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Abstract. Motivated by large-scale service systems, we study amulticlass queueing system
having class-dependent service rates and heterogeneous abandonment distributions. Our
objective is to devise proper staffing and scheduling schemes to achieve differentiated
services for each class. Formally, for a class-specific delay target wi > 0 and threshold
αi ∈ (0,1), we concurrently determine an appropriate staffing level (number of servers)
and a server-assignment rule (assigning newly idle servers to a waiting customer from one
of the classes), under which the percentage of class-i customers waiting more than wi does
not exceed αi. We tackle the problem under the efficiency-drivenmany-server heavy-traffic
limiting regime, where both the demand volume and the number of servers grow pro-
portionally to infinity. Our main findings are as follows: (a) class-level service differen-
tiation is obtained by using a delay-based dynamic prioritization scheme; (b) the proposed
scheduling rule achieves an important state-space collapse, in which all waiting time
processes evolve as fixed proportions of a one-dimensional state-descriptor called the
frontier process; (c) the frontier process solves a stochastic Volterra equation and is thus a
non-Markovian process; (d) the proposed staffing-and-scheduling solution can be readily
extended to time-varying settings. In this paper, we establish heavy-traffic limit theorems
to show that our solution is asymptotically correct for large systems, and we numerically
demonstrate that it performs reasonably well even for relatively small systems.

Supplemental Material: The e-companion is available at https://doi.org/10.1287/opre.2020.2075.

Keywords: dynamic scheduling • dynamic prioritization • time-varying staffing • efficiency-driven • heavy-traffic approximations
• service differentiation • tail probability of delay

1. Introduction
In this paper, we study the problem of achieving
differentiated service for a service system in which
customers of K different classes (each having its own
dedicated queue) are served by a pool of statistically
identical servers. The problem is traditionally for-
mulated as a stochastic optimization problem, where
the objective is to minimize the staffing level subject
to a set of prescribed performance targets. In this
work, we are especially interested in satisfying the
following quality-of-service (QoS) constraints:

P Vi > wi( ) ≤ αi, 1 ≤ i ≤ K, (1)
for class-specific delay target wi and tail-probability
targetαi ∈ (0, 1), 1 ≤ i ≤ K, whereVi denotes thewaiting
time of an arbitrary class-i customer. In words, the set
of constraints requires that a class-i customer waits
longer than wi time units with a probability no greater
than αi. We refer to the left-hand side of (1) as the tail
probability of delay (TPoD). The inputof theoptimization
problem comprises the staffing (salary) costs, the QoS
metrics, and various system parameters such as arrival

rates, service times, and customers’ patience-time dis-
tribution. The output of the problem specifies a proper
staffing level and a server-assignment rule that dictates
how to pair a newly available server with a customer when
there are customers from more than one class waiting.
Ideally, one would like to use the minimum pos-

sible staffing to meet those targets, in which case one
expects that all the constraints in (1) are binding or
nearly binding. Note that, due to the complexity of the
model, this optimal staffing problem can be extremely
difficult to solve; the solution also depends critically
on the space of scheduling policies. Here, instead of
solving an optimal staffing problem subject to con-
straints,weseek simple and effective scheduling rules that
can achieve performance stabilization across all cus-
tomer classes. Loosely speaking, we seek an appropriate
staffing level and a scheduling policy under which

P Vi > wi( ) ≈ αi, 1 ≤ i ≤ K.

Hereinafter, we refer to this problem as the service
differentiation problem.

1
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Applied Relevance of TPoD-Based Metrics.
TPoD-based QoS metrics have been widely used in
service systems where the manager needs to determine
how to economically plan and fairly allocate scarce
service resources (e.g., number of servers) to meet the
diverse needs of its customers. One notable example is
today’s multimedia (or omni-channel) contact cen-
ters, wherein one looks at the service level not just for
phone calls, but for email, live chat, and social media
channels. Whereas there is a longstanding tradition
for contact centers to target the service level of an-
swering 80% of calls within 20 seconds, different QoS
targets might be available for other channels. Indeed,
a collection of insights shared by call-center man-
agement experts seems to suggest the following rule
of thumb: answer 80% of live chats in 40 seconds, 95%
of emails within four hours, and 80% of social media
posts within 20 minutes (see Preece et al. 2018). TPoD
is also widely used in health care. For instance, in-
patient wards of Singapore hospitals strive to keep
delays below six hours; the probability that delay
is below six hours, referred to as the six-hour service
level, is closely monitored and found to vary between
4% and 37% over time (see Shi et al. 2016). Another
relevant example is the Canadian triage and acuity
scale (CTAS) guideline that classifies patients in the
emergency department (ED) into five acuity levels,
where each acuity level is associatedwith a prescribed
performance target, consisting of a threshold time and
the proportion of patients whose waiting time should
not exceed that threshold. According to the CTAS
guideline (Ding et al. 2019, p. 724), “CTAS level i
patients need to be seen by a physician for the first time
within wi minutes 100αi% of the time,” with (w1,w2,
w3,w4,w5) � (0, 15, 30, 60, 120) and (α1, α2, α3, α4, α5) �
(0.98, 0.95, 0.9, 0.85, 0.8). Whereas the model consid-
ered here (see Figure 2) might not fully capture
complicated dynamics of and procedures in a hospital
ED, we feel that the methodological framework de-
veloped in this paper could inform decision making
on effective allocation of medical resources needed
for the initial treatment of ED patients.

In addition to call-center and hospital settings, our
modeling framework and proposed solutions may be
applied to other service systems that share similar
features, such as immigration offices in which the
employees have to select cases to expedite in the
face of a large backlog of applications of different
preference levels. In summary, we believe that our
framework provides a useful tool to understand how
scarce service resources should be allocated in sys-
tems whose service strategies are driven either by
revenue or less tangible aspects such as social welfare.

The multiclass, multiserver queueing system con-
sidered in this paper captures three salient features of
real-world service systems. First, service requirements

are class-specific. This assumption makes our model
especially appealing in practical settings. For instance,
banking call centers receive requests as simple as bal-
ance inquiries and as complex as dealing with fraudu-
lent activities. Whereas the former can be handled rel-
atively quickly, the latter tends to be more difficult to
handle and thus requires longer services. Class-
dependent services also arise in health-care settings
wherein the service time of patients with more severe
symptoms can be twice as much as that of those
showing milder symptoms (see, e.g., table 2 of Ding
et al. 2019). Second, in addition to the incorporation of
customer abandonment, we allow reneging behavior
of customers to be class-dependent as well. In the call-
center context, this feature reflects the reality that
callers may hang up due to prolonged waiting times
and that callers who are calling about fraud may be
more patient than thosewho are calling about balance
inquiries. Third, different customer classes could
have different QoS requirements. In particular, we
allow both the delay target and the associated tail-
probability target to be class-specific. It is worth
mentioning that any one of these features would
prevent treating the customers as one superclass.
Despite its theoretical and practical importance,

very few studies dealing with many-server service
systems have chosen to work with class-dependent
service rates. As noted byGurvich et al. (2008), “If one
assumes class-dependent service rates, the resulting
problem is much more difficult”; indeed, the critical-
loading condition gives rise to a multidimensional
piecewise-linear diffusion that is not amenable to anal-
ysis. Similar remarks were made by, for example, Kim
et al. (2018), who argued that “the class-dependent
service rates case involves a complicated partial differ-
ential equation,which is not amenable to solvingdirectly”.

1.1. Our Contributions
1.1.1. A Different Scaling to Analytically Treat Class-
Dependent Services with TPoD Targets. To our best
knowledge, our paper is the first to provide an ana-
lytic treatment of class-dependent services with TPoD
targets. We first develop tractable asymptotic limits
for the queueing model with class-dependent service
rates (Theorem 1) and then apply our new results to
obtain analytic formulas for our control parameters
(Theorems 2 and 4). Such analytic limits require a
different asymptotic scaling: more precisely speak-
ing, we choose not to scale down the delay targets, as
was commonly done in the literature. Under this new
scaling condition, our proposed solution gives rise to
novel limits and exhibits nice properties inherited
from the staffing problem for a single-class queue,
albeit for services that are class-dependent. Indeed,
under our control policy, the system dynamics can be
fully described (asymptotically) by a multidimensional
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Ornstein-Uhlenbeck-type process that further translates
to a one-dimensional state-descriptor (see Theorem 1
and its proof). Such a dimensional reduction seems
impossible for critical loading systems due to the limit
being a multidimensional piecewise-linear diffusion.

Besides facilitating the analysis of class-dependent
services, this scaling may be more suitable to systems
where customer waiting times are comparable to (or
longer than) service times. For example, many call
centers are found to be severely understaffed (see,
e.g., figures 4–5 of Huang et al. 2017). Also, service
times in hospital EDs tend to be (somewhat surprisingly)
small—approximately six minutes according to Yom-
Tov and Mandelbaum (2014)—whereas the median
waiting time to receive the initial treatment is esti-
mated to about 30 minutes.

1.1.2. A New Scheduling Rule. Our point of departure
in addressing the service differentiation problem is to
propose a novel server-assignment rule based on
customers’ elapsed delays. For models with constant
arrival rates, the service scheduling policy reads as
follows: let Hi(t) denote the real-time delay of the
head-of-line customer in queue i at time t; then our
scheduling rule always assigns the next available
server to the head-of-line customer in queue i∗, with
i∗ satisfying

i∗ ∈ argmax
1≤i≤K

Hi t( )
wi

+ 1̅
λ̅

√ κi

{ }
, (2)

where λ denotes the aggregated arrival rate and κi are
K control parameters (yet to be determined). Note that
the allocation scheme specified by (2) exhibits a sep-
aration of scales, which involves two prioritization
regulators: “first-order” term Hi(t)/wi and “second-
order” term κi/

̅
λ̅

√
. The advantage of our new pri-

oritization rule (2) is that not only can it hold the class-
i delay around its delay target wi (controlled by the
first-order term Hi(t)/wi), it can also differentiate the
probability of class-i delay exceeding wi (i.e., class-i
TPoD) according to the desired class-specific proba-
bility target αi (controlled by the second-order term
κi/

̅
λ̅

√
). This stands in stark contrast to Gurvich and

Whitt (2010) and Sun and Whitt (2018), wherein the
identical probability target α is considered across
all classes.

1.1.3. A New Scaling Limit. At the heart of our solution
approach is a functional central limit theorem (FCLT)
for various quantities of interest and an important
state-space-collapse (SSC) result showing that, under
the new scheduling policy (paired with a version of
the square-root staffing rule), all waiting-time pro-
cesses reduce to a simple functional of a one-dimensional
process, henceforth referred to as the frontier process. In

contrast to the existing literature wherein standard
diffusion processes, such as Ornstein-Uhlenbeck (OU)
and piecewise-linear diffusion processes, often arise as
the scaling limit, our frontier process Ĥ is a non-Mar-
kovian Gaussian process. Specifically, Ĥ uniquely
solves a stochastic Volterra equation (SVE):

Ĥ t( ) �
∫ t

0
L t, s( )Ĥ s( )ds +

∫ t

0
J t, s( )dW s( )

+ K t( ),
(3)

whereW is standard Brownianmotion andK(·), L(·, ·),
and J(·, ·) are all simple analytic functions of themodel
inputs (see Theorem 1 for detailed formulas). We
remark that the non-Markovian probability structure
of the process limit Ĥ is attributed to our practical
assumption of the class-dependent service rates; in-
deed, we show that such non-Markovian limit will
degenerate to an OU process when service rates are
equal across all customer classes. Although an SVE
admits no analytic solutions in general, we are able to
provide some useful analysis: (i) we establish con-
ditions that guarantee the existence and unique-
ness of the solution to SVE (3) and show that it is
Gaussian; (ii) we develop efficient iterative algo-
rithms to compute the first two statistical moments of
Ĥ, which are essential to obtaining the desired control
parameters for our staffing and scheduling scheme;
and (iii) we give closed-form expressions for Ĥ in
some special cases.
To our knowledge, this seems to be the first ap-

pearance of an SVE-type limit in the heavy-traffic
queueing theory literature, and our analysis may
serve as useful building blocks for future research on
multiclass queueing systems.

1.1.4. Extension to Time-Varying Arrivals. In various
settings, it is reasonable to assume that the input
stream of customers to the system during a given
time horizon follows a nonhomogeneous Poisson
process. Of course, if the arrival rates are time-varying,
then the associated staffing and scheduling solution
ought to be time-dependent as well. Indeed, to handle
systems with strongly time-varying arrival rates, we
advance a time-varying version of the proposed staffing
and scheduling scheme that involves K + 1 control
functions. By establishing heavy-traffic stochastic-
process limits for the waiting-time processes, we
identify a set of “asymptotically correct” control
functions with which the intended service differen-
tiation can be achieved over any finite time horizon
(see Theorem 4). The computation of these control
functions relies on the first and second moments of the
frontier process for which we develop an efficient iter-
ative algorithm (see Remark 6). Figure 1 illustrates the
entire procedure.
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1.2. Paper Organization
In Section 2, we review the related literature. In
Section 3, we describe the queueing model and intro-
duce a class of new staffing and scheduling policies.
In Section 4, we introduce our asymptotic frame-
work and present the limit theorems that help us pin
down various control parameters to achieve intended
service differentiation. In Section 5, we extend our
framework substantially to deal with systems with
strongly time-varying arrival rates by plugging a set
of control (design) functions into the staffing and
scheduling policy. We provide a semiclosed form
solution for the desired control functions by estab-
lishing heavy-traffic limits for the waiting-time pro-
cesses. In Section 6, we report numerical examples.
Finally, we make concluding remarks in Section 7.
The e-companion presents all the technical proofs
omitted from the main paper. Additional supple-
mentary results are given in a longer online appendix
(Liu et al. 2018).

2. Related Literature
Here we primarily focus on two lines of research that
are most relevant for the present study. The first
stream focuses on the asymptotically optimal policies
under various objective functions. The other stream
is more recent and deals with constrained staffing
problems with service-level requirements.

The problem of staffing and scheduling multiclass
queueing systems is notoriously difficult, even for
simpleMarkovmodels. Using the conventional heavy-
traffic scaling, Van Mieghem (1995) showed a cμ-type
index rule to be asymptotically optimal.Mandelbaum
and Stolyar (2004) advanced a generalized cμ-type

policy for parallel-server processing networks and
established asymptotic optimality of the proposed
policy. Extensions of these index rules to allow cus-
tomer abandonment were considered by Ata and
Tongarlak (2013) and Kim and Ward (2013). Mov-
ing from conventional heavy-traffic to many-server
heavy-traffic approximations, Atar et al. (2010, 2011)
extended the cμ-type rule to a system with customer
abandonment modeled as a multiclass overloaded
M/M/s +M queue. Also under the overloaded re-
gime, Puha andWard (2019) considered static priority
scheduling for a multiclass G/GI/N + GI fluid queue.
However, the optimality of these greedy policies
does not extend in general to critically-loaded sys-
tems. Instead, dynamic prioritization schemes were
proposed by Harrison and Zeevi (2004) and Atar
et al. (2004), who applied a diffusion control frame-
work and obtained asymptotically policies via the
solution to a partial differential equation. More re-
cently, Kim et al. (2018) incorporated the customer
patience-time distribution into an optimal scheduling
problem and developed a near-optimal policy that
can be implemented by customer contact centers to
further improve performance metrics. However, be-
cause the specification of the aforementioned policies
requires numerically solving a Bellman equation, it is
difficult to see how sensitive the control policies are to
the changes in the system parameters. As noted by
Gans et al. (2003), this asymptotic analysis “has so far
shed little qualitative light” on the structure of op-
timal controls in the many-server critically-loaded
regime. This in part motivates a complementary stream
of research that we will survey.
The formulation of our problem follows more closely

the constraint-satisfaction framework as adopted by
Gurvich et al. (2008) and Gurvich and Whitt (2010)
(see also Soh and Gurvich 2016). Based on a simple
idle-server-basedpriority control, Gurvich et al. (2008)
developed a joint staffing and scheduling control and
established the asymptotic optimality of the proposed
policy. By focusing on ratio scheduling and routing
policies, Gurvich and Whitt (2010) sought “good and
simple” policies and established the SSC associated
with the heavy-traffic limit showing that the ratio
rules are asymptotically optimal. It is important to
emphasize that, in contrast to Gurvich et al. (2008)
and Gurvich andWhitt (2010), we allow service times
to be class-dependent. (The “pool-dependent service
rates” condition in Gurvich and Whitt 2010 essen-
tially assumes service rates to be class-independent
under their fast-pool-first routing rule.) More re-
cently, Sun and Whitt (2018) applied ratio rules in a
time-varying environment to achieve service differen-
tiation in a critically-loaded system. It is worth noting
that the authors were not able to address class-
dependent services either—explicit staffing and

Figure 1. (Color online) A Road Map

Liu et al.: Scheduling to Differentiate Service in a Multiclass Service System
4 Operations Research, Articles in Advance, pp. 1–18, © 2021 INFORMS



scheduling formulas only exist for the special case
where the service rate equals the abandonment rate.
In addition, they restricted attention to an identical
TPoD target α, whereas we allow the targets αi to be
class-specific.

Finally, the extension of our approach to the time-
varying setting is related to the vast literature on the
staffing problems of single-class queuing systems
with time-varying arrivals. We hereby only review
time-varying staffingmethods that are closely related
to the present paper (namely, those based on many-
server limits and offered-load analysis). Jennings
et al. (1996) developed a modified-offered-load ap-
proximation approach for stabilizing the probability
of delays. Formoregeneralmodelswith abandonments,
Feldman et al. (2008) devised a simulation-based iter-
ative staffing algorithm to achieve the intended perfor-
mance target. Focusing on overloaded regimes, Liu and
Whitt (2012) showed that controlling probability of
abandonment is equivalent to controlling mean queue-
ing delay. More recently, Liu (2018) developed an
analytic staffing method to stabilize the TPoD and
proved asymptotic correctness of the staffing algo-
rithm; for this reason, the present study may be seen
as a multiclass extension to the model of Liu (2018) by
allowing each class to have its own TPoD target. Such
an extension, as previously alluded to, is not straight-
forward and introduces major hurdles that lead to
nontrivial technical contributions.

3. Problem Formulation and
Proposed Solutions

We describe the multiclass queueing model in Sec-
tion 3.1. We introduce our staffing and dynamic
scheduling rules in Sections 3.2 and 3.3.

3.1. A Multiclass V Model
Consider a V-model having K ≥ 2 customer queues
served by one common service pool. Customers ar-
rive to the ith queue according to a homogeneous
Poisson process Ai with rate λi. For mathematical
convenience, we assume that initially there are cus-
tomers in queue—thus all servers are busy at time
zero. In addition, the elapsed waiting time of the
“oldest” customer does not exceed θ, where θ is some
positive constant. This is easily satisfied as long as all
customers arrived in the finite past.

We assume that class-i service times are independent
and identically distributed (i.i.d.) random variables fol-
lowing an exponential distributionwith class-dependent
service rate μi. Class-i customers may choose to aban-
don from the ith queue according to i.i.d. abandon-
ment times following a general distribution, with
cumulative distribution function (CDF) Fi(x), comple-
mentary CDF Fci (x) ≡ 1 − Fi(x), probability density

function (PDF) fi(x), and hazard rate hFi(x) ≡ fi(x)/Fc(x).
We assume that service times and patience times are
mutually independent, independent of the arrival
processes. In addition, we will assume that Fci (x) > 0
on any compact interval.
The system adopts a work-conserving policy; that

is, no customers wait in queue if there is an available
server. In addition, a first-come first-served (FCFS)
queueing discipline is implemented within each cus-
tomer class. Figure 2 gives a graphical illustration
of a three-class system. LetQi(t) represent the number
of customers waiting in the ith queue. We use Ei(t)
and Ri(t) to denote the number of customers that
have entered service and that have abandoned from
the ith queue, respectively, up to time t. By flow
conservation,

Qi t( ) � Qi 0( ) + Ai t( ) − Ei t( ) − Ri t( ). (4)
Let Bi(t) be the number of busy servers currently
serving class-i customers at time t, and let Di(t) be the
cumulative number of class-i customers that have
departed due to service completion up to time t. Again,
by flow conservation, we get

Bi t( ) � Bi 0( ) + Ei t( ) −Di t( ). (5)
Finally, let Xi(t) denote the total number of class-i
customers in the system at time t. Adding up (4) and
(5) yields

Xi t( ) � Qi t( ) + Bi t( )
� Xi 0( ) + Ai t( ) −Di t( ) − Ri t( ). (6)

Alternatively, one can derive (6) directly from flow
conservation.

Figure 2. (Color online) A Multiclass V Model with Class-
Dependent Services and Abandonments
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Two Waiting Times. We now introduce two types of
waiting-time processes that we will exploit heavily in
the subsequent analysis. Let Hi(t) denote the head-of-
line waiting time (HWT) of the ith queue, that is, the
waiting time of the class-i customer who has been
waiting the longest (if there is any);Hi(t) � 0 if there is
no customer waiting in the ith queue. Let Vi(t) rep-
resent the class-i potential waiting time (PWT) at time t,
that is, the waiting time of a potential class-i customer
arrivingat time twhohas infinitepatience.FollowingAras
etal. (2018), Liu andWhitt (2014b), wecan conveniently
express the enter-service process and the queue-length
process for each customer class in the following way:

Ei t( ) �
∑Ai t−Hi t( )( )

k�1
1 γi,k>Vi ξi,k( ){ }, (7)

Qi t( ) �
∑Ai t( )

k�Ai t−Hi t( )( )
1 ξi,k+γi,k>t{ }, (8)

where 1A denotes the indicator functionof event (set)A,
the random variables −wi ≤ ξi,1 < ξi,2 < · · · denote the
successive arrival times of class-i customers, and
γi,1, γi,2, . . . denote the i.i.d. patience times with CDF
Fi. Aswill become clear in the subsequent analysis, these
representations are useful in deriving the FCLT results.
To complete the model, it remains to specify (i) the
staffing level for the service pool (whichplans the overall
service capacity for all customer classes), and (ii) the
scheduling policy used to pair a newly available server
with a waiting customer from one of K classes (which
determines how to dynamically allocate the overall
service capacity to serve each customer class).

3.2. The Staffing Rule
Westartby introducingaversionof thesquare-root staffing
rule, which consists of two terms: (i) the offered-load (first-
order term) and (ii) the safety staffing level (second-
order term).

The Offered-Load Staffing Term. Here we adopt the
offered-load analysis, which estimates the required ser-
vice capacity by estimatinghowmuchcapacitywouldbe
used if there were not a limit on its availability. For
example, consider a single-class M/GI/s + GI model
having Poisson arrivals with rate λ, i.i.d. service times
with a general distribution G (the first GI), and i.i.d.
customer abandonment following a general distribu-
tion F (the +GI). Although the M/GI/s + GI model is
complicated, the corresponding M/GI/∞ infinite-
server model remains remarkably tractable, where
the number of customers or busy servers in steady
state follows a Poisson distribution with mean

m∞ ≡ E X∞[ ] � λ

∫ t

−∞
Gc t − u( )du � λE S[ ], (9)

where S denotes the service time in the M/GI/∞
queue. If the objective is to stabilize the expected
delay at a target w, then one will need to set the
staffing levels to a modified version of (9), namely,

mDIS ≡ Fc w( )λ⏟̅⏞⏞̅⏟
effective arrival rate

×
∫ t

−∞
Gc t − u( )du

� Fc w( )λE S[ ],
(10)

wherewehaveusedDIS todenote the“delayed-infinite-
server approximation,” as in Liu and Whitt (2012) (see
also Liu andWhitt 2014a, 2017 for additional analysis
on DIS). The effective arrival rate can be justified by
the fact that, if every arrival who does not elect to
abandon waits w time units, then a fraction F(w) of
arrivals will abandon the queue before entering ser-
vice. In other words, one can think of mDIS(t) as
the mean number of busy servers needed to serve all
customers who are willing to wait for w time units. For our
multiclass Vmodelwith class-dependent delaywi, we
follow the aforementioned offered-load analysis by
choosing the first-order staffing level as

m ≡ ∑K
i�1

mi for mi ≡ Fci wi( ) · λi/μi
( )

, (11)

where each term in the sum of (11) is obtained by
replacing (F,w,G, λ) in (10) with the class-dependent
primitives (Fi,wi, exp(μi), λi).

The Safety-Staffing Term. Unfortunately, m is not
effective for stabilizing class-dependent TPoDs, be-
cause m does not include the class-dependent prob-
ability targets αi. Our strategy is to refine the staffing
level by adding a second-order safety staffing term
driven by the class-dependent probability targets
αi. Let λ ≡ ∑K

i�1 λi be the aggregate demand rate.
We envision a staffing formula consisting of two
pieces, namely,

s � m + ̅
λ̅

√
c

⌈ ⌉
, (12)

where �x� is the smallest integer that is greater than or
equal to x, and c ≡ c(α1, . . . , αK) is a control parame-
ter that depends on (α1, . . . , αK) and will be deter-
mined later.

Remark 1 (Role of the Safety-Staffing Coefficient c). Note
that the first-order staffing termm in (12) is on the order
of λ, whereas the second-order term is on the order of̅
λ̅

√
. Given that the offered-load m depends on delay

target wi, arrival rate λi, service rate μi, and patience-
time distribution Fi, the remaining flexibility in the
staffing formula depends entirely on the single pa-
rameter c, which will be determined to satisfy the
performance targets, as specified by (1). Hence, the
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overall staffing level s depends on probability targets
(α1, . . . , αK) only through c.

3.3. A Dynamic Prioritization Scheme
Following step 1 in Figure 1, we next introduce a
delay-based scheduling rule that involves additional
K control parameters. To implement such a sched-
uling rule, we track the elapsed waiting time of all
waiting customers. Because customers of the same
class are served in the FCFS scheme, it suffices to track
the HWTs, namely, (H1(t), . . . ,HK(t)).

We route the next class-i∗ head-of-line (HoL) cus-
tomer (if any) into service, with i∗ satisfying (2), where
the first term Hi(t)/wi is the HWT scaled by the de-
lay target and κi ≡ κ(αi), referred to as the second-
order class-i prioritization regulator, is an αi-dependent
control parameter to be specified later. Furthermore,
we define what we call the frontier process as

H t( ) ≡ Hi∗ t( )
wi∗

+ 1̅
λ̅

√ κi∗ .

Remark 2 (Understanding the Proposed Dynamic Sched-
uling Policy). Our proposed scheduling rule exhibits an
important separation of scales. To the best of our
knowledge, this is a feature unique to the present study
and absent from previous research. The first-order
term Hi(t)/wi is designed to guarantee that the class-
i delay is close to its target wi (it is controlling the
relative delay imbalance (Hi(t) − wi)/wi, rather than
the absolute delay imbalance). The idea of exploiting
the head-of-line delay information dates back to
Kleinrock (1964) (see also Li et al. 2017 for a non-
linear extension). The second-order term (1/ ̅

λ̅
√ )κi

helps accomplish the class-dependent probability
target αi. Intuitively, such a control parameter κi

should satisfy the following properties:
(i) Monotonicity. For fixed time t, κi should be a

decreasing function of αi, because a bigger value of αi

means a lower service quality, which yields a lower
prioritization level for class i.

(ii) Sign. For a class iwith probability targetαi > 0.5
(αi ≤ 0.5), the fine-tuning prioritization regulator κi
should satisfy κi < 0 (κi ≥ 0) (Benchmarking with the
case αi � 0.5, κi should base on the value of αi to adjust
the priority levels by adding a positive or negative
weight toHi(t)/wi). Seenumerical examples inSection 6
for more discussions of the structure of κi.

Moreover, the proposed scheduling policy is in
alignment with the practice of real-world services
such as Canadian EDs, where patients are routed not
only by triage level (static) priorities but also by their
actual (dynamic) wait time, as documented by Ding
et al. (2019). Thismakes this rule especially appealing,
as the intrinsic fairness of the policy helps achieve

ethical expectations set forth by the CTAS guide-
line. Furthermore, when wi � w and αi � α for all
1 ≤ i ≤ K, rule (2) degenerates to the global FCFS
scheduling policy.
In the next section, we will first establish an FCLT

result under our proposed staffing-and-scheduling
rule with control parameters c and κi (step 2 in
Figure 1); using the FCLT result, we will next obtain
the exact formulas of c and κi so that the resulting so-
lution is asymptotically feasible with respect to the
TPoD-based service-level constraints (step 3 in Figure 1).

4. Asymptotic Analysis
In this section, we present our main results. Section 4.1
gives the asymptotic framework and states the FCLT
and functional weak law of large numbers (FWLLN)
results for the multiclass V model operating under
our control policy introduced in Sections 3.2–3.3. In
Section 4.2, we utilize the FCLT results to obtain the
desired control parameters κi and c that are expected
to achieve TPoD-based service-level differentiation
asymptotically. Section 4.3 provides a more detailed
discussion of the important case of class-independent
service rate. All proofs are given in the e-companion.

4.1. Many-Server FCLT Under the Proposed
Control Policy

We consider an asymptotic framework in which the
system scale (here the average arrival λ) grows to
infinity. Following the convention in the literature,
we will use n in place of λ as our scaling parameter.
This gives rise to a sequence of K-class V models
indexed by n. Let An

i (t) be the class-i arrival process in
the nthmodel having a rate nλi, where, by slight abuse
of notation, we used λi to denote the baseline arrival
rate. Our staffing rule would then satisfy

sn � �nm + ̅̅
n

√
c�, (13)

where m and c are the offered-load in (11) and safety
staffing term (yet to be determined).
Let Hn

i and Vn
i be the class-i HWT and PWT in the

nth model. Our scheduling rule satisfies

i∗ ∈ argmax
1≤i≤K

Hn
i t( )
wi

+ 1̅̅
n

√ κi

{ }
, (14)

where κi is a control parameter yet to be determined.
For 1 ≤ i ≤ K, let

Λi s, t( ) ≡ λi t − s( ), Ān
i s, t( ) ≡ n−1An

i s, t( ) and

Ân
i s, t( ) ≡ n−1/2 An

i s, t( ) − nΛi s, t( )( )
.

The sequence of processes Ān
i and Ân

i satisfy an
FWLLN and FCLT, namely,

Ān
i (s, t), Ân

i (s, t)
( )⇒ Λi s, t( ), Âi s, t( )( )

as n→∞,
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for Âi(s, t) ≡ Wλi ◦ Λi(s, t), where x ◦ y(t) ≡ x(y(t)), Wλi

being a standard Brownianmotion, andD ≡ D(R+,R)
is the space of right-continuousR-valued functions on
R+ with left-hand limit, which is endowed with the
Skorokhod J1-topology, and⇒means convergence in
distribution (weak convergence).

Remark 3 (General Arrival Processes). Our main results
can be easily extended to general arrival processes
(which are not necessarily Poisson), as long as their
CLT-scaled versions satisfy the FCLT

Ân
i s, t( ) ⇒ cλiWλi ◦ Λi s, t( ) as n→∞,

for some cλi > 0. These types of G arrival processes
can be used to model over-dispersed and under-
dispersed arrival processes (i.e., when the variance-
to-mean ratio of the number of arrivals is not close to
1; see Liu et al. 2019 andHe et al. 2016 for construction
and analysis of such G arrival processes). In this case,
our FCLT result in Theorem 1 can be easily adjusted
by simply multiplying Wλj by cλi . For Poisson or
nonhomogenous Poisson processes, cλi � 1.

To proceed, define the CLT-scaled versions

B̂n
i t( ) ≡ n−1/2 Bn

i t( ) − nmi
( )

,

Ĥn
i t( ) ≡ n1/2 Hn

i t( ) − wi
( )

and

V̂n
i t( ) ≡ n1/2 Vn

i t( ) − wi
( )

.

In addition, we define the CLT-scaled frontier process
to be Ĥn(t) ≡ n1/2(Hn(t) − 1). We are now ready to
provide the FCLT for all relevant quantity of interests.
In the next theorem, we focus on delay-related per-
formance (see Theorem EC.1 in the e-companion for
the FCLT of queue-length processes).

Theorem 1 (FCLT Under the Proposed Control Policy).
Suppose the system operates under the proposed staffing
and scheduling rule and there is an initial convergence of
(Ĥn

, B̂n
1 , . . ., B̂

n
K) to zero at t � 0.

(a) Then there is a joint convergence for the CLT-scaled
waiting time processes:

Ĥn
1 , . . ., Ĥ

n
K, V̂

n
1 . . ., V̂

n
K

( )⇒ Ĥ1, . . ., ĤK, V̂1. . ., V̂K
( )
in D2K as n→∞,

(15)

where the limits on the right-hand side are well-defined
stochastic processes.

(b) The limits for all HWT and PWT processes are
deterministic functionals of a one-dimensional process
Ĥ, namely,

Ĥi t( ) ≡ wi Ĥ t( ) − κi
( )

and

V̂i t( ) ≡ wi Ĥ t + wi( ) − κi
( )

;
(16)

the process Ĥ uniquely solves the SVE (3), where

K t( ) ≡ η−1
∫ t

0

∑K
i�1

ψiκieμi s−t( )ds − c

( )
,

L t, s( ) ≡ η−1
∑K
i�1

eμi s−t( ) ηiμi − ψi
( )( )

,

J t, s( ) ≡ η−1 2
∑K
i�1

e2μi s−t( )Fci wi( )λi

( )1/2
for

ηi ≡ wiλiFci wi( ), ψi ≡ wiλifi wi( ) (17)
and η ≡ ∑K

i�1 ηi.

Remark 4 (Abandonment from a Subset of Classes). In
practice, it is possible that customer abandonment may
only occur in certain classes, not all. In this case, one
may consider a more general model, where the K
customer classes divide into two categories, I0 and I1,
such that I0 ∪ I1 � {1, . . . ,m}, and only classes in
the subset I1 have queue abandonment, while those
in I2 are infinitely patient. This is a more general
and practical framework, because it covers commonly
considered special cases: if I1 � φ, then all classes are
infinitely patient (i.e., the no-abandonment model); if
I0 � φ, then all classes are impatient as treated in
Theorem 1 (i.e., the abandonment model).

We refer to the aforementioned more general case
as the “partial-abandonment” model; we point out
that both our proofs and analytic results can be
readily extended to cover the partial-abandonment
case. As long as Fi and fi satisfy the aforementioned
regularity conditions for i ∈ I1, then all the results in
Theorem 1 remain valid, with Fcj (wj) and fj(wj) in (17)
being replacedwith 1 and 0, respectively, for all j ∈ I0.
We omit the proofs because it is similar to the proof of
Theorem 1.
Theorem 1 provides the FCLT for waiting times

under our proposed staffing and scheduling policy
with the second-order terms c and κi yet to be de-
termined. SuchFCLT resultswill beused later to achieve
the intended TPoD-based service differentiation. Part (b)
of Theorem 1 gives a nice SSC result—both limiting
HWT and PWT processes are deterministic func-
tionals of the one-dimensional frontier process Ĥ. The
intuition behind the SSC is that all these normalized
HWTs (plus the second-order prioritization regula-
tor) in (2) do not differ much from each other under
the delay-based scheduling rule. It is significant that
the one-dimensional state-descriptor Ĥ under the
SSC is the solution to an SVE rather than an ordinary
SDE, which is more commonly seen in the literature.
This is solely because the service rates are assumed to
be class-dependent. We summarize our key findings
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regarding the SVE in Remark 6. We next provide a
proof sketch of the theorem. The full proof of Theorem 1
is given in Section EC.1 of the e-companion.

Proof Sketch of Theorem 1.
Step 1: We first show that each component within

the curly brackets in (14) can bemade arbitrarily close
to the frontier process by choosing n large enough.
This is essentially an SSC result and follows from a
key observation that, at any given point in time, the
numberof total departures required for anHoLcustomer
to enter service under the proposed scheduling policy
is of order O(1).

Step 2: We then use (7) to obtain a simple relation
between Ĥn

i and B̂n
i . Based on the fact that the dif-

ference between Ĥn
i (t) and wi(Ĥn(t) − κi) can be made

arbitrarily small for n large enough, we are able to
establish a set of K differential equations and one
linear equation jointly satisfied by (B̂n

1 , . . ., B̂
n
K, Ĥ

n).
This allows us to apply Gronwall’s inequality to es-
tablish the stochastic boundedness of the sequence
{(B̂n

1 , . . ., B̂
n
K, Ĥ

n);n ∈ N}, which in turn enables us to
deduce the desired FWLLN results.

Step 3: By appealing to the continuous mapping with
the established FWLLN, we establish the Brownian
limits for the sequence {(B̂n

1 , . . ., B̂
n
K, Ĥ

n)}. Specifically,
the limiting processes (B̂1, . . ., B̂K, Ĥ) collectively sat-
isfy the following set of OU-type stochastic inte-
gral equations:

B̂i t( ) + ηiĤ t( ) � −
∫ t

0
μiB̂i u( )du −

∫ t

0
ψiĤ u( )du

+
∫ t

0
ψiκidu + Gi t( )

for i � 1, . . .,K, and
∑K
i�1

B̂i t( ) � c,

(18)

where ηi and ψi are specified by (17) and

Gi t( ) ≡ Êi,1 t( ) + Êi,2 t( ) − D̂i t( ),
Êi,1 t( ) ≡ Fci wi( )

∫ t−wi

−wi

̅̅̅
λi

√
dWλi u( ),

Êi,2 t( ) ≡ ̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅
Fci wi( )Fi wi( )√ ∫ t−wi

−wi

̅̅̅
λi

√
dWθi u( ),

D̂i t( ) ≡
∫ t

0

̅̅̅̅̅̅
μimi

√
dWμi u( ), (19)

for Wλi ,Wθi ,Wμi being independent standard Brow-
nian motions. Next, the FCLT for the HWT and PWT
processes follows by the converging-together lemma
with the established FCLT for the frontier process.
Step 4: Note that each equation in (18) allows us to
write B̂i as a function of Ĥ. Plugging them into the
equation

∑K
i�1 B̂i(t) � c with some algebraic simplifi-

cations yields the desired result. The sum
∑K

i�1 B̂i(t) is
a constant because the overall staffing level is a

deterministic function of which its “diffusion” term is
c (see (EC.14) for details). Ourproofdrawsheavily from
Aras et al. (2017, 2018), Liu and Whitt (2014b). □

Remark 5 (Separation of Variability). The diffusion limits
(B̂1, . . ., B̂K, Ĥ) satisfy a (K + 1)-dimensional stochastic
differential equation (SDE), and, according to (16), there
are 3K independent Brownian motions Wλi ,Wθi ,Wμi

stemming from the independent random sources
(arrival, abandonment, and service) of all K cus-
tomer classes.

The following result is a direct consequence of
Theorem 1.

Corollary 1 (FWLLN). Suppose that all conditions of
Theorem 1 are satisfied. Then there is a joint convergence
for the LLN-scaled processes, namely,

Hn
1 , . . .,H

n
K,V

n
1 , . . .,V

n
K

( )
⇒ w1e, . . .,wKe,w1e, . . .,wKe( ) in D2K as n→∞,

where e represents the constant function of one.

As a consequence of Corollary 1, the abandonment
probabilities are also stabilized, namely,

P a class-i customer will abandon( ) ≈ Fi wi( )
for n large enough. We conclude this section by
making several important observations about the
dynamics of the limit frontier process Ĥ.

Remark 6 (A Closer Look at the SVE (3)).
(i) Existence and Uniqueness of Solutions. The pro-

cess defined by (3) belongs to the class of linear
Volterra integral equations for which existence/
uniqueness of solutions is a classical result (see,
e.g., Ito 1979). Also, it is a Gaussian process, because
the dynamics are driven by a Brownianmotion—thus
its mean function and covariance function completely
determine all of the finite-dimensional distributions.
(ii) Analytic solutions in special cases. The SVE (3) in

general has no analytic solution, except for some
special cases. For example, if μi � hFi(wi) for all 1 ≤ i ≤
K so that the drift term L(t, s) � 0, then the SVE (3) is a
simple Brownian integral that admits an analytic
solution. Another special case arises when L and J are
separable functions in t and s, which is the case when
service rates are class-independent (see Section 4.3 for
discussions of this important special case).
(iii) Dependence on control parameters. The terms L

and J are functions of model inputs (λi,Fi, μi,wi) only,
and thus are independent of the control parameters
κi and c, which only appear in K. Hence, varying κi
and c will affect the mean of Ĥ, but not its variance.
This is a crucial observation: as we will demonstrate
momentarily, (i) computing the variance of Ĥ (which
is independent of c and κi) and (ii) appropriately
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shifting the mean of Ĥ (by adjusting our control pa-
rameters) are critical in achievingdesired class-dependent
service levels.

(iv) Existence of limiting distribution. From (18), we
see that {(B̂1, . . ., B̂K, Ĥ)} is a multidimensional OU-
type process. Thus, we would expect that the limit-
ing distribution of Ĥ exists as t→∞. As we shall
demonstrate in the next section, the frontier process
Ĥ does have a limiting distribution under suitable
regularity conditions.

4.2. Finding the Right Control Parameters
Recall that our goal is to derive appropriate staffing
and scheduling rules under which

αi ≈ P Vn
i > wi

( ) � P V̂n
i > 0

( )
.

On the other hand, part (b) of Theorem 1 implies that

P V̂i ∞( ) > 0
( ) � P Ĥ ∞( ) > κi

( )
� P N 0, 1( ) > κi − E Ĥ ∞( )[ ]

σĤ ∞( )

( )
,

where we have used N (μ, σ2) to denote a normal
random variable with mean μ and variance σ2, and
assumed that the limiting distribution Ĥ(∞) exists,
havingmeanE[Ĥ(∞)] and standard deviation σĤ(∞) �̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅
Var(Ĥ(∞))

√
.

One should expect that the limiting distribution of
the waiting time process V̂i in Theorem 1 would co-
incide with the limit of the steady-state sequence
{V̂n

i ;n ∈ N}, namely,

P V̂i ∞( ) ≤ x
( ) � lim

n→∞P V̂n
i ≤ x

( )
. (20)

But this is not automatic, because an interchange
of iterated limits is involved. Despite proving to
be a valid approximation for many previous models
studied, a formal justification for such an interchange
of limits tends to be difficult and would often qualify
for a separate paper. Thus, we shall have to contend
ourselves with the conjecture (20) and seek control
parameters κi and c such that P(V̂i(∞) > 0) � αi, in
which case κi and c ought to satisfy

κi − E Ĥ ∞( )[ ] � z1−αiσĤ ∞( ), (21)
where zα is the α-quantile of a standard normal
random variable, that is, zα � P(N (0, 1) ≤ α).

One obvious solution to (21) is tomakeE[Ĥ(∞)] � 0
and then set κi � z1−αiσĤ(∞). From (3), it is straight-
forward to see that a necessary condition for Ĥ(∞) to
have mean zero is that K(∞) � 0, which in turn re-
quires our control parameters to satisfy the follow-
ing relation: c � ∑

i(ψiκi/μi). In this case, the task of
finding the right control parameters boils down to

finding the stationary variance of the process Ĥ. To
this end, let us define

L t( ) ≡ η−1
∑K
i�1

e−μit ηiμi − ψi
( )( )

and

J t( ) ≡ η−1 2
∑K
i�1

e−2μitFci wi( )λi

( )1/2
,

so that L(t, s) � L(t − s) and J(t, s) � J (t − s). Further-
more, let L(k) denote the kth convolution of function
L. One can then introduce the resolvent kernel of
function L as

R t( ) ≡ ∑∞
k�1

L k( ) t( ). (22)

We next give an analytic expression for the fron-
tier process.

Theorem 2 (Solution to the SVE). For the resolvent kernel
R specified by (22), the following results hold:
(i) The resolvent kernelR is integrable over the positive

real line if and only if ψj > 0 for some j ∈ {1, . . . ,K}. In
particular, R is uniformly bounded under the stated
condition. In addition, the resolvent kernel R uniquely
solves the following fixed-point equation:

R t( ) � L t( ) +
∫ t

0
L t − s( )R s( )ds for t ≥ 0. (23)

(ii) The solution to (3) is given by the Brownian integral

Ĥ t( ) � K t( ) +
∫ t

0
J t − s( )dW s( )

+
∫ t

0
R t − s( )K s( )ds +

∫ t

0
R t − s( )

×
∫ s

0
J s − u( )dW u( )ds.

(24)

(iii) The expectation and variance of Ĥ(t) are given by

E Ĥ t( )[ ] � K t( ) +
∫ t

0
R t − s( )K s( )ds � K t( )

+
∫ t

0
R s( )K t − s( )ds,

(25)

Var Ĥ t( )( ) � ∫ t

0
J (u) +

∫ u

0
R s( )J u − s( )ds

( )2
du. (26)

(iv) If the condition specified in part (i) is satisfied, then
the limiting distribution of Ĥ exists as t→∞. In particular,
the limiting variance can be written as

Var Ĥ ∞( )( ) � lim
t→∞Var Ĥ t( )( )

�
∫ ∞

0
J u( ) +

∫ u

0
R u − s( )J s( )ds

( )2
du.

(27)
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(v) If, in addition, the control parameters satisfy the
relation c � ∑

i(ψiκi/μi), then the mean of the limiting
distribution of Ĥ is zero, namely, E[Ĥ(∞)] � 0.

The fixed-point equation in part (i) of Theorem 2
leads to a natural iterative algorithm for computingR
over any compact interval [0,T]. For practical imple-
mentation, one might choose to run the algorithm
on a (sufficiently) long time horizon [0,T], and use the
value of Var(Ĥ(T)) as a reasonable approximation for
Var(Ĥ(∞)). From Theorem 2, we see that the limiting
variance of the Ĥ can be calculated via the formula
provided in (27). By setting σĤ(∞) �

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅
Var(Ĥ(∞))

√
and

κi � z1−αiσĤ(∞), we achieve what we set out to do.

4.3. The Case of Class-Independent Service Rate
It is well known that the case of class-dependent
service rate can be more complex (see, e.g., Kim
et al. 2018). In this subsection, we assume that ser-
vice rates are class-independent, that is, μi � μ for all
1 ≤ i ≤ K. Under this assumption, the results greatly
simplify, yielding functions L andK that are separable
in t and s, so that the SVE in (3) degenerates to a much
more tractableOrnstein-Uhlenbeck (OU) process. The
following result formalizes this observation.

Corollary 2 (Class-Independent Services). When μi � μ,
the limiting frontier process Ĥ is a one-dimensional OU
process, namely,

ηdĤ t( ) � −∑
i
ψiĤ t( )dt + 2

∑
i
Fci wi( )λi

( )1/2
dW

+ ∑
i
ψiκi − cμ

( )
dt.

Remark 7 (SVE vs. OU). The process Ĥ that solves the
SVE (3) differs from a regular OU process by having a
two-parameter drift L(t, s) and volatility J(t, s). Essen-
tially, it is such a characteristic that deprives the solution
of the Markov property. The non-Markovian property
stems from the practical assumption of class-specific
service rate μi. We provide some intuitive explana-
tion: if the service rates are class-independent, then the
heavy-traffic limit, as noted in the literature, can be fully
characterized by a one-dimensional process, because the
times all customers spend in service are statistically
equal. On the other hand, when service rates are class-
dependent, one must resort to a K-dimensional pro-
cess to track the service content in order to maintain a
Markov property, but the Markov property is never
completely preserved by a one-dimensional process
(e.g., the frontier process).

This special case allows us to gain a richer insight
into how various model parameters and QoS con-
straints affect our staffing and scheduling solution, as

the desired control parameters now admit explicit
expression, namely,

c∗ ≡ ∑K
i�1

ψiκi

μ
and

κ∗i ≡ z1−αi

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅∑K
j�1 λjFcj wi( )∑K

j�1 ηj
( ) ∑K

j�1 ψj

( )
√√√√

.

(28)

The constants in (28) can be used to compute the
required average number of servers and scheduling
threshold. When K � 1, our staffing Equation (28)
degenerates to the ED+QED staffing equations (30)
and (31) in Mandelbaum and Zeltyn (2009), which
asymptotically controls the TPoD for the stationary
M/M/n + G model. In addition, these analytic for-
mulas can provide an estimate of the marginal prices
of scheduling and staffing, to improve the service to
the next level (e.g., reducing wi by Δwi, or reducing αi

by Δαi) and to determine how many extra servers are
needed and how much the scheduling threshold κi

should be adjusted.

5. Extension to Time-Varying Models
So far, we have focused our attention on time-
stationary arrivals. In the real world, many service
systems (e.g., customer contact centers and hospi-
tal EDs) tend to face arrival rates that are signifi-
cantly time-varying. Hence, it is practically rele-
vant and theoretically interesting to develop staffing
and scheduling solutions that are helpful for time-
varying systems. Fortunately, as will be demon-
strated in a moment, our modeling framework can
conveniently accommodate time-varying customer
flow with slight modifications.
To fix ideas, we assume that arrivals of each class

follow a nonhomogeneous Poisson process (NHPP)
with a known arrive-rate function. We find it con-
venient to let the class-i arrival process start at time
−wi. This assumption facilitates the mathematical
treatment, because the proposed scheduling policy
(to be specified later) can be simply implemented at
time zero. In the face of time-varying arrivals, it makes
sense to consider a transient version of the service
differentiation problem, namely,

P Vi t( ) > wi( ) ≤ αi, 1 ≤ i ≤ K, 0 < t < T,

where T (e.g., T � 8 hours) denotes a finite time ho-
rizon and Vi(t) is the delay of a class-i customer ar-
riving at time t. In words, the set of constraints re-
quires that a class i customer who arrives at time t
waits longer than wi time units with a probability no
greater than αi.
Paralleling the asymptotic framework advanced in

Section 4.1, we consider a sequence of models with an
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associated sequence of arrival processes having time-
varying arrival-rate functions.More formally, letAn

i (t)
be the class-i NHPP arrival process in the nth model
having a rate function nλi(·), where, by slight abuse of
notation, we used λi(t) to denote the baseline arrival
rate at time t. Accordingly, we propose using a time-
dependent staffing function

sn t( ) � �nm t( ) + ̅̅
n

√
c t( )�, (29)

where

m t( ) ≡ ∑K
i�1

mi t( ), where

mi t( ) ≡
∫ t

0
Fci wi( )λi u − wi( )⏟̅̅̅̅̅̅̅ ⏞⏞̅̅̅̅̅̅̅ ⏟

effective class-i arrival rate

e−μi t−u( )du
(30)

and c(·) is a safety staffing function yet to be deter-
mined. In a similar fashion, we consider a time-
varying dynamic prioritization scheme that always
assigns the next available server to the head-of-line
customer in queue i∗, with i∗ satisfying

i∗ ∈ argmax
1≤i≤K

Hn
i t( )
wi

+ 1̅̅
n

√ κi t( )
{ }

, (31)

where κi(·) are K control functions yet to be determined.

Remark 8 (Releasing Busy Servers). With possibly time-
varying staffing levels, one needs to specify how to
manage the system when all servers are busy yet the
staffing is scheduled to decrease. There is a well-
established procedure, called server switching, to han-
dle this. More precisely, when a server is scheduled to
depart, the customer in service is not required to stay
with the server until service is complete. Instead, one
allows the service in progress to be handed off to an-
other available server. Moreover, one does not force a
customer out of service if the staffing is scheduled to
decrease when all are busy. Instead, one releases the
first server that becomes free after the time of scheduled
staffing decrease. Of course, with this assumption,
the (actual) number of servers itself forms a random
process, yet the impact is inconsequential (on the dif-
fusion scale).

Our next result is a direct extension of Theorem 1 to
the time-varying queueing system.

Theorem 3 (FCLT Under the Proposed Control Policy).
Suppose that the system uses the staffing rule (29) and the
scheduling policy given by (31). If there is an initial con-
vergence of (Ĥn

, B̂n
1 , . . ., B̂

n
K) to zero at t � 0, then we have

the following:

(a) There is a joint convergence for the CLT-scaled
waiting time processes,

Ĥn
1 , . . ., Ĥ

n
K, V̂

n
1 . . ., V̂

n
K

( )⇒ Ĥ1, . . ., ĤK, V̂1. . ., V̂K
( )
in D2K as n→∞,

(32)

where all process limits are deterministic functionals of a
one-dimensional process Ĥ, namely,

Ĥi t( ) ≡ wi Ĥ t( ) − κi t( )( )
and

V̂i t( ) � wi Ĥ t + wi( ) − κi t + wi( )( )
;

(33)

the process Ĥ uniquely solves an SVE in the form of (3) for

L t, s( ) ≡
∑K

i�1 ηi s( )eμi s−t( ) μi − hFi wi( )( )
η t( ) ,

J t, s( ) ≡
∑K

i�1 e2μi s−t( ) Fci wi( )λi s − wi( )(( + μimi s( )))1/2
η t( ) ,

K t( ) ≡

∑K
i�1 ηi t( )κi t( ) −

∫ t

0
ηi s( )eμi s−t( )

(
μi − hFi wi( )( )

κi s( )ds
)
− c t( )

η t( ) , (34)

where ηi(t) ≡ wiλi(t − wi)Fci (wi) and η(t) ≡ ∑K
i�1 ηi(t).(b) In addition, Ĥ is a Gaussian process with

(i) mean MĤ(t) ≡ E[Ĥ(t)], uniquely solving the fixed-
point equation (FPE)

MĤ � Γ MĤ

( )
, where

Γ MĤ

( )
t( ) ≡

∫ t

0
L t, s( )MĤ s( )ds + K t( ), (35)

(ii) and covariance CĤ(t, s) ≡ Cov(Ĥ(t), Ĥ(s)), 0 ≤ s, t,
uniquely solving the FPE

CĤ � Θ CĤ

( )
,

where the operator Θ is defined as

Θ CĤ

( )
t, s( ) ≡ −

∫ t

0

∫ s

0
L t,u( )L s, v( )CĤ u, v( )dvdu

+
∫ t

0
L t, u( )CĤ u, s( )du +

∫ s

0
L s, v( )

× CĤ t, v( )dv +
∫ s∧t

0
J t, u( )J s,u( )du. (36)

Remark 9 (Algorithms). The operators Γ and Θ are
shown to be contractions in appropriate functional
spaces (see Section EC.1 in the e-companion). In ad-
dition, our proof naturally leads to effective numerical
algorithms for computing MĤ and CĤ (in fact, our
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algorithms converge geometrically fast). See Remark
EC.1 in the e-companion for detailed discussions.

Given the SSC achieved by the time-varying version
of the staffing and schedule rule, we now focus on
investigating the one-dimensional process Ĥ. When n
is large, we hope to satisfy

αi ≡ P Vn
i t( ) > wi

( ) � P V̂n
i t( ) > 0

( ) ≈ P V̂i t( ) > 0
( )

� P Ĥ t + wi( ) − κi t + wi( ) > 0
( )

� P N MĤ t + wi( ), σ2Ĥ t + wi( )
( )

> κi t + wi( )
( )

� P N 0, 1( ) > κi t + wi( ) −MĤ t + wi( )
σĤ t + wi( )

( )
(37)

for all t ≥ −wi, where σĤ(t) �
̅̅̅̅̅̅̅̅̅̅̅̅̅
Var(Ĥ(t))

√
� ̅̅̅̅̅̅̅̅̅̅

CĤ(t, t)
√

is
the standard deviation of Ĥ(t) at t. Equation (37)
further simplifies to

P N 0, 1( ) > κi t( ) −MĤ t( )
σĤ t( )

( )
≈ αi, t ≥ 0,

in which case we should choose appropriate control
functions κi(·) and c(·) so that

κi t( ) −MĤ t( ) � z1−αiσĤ t( ). (38)
One obvious solution to (38) is to choose c(·) appro-
priately (based on any given κi(·)) in such a way that
K(t) in (34) vanishes so thatMĤ(t) � 0 for all t (note that
FPE (35) now has a unique solution MĤ(t) � 0 when
K(t) � 0). This leads up to a set of desired control
functions to be stated in our next theorem. The result
also guarantees uniqueness of solutions to (38) among
the proposed class of control rules. Let P(n)

a,t (i) denote
the probability that a class-i customer will abandon
in the nth model at time t.

Theorem 4 (Asymptotic Performance Stabilization).
Consider a V-system operating under the staffing and
scheduling control as specified by (29) and (31), re-
spectively. Then we have the following:

(i) Condition (38) is satisfied if

c t( ) � ∑K
i�1

ηi t( )κi t( ) −
∫ t

0
ηi s( )eμi s−t( )

{
× μi − hFi wi( )( )

κi s( )ds}, (39)

κi t( ) � z1−αiσĤ t( ), 1 ≤ i ≤ K. (40)
(ii) The use of the aforementioned formulas of c and κi

leads to the desired performance stabilization, that is,

P Vn
i t( ) > wi

( ) → αi and

P Hn
i t( ) > wi

( ) → αi as n→∞
for 1 ≤ i ≤ K. In addition,

Vn
i ,H

n
i

( )⇒ wie,wie( ) in D2 as n→∞ for

i � 1, . . . ,K.
(41)

In particular, the abandonment probabilities are also
stabilized, namely,

P n( )
a,t i( )→Fi wi( ) as n→∞.

(iii) The safety-staffing term c(·) that achieves the
aforementioned performance stabilization is unique; in
contrast, the set of terms (κ1(·), . . . , κK(·)) are unique up to
adding any common function Δ(·).
A few comments on Theorem 4 are in order. The

main idea behind part (i) is to choose appropriate
control functions c(·) and κi(·) to tilt the mean of the
error term V̂n

i (t) (rather than themean ofVn
i (t)), so that

asymptotically the probability mass of {V̂n
i (t) > 0} (or

{Vn
i (t) > wi}) can be set to the desired αi at all time t.

Indeed, part (ii) of the theorem states that all con-
straints will be asymptotically binding with the se-
lected control functions. Moreover, from part (iii) of
Theorem 4 it follows that the staffing component of
solutions to (38) is unique; that is, one cannot find
another solution making all constraints binding (as-
ymptotically) by employing fewer servers. In this
respect, the resulting solution can be considered as-
ymptotically optimal among the specific class of control
rules as considered in the present paper. Lastly, the
asserted “uniqueness” of prioritization regulators
(κ1, . . . , κK) is also intuitive in that applying any κ̃i(t) �
κi(t) + Δ(t) for 1 ≤ i ≤ K will not make a difference in
our proposed scheduling rule.

Remark 10 (Structure of the Control Functions). From
(39), we see that the second-order safety staffing term
c(·) depends on the second-order prioritization regu-
lator κi(·), which in turn relies on αi through zαi . Par-
alleling Remark 2, κi(t) is decreasing in αi, and its sign
depends on how αi compares with 0.5, that is, κi(t) > 0
(κi(t) < 0) if αi < 0.5 (αi > 0.5). Another interesting
observation is that a bigger system variability leads to
more contrasting prioritization standards. To elaborate,
consider the case α1 < 0.5 < α2 so that z1−α1 > 0 > z1−α2

and κ1(t) > 0 > κ2(t), the difference of the two prior-
itization regulators κ1(t) − κ2(t) > 0 is increasing in
σĤ(t), which characterizes the system’s overall sto-
chastic variability (recall from Remark 6 that the
variability of Ĥ captures the randomness of all events,
including arrivals, service times, and abandonment
times). This suggests that not only staffing levels will
increase but also the prioritization scheme (scheduling
rule) becomes more discriminative as the system ex-
hibits higher levels of volatility. Finally, we emphasize
that wi (αi) is the first-order (second-order) QoS target,
because a slight change in wi (αi) affects the first-order
(second-order) term in both (29) and (31).

Corollary 3 (Frontier Process Ĥ When Service Rates Are
Class-Independent). When μi � μ, we have the following:
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(i) The limiting frontier process Ĥ satisfies the one-
dimensional OU process

η t( )Ĥ t( ) � −
∫ t

0
η u( )Ĥ u( )du + S t( ) + G t( ), (42)

where G(t) ≡ ∑K
i�1 Gi(t), with Gi(t) being the Brownian-

driven terms given in Theorem 1, and

S t( ) ≡ ∑K
i�1

ηi t( )κi t( ) +
∫ t

0

∑K
i�1

ηi u( )hFi wi( )κi u( )du

− c t( ) − μ

∫ t

0
c u( )du.

(ii) The SDE (42) has a unique solution

Ĥ t( ) � 1
R t( )

∫ t

0
e
∫ t

u
L̃ v( )
R v( )dvJ̃ u( )dW u( )

(
+

∫ t

0
e
∫ t

u
L̃ v( )
R v( )dvR u( )dK u( )

+
∫ t

0
e
∫ t

u
L̃ v( )
R v( )dvK u( )dR u( )

)
, (43)

where W is a standard Brownian motion, and

R t( ) � eμtη t( ), L̃ t( ) � eμt
∑K
i�1

ηi t( ) μ − hFi wi( )( )
,

J̃ t( ) � eμt
̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅∑K
i�1

Fci wi( )λi t − wi( ) + μmi t( )( )√
.

(iii) The variance of Ĥ(t) is

σ2Ĥ t( ) ≡ Var Ĥ t( )( ) � 1
R2 t( )

∫ t

0
e2

∫ t

u
L̃ v( )
R v( )dvJ̃2 u( )du.

If K � 1, then our multiclass V model degenerates to a
single-class Mt/M/st + GI model.

Corollary 4 (The Single-Class Case). When K � 1, the
second-order staffing term c(t) simplifies to

c t( ) � z1−αe−μt Z t( ) − μ − hF w( )( ) ∫ t

0
Z s( )ds

( )
, (44)

with Z t( ) ≡ e μ−hF w( )( )t

×
̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅∫ t

0
e2hF w( ) Fc w( )λ u − w( ) + μm u( )( )

du

√
.

(45)

It is easy to check that (44) and (45) coincide with the
staffing equations (7) and (8) in Liu (2018), except for a
time shift by w. This is due to the slightly different
initial condition here.

6. Numerical Studies
In this section, we conduct extensive numerical ex-
periments to test the effectiveness of our proposed

staffing and scheduling solution. In Section 6.1, we
describe in detail the architecture of the simulation,
which includes the generation of virtual customers
and statistical estimation methods for the tail prob-
abilities. In Section 6.2, we consider time-stationary
models of different system scales. In Section 6.3, we
consider a base model having time-varying arrival
rates and class-independent service rates. More nu-
merical instances, including class-dependent service
rates, mixed arrival rates, higher QoS targets, and a
five-class example, are provided in the e-companion
(Liu et al. 2018).

6.1. Implementation Details
All Monte Carlo simulations were conducted using
MATLAB. We sample the values of the performance
functions at fixed time points ΔT, 2ΔT, . . . ,NΔT � T,
where T � 24 is the length of the time interval, the
step size (sampling resolution) is ΔT � 0.01, and N �
T/ΔT � 2,400 is the total number of samples in [0,T].
To collect simulated data of PWT, on each simulation
run, we create frequent virtual arrivals at all queues
with interarrival time ΔT. These virtual customers
behave like real customers while in the queue and
capture what the system experience would be like for
customers had they arrived at the given sampling
time points. However, these virtual customers, when
they are eventually moved to the head of the queue
and assigned a server, will not enter service; instead,
they are removed immediately from the system after
their elapsed waiting times have been recorded. For
instance, the jth (1 ≤ j ≤ N) class-i virtual customer
arrives at queue i at time jΔT. If this customer is re-
moved (from the head of the line) at time t, then the
system collects a sample for the class-i PWT at time
jΔT on the lth run: Vl

i(jΔT) � t − jΔT. The class-imean
PWT and TPoD at time tj ≡ jΔT are estimated by
averaging n (here n � 5,000) independent copies of
Vi( jΔT ) and indicators 1 Vi(jΔT)>wi{ }; namely, we use
the unbiased Monte Carlo estimators

̂E Vi tj
( )[ ] ≡ 1

n

∑n
l�1

Vl
i jΔT
( )

and

̂P Vi tj
( )

> wi
( ) ≡ 1

n

∑n
l�1

1 Vl
i jΔT( )>wi{ }.

The numerical integrations (for the variance formulas
and control functions) were done using the trape-
zoidal method in MATLAB

6.2. Time-Stationary Models
We start by looking at time-stationary settings where
there are two customer classes, each having an ex-
ponential abandonment-time distribution with PDF
fi(x) � θie−θix, i � 1, 2. System parameters include
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λ1 � 1, λ2 � 1.5, μ1 � 0.5, μ2 � 1, n � 50, θ1 � 0.6, and
θ2 � 0.3; QoS parameters are given asw1 � 0.5,w2 � 1,
α1 � 0.2, and α2 � 0.8.We calculate the desired control
parameters c and κ2 based on the formulas provided
in Section 4.2. In doing so, we numerically compute
the variance of Ĥ(T) for T large enough using Equa-
tion (26), and use it as an approximation for the
stationary variance σĤ(∞) (see Equation (27)).

Because our method is based on asymptotic anal-
ysis as n → ∞, an important question is how effective
our proposed solution is when applied to systems of
different sizes. To seek an answer to this question, we
let the scale parameter n vary from 50 to 5 with ev-
erything else being fixed. Figure 3 shows the class-
dependent TPoD over a finite time horizon estimated
from Monto Carlo simulations for three different
values of n, namely, 50, 10, and 5, as displayed in
panels (a), (b), and (c), respectively. For each case, we
provide the 100(1 − β)% � 95% confidence intervals
obtained from 1,000 simulation runs. From the plots,
we see that, for large or moderately sized systems,
our proposed staffing and scheduling scheme with
properly chosen control parameters tends to perform
exceptionally well in terms of its ability to achieve the
intended performance stabilization. When the system
size becomes even smaller, that is, n � 5, the approxi-
mation error tends to be more evident, which is not very
surprising, given that all of our results were achieved
under a many-server heavy-traffic environment.

6.3. A Two-Class Base Model with
Time-Varying Arrivals

Because sinusoidal functions capture the periodic
structure in realistic arrival patterns (see Feldman
et al. 2008, Liu and Whitt 2012), we consider sinu-
soidal arrival rates

λi t( ) � λ̄i 1 + ri sin γit + φi

( )( )
, 1 ≤ i ≤ K, (46)

with average rate λ̄i, relative amplitude |ri| < 1, fre-
quency γi, and phase φi. We first consider a two-
class V model, where class 1 and class 2 represent
high- and low-priority customers, respectively. We
let λ̄1(t) � 1, λ̄2(t) � 1.5,r1 � 0.2,r2 � 0.3, γ1 �γ2 � 1, φ1 �
0, φ2 �−1. (See Table EC.1 in Section EC.2.3.4 of
the e-companion for the case of class-dependent γi.)
Abandonment times follow class-dependent expo-
nential distributions with PDF fi(x) � θie−θix. We let
θ1 � 0.6 and θ2 � 0.3. Service rates are class-independent
and standardized so thatμ1 � μ2 � 1, with mean service
time 1/μi � 1. (See Section EC.2.3.1 in the e-com-
panion for an example of class-dependent μi.)
To prioritize class 1, we set higher QoS levels (i.e.,
lower target wait time and tail probability of delay).
We set our target model parameters as w1 � 0.5,w2 � 1,
α1 � 0.2, α2 � 0.8.
In Figure 4, we calculate and plot the required

control functions in a finite time interval [0,T], with
T � 24, including the offered-load function m(t) in (30),

Figure 3. (Color online) Simulation Estimates of Class-Dependent TPoD P(Vi(t) > wi) for Three Systems of Different Sizes with
95% Confidence Intervals Simulated and 1,000 Independent Runs
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the second-order staffing term c(t) in (39), the second-
order prioritization regulators (40), and the stan-
dard deviation process of Ĥ in (43). Consistent with
discussions in Remarks 2 and 10, we observe that
κ1(t) > 0 and κ2(t) < 0 because α1 � 0.2< 0.5< 0.8�α2.

In addition, the second-order safety staffing term, c(t),
can be alternating between positive and negative.
Using these control functions in Figure 4, we con-

duct Monte Carlo simulation experiments to test
the effectiveness of our proposed solution. For our

Figure 4. (Color online) Computed Control Functions for a Two-Class Base-Case Example: m(t), c(t), κi(t), and σ(t), i � 1, 2

Figure 5. (Color online) Plots of (i) Arrival Rates (Top Panel), (ii) Simulation Estimates of Class-Dependent TPoD P(Vi(t) > wi)
(Middle Panel), and (iii) Time-Varying Staffing Level (Bottom Panel) for the Two-Class Base-Case Example with 5,000
Independent Runs
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base case, we let n � 50 and generate 5,000 inde-
pendent runs. Specifically, at each time 0 ≤ t ≤ T on an
arbitrary run, we schedule the next customer into
service according to (31), using the control function κi

given in Figure 4. We plot (i) arrival rates, (ii) simu-
lations of TPoD, and (iii) staffing functions in Figure 5,
using a sampling resolution (i.e., step size) Δt � 0.01.
From a visual inspection of the middle panel of
Figure 5, we see that our method effectively achieves
stabilization of TPoD P(Vi(t) > wi) for both classes at
their (differentiated) targets (dashed lines). Imple-
mentation details of the simulations are discussed in
Section EC.2.1.

Staffing Discretization. In practice (and in our simu-
lation experiments), our time-varying staffing for-
mula needs to be discretized to integer values. Table 1
gives the time-averaged, maximum, and mini-
mum simulation results for the two TPoDs and their
relative differences from targets (P(Vi(t) > wi) − αi)/αi,
using three staffing discretization methods (flooring,
rounding, ceiling).

Table 1 exhibits the impact of adding and removing
a server on the TPoD performance. As shown in the
table, the discretization method seems to play a bigger
role when the target QoS is high (α is small), as in the
case of class 1. In contrast, class 2 with low QoS is
relatively insensitive to the discretization method.
We conduct the remainder of the simulations with
the ceiling discretization method. As the scale n in-
creases, the discretization becomes insignificant and
all methods will provide nearly equivalent TPoD
performance.

7. Concluding Remarks
In this paper, we studied a service differentiation
problem for a multiclass queueing system with class-
dependent services and abandonment distributions.
Motivated by call-center and health-care applications,
we measure class-dependent service levels using the
so-called TPoD, that is, the probability that thewaiting
time exceeds a delay target. Under a many-server
asymptotic framework, we proposed a joint staffing
and scheduling policy that can achieve intended

service differentiation across all customer classes
expressed in terms of TPoD constraints. We showed
that there is a natural time-varying extension of the
proposed staffing and scheduling solution to cope with
time-varying arrivals. This modified solution is both
state-dependent (based on real-time-elapsed customer
delays) and time-dependent (capturing a time vari-
ability from the arrival processes), and can achieve
TPoD-based performance stabilization at all times.
Supplementing our limit theorems on asymptotic
differentiation and stabilization, we also conducted
extensive simulation experiments to provide engi-
neering confirmation and practical insights. Nu-
merical results show that our proposed solution
works effectively in a wide range of model settings.
There are several avenues for future research in this

area. One natural extension would be to consider a
more general network with heterogeneous pools of
servers under the setting of skill-based routing; this
will make themodelmore practical for service systems
such as call centers. Another interesting direction is to
consider scheduling policies that exploit other system-
state information, such as queue lengths.
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