Q−(s)] by q−(t) in (6) and (7), and derive the following deterministic control problem, which will
be referred to as the fluid control problem associated with M.

Definition 3.1 (FCP). The FCP associated with M is to choose a deterministic function {λ̄p(t); t ∈ [0,T]} to minimize

R̄ λ̄p;M
( ) ≡ ∫ T

0
hp + cpθp
( )

q+ t( )[
+ hd + cdθd( )q− t( ) + C λ̄p t( )( )]

dt + cf VT λ̄p
( )

, (8)
subject to

i. For t ∈ [0,T],

q t( ) � E Q 0( )[ ] +
∫ t

0
λ̄p s( ) − λd s, q s( )( ) − θpq+ s( ) + θdq− s( )
[ ]

ds; (9)

ii. For t ∈ [0,T], 0 ≤ λ̄p(t) ≤ Λp;
iii. VT(λ̄p) < ∞.

Throughout this section, we make the following assumptions, which contain some natural regularity
conditions on the demand arrival-rate function λd and the production cost function C. In particular, the local
Lipschitz continuity assumption (11) below will guarantee the existence of the solution to the (fluid) state
process {q(t); t ∈ [0,T]} defined by (9), and the linear growth assumption (10) below will be used to show the
uniform boundedness of {q(t); t ∈ [0,T]}. Such assumptions are standard for state-dependent rate functions, for
example, in Mandelbaum and Pats (1998). Lastly, Assumption 1(ii) below is required for the existence of an
optimal solution to the FCP (see Theorem 3.1).

Assumption 1.
i. There exists a positive constant L1 such that for t ≥ 0 and x ∈ R,

λd t, x( ) ≤ L1 1 + |x|( ), (10)
ii. and for any compact set K1 × K2 ⊂ [0,∞) × R, there exists a positive constant L2 such that

sup
t∈K1,x,y∈K2

|λd t, x( ) − λd t, y
( )| ≤ L2|x − y|. (11)

iii. The function C : [0,∞) → [0,∞) is continuous.

The following theorem establishes the existence of an optimal solution to the FCP, which essentially follows
from theorem 1.1 of Matula (1987). (The cited theorem guarantees the existence, but not uniqueness, of an
optimal solution. In general, uniqueness requires further conditions on the model parameters; cf. Kabe and
Gouranga Rao 1986).

Theorem 3.1 (FCP Existence). Under Assumption 1, there exists an optimal solution to the FCP.

Proof of Theorem 3.1. Our proof follows from theorem 1.1 in Matula (1987). It suffices to verify the sufficient
conditions for that theorem. More precisely, defining for t ∈ [0,T] and q ∈ R and u ∈ R+,

f q,u
( ) � hp + cpθp

( )
q+ + hd + cdθd( )q− + C u( ),

g t, q,u
( ) � u − λd t, q

( ) − θpq+ + θdq−,
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we need to verify the following conditions: (i) f (·, ·) is lower semicontinuous on R × R+; (ii) there exists an
integrable function μ(·) such that μ(t) ≤ f (q(t), λp(t)) for any admissible pair (q, λp) and for almost all
t ∈ [0,T]; (iii) g(t, q,u) is continuous with respect to (q,u) and measurable with respect to t; and (iv) there exists
an integrable function m(·) such that |g(t, q(t), λp(t))| ≤ m(t) for each admissible pair (q, λp) and for almost
all t ∈ [0,T].

Clearly f is continuous, and has a lower bound which can be taken to be zero, and, furthermore, g is continuous,
and from (10) in Assumption 1, | g(t, q(t),u(t))| ≤ Λp + L1(1 + |q(t)|) + (θd + θp)|q(t)|. To show the integrability of q,
we observe that

q t( )⃒⃒ ⃒⃒ ≤ q0
⃒⃒ ⃒⃒ +Λpt +

∫ t

0
L1 1 + q s( )⃒⃒ ⃒⃒( )

ds + θp q s(⃒⃒ )( ⃒⃒
ds + θd q s( )⃒⃒ ⃒⃒)ds

� q0
⃒⃒ ⃒⃒ + Λp + L1

( )
t + L1 + θp + θd
( ) ∫ t

0
q s( )⃒⃒ ⃒⃒

ds,

and from Gronwall’s inequality (see section 1 of the online appendix of Aras et al. 2018 for a reference),
we have

q t( )⃒⃒ ⃒⃒ ≤ q0
⃒⃒ ⃒⃒ + Λp + L1

( )
t

( )
e L1+θp+θd( )t. (12)

This verifies the sufficient conditions. □

The following lemma confirms the admissibility of an optimal FCP solution for the corresponding QCP.

Lemma 3.1. Let λ̄∗p ≡ {λ̄∗p(t); t ∈ [0,T]} be an optimal solution to the FCP associated with M; then, λ̄∗p is an admissible
solution to the QCP associated with M.

Proof. Theorem 3.1. guarantees the existence of λ̄∗p . It suffices to verify that λ̄∗p satisfies all three admissibility
conditions, which are listed below (3)—that is, nonanticipativity, boundedness, and bounded variation. Noting
that λ̄∗p is deterministic, λ̄∗p(·) ∈ F 0 ⊂ F t for t ∈ [0,T]. So the nonanticipativity condition is trivially satisfied. In
Definition 3.1, the second constraint requires that any feasible solution to the FCP is bounded from above by Λp,
which verifies the boundedness condition. Lastly, the existence of an optimal solution to the FCP ensures that the
optimal value of the objective function is finite—that is, 0 ≤ R̄(λ̄∗p ;M) < ∞—which implies that the total variation
of the optimal solution is also bounded—that is, VT(λ̄∗p) < ∞. It follows now that λ̄∗p is an admissible solution to the
corresponding QCP. □

In the following, we impose stronger assumptions on the demand arrival rate function and the production-
cost functional. These assumptions will be required in some of the following results.

Assumption 2.
i. The demand arrival rate is bounded and state-independent—that is, for t ≥ 0 and x ∈ R, λd(t, x) ≡ λd(t) and

supt≥0 λd(t) < ∞.
ii. The production cost C(·) is linear—that is, for some C0 > 0, C(x) � C0x, x ∈ R+.
We now study the linear-scalability property of the FCP. The scalable FCP is proportional to the increasing

demand input. In the high-volume system, the associated FCP can be scaled properly for computational
convenience (see Section 5). Let V(M) denote the optimal value of the FCP with given data M—that is,

V M( ) ≡ min
λ̄p

R̄ λ̄p;M
( )

.

For a constant κ > 0, define the linearly scaled data with respect to Q(0), λd, and Λp as follows:

Mκ ≡ κQ 0( ), κλd, κΛp, θp, θd,C, hp, hd, cp, cd, cf
( )

.

Proposition 3.1 (Linear-Scalability Property). Under Assumption 2, for any constant κ > 0,

κV M( ) � V Mκ( ). (13)
Furthermore, if λ̄∗p is an optimal solution to the FCP with M, then κλ̄∗p is an optimal solution to the FCP with Mκ.
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Proof. Following Theorem 3.1, there exists λ̄∗p such that V(M) � R̄(λ̄∗p ;M). The corresponding optimal state
process q∗ satisfies,

q∗ t( ) � E Q 0( )[ ] +
∫ t

0
λ̄∗p s( ) − λd s( ) − θpq∗,+ s( ) + θdq∗,− s( )
[ ]

ds.

It is straightforward to see that κλ̄∗p and κq∗ together satisfy the state process of the FCP with Mκ. That is,

κq∗ t( ) � κE Q 0( )[ ] +
∫ t

0
κλ̄∗p s( ) − κλd s( ) − θpκq∗,+ s( ) + θdκq∗,− s( )
[ ]

ds. (14)

Hence, κλ̄∗p is an admissible control to the problem minλ̄p
R̄(λ̄p,Mκ). By the optimality of V(Mκ),

κV M( ) � R̄ κλ̄∗p ,Mκ
( )

≥ V Mκ( ), (15)

where the first equality is due to the linearity of R̄ with respect to q+, q− and λ̄p. More specifically,

R̄ κλ̄∗p ,Mκ
( )

�
∫ T

0
c1κq∗,+ t( ) + c2κq∗,− t( ) + C κλ̄∗p t( )

( )[ ]
dt + cf VT κλ̄∗p

( )
� κ

∫ T

0
c1q∗,+ t( ) + c2q∗,− t( ) + C λ̄∗p t( )

( )[ ]
dt + cf VT λ̄∗p

( )( )
� κV M( ),

where c1 � hp + cpθp and c2 � hd + cdθd.

Similarly, there also exists a control λ̄∗p,κ for the FCP with Mκ such that V(Mκ) � R̄(λ̄∗p,κ;Mκ) and the
resulting state process q∗κ satisfies

q∗κ t( ) � κE Q 0( )[ ] +
∫ t

0
λ̄∗p,κ s( ) − κλd s( ) − θpq∗,+κ s( ) + θdq∗,−κ s( )
[ ]

ds.

Next, λ̄∗p,κ/κ can be shown to be an admissible control to the FCP with input M—that is,

q∗κ t( )
κ

� E Q 0( )[ ] +
∫ t

0

λ̄∗p,κ s( )
κ

− λd s( ) − θp
q∗,+κ s( )

κ
+ θd

q∗,−κ s( )
κ

[ ]
ds,

where the state process is q∗κ/κ. Noting that V(M) is the optimal value for the FCP associated with M,

V Mκ( )
κ

� R̄
λ̄∗p,κ
κ

,M

( )
≥ V M( ). (16)

Together with (15), we have the equality (13). Furthermore, given the optimal rate λ̄∗p for FCP with M, we
have confirmed in (14) that κλ̄∗p is also an admissible control to FCP with Mκ, where the state process is given
by κq∗. Additionally, because of (13), we know that R̄(κλ̄∗p ;Mκ) � κV(M) � V(Mκ). Therefore, we conclude
that κλ̄∗p is an optimal solution to FCP with Mκ. □

One salient feature of our control problem is the inclusion of the cost associated with total variation of the
production-rate function. The following result studies the monotonicity of the total variation of the optimal
production rate with respect to the associated cost cf . A numerical example is provided in Figure 3, which
shows that when cf is within a moderate range, the total variation term affects the optimal fluid production
rate in a nontrivial manner.

Proposition 3.2 (Monotonicity of Total Variation). Under Assumption 1, fix all the input data in M except the flexibility
cost cf , and let λ̄∗p(cf ) ≡ {λ̄∗p(t; cf ); t ∈ [0,T]} be an optimal solution of the FCP for the given cf . The total variation VT(λ̄∗p(cf ))
is monotonically decreasing in cf .

Proof. Let

f λ̄p
( ) � ∫ T

0
hp + cpθp
( )

q+ t( ) + hd + cdθd( )q− t( ) + C λ̄p t( )( )[ ]
dt.
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Define an optimal value function parameterized by cf as

V cf
( ) � R̄ λ̄∗p cf

( )
, cf

( )
,

which can be also written as

V cf
( ) � min

λ̄p

R̄ λ̄p; cf
( ) � min

λp

f λ̄p
( ) + cf VT λ̄p

( )[ ]
,

where the R(λ̄p; cf ) is linear in cf . Recall that the minimum of a family of linear functions forms a concave
function. Therefore, V(cf ) is concave in its only parameter cf .

Following the envelop theorem in Milgrom and Segal (2002), which concerns the differentiability properties of
the objective function of a parameterized optimization problem and, in this case, determines the value of the
derivative in (17), we have

dV cf
( )

dcf
� VT λ̄∗p cf

( )( )
≥ 0. (17)

The positive part of the first-order derivative of a concave function must be decreasing in its parameter.
Hence, the total variation of the optimal production rate VT(λ̄∗p(cf )) as a function is decreasing in the flexibility
cost cf . □

The next theorem establishes that the FCP (8) provides a lower bound for the QCP (3).

Theorem 3.2 (Lower-Boundedness of the FCP). Under Assumption 2, for any admissible control λp ∈ U of the queueing
control problem (3), we have

R λp;M
( ) ≥ R̄ E λp

[ ]
;M

( )
. (18)

Proof of Theorem 3.2. We note that both the cost functionals R and R̄ consist of queue-length holding cost,
production cost, and flexibility cost. As discussed in (5), under any admissible control λp for the QCP, E[C(λp(t))] ≥
C(E[λp(t)]) and E[VT(λp)] ≥ VT(E[λp]). Thus, it suffices to establish that∫ T

0
hp + cpθp
( )

E Q+ t( )[ ] + hd + cdθd( )E Q− t( )[ ][ ]
dt ≥

∫ T

0
hp + cpθp
( )

q+ t( ) + hd + cdθd( )q− t( )[ ]
dt, (19)

Figure 2. n � 5, 10, 50, 100

Notes. Let T � 24, demand rate λn
d(t) � nλ̄d(t), λ̄d(t) � 1 + 0.6 sin(t), and θn

p � 0.5, θn
d � 2, and unit costs are cd � 5, cp � 3, hd � 5, hd � 3, cf � 1,

C0 � 2. Allow production-rate change to occur every L � 4. Opt. Prod. Rate, optimal production rate.
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where for t ∈ [0,T],

q t( ) � E Q 0( )[ ] +
∫ t

0
E λp s( )[ ] − λd s( ) − θpq+ s( ) + θdq− s( )[ ]

ds. (20)

We first treat the special case θp � θd. Assume that θp � θd � θ. Then,

θpE Q t( )+[ ] − θdE Q t( )−[ ] � θE Q t( )[ ].
Hence, {(E[λp(t)],E[Q(t)]); t ∈ [0,T]} satisfies (20), and the inequality (19) follows from Jensen’s inequality.

We now consider the case θp 	� θd. We consider an auxiliary problem defined as the following:

min
u t( );t∈ 0,T[ ]{ }

Ř u( ) ≡
∫ T

0
hp + cpθp
( )

q+ t( ) + hd + cdθd( )q− t( )[
+ hp + cpθp + hd + cdθd
( )

u t( )]dt, (21)
subject to, for t ∈ [0,T],

q t( ) � E Q 0( )[ ] +
∫ t

0
d s( ) − θpq+ s( ) + θdq− s( ) − θp − θd

( )
u s( )[ ]

ds, (22)
0 ≤ u t( ) ≤ Δ0, (23)

where Δ0 is a given constant and d(t) � E[λp(t)] − λd(t).
Lemma 3.2. Assume that θp 	� θd and fix an admissible control λp ∈ U. Then, under Assumption 2, u∗(t) � 0, t ∈ [0,T], is
an optimal control for the problem (21)–(23).

The proof of Lemma 3.2 is given in Section 7. In the following, we finish the proof of Theorem 3.2. Let

u1 t( ) ≡ E Q+ t( )[ ] − E Q t( )[ ]+� E Q− t( )[ ] − E Q t( )[ ]− ≥ 0.

Now, the constraint (7) becomes

E Q t( )[ ] � E Q 0( )[ ] +
∫ t

0
E λp t( )[ ] − λd t( ) − θpE Q s( )[ ]+ +θdE Q s( )[ ]−[

− θp − θd
( )

u1 s( )]ds.
Furthermore, Lemma 4.1 shows that sup0≤t≤T E[|Q(t)|] < ∞, which yields that there exists Δ0 > 0 such that
u1(t) ≤ Δ0 for all t ∈ [0,T]. This shows that u1(t) is an admissible control to the auxiliary control problem in
Lemma 3.2, and the corresponding state process is {E[Q(t)]; t ∈ [0,T]}.

From Lemma 3.2, u∗(t) � 0, t ∈ [0,T] is an optimal solution, and we have

Ř u1( ) �
∫ T

0
hp + cpθp
( )

E Q+ t( )[ ] + hd + cdθd( )E Q− t( )[ ][ ]
dt

≥
∫ T

0
hp + cpθp
( )

q+ t( ) + hd + cdθd( )q− t( )[ ]
dt � Ř u∗( ),

where

q t( ) � E Q 0( )[ ] +
∫ t

0
E λp s( )[ ] − λd s( ) − θpq+ s( ) + θdq− s( )[ ]

ds.

The theorem now follows. □

Remark 3.1. The exact analysis of the QCP is of challenge mainly due to the intractability that stems from: (i) the
nonlinearity of holding costs, (ii) the nonstationarity of demand rate, and (iii) the total-variation term in the
cost functional. The FCP, however, is a continuous-time, continuous-space optimal control problem. The stan-
dard solution technique is to apply Pontryagin’s Maximum Principle; see Pontryagin (2018) and Seierstad and
Sydsaeter (1986). The facts that the drift of the FCP state process as in (9) is piece-wise and there is involvement
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of the total variation term render it difficult to obtain a closed-form solution. Therefore, we resort to a discrete-time
LP reformulation that can be efficiently solved by commercial solvers. See Section A.1 in the appendix for details of
the LP reformulation. A numerical example on the sensitivity analysis of the discrete-time interval is also included
in Section 5, where we show the convergence of the LP optimal solution as the discrete-time interval shrinks. The
proof of the convergence of the LP solution to that of the FCP is outside the scope of this paper.

The FCP provides a convenient performance lower bound. Theorem 3.2 states the existence of such lower
bound for any admissible control. In Section 4, we introduce the notion of system scale and consider a sequence
of QCPs indexed by the increasing system scale. We establish a heavy traffic-limit theorem (Theorem 4.2),
which extends Theorem 3.2 and shows that the FCP lower bound is asymptotically tight. Section 5 provides
numerical examples to evaluate the tightness of the FCP lower bound when the system scale varies. Also, see
Section 6 for exact solutions to QCP via a dynamic-programming approach.

4. Asymptotic Optimality of FCP
In this section, we develop an asymptotic framework, in which the performance of the suitably scaled QCP
attains the FCP lower bound asymptotically, which extends Theorem 3.2. We first introduce a scaling pa-
rameter n that can be considered as the maximum possible quantity of demand at any given time point on a
finite interval [0,T] when offering the lowest possible price. For example, n stands for the potential market
size, and our key assumption is that such a market size is large. Without loss of generality, we assume n takes
an integer value. Our asymptotic analysis makes it possible to embed the underlying production system onto a
sequence of systems indexed by n.

More precisely, we consider a sequence of double-ended queues considered in Section 2, and for the nth

system, we append a superscript n to the quantities introduced in Section 2. In particular, we have λn
p ,

λn
d , θ

n
p , θ

n
d to denote the production rate, demand-arrival rate, product-perishment rate, and demand-abandonment

rate, respectively. We will assume that λn
d is O(n), and θn

p and θn
d are O(1) (see (25) and Assumption 3,

(i) and (ii)). The unit-rate Poisson processes, arrival processes, abandonment processes, and queue-length
process are denoted by Nn

i , i � 1, 2, 3, 4, An
p ,A

n
d ,G

n
p ,G

n
d , and Qn, respectively, which are defined on a complete

probability space (Ωn,Pn,F n). The expectation under Pn is denoted by En, and, for convenience, we omit the
parameter n and simply use P and E. We assume that all the costs are independent of n.

The control problem in the nth system is to choose {λn
p(t); t ∈ [0,T]} ∈ Un with an objective of minimizing

Rn λn
p ;M

n
( )

≡ E

∫ T

0
hpQn,+ t( ) + hdQn,− t( ) + C λn

p t( )
( )[ ]

dt
(
+ cpGn

p T( ) + cdGn
d T( ) + cf VT λn

p

( ))
, (24)

where Mn � (Qn(0), λn
d ,Λ

n
p , θ

n
p , θ

n
d ,C, hp, hd, cp, cd, cf ), and Un is the space of all admissible production-rate

functions in the nth system. A production-rate function {λn
p(t); t ∈ [0,T]} is admissible in the nth system if it

satisfies the following conditions:
i. (Nonanticipativity) for t ∈ [0,T],

λn
p t( ) ∈ F n

t ≡ σ Qn s( ),An
p s( ),An

d s( ),Gn
p s( ),Gn

d s( )
( )

; 0 ≤ s ≤ t
( )

;

ii. (O(n)-boundedness) for t ∈ [0,T], 0 ≤ λn
p(t) ≤ Λn

p � nΛ̄p, where Λ̄p is a positive constant;
iii. (Bounded Variation) E[VT(λn

p)] < ∞.

4.1. Gap Between the QCP and the Corresponding FCP
For each n ∈ N, suppose Assumption 2 holds for the nth system—that is, for x ∈ R+, Cn(x) � Cn

0x for some
Cn
0 > 0, and for t ≥ 0 and x ∈ R, λn

d(t, x) ≡ λn
d(t) and supt≥0 λ

n
d(t) < ∞. From Theorem 3.1, the FCP associated with

Mn admits an optimal solution and denote it by λ̃n,∗
p ≡ {λ̃n,∗

p (t); t ∈ [0,T]}. Lemma 3.1 ensures that λ̃n,∗
p is an

admissible solution to the QCP associated with the same Mn. Let Vn(Mn) and V̄n(Mn) denote the optimal
values of the QCP and the associated FCP for the nth system with Mn.

Lee et al.: Optimal Control of a Double-Ended Time-Varying Queue
Stochastic Systems, Articles in Advance, pp. 1–34, © 2021 The Author(s) 11



Theorem 4.1. For each n ∈ N, suppose Assumption 2 holds for the nth system—that is, for x ∈ R+, Cn(x) � Cn
0x for some

Cn
0 > 0, and for t ≥ 0 and x ∈ R, λn

d(t, x) ≡ λn
d(t) and supt≥0 λ

n
d(t) < ∞. We further assume that

sup
n∈N

E Q̄n 0( )( )2( )
< ∞, sup

n∈N
Var Qn 0( )( )/n < ∞,

sup
n∈N

sup
t≥0

λn
d t( )/n < ∞, sup

n∈N
θn
p < ∞, sup

n∈N
θn
d < ∞. (25)

Then, for some κ0 > 0,

0 ≤ Vn Mn( ) − V̄n Mn( ) ≤ Rn λ̃n,∗
p ;Mn

( )
− R̄ λ̃n,∗

p ;Mn
( )

≤ κ0
̅̅
n

√
. (26)

Remark 4.1. Theorem 4.1 says for a large-scale system, under the stronger Assumption 2, applying the optimal
production rate {λ̃n,∗

p (t); t ∈ [0,T]} of the corresponding FCP yields an error O( ̅̅n√ ).
Proof of Theorem 4.1. From Theorem 3.2 on the lower-boundedness of FCP, we have

Rn λ̃n,∗
p ;Mn

( )
≥ R̄ λ̃n,∗

p ;Mn
( )

� V̄n Mn( ), and Vn Mn( ) ≥ V̄n Mn( ).

Noting that Vn(Mn) ≤ Rn(λ̃n,∗
p ;Mn), we have

Vn Mn( ) − V̄n Mn( ) ≤ Rn λ̃n,∗
p ;Mn

( )
− R̄ λ̃n,∗

p ;Mn
( )

.

In view of (26), it suffices to show Rn(λ̃n,∗
p ;Mn) − R̄(λ̃n,∗

p ;Mn) � O( ̅̅n√ ). For the rest of the proof, the systems
we consider are under the control {λ̃n,∗

p }. For each n ∈ N, define

q̌n t( ) � E Qn 0( )[ ] +
∫ t

0
λ̃n,∗
p s( ) − λn

d s( ) − θn
pq̌

n,+ s( ) + θn
dq̌

n,− s( )
[ ]

ds.

We observe that

Rn λ̃n,∗
p ;Mn

( )
− R̄ λ̃n,∗

p ;Mn
( )

�
∫ T

0
hpE Qn,+ t( )[ ] + hdE Qn,− t( )[ ] + Cn λ̃n,∗ t( )( )

dt + cpE Gn
p T( )

[ ]
+ cdE Gn T( )[ ] + cf VT λ̃n,∗

p

( )
−
∫ T

0
hp + cpθn

p

( )
q̌n,+ t( ) + hd + cdθn

d

( )
q̌n,− t( ) + Cn λ̃n,∗

p t( )
( )

dt − cf VT λ̃n,∗
p

( )
�
∫ T

0
hp E Qn,+ t( ) − q̌n,+ t( )[ ]( ) + hd E Qn,− t( ) − q̌n,− t( )[ ]( )

dt

+ cp E Gn
p T( )

[ ]
− θn

p

∫ T

0
q̌n,+ t( )dt

( )
+ cd E Gn

d T( )[ ] − θn
d

∫ T

0
q̌n,− t( )dt

( )
.

We note that for t ≥ 0,

E Gn
p T( )

[ ]
� θn

p

∫ T

0
E Qn,+ t( )[ ]dt, E Gn

d T( )[ ] � θn
d

∫ T

0
E Qn,− t( )[ ]dt.

Hence,

Rn λ̃n,∗
p ;Mn

( )
− R̄ λ̃n,∗

p ;Mn
( )

�
∫ T

0
hp + cpθn

p

( )
E Qn,+ t( )[ ] − q̌n,+ t( )( ) + hd + cdθn

d

( )
E Qn,− t( )[ ] − q̌n,− t( )( )

dt.
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Using the inequalities |x+ − y+| ≤ |x − y| and |x− − y−| ≤ |x − y| for x, y ∈ R, we have that

Rn λ̃n,∗
p ;Mn

( )
− R̄ λ̃n,∗

p ;Mn
( )

≤ hp + hd + cpθn
p + cdθn

d

( ) ∫ T

0
E|Qn t( ) − q̌n t( )|dt. (27)

We claim that for some c0 > 0, which is independent of n,

1̅̅
n

√ sup
t∈ 0,T[ ]

E Qn t( ) − q̌n t( )⃒⃒ ⃒⃒[ ] ≤ c0. (28)

Using the claim (28), we have

1̅̅
n

√ Rn λ̃n,∗
p ;Mn

( )
− R̄ λ̃n,∗

p ;Mn
( )( )

≤ hp + hd + cpθn
p + cdθn

d

( )
Tc0,

and the theorem follows. Finally, we prove the claim (28). For t ≥ 0,

1̅̅
n

√ Qn t( ) − q̌n t( )( ) � 1̅̅
n

√ Qn 0( ) − E Qn 0( )[ ]( ) + N̂n
1

∫ t

0

λ̃n,∗
p s( )
n

ds

( )
− N̂n

2

∫ t

0

λn
d s( )
n

ds
( )

− N̂n
3 θn

p

∫ t

0
Q̄n,+ s( )ds

( )
+ N̂n

4 θn
d

∫ t

0
Q̄n,− s( )ds

( )
, (29)

where N̂n
i (t) � (Nn

i (nt) − nt)/ ̅̅n√ , t ≥ 0, and i � 1, . . . , 4 being the diffusion-scaled Poisson processes, and Q̄n(t) �
Qn(t)/n for t ≥ 0 being the fluid-scaled queue-length process that will be formally introduced in the next
section. From functional central-limit theorem for Poisson processes, N̂n

i , i � 1, . . . , 4, is a martingale with
respect to the σ-fields generated by itself. Using (25), and Doob’s inequality, for t ≥ 0,

E N̂n
1

∫ t

0

λ̃n,∗
p s( )
n

ds

( )( )2
+ N̂n

2

∫ t

0
λ̄n
d s( )ds

( )( )2[ ]

≤ E sup
0≤t≤ΛpT

N̂n
1 t( )( )2( )

+ E sup
0≤t≤C1T

N̂n
2 t( )( )2( )

≤ 4E N̂n
1 ΛpT
( )( )2+ 4E N̂n

2 C1T( )( )2
� 4T Λp + C1

( )
< ∞, (30)

where C1 � supn supt λd(t)/n. Next, we observe that N̂n
3(θn

p

∫ ·
0 Q̄

n,+(s)ds) and N̂n
4(θn

d

∫ ·
0 Q̄

n,−(s)ds) are both {F t}
martingales with the following quadratic variations

N̂n
3 θn

p

∫ ·

0
Q̄n,+ s( )ds

( )
, N̂n

3 θn
p

∫ ·

0
Q̄n,+ s( )ds

( )[ ]
t
� N̄n

3 θn
p

∫ t

0
Q̄n,+ s( )ds

( )
,

and

N̂n
4 θn

p

∫ ·

0
Q̄n,− s( )ds

( )
, N̂n

4 θn
p

∫ ·

0
Q̄n,− s( )ds

( )[ ]
t
� N̄n

4 θn
p

∫ t

0
Q̄n,− s( )ds

( )
,

where N̄n
i (t) � Nn

i (nt)/n for t ≥ 0 being the fluid-scaled Poisson processes. It follows that

N̂n
3 θn

p

∫ t

0
Q̄n,+ s( )ds

( )( )2
−θn

p

∫ t

0
Q̄n,+ s( )ds,

N̂n
4 θn

d

∫ t

0
Q̄n,− s( )ds

( )( )2
−θn

d

∫ t

0
Q̄n,− s( )ds,
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are also {F t} martingales, and

E N̂n
3 θn

p

∫ t

0
Q̄n,+ s( )ds

( )( )2
� θn

p

∫ t

0
E Q̄n,+ s( )[ ]

ds, (31)

E N̂n
4 θn

d

∫ t

0
Q̄n,− s( )ds

( )( )2
� θn

d

∫ t

0
E Q̄n,− s( )[ ]

ds. (32)

See Pang et al. (2007) and the references therein for more details of the martingale representations of the
random time change of Poisson processes. To proceed, we introduce the following lemma, which shows that
{Q̄n(t); t ∈ [0,T]} is uniformly integrable.

Lemma 4.1. Assume that supn∈N E[(|Q̄n(0)|)2] < ∞, and for each n, λn
d and C

n satisfy Assumption 1. Then, under (25), for
any admissible production-rate process {λn

p(t); t ∈ [0,T]}, there exists a constant L ≡ L(T) such that

sup
n∈N

E sup
0≤t≤T

Q̄n t( )⃒⃒ ⃒⃒2( )
≤ L.

The proof of Lemma 4.1 can be found in Section 7. Using Lemma 4.1, Hölder’s inequality and Jensen’s inequality,
we see that (31) and (32) have the following estimates:

E N̂n
3 θn

p

∫ t

0
Q̄n,+ s( )ds

( )( )2
� θn

p

∫ t

0
E Q̄n,+ s( )[ ]

ds

≤
̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅
θn
p

( )2∫ t

0
E Q̄n s( )[ ]( )2ds√

≤
̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅
θn
p

( )2∫ t

0
E Q̄n s( )( )2[ ]

ds

√
≤ θn

p

̅̅̅̅
LT

√
, (33)

And, similarly,

E N̂n
4 θn

d

∫ t

0
Q̄n,− s( )ds

( )( )2
� θn

d

∫ t

0
E Q̄n,− s( )[ ]

ds ≤ θn
d

̅̅̅̅
LT

√
. (34)

Now back to (29), using Jensen’s inequality and the inequality that (∑K
i�1 ci)2 ≤ K

∑K
i�1 c2i for any ci ∈ R and

K ∈ N, we have for each t ∈ [0,T],

1̅̅
n

√ E |Qn t( ) − q̌n t( )|[ ]( )2
≤ E

1̅̅
n

√ Qn t( ) − q̌n t( )( )( )2[ ]

≤ 5
n
E Qn 0( ) − E Qn 0( )[ ]( )2 + 5E N̂n

1

∫ t

0

λ̃n,∗
p s( )
n

ds

( )( )2
+ 5E N̂n

2

∫ t

0
λ̄n
d s( )ds

( )( )2
+ 5E N̂n

3 θn
p

∫ t

0
Q̄n,+ s( )ds

( )( )2
+ 5E N̂n

4 θn
d

∫ t

0
Q̄n,− s( )ds

( )( )2
.

Now applying (30), (33), and (34) to the above estimate yields

1̅̅
n

√ E |Qn t( ) − q̌n t( )|[ ] ≤ ̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅
5Var Qn 0( )( )/n + 20T Λp + C1

( ) + 5 θn
p + θn

d

( ) ̅̅̅̅
LT

√√
,

which concludes the claim (28) in view of the assumption (25). □
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4.2. Asymptotic Optimal Production Rate
In this section, we study the asymptotic properties of the system under Assumption 1 and some convergent
properties of the parameter functions (see Assumption 3). We first introduce the fluid-scaled forms of system
processes, cost functional, and rate functions. Roughly speaking, in fluid scaling, we scale down the quantity
size by n. Define

Q̄n t( ) ≡ Qn t( )
n

, R̄n λ̄n
p ;M

n
( )

≡
Rn λn

p ;M
n

( )
n

,

λ̄n
p t( ) ≡ λn

p t( )
n

, λ̄n
d t, x( ) ≡ λn

d t, nx( )
n

, C̄n x( ) ≡ C nx( )
n

,

Ān
p t( ) ≡ An

p t( )
n

, Ān
d t( ) ≡ An

d t( )
n

, Ḡn
p t( ) ≡ Gn

p t( )
n

, Ḡn
d t( ) ≡ Gn

d t( )
n

.

Consequently, we have the fluid-scaled control problem, which minimizes the following fluid-scaled cost
functional by controlling the fluid-scaled production rate {λ̄n

p(t); t ∈ [0,T]}:

R̄n λ̄n
p ;M

n
( )

≡ E

∫ T

0
hpQ̄

n,+ t( ) + hdQ̄
n,− t( ) + C̄n λ̄n

p t( )
( )[ ]

dt + cpḠn
p T( ) + cdḠn

d T( ) + cf VT λ̄n
p

( )( )
. (35)

Our goal is to find a sequence of admissible production-rate functions {λn,∗
p }n≥1, which is asymptotically

optimal—that is, it satisfies

lim
n→∞ R̄n λ̄n,∗

p ;Mn
( )

� inf lim inf
n→∞ R̄n λ̄n

p ;M
n

( )
, (36)

where the infimum is taken over all admissible production-rate functions {λn
p ∈ Un}n≥1. We next introduce the

main assumptions on parameters and functions.

Assumption 3.
i. There exist θ̄p, θ̄d ≥ 0 such that θn

p → θ̄p, θn
d → θ̄d, as n → ∞.

ii. There exists a nonnegative measurable function λ̄d : [0,∞) × R → [0,∞) such that for any t ≥ 0 and any L0 > 0,

sup
|x|≤L0

λ̄n
d t, x( ) − λ̄d t, x( )⃒⃒ ⃒⃒→ 0, as n → ∞. (37)

iii. Furthermore, the function λ̄n
d : [0,∞) × R → [0,∞) is continuous on x ∈ R, and there exists a L1 > 0 such that for

t ≥ 0 and x ∈ R,

λ̄n
d t, x( ) ≤ L1 1 + |x|( )

, (38)
iv. and for any compact set K1 × K2 ⊂ [0,∞) × R, there exists a positive constant L2 such that

sup
t∈K1,x,y∈K2

λ̄d t, x( ) − λ̄d t, y
( )⃒⃒ ⃒⃒ ≤ L2|x − y|. (39)

v. There exists a continuous function C̄ : [0,∞) → [0,∞) such that for any L3 > 0,

sup
|x|≤L3

C̄n x( ) − C̄ x( )⃒⃒ ⃒⃒→ 0, as n → ∞. (40)

Remark 4.2.
i. From Assumption 3, (i) and (ii), we see that the goods-perishment and back-order-abandonment rates θn

p
and θn

d are O(1), while the arrival rate of demands is O(n).
ii. The assumptions (38) and (39) guarantee the limit arrival rate function λ̄d(t, x) has linear growth and

locally Lipschitz continuity in x—that is, λ̄d(t, x) satisfies Assumption 1(i). Both assumptions are also required
in proving Lemmas 4.1 and 4.2.
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iii. From (40) and the definition of C̄n(x), it is straightforward to see that C̄(·) is linear, and, hence, C̄n(·) is
asymptotically linear. In particular, C̄(·) satisfies Assumption 2(ii).

iv. It is clear that Assumption 3 implies the assumption in (25).

Assume that E[|Q̄n(0) − q0|2] → 0 for some deterministic point q0 ∈ R. Note that if λ̄n
p(·) converges to some

nonnegative function λ̄p(·), we would expect that Q̄n converges to q in probability and uniformly on [0,T] (see
Lemma 4.2), where, for t ∈ [0,T],

q t( ) � q0 +
∫ t

0
λ̄p s( ) − λ̄d s, q s( )( ) − θ̄pq+ s( ) + θ̄dq− s( )
[ ]

ds, (41)

and the associated fluid-scaled cost R̄n(λn
p ;M

n) is expected to converge to R̄(λ̄p;M̄), where R̄(λ̄p;M̄) is the
cost of the FCP associated with M̄ � (q0, λ̄d, Λ̄p, θ̄p, θ̄d, C̄, hp, hd, cp, cd, cf ) (see (8)).

From Theorem 3.1, under Assumption 3, the FCP associated with M̄ admits an optimal solution. Denote by
λ̄∗p this optimal solution and V(M̄) the optimal value. The theorem below establishes the asymptotic optimality
of the FCP solution λ̄∗p .
Theorem 4.2 (Asymptotic Optimality of FCP). Under Assumption 3, {nλ̄∗p}n≥1 is asymptotically optimal for the QCP (24) of
the nth system under the fluid scaling—namely,

lim
n→∞ R̄n λ̄∗p ;Mn

( )
� V M̄
( )

, (42)

and for any admissible sequence {λn
p}n≥1 of production-rate functions,

lim inf
n→∞ R̄n λ̄n

p ;M
n

( )
≥ V M̄
( )

. (43)

An immediate consequence of Theorem 4.2 gives the following corollary, and we omit its proof.

Corollary 4.1. Under Assumption 3, considering a production rate λn
p such that

E sup
0≤t≤T

λn
p t( ) − nλ̄∗p t( )
⃒⃒⃒ ⃒⃒⃒[ ]

� o n( ),

then λn
p is asymptotically optimal under the fluid scaling.

In view of Theorems 4.1 and 4.2, under Assumptions 2 and 3, one may expect that λ̃n,∗
p , which is an optimal

solution of the FCP associated with Mn, satisfies λ̃n,∗
p /n → λ̄∗p , where λ̄∗p is an optimal solution of the FCP

associated with M̄. Unfortunately, because the optimal solution of an FCP may not be unique, the above
convergence may not be true in general. However, it is true for the following special case. Consider

Mn � nq0, nλ̄d t( ); t ∈ 0,T[ ]{ }
,nΛ̄p, θ̄p, θ̄d, C0x; x ∈ R+{ }, hp, hd, cp, cd, cf

( )
, (44)

where q0, λ̄d, Λ̄p, θ̄p, and θ̄d are as introduced in Assumption 3 of this section. It is easily seen that Assumptions 2
and 3 hold for Mn. The corresponding limit input is given by

M̄ � q0, λ̄d t( ); t ∈ 0,T[ ]{ }
, Λ̄p, θ̄p, θ̄d, C0x; x ∈ R+{ }, hp, hd, cp, cd, cf

( )
.

Combining Proposition 3.1 and Theorems 4.1 and 4.2 yields the following corollary, whose proof will be
omitted. Recall that Vn(Mn) and V̄n(Mn) denote the optimal values of the QCP and the associated FCP for the
nth system with Mn, and V(M̄) denotes the optimal value of the FCP associated with the limit input M̄.

Corollary 4.2. Suppose the nth system has input Mn given in (44). The following hold.
i. Let λ̄∗p denote an optimal solution of the FCP associated with M̄. Then, nλ̄∗p is an optimal solution of the FCP

associated with Mn. Thus, for each n ∈ N, V̄n(Mn) � nV(M̄).
ii. As n → ∞,

0 ≤ Vn Mn( ) − nV M̄
( ) ≤ Rn nλ̄∗p ;Mn

( )
− nR̄ λ̄∗p ;M̄

( )
� O

̅̅
n

√( )
.
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Remark 4.3. Theorems 4.1 and 4.2 provide a useful framework to construct asymptotically optimal production-rate
functions for systems with large demand rates. Specifically, Theorem 4.1 says that the optimal solution of the FCP is
optimal for the QCP with error O( ̅̅n√ ) under the stronger Assumption 2 on λn

d and Cn and a weaker asymptotic
assumption (25).On the other hand, Theorem 4.2 implies the production rate constructed from the optimal solution
of the limit FCP is optimal for the QCPwith error o(n), under the weaker assumption for λn

d and Cn and the stronger
asymptotic assumptions (as in Assumption 3).

Remark 4.4. For a large-scale nonstationary stochastic model (e.g., our double-ended queueing model), the FCP
successfully captures the system’s temporal variability (performance trend in time) and ignores the stochastic
variability. When the scale is large or medium, the FCP tends to be effective because time variability often
dominates the stochastic variability (see Liu and Whitt 2012a for a similar observation).

In Section 5, we illustrate the effectiveness of FCP through numerical examples. In Section 6, we develop
numerical solutions to QCP by formulating a DP problem and demonstrate the asymptotic optimality of the
FCP solutions. The detailed solution procedure for the FCP can be found in the appendix.

Proof of Theorem 4.2. The following lemma and Lemma 4.1 will be used in the proof of Theorem 4.2. In particular,
Lemma 4.1 will be used to establish the uniform integrability of Q̄n, and Lemma 4.2 is essentially the fluid ap-
proximation under an arbitrary admissible production rate λn

p , in which the process q̃n can be interpreted as the
fluid limit under λn

p . For proofs of these two lemmas, see Section 7. Given a deterministic q0 ∈ R, under an ad-
missible production rate λn

p , define the following stochastic process.

q̃n t( ) � q0 +
∫ t

0
λ̄n
p s( ) − λ̄d s, q̃n s( )( ) − θ̄pq̃n,+ s( ) + θ̄dq̃n,− s( )

[ ]
ds. (45)

Lemma 4.2. Assume that E[|Q̄n(0) − q0|2] → 0 for some deterministic q0 ∈ R. Then, under Assumption 3, we have

E sup
0≤s≤T

Q̄n s( ) − q̃n s( )⃒⃒ ⃒⃒( )
→ 0, as n → ∞.

Let nλ̄∗p be the production rate for the nth system. The admissibility of nλ̄∗p to the QCP associated with Mn can
be verified analogously to Lemma 3.1. From Lemma 4.2, under the production rate nλ̄∗p , we have

E sup
0≤t≤T

Q̄n t( ) − q∗ t( )⃒⃒ ⃒⃒( )
→ 0, (46)

Where, for t ≥ 0,

q∗ t( ) � q0 +
∫ t

0
λ̄∗p s( ) − λ̄d s, q∗ s( )( ) − θ̄pq∗,+ s( ) + θ̄dq∗,− s( )
[ ]

ds. (47)

We proceed to prove Theorem 4.2 using Lemmas 4.1 and 4.2. We first show (42) in Theorem 4.2. Note that
from (35), we have

R̄n λ̄∗p ;Mn
( )

� E

∫ T

0
hpQ̄

n,+ t( ) + hdQ̄
n,− t( ) + C̄n λ̄∗p t( )

( )[ ]
dt

( )
+ cf VT λ̄∗p

( )
+ cpE N̄n

3 θn
p

∫ T

0
Q̄n,+ s( ) ds

( )[ ]
+ cdE N̄n

4 θn
d

∫ T

0
Q̄n,− s( ) ds

( )[ ]
.
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From (46), we have that

E sup
0≤t≤T

Q̄n,+ t( ) − q∗,+ t( )⃒⃒ ⃒⃒( )
+ E sup

0≤t≤T
Q̄n,− t( ) − q∗,− t( )⃒⃒ ⃒⃒( )

≤ 2E sup
0≤t≤T

Q̄n t( ) − q∗ t( )⃒⃒ ⃒⃒( )
→ 0.

(48)

We next note that

E sup
0≤t≤T

N̄n
3 θn

p

∫ t

0
Q̄n,+ s( )ds

( )
− θ̄p

∫ t

0
q∗,+ s( )ds

⃒⃒⃒⃒ ⃒⃒⃒⃒[ ]

≤ E sup
0≤t≤T

N̄n
3 θn

p

∫ t

0
Q̄n,+ s( )ds

( )
− θn

p

∫ t

0
Q̄n,+ s( )ds

⃒⃒⃒⃒ ⃒⃒⃒⃒[ ]
, (49)

+ θn
p − θ̄p

⃒⃒⃒ ⃒⃒⃒ ∫ T

0
q∗,+ s( )ds + θn

p

∫ T

0
E Q̄n,+ s( ) − q∗,+ s( )⃒⃒⃒ ⃒⃒⃒[ ]

ds. (50)

From (48) and Assumption 3(i), the summation in (51) converges to zero. The expectation in (49) also
converges to zero, which follows from the proof of Lemma 4.1 (see (82)). Thus,

E sup
0≤t≤T

N̄n
3 θn

p

∫ t

0
Q̄n,+ s( )ds

( )
− θ̄p

∫ t

0
q∗,+ s( )ds

⃒⃒⃒⃒ ⃒⃒⃒⃒[ ]
→ 0. (51)

Using a similar argument, we have

E sup
0≤t≤T

N̄n
4 θn

d

∫ t

0
Q̄n,− s( )ds

( )
− θ̄d

∫ t

0
q∗,− s( )ds

⃒⃒⃒⃒ ⃒⃒⃒⃒[ ]
→ 0. (52)

Using the convergence in (48), (51), and (52), and Assumption 3(iii),

R̄n λ̄∗p ;Mn
( )

→
∫ T

0
hpq∗,+ t( ) + hdq∗,− t( ) + C̄ λ̄∗p t( )

( )[ ]
dt + cf VT λ̄∗p

( )
+ cpθ̄p

∫ T

0
q∗,+ t( )dt + cdθ̄d

∫ T

0
q∗,− t( )dt

�
∫ T

0
hp + cpθ̄p
( )

q∗,+ t( ) + hd + cdθ̄d
( )

q∗,− t( ) + C̄ λ̄∗p t( )
( )[ ]

dt + cf VT λ̄∗p
( )

� V M̄
( )

.

This shows (42). To show (43), let {λn
p}n≥1 be an arbitrary admissible sequence of production rates, and

define q̃n, as in (45). We first note that

lim inf
n→∞ R̄n λ̄n

p ;M
n

( )
≤ lim sup

n→∞
R̄n λ̄n

p ;M
n

( )
< ∞,

which follows from the uniform integrability of {Q̄n(t); t ∈ [0,T]} in Lemma 4.1. Next, from Lemma 4.2,
we have

E sup
0≤t≤T

Q̄n t( ) − q̃n t( )⃒⃒ ⃒⃒( )
→ 0, (53)
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and using similar arguments in the proof of (51) and (52), it can be shown that

E N̄n
2 θn

p

∫ T

0
Q̄n,+ t( )dt

( )
− θ̄p

∫ T

0
q̃n,+ t( )dt

⃒⃒⃒⃒ ⃒⃒⃒⃒[ ]
→ 0,

E N̄n
4 θn

d

∫ T

0
Q̄n,− t( )dt

( )
− θ̄d

∫ T

0
q̃n,− t( )dt

⃒⃒⃒⃒ ⃒⃒⃒⃒[ ]
→ 0.

(54)

It follows from (53) and (54) that

R̄n λ̄n
p ;M

n
( )

− E R̄ λ̄n
p ;M̄

( )( )⃒⃒⃒ ⃒⃒⃒
→ 0, (55)

where

R̄ λ̄n
p ;M̄

( )
�
∫ T

0
hp + cpθ̄p
( )

q̃n,+ t( ) + hd + cdθ̄d
( )

q̃n,− t( ) + C̄ λ̄n
p t( )

( )[ ]
dt + VT λ̄n

p

( )
.

Note that R̄(λ̄n
p ;M̄) is a random variable because q̃n and λ̄n

p are stochastic. Because V(M̄) is the optimal value
of the FCP, we must have R̄(λ̄n

p ;M̄) ≥ V(M̄) for each n almost surely. Thus, from (55), we have

lim inf
n→∞ R̄n λ̄n

p ;M
n

( )
� lim inf

n→∞ E R̄ λ̄n
p ;M̄

( )( )
≥ V M̄
( )

.

5. Numerical Examples
In this section, we provide numerical examples to evaluate the effectiveness of the fluid approximation as a
performance lower bound and illustrate asymptotic optimality of the FCP solutions as the system scale grows.
We also demonstrate the importance of including the flexibility cost in the proposed control problem. As is
discussed in Remark 3.1, we solve a linear reformulation of the FCP in discrete time, and the detailed
reformulation steps are reported in the appendix.

5.1. Asymptotic Effectiveness of FCP
In the first example, let T � 24, λ̄d(t) � 1 + 0.6 sin(t), θ̄p � 0.5, and θ̄d � 2. Without loss of generality, initial
conditions are all set to zero. We consider n � 5, 10, 50, 100, and Monte Carlo simulations are computed by
20, 000 independent iterations when n � 5, 10, and 2, 000 independent iterations when n � 50, 100. In the scale n
simulation, we have λn

d(t) � nλ̄d(t), θn
p � θ̄p, and θn

d � θ̄d. The production cost is linear with unit cost C0 � 2,
and other cost coefficients are cd � 5, cp � 3, hd � 5, hd � 3, and cf � 1. We note that the example input satisfies (44)
and Corollary 4.2 holds.

As an example to extend the LP reformulation, we also consider a requirement that changes made to
production rate can only occur every L amount of time. Here, we let L � 4, which models a work shift in
manufacturing settings. At the beginning of each work shift, the production rate is updated and kept un-
changed throughout the entire shift. We note that L and Δt should be distinguished from each other. The time-
discretization step Δt is only introduced in formulating the discrete-time LP. It is void of any physical in-
terpretation and only exists to control the accuracy of the LP reformulation to approximate continuous-time
FCP. Detailed formulation and another example with the extension of realistic constraints are presented in
Section A.2 in the appendix.

The optimal production rate λ̄∗p(t) of the FCP associated with M̄ is the dashed line in the top panel of
Figure 2, where the solid line is the demand rate λ̄d(t). We denote the optimal inventory and back-order queue
length associated with λ̄∗p(t) and M̄ by q∗,+(t) and q∗,−(t), where q∗(t) is as defined in (47). For the scale n
system, we implement production rate nλ̄∗p and set parameters to be of Mn. In Figure 2, we plot E[Q̄n,+(t)] and
E[Q̄n,−(t)] (solid lines in the middle and bottom panels), and q∗,+(t) and q∗,−(t) (dotted lines in the last two
panels). In Table 1, we report the percentage difference, which is defined as the difference between the
simulation and FCP results divided by the FCP result for itemized costs and the total cost.

As system scale n increases, inventory, back order, and total cost from simulations can be better ap-
proximated by their fluid counterparts. See the middle and bottom panels of Figure 2 and Table 1 for the
significant improvement as the system scale increases. Note that the on-site inventory level (positive part of
the queue length) and the back-order size (negative part of the queue length) are proportional to the total
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inventory holding cost and the total back-order cost, respectively. Therefore, we omit the percentage dif-
ference for the queue length. Also, the flexibility cost cf VT(nλ̄∗p) is fixed and, hence, is also omitted here.

5.2. Impact of the Flexibility Cost
Now, we discuss the impact of production flexibility cost. In Figure 3, the total costs of three cases with
different levels of production flexibility are plotted. Without loss of generality, we consider zero initial
condition. The first one considers the case of full flexibility (i.e., flexibility cost cf � 0), under which the optimal
fluid production rate should track the demand rate—that is, λ̄∗p(t) � λ̄d(t). Secondly, we consider the FCP,
which balances the cost associated with queue length and limited flexibility (i.e., flexibility cost cf ∈ (0,∞)). In
the third case, the production rate is constrained to be constant (i.e., no flexibility, cf � ∞). The total costs for
the first and second cases are directly calculated from the fluid model without optimization.

Notice for the free- and constant-production cases, the total variation of their chosen production rate is
independent of the flexibility cost cf . For the free-production case, the total variation is the fixed value of
VT(λn

d), which results in a linear total cost as cf increases. For the constant-production case, the total variation is
zero. For the FCP, the total cost varies in a nonlinear fashion as cf increases. In the left panel of Figure 3, when
the flexibility is extremely small or large, the controlled case degenerates to the free or constant case. However,
when cf takes a value that allows flexibility cost to be comparable with other cost items, FCP achieves the
lowest total cost. In the right panel of Figure 3, we illustrate the monotonicity of total variation as a function
of cf , which is proved in Proposition 3.2.

5.3. Convergence of Discrete-Time LP Solutions
To obtain numerical solution of the FCP, we resort to the discrete-time LP reformulation. Detailed steps in
constructing the LP can be found in the appendix. The key factor that greatly affects the shape of the output
solution is the discrete-time step size Δt. Although this paper does not pursue a theoretical proof that the
solution of the discrete-time LP reformulation converges to the true FCP optimal solution, we do provide an

Table 1. Relative Difference Between FCP and Simulation Results under nλ̄∗p

Cost breakdown

System scale, %

n � 5 n � 10 n � 25 n � 50 n � 100 n = 1,000

Inventory holding 62.8 49.2 30.9 18.5 11.7 1.7
Inventory expiration 62.7 49.1 30.7 18.4 11.8 1.6
Back-order holding 35.1 23.6 12.0 6.6 3.3 0.4
Lost sale 35.1 23.6 12.0 6.6 3.3 0.4
Production 0.05 0.06 0.02 0.01 0.09 0.07
Total cost without production 80.9 46.45 20.1 10.7 5.8 0.65
Total cost 29.2 19.1 9.6 5.2 2.9 0.4

Figure 3. Total Cost of Three Cases with Different Production Flexibility
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example that presents optimal LP solutions under a sequence of decreasing Δt. We keep refining the discrete
time grid until the change in the LP optimal solution is negligible. In Figure 4, we consider a series of
numerical examples with the roughest case of Δt � 2 and the finest of Δt � 0.0005. Optimal LP solution
converges quickly after the case Δt � 0.01. Note the settings of these examples follow Section 5.1, except L � 3.
This provides convincing foundations for the LP reformulation of the FCP.

6. Exact QCP Solution Using Dynamic Programming
To supplement the discussion on the asymptotic optimality of FCP, we now solve QCP via dynamic pro-
gramming. We write a discrete-time and discrete-space DP problem based on the dynamics and cost structure
of the (continuous-time) QCP model. The numerical solution to our DP problem should be close to that of QCP
when the discrete time step is small. In Section 3 and Section 4, we show that the FCP serves as a lower bound
to QCP regardless of system scale n and produces an asymptotically optimal solution. This indicates that as n
grows large, the optimal numerical solution independently obtained from the DP and FCP should eventually
coincide. Also, for any given n, the optimal cost of FCP should be a lower bound for the DP optimal cost.
Although solutions to the DP problem are successfully obtained for academic-sized scale (i.e., small to
moderate size) problems, we remark that the computational burden of DP significantly exceeds that of FCP,
especially when n is large. In this section, we properly develop the DP problem and present several numerical
examples to compare various outputs from the DP and FCP numerical solutions.

6.1. Dynamic Programming Formulation
We define a DP problem with a two-dimensional system state, queue length Q̂, and production rate λp. Note
that the production rate is a decision variable as well as a system-state variable. Specifically, the immediate
past decision of production rate (at the previous time step) becomes a system state, which is used to calculate
the discrete version of the total variation.

Let Jk(Q̂, λp) be the optimal value function, given that the system has a queue length of Q̂ and production
rate is set to λp, with k steps to go. The state variable Q̂ takes integer values, and variable λp takes values in a
discrete set D :� {λp,n : λp,n � nλ̂, n � 0, . . . ,N}, N � Λp/λ̂� and λ̂ is taken to be a fairly small value such that D
can reasonably approximate [0,Λp]. One can regard λ̂ as an accuracy level of the controller of a production
machine. The discrete time space is K � {kδ : k � 0, . . . ,K}, where K � T/δ. The value of δ should be very small.
The initial condition is given by J0(Q̂, λp) � 0 for all Q̂ and λp, which corresponds to zero terminal costs in the
original QCP. For a given state (Q̂, λp) with k + 1 stages to go, possible state transitions in the next time epoch
include (Q̂ + 1, λ′

p), (Q̂ − 1, λ′
p) and (Q̂, λ′

p), with probabilities p1 � (λp+θdQ̂
−)δ, p2 � (λd,· + θpQ̂

+)δ, and 1 − p1 − p2
respectively. The discrete-time DP problem is formulated as the following:

Jk+1 Q̂, λp
( ) � min

λ′
p∈D

λp − λ′
p

⃒⃒⃒ ⃒⃒⃒
cf + hp + θpcp

( )
Q̂+ + hd + θdcd( )Q̂− + C λp

( )( )
δ

[
, (56)

+ λp + θdQ̂
−( )
δJk Q̂ + 1, λ′

p

( )
+ λd,k+1 + θpQ̂

+( )
δJk Q̂ − 1, λ′

p

( )
, (57)

+ 1 − λp + θdQ̂
− + λd,k+1 + θpQ̂

+( )
δ

( )
Jk Q̂, λ′

p

( )]
, k > 0, (58)

J0 Q̂, λp
( ) � 0, Q̂ ∈ Z, λp ∈ D, k ∈ K.

Figure 4. Optimal LP Solution λ∗p,n with Δt Decreases from 2 to 0.0005
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in (56) characterize costs incurred in the (k + 1)th stages. The first term is the flexibility cost. Notice that λ′
p is

the optimal production to be determined with k periods to go and λp is given as the state of production rate
with k + 1 periods to go. Holding costs in a small time interval δ on the production and back-order side are
hpQ+δ and hdQ−δ, respectively. Costs resulting from expired products and back orders are cpθpQ+δ and
cdθdQ−δ. Finally, the production cost is C(λp)δ. For any given state (Q, λp) in the (k + 1)th period and policy of
λ′
p in the kth period, the queue size in the kth period can only be Q̂ + 1, Q̂ − 1 or Q̂, as indicated by (57) and (58).

6.1.1. Implementation of DP Recursion (56)–(58). Based on this recursive equation and the initial condition, we
can obtain a numerical solution to the QCP. The optimal policy from DP is stored as a four-dimensional
matrix, which corresponds to queue length, production rate, discrete time, and the optimal production rate,
given a set of previous three variables—that is, (Q̂, λp, k + 1, λ′

p). To implement this DP optimal policy, one first
observes the current time and system state. The corresponding optimal control can then be looked up. The
value of optimal DP value function Jk(Q̂, λ) is also stored in a matrix with coordinates of (Q̂, λp, k, Jk(Q̂, λ)).
However, the vector of optimal value function that matters is when Q̂ � Q0, k � K. The average value of this
vector of Jk(Q̂, λ) is the mean total cost R in (3), which is compared with the FCP numerical solutions.

Remark 6.1. (Implementation of DP Recursion). Themain obstacle in the implementation of the DP program above
is the successful storing and indexing high-dimensional matrix. Moreover, in QCP andDP, there is no upper bound
imposed on the queue-length state variable. However, in any computer program, there are only finite possible
values that any variable can take. It requires that we prespecify an upper bound. Therefore, the challenge at hand is
to reduce the size of state space while keeping all feasible paths intact. If the bound is too low, then the state space is
overly truncated, and the result is only suboptimal due to reduced state space. If it is too high, then the search space
is unnecessarily enlarged, and the computational burden is increased as a consequence. To overcome this obstacle,
we utilize FCP results to provide some guidance, because from a moderate to large scale, FCP solutions should
provide a good approximation toQCP.Wefirst solve the FCP and find the largest unscaled queue length, according
to which we set the upper bound. We then proceed to solve the DP problem and conduct simulations of the DP
problem. We are most confident in the results when the simulated DP queue length does not hit the boundary.
When the boundaries are hit, we increase the bound and resolve the DP.

Similarly, the choices of λ̂ and δ face the same problem; when they are too big, it reduces the accuracy of the
DP numerical solution, and when too small, it increases the computational cost. Because we develop the DP
problem as a benchmark for the FCP, in order to ensure the accuracy of DP results, we have to sacrifice
computational efficiency and choose small values of λ̂ and δ in our numerical studies.

6.1.2. Simulation Verification of DP Solutions. The optimal policy obtained from DP, unlike the deterministic
numerical optimal solution of the FCP, is a state-dependent roadmap for decision makers. This fact also affects
the data structure for storing the computed optimal value. Given the same problem inputs, it takes a high-
dimensional matrix to store the DP output. In contrast, the FCP results are stored as vectors, which exhibit
only time dependency, but no state dependency (i.e., queue length and previous production rate). The DP
optimal policy is an extensive plan that includes the optimal path for every possible scenario to the extent of
the entire state space. To validate the effectiveness of the DP numerical solution, we conduct simulation
experiments; we also compare the outputs of simulated DP to that of the FCP to illustrate the asymptotic
optimality results.

Our simulation experiment adopts a uniformization approach. That is, all possible events, such as the arrival
of a production unit or a demand unit, expiration of a piece of on-site inventory, or back orders, occur at some
exponential rates. Given the system state (Q̂, λp) with k + 1 periods to go, the aggregated rate of the expo-
nential clock of the “next event” (of any kind) is

λ̃ � λp + θdQ̂
− + λd,k+1 + θpQ̂

+
.

In a small time step δ, the probability that one event occurs is approximately λ̃δ. In addition, if one event
happens, the probabilities of demand arrival, production arrival, back-order expiration, and on-site inventory
wastage are

λd,k+1/λ̃, λp/λ̃, θdQ̂
−
/λ̃ and θpQ̂

+
/λ̃,

respectively. Starting from the same initial condition, we simulate and record a large number of independent
sample paths under the optimal DP policy. Finally, to compare with FCP results, we calculate the mean value
of all sample paths. We report results in the next section.
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6.2. Comparing DP and FCP Solutions
We compare the optimal numerical solutions of QCP and FCP to demonstrate the asymptotic optimality of the
FCP solution. As we stated previously, the optimal policy of DP is a state-dependent roadmap that records
optimal paths for all possible scenarios to the extent of the state space, and the numerical solution to FCP is
state-independent. One cannot directly compare these two types of results. We bridge the gap by conducting a
simulation of DP under the optimal DP policy and obtain the average of realized optimal control and queue-
length paths in DP.

To control the problem size, we set DP parameters as the following: T � 4, δ � 0.0001, λn
d,k � n(1 + 0.6 sin(kδ))

for k � 0, . . . ,T/δ, λ̂ � 0.001Λ, C � 2, cf � 6, hp � 3, cp � 3, θp � 1, hd � 5, cd � 5, θd � 1, Λn
p � 2n, where n is the

system scale taking integer values in [1, 1000]. For the given scale tuple (1, 3, 5, 25, 200, 1000), we repeated the
simulation for (104, 104, 104, 103, 102, 50) times. The setup for LP is outlined in Section 5. For simplicity, we also
ignore the constraint to fix λn

p within each interval of length L.
In Figure 5, we compare the optimal total costs of DP numerical solutions, simulations of DP and FCP for a

series of system scales ranging from n � 1 to n � 100. In the left panel of Figure 5, numerical solutions to DP
overlap with the simulations of DP, regardless of the system scale, which verifies the accuracy of DP results.
Unlike DP, the solution of FCP is independent of the system scale, which is shown as the constant blue line in
the left panel. As expected, the FCP solution approaches DP results as the system scale grows large and
eventually matches with the DP. In the right panel of Figure 5, we show the decrease in the percentage error of
the numerical solution of FCP results, with respect to simulation results of DP. This example illustrates the
asymptotic optimality and lower-boundedness of the FCP optimal solution, as stated in Theorem 4.2 and
Theorem 3.2.

In addition to Figure 5, we present one more plot on queue length and optimal production rate in Figures 6.
In the top left panel of Figure 6, we plot the mean optimal queue length from the simulated DP performance. It
is evident that as the system scale increases from n � 1 to n � 100, the mean queue length converges quickly to
the optimal FCP queue length q. Similarly, in the top right panel of Figure 6, we plot the optimal production
rate. Again, we observe the convergence of the mean path of the optimal production rate to the optimal FCP
production rate. We also plot the scaled on-site inventory and back-order queue length and their corre-
sponding FCP counterparts in the bottom panels of Figure 6.

7. Additional Proofs
7.1. Proof of Lemma 3.2
To solve the control problem in Lemma 3.2, we remark that it is nonsmooth, as it involves the positive and
negative parts of system state, which calls on an extension of the general maximum principle. See Feichtinger
and Hartl (1985). Furthermore, the structure of the mean queue-length process has certain patterns, which
serves as the backbone of this proof. Starting from the initial condition, the q(t) either goes to zero before
terminal time T or stays in the same quadrant for [0,T]. If it is the first case, q(t) may or may not remain at zero
after first reaching zero. Then, q(t) may stay at zero until terminal time T or at some point increase (decrease)
to be positive (negative). The system may terminate before q(t) returns to zero. If not, then system will again

Figure 5. An Illustration of the Asymptotic Optimality of FCP Solution
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reach back to zero and repeatedly move away from and then back to zero. The main ideas of this proof are to
show the optimality of u∗(t) � 0 for all possible paths.

Following Pontryagin’s Maximum Principle (see Seierstad and Sydsaeter 1986), we first rewrite (21)–(23)
as a maximization problem. Let c1 � hp + cpθp, c2 � hd + cdθd, and d(t) � E[λp(t)] − λd(t). The Hamiltonian is

H q t( ), u t( ), t( ) � −c1q+ t( ) − c2q− t( ) − c1 + c2( )u t( )
+ λ t( ) d t( ) − θpq+ t( ) + θdq− t( ) − θp − θd

( )
u t( )( )

,
(59)

where λ(t) is the costate variable. Notice that this Hamiltonian is nonsmooth only at discrete time points. In
order to define the costate, we divide the time interval [0,T] into four disjoint subsets AT, BT, CT, and DT—that
is, AT ⊂ [0,T], BT ⊂ [0,T], CT ⊂ [0,T], DT ⊂ [0,T], AT ∪ BT ∪ CT ∪DT � [0,T], and AT ∩ BT ∩ CT ∩DT � ∅—such
that the optimal queue length in problem (21)–(23) satisfies q∗(t) > 0 for t ∈ AT, q∗(t) < 0 for t ∈ BT, and q∗(t) � 0
for t ∈ CT ∪DT. Noting that the set CT consists of finite number of disjoint intervals, we write CT � ∪m

k�1(t(k), s(k))
such that 0 ≤ t(1) ≤ s(1) < t(2) ≤ s(2) < · · · < t(m) ≤ s(m) ≤ T, where m is the number of disjoint intervals with zero
optimal queue length. In the special case when q∗(t) just passes through zero, t(i) � s(i). The set DT � {t(1),
s(1), · · · , t(m), s(m)} consists only the end points of these open intervals, which are all the nondifferentiable point
of H in q.

If (q∗(t),u∗(t)) is the optimal control for problem (21)–(23), following theorem 2.1 of Feichtinger and Hartl (1985),

dλ t( )
dt

� − dH q t( ),u t( ), t( )
dq t( ) �

c1 + θpλ t( ), if t ∈ AT,

−c2 + θdλ t( ), if t ∈ BT,

0, if t ∈ CT,

∂qH q, u, t
( )

, if t ∈ DT,

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩ (60)

λ T( ) � 0,

Figure 6. Scaled Queue Length Q̄n, Q̄+
n , Q̄

−
n , and Optimal Production Rate λ̄∗p , with Δt � 0.001
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where ∂q denotes the generalized gradient with respect to q, and

H q∗ t( ),u∗ t( ), t( ) � max
u

H q t( ),u t( ), t( )
. (61)

Notice that H is linear in u; therefore, the optimizer of (61) is

u∗ t( ) �
0, if − c1 + c2( ) − θp − θd

( )
λ t( ) < 0,

Δ0, if − c1 + c2( ) − θp − θd
( )

λ t( ) > 0,
δ ∈ 0,Δ0[ ], if − c1 + c2( ) − θp − θd

( )
λ t( ) � 0.

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩ (62)

To show that the optimality of u∗(t) � 0 for t ∈ [0,T], it is essential to show that for any given problem
parameter M and admissible control λp, the auxiliary function β(t) � −(c1 + c2) − (θp − θd)λ(t) < 0, which, in
essence, requires to solve for costate variable λ(t).

We start from the terminal time T. Divide the time horizon by time points where the optimal queue length
q∗(t) enters/leaves zero. Roughly speaking, there are four parts. The first period, which starts from the
terminal time T, is the last period where q∗(t) is nonzero. The second period connects with the first period, and
it is the last period where q∗(t) remains at zero. The third period follows the second period, and it is the
second-to-last period where q∗(t) is nonzero. The last period is the rest of the total horizon, and the analysis
here repeats the second and third periods.

7.1.1. The First Period. Let s(m) � sup{t ∈ [0,T]; q∗(t) � 0}. If s(m) < T, then it is either (s(m),T] ∈ AT or (s(m),
T] ∈ BT. Hence, from (60), solving λ(t) in t ∈ (s(m),T], we obtain

λ t( ) � c1
θp

eθp t−T( ) − 1
( )

, if s m( ),T
( ] ⊂ AT, (63)

λ t( ) � c2
θd

1 − eθd t−T( )( )
, if s m( ),T

( ] ⊂ BT. (64)

Checking the sign of the auxiliary function β(t) in t ∈ (s(m),T] under (63) and (64), respectively,

β t( ) � −c2 − c1 1 − 1 − eθp t−T( )( )
1 − θd

θp

( )( )
< 0, s m( ),T

( ] ⊂ AT, (65)

β t( ) � −c1 − c2 1 − 1 − eθd t−T( )( )
1 − θp

θd

( )( )
< 0, s m( ),T

( ] ⊂ BT. (66)

If s(m) does not exist, we conclude that q(t) does not change sign throughout the entire decision horizon.
Therefore, (65) and (66) hold on the entire [0,T]. Hence, the optimal control u∗(t) � 0 for t ∈ [0,T]. This trivial
case occurs when the initial condition q0 is extremely large or small.

7.1.2. The Second Period. The case where s(m) � T indicates a trivial first period. Define t(m) � sup {t ∈ [0,
T]; q∗(t) 	� 0}. The interval t(m),T

( ] ⊂ CT and from (60), λ(t) � 0 and β(t) � −(c1 + c2) for t ∈ (t(m),T]. For the
interval 0, t(m)[ )

, the analysis returns to cases in (63) and (64). Such t(m) exists either when the initial queue
length is nonzero, or there exists a time interval where λp(t) 	� λd(t). If such t(m) does not exist, then we must
have zero initial queue length and λp(t) � λd(t) for t ∈ [0,T], which indicates that the expected queue length
E(Q(t)) in (7) and the fluid queue length q(t) in (9) are both zero in [0,T]. Theorem 3.2 is trivial under this case.

Assuming the existence of nontrivial s(m) < T, let

t m( ) � sup t ∈ 0, s m( )[ ]
; q∗ t( ) 	� 0

{ }
. (67)

The second period is (t(m), s(m)) and (t(m), s(m)) ⊂ CT. To determine the value of β(t) in this time interval, we first
need to treat the nonsmooth point at t � s(m), where the state process q(t) becomes zero from nonzero value.
Because of the continuity of the costate process, at t � s(m), depending on the sign of q∗(t) in the first period,
we have

λ s m( )( ) � c1
θp

eθp s m( )−T( ) − 1
( )

, or λ s m( )( ) � c2
θd

1 − eθd s m( )−T( )( )
,
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and we can check that β(s(m)) < 0 for both cases from (65) and (66). Following (60), the costate is constant on the
interval [t(m), s(m)]—that is,

λ t( ) � λ s m( )( )
, t ∈ t m( ), s m( )[ ]

. (68)

It is straightforward that β(t) < 0 for t ∈ [t(m), s(m)]. If t(m) � s(m), the second period is trivial, and the above
analysis still holds. A trivial second period means that at t � t(m), the process q∗(t) either touches zero and goes
back to the same sign it had, or it crosses zero and changes sign. When t(m) does not exist, the time horizon
[0,T] can be divided into one first period and one second period. More specifically, we must have q∗(t) � 0
for t ∈ [0, s(m)] and q∗(t) 	� 0 for t ∈ (s(m),T]. The auxiliary function β(t) < 0 for t ∈ [0,T] follows the analysis
in (65), (66), and (68), and, hence, u∗(t) � 0 for t ∈ [0,T].

7.1.3. The Third Period. Assuming the existence of nontrivial first and second periods—that is, 0 < t(m) <
s(m) < T—we define

s m−1( ) � sup t ∈ 0, t m( )[ ]
; q∗ t( ) � 0

{ }
. (69)

The third period is (s(m−1), t(m)), and it is either (s(m−1), t(m)) ⊂ AT or (s(m−1), t(m)) ⊂ BT. Similarly, to solve the
costate process λ(·), it follows (60), and the terminal value is now λ(t(m)) as in (68) due to the continuity of λ(t).
Depending on the sign of q∗(t) in (s(m),T] and (s(m−1), t(m)), the solution of λ(t) can be written as

λ t( ) � a
b

eb t−t m( )( ) − 1
( )

+ λ s m( )( )
eb t−t m( )( ), (70)

where a � c1, b � θp or a � −c2, b � θd. There are four possible cases, each corresponding to different rep-
resentation of β(t), and we can show, regardless of different cases, that β(t) < 0—for example, if q∗(t) > 0 on
both intervals,

β t( ) � −c2 − c1 1 − 1 − θd

θp

( )
1 − eθp t−t m( )( )( )

− 1 − θd

θp

( )
1 − eθp sm−T( )( )

eθp t−t m( )( )
( )

.

If q∗(t) > 0 on (s(m),T] and q∗(t) < 0 on (s(m−1), t(m)),

β t( ) � − c2 1 − 1 − θp

θd

( )
1 − eθd t−t m( )( )( )( )

− c1 1 − 1 − θd

θp

( )
1 − eθp sm−T( )( )

eθp t−t m( )( )
( )

.

If s(m−1) does not exist, then we must have q∗(t) 	� 0 for t ∈ 0, t(m))[ )
, q∗(t) � 0 for t ∈ [t(m), s(m)] and q∗(t) 	� 0

for t ∈ (s(m),T]. For each period, we have shown that β(t) < 0 and, hence, u∗(t) � 0. If s(m−1) does exist, then we
use (67) to find t(m−1) and follow the remaining procedures in the second period to show u∗(t) � 0. The
termination of the analysis happens when one finds the first sk or tl does not exist.

7.2. Proofs of Lemmas 4.1 and 4.2
Before providing the proofs of Lemmas 4.1 and 4.2, we introduce a process {Yn(t); t ≥ 0}, which serves as an
upper bound for the fluid scaled queue-length process {Q̄n(t); t ≥ 0}. Let {λn

p(t); t ∈ [0,T]} be an admissible
production rate. We note that, from (1) and (2), for t ≥ 0,

Q̄n t( ) � Q̄n 0( ) + N̄n
1

∫ t

0
λ̄n
p s( )ds

( )
− N̄n

2

∫ t

0
λ̄n
d s, Q̄n s( )( )

ds
( )

− N̄n
3 θn

p

∫ t

0
Q̄n,+ s( )ds

( )
+ N̄n

4 θn
d

∫ t

0
Q̄n,− s( )ds

( )
.
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For t ≥ 0, let Nn(t) � ∑4
i�1 Nn

i (t) and N̄n(t) � n−1Nn(nt). Noting that λ̄n
p(t) ≤ Λ̄p for each t ∈ [0,T], and using (25),

there exists a positive constant C1 such that for t ≥ 0,

1 + Q̄n t( )⃒⃒ ⃒⃒ ≤ 1 + Q̄n 0( )⃒⃒ ⃒⃒ + N̄n C1

∫ t

0
1 + Q̄n u( )⃒⃒ ⃒⃒( )

du
( )

. (71)

Define for t ≥ 0,

Yn t( ) � 1 + Q̄n 0( )⃒⃒ ⃒⃒ + N̄n C1

∫ t

0
Yn u( )du

( )
. (72)

Then, we have

1 + Q̄n t( )⃒⃒ ⃒⃒ ≤ Yn t( ), t ≥ 0. (73)

(This is because 1 + |Q̄n(t)| and Yn(t) have the same initial value, and if {τnk }k≥1 are the jump points of Nn, it can
be shown that 1 + |Q̄n(t)| � Yn(t) for t ∈ [0, τn1), and using (71), 1 + |Q̄n(τn1)| ≤ Yn(τn1), and eventually, 1 + |Q̄n(t)| ≤
Yn(t) for t ≥ 0.) In (72), using Ito’s formula for semimartingales, we observe that {Yn(t)e−C1t; t ≥ 0} is a positive
martingale, and so

E Yn t( )[ ] � eC1t 1 + E Q̄n 0( )⃒⃒ ⃒⃒( )
, t ≥ 0. (74)

Furthermore, from theorem 2.2 in Kurtz (1978), almost surely,

lim
n→∞ sup

0≤s≤t
Yn s( ) − y s( )⃒⃒ ⃒⃒ � 0, (75)

where for t ≥ 0, y(t) � (1 + |q0|)eC1t, satisfying the integral equation y(t) � 1 + |q0| + C1
∫ t
0 y(u)du. Furthermore, the

process Yn(t) is defined as a random time change of the Poisson process N̄n(t), and it has the following
martingale representation (see Pang et al. 2007 and the references therein for more details). For t ≥ 0, define

Gn
t � σ Q̄n 0( ), N̄n C1

∫ s

0
Yn u( )du

( )
: 0 ≤ s ≤ t

( )
,

augmented by including all null sets, and let

Dn t( ) � N̄n C1

∫ t

0
Yn u( )du

( )
− C1

∫ t

0
Yn u( )du.

Then, {Dn(t)} is a {Gn
t }t≥0-martingale, and its associated predictable quadratic variation is

〈Dn〉 t( ) � C1

∫ t

0
Yn u( )du.

Consequently,

Dn t( )[ ]2−〈Dn〉 t( ) � N̄nn C1

∫ T

0
Yn u( )du

( )( )2
−C1

∫ T

0
Yn u( )du, (76)

is also a {Gn
t }-martingale.
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Proof of Lemma 4.1. We note that from (72) and (73),

E sup
0≤t≤T

Q̄n t( )( )2[ ]
≤ E sup

0≤t≤T
Yn t( )( )2

[ ]

≤ 2E 1 + Q̄n 0( )⃒⃒ ⃒⃒( )2[ ]
+ 2E N̄n C1

∫ T

0
Yn u( )du

( )( )2[ ]
, (77)

≤ 2E 1 + Q̄n 0( )⃒⃒ ⃒⃒( )2[ ]
+ 2C1

∫ T

0
E sup

0≤t≤u
Yn t( )( )2

[ ]
du, (78)

where (77) follows from an inequality (a + b)2 ≤ 2a2 + 2b2, and (78) follows from the fact in (76). From
Gronwall’s inequality, it is seen that

sup
n∈N

E sup
0≤t≤T

Q̄n t( )( )2[ ]
≤ sup

n∈N
E sup

0≤t≤T
Yn t( )( )2

[ ]
≤ 2 sup

n∈N
E 1 + |Q̄n 0( )|( )2[ ]

e2C1T, (79)

which concludes the proof.

Proof of Lemma 4.2. Let λn
p be an admissible production rate and q̃n be defined by (45). The proof can be

divided into two steps. The first step is to show that the fluid-scaled queue length is bounded, and the second
is to show fluid approximation under any given admissible production rate.

Step I. We show that Q̄n can be formulated as in (80), where N̄n,c
5 converges to zero in mean.

The fluid-scaled queue-length process is given by

Q̄n t( ) � Q̄n 0( ) + N̄n,c
5 t( ) +

∫ t

0
λ̄n
p s( )ds −

∫ t

0
λ̄n
d s, Q̄n s( )( )

ds − θn
p

∫ t

0
Q̄n,+ s( )ds + θn

d

∫ t

0
Q̄n,− s( )ds, (80)

where

N̄n,c
5 t( ) � N̄n

1

∫ t

0
λ̄n
p s( )ds

( )
−
∫ t

0
λ̄n
p s( )ds

− N̄n
2

∫ t

0
λ̄n
d s, Q̄n s( )( )

ds
( )

+
∫ t

0
λ̄n
d s, Q̄n s( )( )

ds

− N̄n
3 θn

p

∫ t

0
Q̄n,+ s( )ds

( )
+ θn

p

∫ t

0
Q̄n,+ s( )ds

+ N̄n
4 θn

d

∫ t

0
Q̄n,− s( )ds

( )
− θn

d

∫ t

0
Q̄n,− s( )ds.

We next show that E[sup0≤t≤T |N̄n,c
5 (t)|] → 0. For t ≥ 0, define N̄n,c

6 (t) � ∑4
i�1 |N̄n

i (t) − t|. From Doob’s inequality
for submartingales and Hölder’s inequality, we have

E sup
0≤t≤T

N̄n,c
6 t( )

[ ]
�∑4

i�1
E sup

0≤t≤T
|N̄n

i t( ) − t|
[ ]

≤∑4
i�1

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅
E sup

0≤t≤T
|N̄n

i t( ) − t|
( )2[ ]√√

�∑4
i�1

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅
E sup

0≤t≤T
|N̄n

i t( ) − t|2
[ ]√√

≤ 2
∑4
i�1

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅
E |N̄n

i T( ) − T|2[ ]√
� 2
∑4
i�1

̅̅̅̅̅̅̅̅̅
nT/n2
√

→ 0.

(81)
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Thus, from (73), (74), and (81), for any ε > 0,

lim sup
n→∞

P sup
0≤s≤T

|N̄n,c
5 s( )| > ε

( )

≤ lim sup
n→∞

P sup
0≤s≤C1

∫ T

0
|Yn u( )|du

N̄n,c
6 s( )⃒⃒ ⃒⃒

> ε

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝
⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

≤ lim
K→∞ lim sup

n→∞
P sup

0≤s≤C1
∫ T

0
|Yn u( )|du

N̄n,c
6 s( )⃒⃒ ⃒⃒

> ε,

∫ T

0
|Yn u( )|du > K

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝
⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

+ lim
K→∞ lim sup

n→∞
P sup

0≤s≤C1
∫ T

0
|Yn u( )|du

N̄n,c
6 s( )⃒⃒ ⃒⃒

> ε,

∫ T

0
|Yn u( )|du ≤ K

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝
⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

≤ lim
K→∞ lim sup

n→∞
P

∫ T

0
|Yn u( )|du > K

( )
+ lim

K→∞ lim sup
n→∞

P sup
0≤s≤C1K

N̄n,c
6 s( )⃒⃒ ⃒⃒

> ε

( )
� 0,

which establishes that sup0≤s≤T |N̄n,c
5 (s)| → 0, in probability. We further note that similar to (71), for the same N̄n

and positive constant C1 as in (71),

sup
n

E sup
0≤s≤T

|N̄n,c
5 s( )|2

[ ]

≤ sup
n

E N̄n C1

∫ T

0
1 + |Q̄n u( )|( )

du
( )

+
∫ T

0
C1 1 + |Q̄n u( )|( )

du
[ ]2

≤ sup
n

E Yn T( ) + C1

∫ T

0
Yn u( )du

[ ]2
< ∞,

where the last two inequalities follow from (72), (73), and Lemma 4.1. The above uniform integrability of
sup0≤s≤T |N̄n,c

5 (s)| yields that

E sup
0≤s≤T

|N̄n,c
5 s( )|

[ ]
→ 0. (82)

Step II. We show that E[sup0≤t≤T |Q̄n(t) − q̃n(t)|] → 0.
We now note that for t ≥ 0,

|Q̄n t( ) − q̃n t( )| ≤ |Q̄n 0( ) − q0| + |N̄n,c
5 t( )| +

∫ t

0
|λ̄n

d s, Q̄n s( )( ) − λ̄d s, q̃n s( )( )|ds
+ |θn

p − θ̄p|
∫ t

0
Q̄n,+ s( )ds + |θn

d − θ̄d|
∫ t

0
Q̄n,− s( )ds

+ θ̄p + θ̄d
( ) ∫ t

0
|Q̄n s( ) − q̃n s( )|.
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For a positive constant C2, we divide the following term into three parts.

∫ t

0
|λ̄n

d s, Q̄n s( )( ) − λ̄d s, q̃n s( )( )|ds
�
∫ t

0
λ̄d s, Q̄n s( )( ) − λ̄d s, q̃n s( )( )⃒⃒ ⃒⃒

1
sup
0≤u≤t

|Q̄n u( )|≤C2

{ }ds
+
∫ t

0
λ̄d s, Q̄n s( )( ) − λ̄d s, q̃n s( )( )⃒⃒ ⃒⃒

1
sup
0≤u≤t

|Q̄n u( )|>C2

{ }ds
+
∫ t

0
λ̄n
d s, Q̄n s( )( ) − λ̄d s, Q̄n s( )( )⃒⃒ ⃒⃒

ds.

Noting that q̃n is uniformly bounded on [0,T] (see (12)), and using (39) in Assumption 3(ii), we have for
some C3 > 0,

∫ T

0
λ̄d s, Q̄n s( )( ) − λ̄d s, q̃n s( )( )⃒⃒ ⃒⃒

1
sup
0≤s≤T

|Q̄n s( )|≤C2

{ }ds ≤ C3

∫ T

0
Q̄n s( ) − q̃n s( )⃒⃒ ⃒⃒

ds. (83)

Hence, using (83) and (73), we have

Q̄n t( ) − q̃n t( )⃒⃒ ⃒⃒ ≤ Q̄n 0( ) − q0
⃒⃒ ⃒⃒ + N̄n

5 t( )⃒⃒ ⃒⃒ + θn
p − θ̄p

⃒⃒⃒ ⃒⃒⃒
+ |θn

d − θ̄d|
( ) ∫ t

0
Yn s( )ds

+ θ̄p + θ̄d + C3
( ) ∫ t

0
Q̄n s( ) − q̃n s( )⃒⃒⃒ ⃒⃒⃒

ds +On t( ),
where

On t( ) �
∫ t

0
λ̄d u, Q̄n u( )( ) − λ̄d u, q̃n u( )( )⃒⃒ ⃒⃒

1
sup
0≤u≤t

|Q̄n u( )|>C2

{ }du
+
∫ t

0
λ̄n
d u, Q̄n u( )( ) − λ̄d u, Q̄n u( )( )⃒⃒ ⃒⃒

du. (84)
Gronwall’s inequality yields that

sup
0≤s≤T

Q̄n s( ) − q̃n s( )⃒⃒ ⃒⃒ ≤ Q̄n 0( ) − q0
⃒⃒ ⃒⃒ + sup

0≤s≤T
N̄n

5 t( )⃒⃒ ⃒⃒ + sup
0≤s≤T

On s( )
(
+ θn

p − θ̄p

⃒⃒⃒ ⃒⃒⃒
+ θn

d − θ̄d
⃒⃒ ⃒⃒( ) ∫ T

0
Yn s( )ds

)
e θ̄p+θ̄d+C3( )T.

(85)

Given part (i) of Assumption 3, the assumption on initial queue length, (82) in step one and (73) in Lemma 4.1,
it suffices to show that E(sup0≤s≤T O

n(s)) → 0. Indeed from (38), (73), (75), and (12), we have for some C4 > 0,

∫ T

0
E λ̄d s, Q̄n s( )( ) − λ̄d s, q̃n s( )( )⃒⃒ ⃒⃒

1
sup
0≤s≤T

|Q̄n s( )|>C2

{ }
⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠dt
≤
∫ T

0
E L1 C4 + Yn s( )( )1 Yn T( )>C2{ }
( )

dt

→
∫ T

0
L1 C4 + y s( )( )

1 y T( )>C2{ }ds, as n → ∞,
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and for C5 > 0, ∫ T

0
E λ̄n

d s, Q̄n s( )( ) − λ̄d s, Q̄n s( )( )⃒⃒ ⃒⃒
ds

�
∫ T

0
E λ̄n

d s, Q̄n s( )( ) − λ̄d s, Q̄n s( )( )⃒⃒ ⃒⃒
1

sup
0≤s≤t

|Q̄n s( )|≤C5

{ }
⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠ds

+
∫ t

0
E λ̄n

d s, Q̄n s( )( ) − λ̄d s, Q̄n s( )( )⃒⃒ ⃒⃒
1

sup
0≤s≤T

|Q̄n s( )|>C5

{ }
⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠ds
≤
∫ T

0
sup
|x|≤C5

λ̄n
d s, x( ) − λ̄d s, x( )⃒⃒ ⃒⃒

ds +
∫ T

0
E 2L1Yn t( )1 Yn T( )>C4{ }
( )

dt

→
∫ T

0
2L1y t( )1 y T( )>C5{ }dt.

To summarize, we have shown that

lim sup
n→∞

E sup
0≤s≤T

On s( )| |
( )

≤
∫ T

0
L1 C4 + y s( )( )

1 y T( )>C2{ }dt +
∫ T

0
2L1y s( )1 y T( )>C5{ }dt.

Letting C2 and C5 be larger than y(T), the result follows.

8. Conclusions
The decisions on when and how much to produce in manufacturing impact the overall system. In continuous
manufacturing setup, flexibility of changing production rates plays an important role in both designing
optimal production rate and reducing total cost. Based on a double-ended queueing model, we formulate a
stochastic queueing control problem that takes into account (1) inventory holding and perishment cost, (2) back-
order and lost sale cost, and (3) production flexibility cost. The direct analysis of the QCP is intractable. We
then develop a deterministic fluid-control problem that is shown to be a performance lower bound for the
QCP. Furthermore, we show that the FCP lower bound can be achieved asymptotically for large-scale systems
and propose an asymptotically optimal production rate for the QCP.

The aforementioned FCP is hard to solve, given the nonstationary demand process. We develop a linearized
discrete time problem which is an LP and can be effectively solved by commercial solvers. Simulations of
systems with various scales are conducted to validate model effectiveness as scale increases. Numerical
examples are also presented to show that the controlled production is able to achieve production-cost re-
duction compared with constant production rate and total flexible production rate.

We intend to extend the current model to consider more realistic abandonment assumptions, such as
deterministic patience/goods expiry times. We are currently working on a related fluid-limit model for
performance analysis and have conducted some preliminary simulations to verify the accuracy of fluid
approximations. Another extension is to consider a network with multiclass customers and multipart as-
sembly lines. Furthermore, one can also consider the joint optimization for pricing and production capacity.
The double-ended queue will serve as a base model, and more realistic features are required to expand its
applicability in manufacturing and other service systems.
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Appendix. A FCP Numerical Solution: An LP Method
From Definition 3.1, we write out the complete fluid-limit continuous time-control problem as follows:

min
λ̄p t( );t∈ 0,T[ ]{ } R̄ λ̄p

( )
, (A.1)

s.t. q′ t( ) � λ̄p t( ) − λ̄d t, q t( )( ) − θ̄pq+ t( ) + θ̄dq− t( ), (A.2)
0 ≤ λ̄p t( ) ≤ Λ̄p, (A.3)
q+ t( ) � max q t( ), 0

( )
, (A.4)

q− t( ) � max −q t( ), 0
( )

, (A.5)
q 0( ) � q0 ∈ R, 0 ≤ t ≤ T. (A.6)

The objective function (A.1) and the fluid-conservation constraint (A.2) are direct results from Definition 3.1. The
quantities q+(t) and q−(t) are the fluid version of Q+(t) and Q−(t), respectively. We consider a finite time interval [0,T]—for
example, T � 24. Other parameters follow Assumption 1.

We resort to time discretization and introduce a linear reformulation, which not only can be solved efficiently, but also
can be extended to consider linearly formulated realistic constraints. Section A.1 specifies the discrete-time problem and
linear reformulation. Section A.2 provides two examples of realistic constraints.

A.1. Discrete-Time Fluid-Optimization Problem
Let the time-discretization epoch be Δt, which can be treated as the interval where decisions are made and/or information
is collected. Then, we have qn � q(nΔt), λp,n � λ̄p(nΔt), λd,n � λ̄d(nΔt, q(nΔt)), q+n � q+(nΔt), q−n � q−(nΔt), and linear cost
C̄(λp,n, nΔt) � Cnλp,n, where n � 1, . . . ,N ≡ T/Δt. The initial condition is q0. All cost coefficients hp, hd, cp, cd, cf and the
abandonment rates θ̄d, θ̄p are as in the continuous time problem. Note that in the discretization of the FCP, we only allow
linear terms of qn of the demand function and linear cost function, both of which are supported by Assumption 3.

Discretizing the objective function R̄(λ̄p) yields:
∑N
n�1

hp + cpθ̄p
( )

q+n + hd + cdθ̄d
( )

q−n + Cnλp,n
( )

Δt + cf
∑N
n�2

|λp,n − λp,n−1|.

To linearize the absolute value function, define auxiliary variables Z+
n ≥ 0 and Z−

n ≥ 0, for n � 2, . . . ,N, and add con-
straints λp,n−λp,n−1 �Z+

n −Z−
n , for n � 2, . . . ,N. In the objective function, we replace |λp,n − λp,n−1| � Z+

n + Z−
n , for n � 2, . . . ,N.

For the constraint (A.2), use difference (qn − qn−1)/Δt to approximate the derivative q′(nΔt) with initial condition q0,

qn − qn−1
Δt

� λp,n − λd,n − θ̄pq+n + θ̄dq−n , n � 1, . . .N.

Instead of formulating constraints (A.4) and (A.5) by definition, we consider a new set of constraints combining q(t),
q+(t), and q−(t):

q t( ) � q+ t( ) − q− t( ), q+ t( ) ≥ 0, q− t( ) ≥ 0, 0 ≤ t ≤ T. (A.7)
The reason that this reformulation is equivalent to constraints (A.4) and (A.5) is the following.
Note that the constraint (A.7) characterizes exactly the same underlying dynamics of the system—that is, no nonzero

q+(t) and q−(t) simultaneously. Otherwise, assume there is an optimal solution containing positive q̃+(t) and q̃−(t) at an
interval [t1, t2]. Then, we can construct another solution q̌ such that q̌+(t) � q̃+(t) and q̌−(t) � q̃−(t) for t ∈ [0, t1) ∪ (t2,T]. For
t ∈ [t1, t2], define q̌+(t) � q̃+(t) − ε(t) and q̌−(t) � q̃−(t) − ε(t), where ε(t) � min(q̃+(t), q̃−(t)). Notice that constraint (A.7) is not
violated under q̌, but in the objective function there is a positive deduction ε(t)((hp + cpθ̄p) + (hd + cdθ̄d)). Therefore, the
solution under q̃ is not optimal. This is a standard argument in LP.

We now provide the complete formulation for the discrete-time fluid-optimization model, which is an LP problem,
as follows:

min
λp,n ,n�1,...,N

∑N
n�1

hp + cpθ̄p
( )

q+n + hd + cdθ̄d
( )

q−n + Cnλp,n
( )

Δt + cf
∑N
n�2

Z+
n + Z−

n

( )
;

s.t.
qn − qn−1

Δt
� λp,n − λd,n − θ̄pq+n + θ̄dq−n

qn � q+n − q−n
λp,n − λp,n−1 � Z+

n − Z−
n

0 ≤ q+n , 0 ≤ q−n , 0 ≤ λ̄p t( ) ≤ Λ̄p

0 ≤ Z+
n , 0 ≤ Z−

n

n � 1, . . . ,N.

(A.8)
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System inputs are T, Δt, hp, cp, θ̄p, hd, cd, θ̄d, cf , λd,n, Λ̄p, Cn, and q0. The decision variables of this LP are q+n , q−n , Z+
n , Z

−
n

and λp,n. The control of the problem is λp,n, for n � 1, . . . ,N. This is an LP and can be solved very efficiently.

A.2. Realistic Constraints
The original stochastic optimal control problem (3) is a general formulation for the double-ended system. However, the LP
reformulation can be extended to incorporate other realistic features, which significantly increases the implementability
and practicality of the obtained optimal solution. As an example, we present two additional linear constraints that capture
different production- and service-quality requirements.

The first constraint is that the production-rate changes can only be made on prespecified (equidistant) time epochs. That
is, the time length between the adjacent production-rate adjustments is fixed L (e.g., L � 8 hours, a typical length of one
work shift). We divide the entire time horizon T into N̂ � T/L slots, each having the length of L. Control variables within
each interval are set to remain unchanged. Let K � L/Δt, and we have the following constraints:

λp,k+i·K � λp,k+1+i·K, k � 1, . . . ,K − 1, i � 0, . . . , N̂ − 1.

The second kind of realistic constraint is on the total fulfillment rate. In addition to minimizing total production cost, in
order to ensure a desired level of quality of service, one natural practice is to set a fulfillment target. Define β as the
minimum fulfillment requirement:

β

∫ T

0
λ̄d t, q t( )( )

dt ≤
∫ T

0
λ̄p t( )dt.

For instance, the manager may require that at least 90% of the total potential demand is covered by the scheduled
production over [0,T]. The above fulfillment requirement constraint can easily be translated into a set of constraints in LP
reformulation problem.
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