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Appendix

EC.1. Proof of Lemma 3

We prove the second inequality as an illustration. Because there is only a finite number of

subsets of I, it is enough to prove that

∑
i∈I∗(t)

ν∗i L̄
′
i(t)≥ ε

for some ε which depends on I∗(t).

Denote by J∗(t) the subset of J such that C(j)∩I∗(t) 6= ∅ for j ∈ J∗(t). Then i ∈ I∗(t) and

j ∈ S(i) implies i ∈ I∗(t) and j ∈ J∗(t). Also, i ∈ I∗(t) and j ∈ J∗(t)\S(i) implies µij = 0. As a

result, we can write

∑
i∈I∗(t)

ν∗L̄′i(t) =
∑
i∈I∗(t)

ν∗i λ
e
i −

∑
i∈I∗(t)

ν∗i
∑
j∈S(i)

µijT̄
′
ij(t) =

∑
i∈I∗(t)

ν∗i λ
e
i −

∑
i∈I∗(t)

ν∗i
∑

j∈J∗(t)

µijT̄
′
ij(t).

From (9) and (17),∑
i∈I∗(t)

ν∗i
∑

j∈J∗(t)

µijT̄
′
ij(t) =

∑
j∈J∗(t)

∑
i∈I∗(t)

ν∗i µijT̄
′
ij(t)

=
∑

j∈J∗(t)

z∗j
∑
i∈I∗(t)

T̄ ′ij(t)

<
∑

j∈J∗(t)

z∗j
∑
i∈I∗(t)

x∗ij

=
∑

j∈J∗(t)

∑
i∈I∗(t)

ν∗i µijx
∗
ij

≤
∑
i∈I∗(t)

∑
j∈S(i)

ν∗i µijx
∗
ij

=
∑
i∈I∗(t)

ν∗i
∑
j∈S(i)

µijx
∗
ij =

∑
i∈I∗(t)

ν∗i λ
e
i .

This strict inequality is because, for j ∈ J∗(t), if C(j)∩ (I∗(t))c = ∅, then
∑

i∈I∗(t) T̄
′
ij(t)≤ 1 =∑

i∈I∗(t) x
∗
ij; and there exists at least one j, such that C(j)∩ (I∗(t))c 6= ∅; for such j, from (36),∑

i∈I∗(t) T̄
′
ij(t) = 0<

∑
i∈I∗(t) x

∗
ij. �

EC.2. Proof of Proposition 1

We first prove (a). For ease of reference, we list the four steps for proving (a) again:

Step 1: There exists a finite t1 ≥ t0, such that for all t≥ t1, I∗(t) 6= {2};

Step 2: For t≥ t1, such that Q̄(t) is not a fixed point,
∑3

i=1 ∗Q̄
′
i(t)≥ ε1 for some ε1 > 0;

Step 3: For all t≥ t0, W̄ (t) = W̄ (t0);

Step 4: Assume that Q̄(t2) is a fixed point, then for all t≥ t2, Q̄(t) = Q̄(t2) = q∗(W̄ (t0)).
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Proof of Step 1: If I∗(t0) 6= {2}, let t1 = t0; otherwise, note that if I∗(t) = {2}, then from

(36) and (35), T̄ ′11(t) = T̄ ′32(t) = 0 and T̄ ′21(t) = T̄ ′22(t) = 1. As a result,

Q̄′1(t)≥ 0 and Q̄′3(t)≥ 0,

and

Q̄′2(t) = λ2− (1−P22)(µ21 +µ22)

<λ2 +P12µ11x
∗
11 +P32µ32x

∗
32− (1−P22)(µ21x

∗
21 +µ22x

∗
22)

= 0,

thus, starting from t0, Q̄2 decreases while Q̄1 and Q̄3 are nondecreasing. As a result, in a finite

time (which can be bounded), say at time t1, I∗(t1) 6= {2}.

Next assume there is a t ≥ t1, such that I∗(t) = {2}. Denote by ε :=
C′2(Q̄2(t))

y∗2
−

maxi=1,3
C′i(Q̄i(t))

y∗i
> 0, then due to the continuity, and from the fact that

C′2(Q̄2(t1))

y∗2
≤

maxi=1,3
C′i(Q̄i(t1))

y∗i
, there exists a time s0 ∈ [t1, t] such that

C′2(Q̄2(s0))

y∗2
− maxi=1,3

C′i(Q̄i(s0))

y∗i
= ε

2

and for all s∈ [s0, t],
C′2(Q̄2(s))

y∗2
−maxi=1,3

C′i(Q̄i(s))
y∗i

≥ ε
2
. However, similar to the argument above,

C′2(Q̄2(s))

y∗2
decreases on [s0, t] and maxi=1,3

C′i(Q̄i(s))
y∗i

does not decrease. As a result, one cannot get
C′2(Q̄2(t))

y∗2
−maxi=1,3

C′i(Q̄i(t))
y∗i

= ε. Hence, we must have I∗(t) 6= {2} for all t≥ t1.

Proof of Step 2: First note that Q̄i(t)≥ ∗Q̄i(t) and Q̄i(t)≤ ∗Q̄i(t). If i ∈ I∗(t), then Q̄i(t) =

∗Q̄i(t), hence Q̄′i(t) = ∗Q̄
′
i(t). Similarly, if i ∈ I∗(t), then Q̄′i(t) = ∗Q̄′i(t). Finally note that all

∗Q̄
′
i have the same sign, and all ∗Q̄′i have the same sign.

Because Q̄(t) is not a fixed point and I∗(t) 6= {2}, we know that I∗(t) can be one of these:

{1}, {2}, {3}, {1,2} and {2,3}. We discuss these sets case-by-case.

1. I∗(t) = {2}: from (35) and (36), we have T̄ ′11(t) = 1, T̄ ′32(t) = 1, T̄ ′21(t) = 0 and T̄ ′22(t) = 0,

hence

∗Q̄
′
2(t) =Q̄′2(t) = λ2 +P12µ11 +P32µ32

>λ2 +P12µ11x
∗
11 +P32µ32x

∗
32− (1−P22)(µ21x

∗
21 +µ32x

∗
32) = 0.

Because all ∗Q̄
′
i(t) have the same sign, then

3∑
i=1

∗Q̄
′
i(t)≥ ∗Q̄′2(t)> 0.

2. I∗(t) = {1} or I∗(t) = {3}. We use I∗(t) = {1} to illustrate. There are two subcases:

(a) I∗(t) = {3}:

from (35) and (36), we have T̄ ′21(t) = 1, T̄ ′32(t) = 1, T̄ ′11(t) = 0 and T̄ ′22(t) = 0, hence

∗Q̄
′
1(t) = Q̄′1(t) = λ1 +P31µ32 +P21µ21 > 0,

the last strict inequality is because at least one of these three terms is positive. Then∑3

i=1 ∗Q̄
′
i(t)≥ ∗Q̄′1(t)> 0.
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(b) I∗(t) = {2,3}:

First note that from (36), Q̄′1(t)≥ 0. Also note that Q̄′2(t) and Q̄′3(t) have the same sign because

Q̄′2(t) = ∗Q̄′2(t) and Q̄′3(t) = ∗Q̄′3(t), and ∗Q̄′2(t) has the same sign as ∗Q̄′3(t). From the first

inequality in Lemma 3 (
∑

i∈I∗(t) ν
∗
i L̄
′
i(t) ≤ −ε1), we conclude that both Q̄′2(t) and Q̄′3(t) are

negative. From the second inequality in Lemma 3 (
∑

i∈I∗(t) ν
∗
i L̄
′
i(t) ≥ ε1), then Q̄′1(t) is lower

bounded by a strictly positive constant. Then
∑3

i=1 ∗Q̄
′
i(t)≥ ∗Q̄′1(t) = Q̄′1(t)> 0.

3. I∗(t) = {1,2} or I∗(t) = {2,3}. We use I∗(t) = {1,2} to illustrate.

From (35) and (36), T̄ ′32(t) = 1, T̄ ′22(t) = 0 and T̄ ′11(t) + T̄ ′21(t) = 1. For Q̄1 and Q̄2:

Q̄′1(t) =λ1 +P31µ32 +P21µ21T̄
′
21(t)− (1−P11)µ11T̄

′
11(t),

Q̄′2(t) =λ2 +P32µ32 +P12µ11T̄
′
11(t)− (1−P22)µ21T̄

′
21(t).

From (35), T̄ ′11(t) + T̄ ′21(t) = 1. Then (using (9))

(ν∗1 , ν
∗
2 ) ·

(
1−P11 −P21

−P12 1−P22

)−1(
Q̄′1(t)

Q̄′2(t)

)
= (ν∗1 , ν

∗
2 ) ·

(
1−P11 −P21

−P12 1−P22

)−1(
λ1 +P31µ32

λ2 +P32µ32

)
− z∗1 .

Note that

λ1 +P21(µ21x
∗
21 +µ22x

∗
22) +P31µ32x

∗
32− (1−P11)µ11x

∗
11 = 0,

λ2 +P12µ11x
∗
11 +P32µ32x

∗
32− (1−P22)(µ21x

∗
21 +µ22x

∗
22) = 0.

Thus

λ1 +P31µ32 +P21µ21x
∗
21− (1−P11)µ11x

∗
11 = P31µ32(1−x∗32)−P21µ22x

∗
22,

λ2 +P32µ32 +P12µ11x
∗
11− (1−P22)µ21x

∗
21 = P32µ32(1−x∗32) + (1−P22)µ22x

∗
22.

Thus, using (9) and (16) (x∗11 +x∗21 = 1),

(ν∗1 , ν
∗
2 ) ·

(
1−P11 −P21

−P12 1−P22

)−1(
λ1 +P31µ32

λ2 +P32µ32

)
− z∗1

≥(ν∗1 , ν
∗
2 ) ·

(
1−P11 −P21

−P12 1−P22

)−1( −P21

1−P22

)
×µ22x

∗
22

=ν∗2 ×µ22x
∗
22 > 0.

Note that Q̄′1(t) = ∗Q̄
′
1(t), Q̄′2(t) = ∗Q̄

′
2(t), and ∗Q̄

′
1(t) and ∗Q̄

′
2(t) have the same sign, they

must be both positive and also

(ν∗1 , ν
∗
2 ) ·

(
1−P11 −P21

−P12 1−P22

)−1(
∗Q̄
′
1(t)

∗Q̄
′
2(t)

)
≥ ν∗2 ×µ22x

∗
22.

Then
3∑
i=1

∗Q̄
′
i(t)≥

2∑
i=1

∗Q̄
′
i(t)≥C(ν∗1 , ν

∗
2 ) ·

(
1−P11 −P21

−P12 1−P22

)−1(
∗Q̄
′
1(t)

∗Q̄
′
2(t)

)

for an appropriate positive constant C. Thus,
∑3

i=1 ∗Q̄
′
i(t) has a (positive constant) lower bound.
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Proof of Step 3: From (34),

W̄ ′(t) =
∑
j∈J

z∗j (1−
∑
i∈C(j)

T ′ij(t)).

With the assumption that there are at least two nonzero Q̄i(t), for each server j,
∑

i∈C(j) Q̄i(t)>

0. As a result, from (35),

1−
∑
i∈C(j)

T ′ij(t) = 0, for j ∈J .

Thus, W̄ ′(t) = 0, which can be implied by a special case that there are at least two nonempty

queues from the following lemma.

Lemma EC.1. Assume that at a regular time t, at least two Q̄i(t) are nonzero, then under any

service policy such that (35) holds, we have

W̄ ′(t) =
∑
i∈I

y∗i Q̄
′
i(t) = 0.

The lemma is direct and we omit the proof. From Lemma EC.1, it is enough to prove that

for all t > t0, there are at least two Q̄i(t) being nonzero. We consider (t0, t1] and (t1,∞). For

(t1,∞), the result is obvious because
∑3

i=1 ∗Q̄
′
i(t)> 0. For (t0, t1], note that

Q̄′1(t) + Q̄′3(t) = λ1 +λ3 + (P21 +P23)(µ21 +µ22)> 0,

because at least one of the above terms on the right hand side should be positive.

Proof of Step 4: Assume it does not hold. Then there is one t such that Q̄(t) 6= Q̄(t2). Because

W̄ (t) = W̄ (t0), we can conclude that
∑3

i=1 ∗Q̄i(t)<
∑3

i=1 q
∗
i (W̄ (t0)). Let ε=

∑3

i=1 q
∗
i (W̄ (t0))−∑3

i=1 ∗Q̄i(t), then due to the continuity, there is a time s ∈ [t2, t] such that
∑3

i=1 ∗Q̄i(s) =∑3

i=1 q
∗
i (W̄ (t0))− ε

2
and for u∈ (s, t),

∑3

i=1 ∗Q̄i(u)<
∑3

i=1 q
∗
i (W̄ (t0))− ε

2
. However, from step 2,∑3

i=1 ∗Q̄
′
i(·) is always positive, thus it cannot decrease to

∑3

i=1 q
∗
i (W̄ (t0))− ε. Hence, we arrive

at a contradiction.

Now we prove (b). Assume the conclusion in (b) does not hold. Then there is a t such that

Q̄(t) 6= 0. Denote by ε =
∑3

i=1 y
∗
i Q̄i(t). Due to the continuity, there must be a time t1 ∈ (0, t)

such that
∑3

i=1 y
∗
i Q̄i(t1) = ε

2
. Then from step 3 above, for all s≥ t1,

∑3

i=1 y
∗
i Q̄i(s) = ε

2
. Hence,

we arrive at a contradiction. �

Remark EC.1. Step 3 gives a different result from that in Mandelbaum and Stolyar (2004)

(see the bound using a constant K ≥ 1 in their Theorem 3). The significance of this result is

that even if the initial status is not a fixed point, the workload has no jump; therefore the

proposed policy is always optimal. This is mainly due to the fact that there are no nonbasic

activities according to the system structure. �
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EC.3. Proof of Lemma 4

The proof is similar to the one for Lemma 6 in Chen and Ye (2012), and we provide it here

for completeness. From Proposition 1, there is some time T sufficiently long, so that in any

hydrodynamic limit, Q̄(t) will approach the fixed-point state from an initial state Q̄(0) with

W̄ (0)≤ χ+ c+ 1 for t≥ T . Let

T = Tχ+c+1. (EC.1)

The initial state bound χ+ c+ 1 is used as the subscript to remind us that T varies on the

initial state.

1. The case `= 0:

Property (a): From assumption (38), (W̄ r,0(0), Q̄r,0(0))→ (χ, q∗(χ)) as r→∞. Hence, it fol-

lows from the hydrodynamic convergence (Lemma 2) and the uniform attraction (Proposition

1), that as r→∞,

(W̄ r,0(u), Q̄r,0(u))→ (W̄ (u), Q̄(u)) = (χ, q∗(χ)), u.o.c. in u∈ [0, T ]. (EC.2)

(Because the limit is unique, the convergence is along the whole sequence of r.) Let r be

sufficiently large, such that |W̄ r,0(u) − χ| ≤ mini∈I y
∗
i ε/2 and |Q̄r,0(u) − q∗(χ)| ≤ ε/2 for all

u∈ [0, T ]. Then, we have

|Q̄r,0(u)− q∗(W̄ r,0(u))| ≤|Q̄r,0(u)− q∗(χ)|+ |q∗(W̄ r,0(u))− q∗(χ)|

≤ ε
2

+ |W̄ r,0(u)−χ|/min
i∈I

y∗i ≤ ε,
(EC.3)

for all u∈ [0, T ]. Hence, property (a) holds for `= 0 when r is sufficiently large.

Property (b): It follows from (EC.2) that W̄ r,0(u) is close to χ for all u ∈ [0, T ] when r is

sufficiently large, which leads to property (b) for `= 0.

Property (c): From the assumption of cost function C, q∗i (x) will not be zero unless x= 0.

Then by (EC.3), for any small enough ε0 > 0 with q∗i (ε)> ε0 and large enough r

Q̄r,0
i (u)≥ q∗i (W̄ r,0(u))− ε0.

The increase of q∗i (·) implies that q∗i (W̄
r,0(u))> q∗i (ε) when W̄ r,0(u)> ε. Thus, for any u∈ [0, T ],

Q̄r,0
i (u)> 0 for i∈ I and

Ȳ r,0(u)− Ȳ r,0(0) =
2∑
j=1

z∗j (u−
∑
i∈C(j)

T̄ r,0j (u)) = 0.

2. The case `= 1, · · · , b
√
rδ/T c: Suppose, to the contrary, there exists a subsequence R1 of

{r}, such that for any r ∈ R1, at least one of the properties fails to hold for some integers

`∈ [1,
√
rδ/T ]. Then, for any r ∈R1, there exists a smallest integer, denoted by `r, in the interval

[1,
√
rδ/T ], such that at least one of the properties fails to hold. To reach a contradiction, it

suffices to construct an infinite subsequence R2 ⊂R1, such that the properties hold for `= `r

for sufficiently large r ∈R2.
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Property (a): From the contradictory assumption, we know that the properties hold for

` = 0,1, · · · , `r − 1, r ∈ R1. Specifically, for ` = `r − 1, we have W̄ r,`r−1(0) ≤ χ+ c+ 1, for all

r ∈R1. Hence, it follows from the hydrodynamic limit, that there exists a further subsequence

R2 ⊂ R1, such that (W̄ r,`r−1(u), Q̄r,`r−1(u))→ (W̄ (u), Q̄(u)), u.o.c., as r→∞ along R2 with

W̄ (0)≤ χ+ c+ 1. Then Q̄(u) = q∗(W̄ (u)) for all u≥ T by (EC.1). Hence, for sufficiently large

r ∈R2,

|Q̄r,`r(u)− q∗(W̄ r,`r(u))|=|Q̄r,`r−1(u+T )− q∗(W̄ r,`r−1(u+T ))|

≤|Q̄r,`r−1(u+T )− Q̄(u+T )|+ |q∗(W̄ (u+T ))− q∗(W̄ r,`r−1(u+T ))|

≤ε,

for all u∈ [0, T ]. Hence, property (a) holds with `= `r for sufficiently large r ∈R2.

Property (c): It is similar to the proof of Property (a) in the case `= 0. From property

(a) in this case above, for small enough ε0 > 0 with q∗i (ε) > ε0 and all u ∈ [0, T ], Q̄r,`r
i (u) ≥

q∗i (W̄
r,`r(u))− ε0 and then Q̄r,`r

i (u)> 0 when W̄ r,`r(u))> ε. Thus, for any u∈ [0, T ], Ȳ r,`r(u)−
Ȳ r,`r(0) =

∑2

j=1 z
∗
j (u−

∑
i∈C(j) T̄

r,`r
j (u)) = 0. Hence, property (c) holds for `r with sufficiently

large r ∈R2.

Property (b): Fix any u0 ∈ [0, T ]. We consider two mutually exclusive cases: (i) The con-

dition in (c) holds for all `= 0,1, · · · , `r−1, and for `= `r with u≤ u0; (ii) the condition in (c)

does not hold for some `∈ [0, `r− 1], or `= `r but with some u≤ u0.

In the first case, Ȳ r,`(u) does not increase in u∈ [0, T ], for `= 0, · · · , `r−1 and for `= `r with

u∈ [0, u0]. As a result, for sufficiently large r,

W̄ r,`r(u0) =W̄ r,0(0) +

`r−1∑
`=1

(W̄ r,`(T )− W̄ r,`(0)) + (W̄ r,`r(u0)− W̄ r,`r(0))

=W̄ r,0(0) +

`r−1∑
`=1

((y∗)T X̄r,`(T )− (y∗)T X̄r,`(0)) + ((y∗)T X̄r,`r(u0)− (y∗)T X̄r,`r(0))

=W̄ r,0(0) + (y∗)T X̄r,`r(u0)− (y∗)T X̄r,1(0)

=Ŵ r(τ) + (y∗)T X̂r(τ + `rT/r+u0/r)− (y∗)T X̂r(τ +T/r)

≤(χ+ ε) + [(y∗)T X̂(τ + `rT/r+u0/r)− (y∗)T X̂(τ) + ε]

≤(χ+ ε) + (c+ ε)≤ χ+ c+ 1.

Here, the second equality is from Property (c); the fourth equality is from (26) and (27); and

the last two inequalities are from the condition of this lemma and the fact that X̂r→ X̂∗ u.o.c.

In the second case, if there is a u∈ [0, u0], such that W̄ r,`r(u)≤ ε, then let `0r = `r and let ur =

sup{0≤ u′ ≤ u0 : W̄ r,`r(u′)≤ ε}; otherwise, let `0r (among 0,1, · · · , `r− 1) be the largest integer,

such that the condition in (c) does not hold. Moreover, let ur = sup{0≤ u′ ≤ T : W̄ r,`0r(u′)≤ ε}.
Then, we can conclude that Ȳ r,`r(u) does not increase for `r = `0r and u≥ ur or `r > `

0
r.

According to the definition of ur, we can find a time point uεr, such that

ur− ε≤ uεr ≤ ur, and W̄ r,`0r(uεr)≤ ε.
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Then we have

W̄ r,`r(u) =W̄ r,`0r(uεr) + W̄ r,`0r(ur)− W̄ r,`0r(uεr)

+ W̄ r,`0r(T )− W̄ r,`0r(ur) +

`r−1∑
`=`0r+1

(W̄ r,`(T )− W̄ r,`(0))

+ (W̄ r,`r(u)− W̄ r,`r(0))

=W̄ r,`0r(uεr) + Ȳ r,`0r(ur)− Ȳ r,`0r(uεr) + (y∗)T X̄r,`0r(ur)− (y∗)T X̄r,`0r(uεr)

+ (y∗)T X̄r,`0r(T )− (y∗)T X̄r,`0r(ur) +

`r−1∑
`=`0r+1

((y∗)T X̄r,`(T )− (y∗)T X̄r,`(0))

+ ((y∗)T X̄r,`r(u)− (y∗)T X̄r,`r(0))

=W̄ r,`0r(uεr) + Ȳ r,`0r(ur)− Ȳ r,`0r(uεr) + ((y∗)T X̄r,`r(u)− (y∗)T X̄r,`0r(uεr)

≤W̄ r,`0r(uεr) +
∑
j∈J

z∗j ε+ [(y∗)T X̂r(τ + `rT/r+u/r)− (y∗)T X̂r(τ + `0rT/r+uεr/r)]

≤(χ+ ε) +
∑
j∈J

z∗j ε+ [(y∗)T X̂(τ + `rT/r+u/r)− (y∗)T X̂(τ + `0rT/r+ur/r) + ε]

≤χ+ (
∑
j∈J

z∗j + 1)ε+ (c+ ε)≤ χ+ c+ 1.

Hence, we have shown that the properties hold for `= `r when r ∈R2 is sufficiently large, which

contradicts the definition of the subsequence R2. �
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