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Appendix

EC.1. Proof of Lemma 3

We prove the second inequality as an illustration. Because there is only a finite number of

subsets of Z, it is enough to prove that

R HOES:
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for some e which depends on Z,(t).
Denote by J.(t) the subset of J such that C(j) NZ.(t) #0 for j € J.(t). Then i € Z,(t) and
j € S(i) implies i € Z,(t) and j € J.(t). Also, i € Z,.(t) and j € J.(t)\S(¢) implies y;; =0. As a

result, we can write
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This strict inequality is because, for j € J.(t), if C(j) N (Z.(t))° =0, then >, ® ( )<1=
> et (1) Ti;; and there exists at least one j, such that C(5) N (Z.(t))c # 0; for such j, from ,
ZZGI*(t T}, () =0< Ziel*(t) ;. U

EC.2. Proof of Proposition [1]

We first prove (a). For ease of reference, we list the four steps for proving (a) again:
Step 1: There exists a finite t; > ¢y, such that for all ¢ >¢;, Z*(¢t) # {2};
Step 2: For t >t, such that Q(t) is not a fixed point, 2?21 LQi(t) > ¢ for some ¢ > 0;
Step 3: For all t >to, W (t)=W(ty);
Step 4: Assume that Q(t,) is a fixed point, then for all t > t,, Q(t) = Q(t2) = ¢*(W (t0))-
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Proof of Step 1: If T*(to) # {2}, let t; = to; otherwise, note that if Z*(¢t) = {2}, then from
and (35), 17, (t) = T4, (t) =0 and Ty, (t) = Ty, (t) = 1. As a result,

Qi (t)>0 and Q;(t)>0,

and
le(t) =Xy — (1 — Py) (21 + p122)
< Ag+ Propinn @)y + Paoftaa®i, — (1 — Pao) (21751 + p2o®,)
—0,

thus, starting from ¢y, Q, decreases while Q; and Q5 are nondecreasing. As a result, in a finite
time (which can be bounded), say at time ¢, Z*(¢;) # {2}.

Next assume there is a t > t;, such that Z*(¢) = {2}. Denote by € := G(Q)

_ )
maxi=173w > 0, then due to the continuity, and from the fact that %ﬁal)) <

_i ! (A 1A . 2
max;—1 3 Ci(%ii(tl)), there exists a time sy € [¢1,t] such that M — max;_; 3 Cl(%%*(go)) =3
74 J2 Jq
CUQi))

and for all s € [sg, t], W —maX;—13 = > . However, similar to the argument above,
2 i

i@

%(S)) does not decrease. As a result, one cannot get

Ch(Qa(s
w decreases on [sg,t] and max;_; 3
2

Cé%g(t» — max;—1 3 C:%:Z(m = e. Hence, we must have Z*(t) # {2} for all t > ¢;.

Proof of Step 2: First note that Q;(t) > .Q;(t) and Q;(t) <*Q;(t). If i € Z,(t), then Q;(t) =
.Qi(t), hence Q'(t) =.Q\(t). Similarly, if i € Z*(t), then Q/(t) = *Q}(t). Finally note that all
.Q! have the same sign, and all *@/ have the same sign.

Because Q(t) is not a fixed point and I*(t) # {2}, we know that Z,(t) can be one of these:
{1}, {2}, {3}, {1,2} and {2,3}. We discuss these sets case-by-case.

1. Z.(t) = {2}: from and (36]), we have T}, (t) =1, T4, (t) =1, Ty, (t) =0 and Tp,(t) =0,
hence

Q5(t) =Q5(t) = A2 + Profin1 + Paafuzs
>Ao + Priopii12]; + Paoptzaxiy — (1 — Pao) (2125, + paexs,) = 0.

Because all ,Q’(t) have the same sign, then

3
> .Qi1) 2.Q5(t) >0.

2. Z.(t) = {1} or Z.(t) = {3}. We use Z,(t) = {1} to illustrate. There are two subcases:

(a) Z*(t) = {3}
from and (36), we have T3, (t) =1, T4,(t) =1, T}, (t) = 0 and T},(t) =0, hence

Q1 (1) = Q1 () =M\ + Paipizo + Poypiog >0,

the last strict inequality is because at least one of these three terms is positive. Then

S Q) >.Q)(t) > 0.
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(b) Z*(t) ={2,3}:
First note that from (36)), Q}(¢) > 0. Also note that Q4(t) and Q}(¢) have the same sign because
Q,(t) =*Q4(t) and Q4(t) = *Q4(t), and *Q,(t) has the same sign as *Qj(t). From the first
inequality in Lemma (X iez= viLi(t) < —¢), we conclude that both Q}(t) and Qj(t) are
negative. From the second inequality in Lemma (Xiez. viLi(t) > ¢€), then Q' (t) is lower
bounded by a strictly positive constant. Then Z?zl QL) >.Q () =Q\(t) > 0.
3. Z.(t) ={1,2} or Z.(t) = {2,3}. We use Z.(t) = {1, 2} to illustrate.
From and (36), T4, (t) =1, Tuy(t) =0 and T, (t) + Ty, (t) = 1. For Q; and Q.:
Q1 (t) =M1 + Poipisz + Porpion Ty, (8) — (1 = Pr)un T14 (1),

Q4 (t) =Xa + Paopizo + Propin T1 1 (t) — (1 — Pao) pon T, (2).

From (35), T7,(t) + T4, (t) = 1. Then (using (9))
. 1-Py —Py - Qll(t) .. 1-Pn — Py - A1+ Psijiso §
(v1,v3)- -, = (v],v5)- —Z-
Py 1-Py Q5(t) —Py 1— Py A2 + Psafizo
Note that
A1+ Poy(p2125) + poasy) + Paypisa®sy — (1 — Pry)pnzy, =0,
Az + Propinn @7 + Paofiza®3y — (1 — Pag) (o175, + fioa5,) = 0.
Thus
A+ Paipigo + Poyprorxyy — (1 — Pry)paayy = Poipiae (1 — 25,) — Poy fioa5,,
Ao+ Paopizo + Prapin1x7, — (1 — Pag) o125, = Psopiza(1 — 25,) + (1 — Pag) flaatss.
Thus, using (9) and (x5, + x5, =1),
. 1-P, —Py \ A1+ Psypiso .
(v1,v3) - %
—Piy 11— Py A2 + Psofiso
1_P11 _P21 - _PQI
>(vy,v;) - X fl2oT 30
—P, 1Py 1— Py
:I/; X ILL22Z';2 > 0.

Note that Q) (t) =.Q,(t), Q4(t) = .Q4(t), and Q) (t) and .Q,(t) have the same sign, they

must be both positive and also
1 - Pll - P21 - *Qll(t)
(vi,v3)- - > Vy X 22T 5;.
Py 1— Py LQ5(1)

Then

3. 2 1-Py —Pyn - *Q&(t)
Z*Qé(t)ZZ*QZ(t)zC(VI‘,VS)‘( ) ( )

—Piy 1— Py Q5 (1)

for an appropriate positive constant C'. Thus, Z?zl .Q}(t) has a (positive constant) lower bound.
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Proof of Step 3: From ,

W= z1-> T

JET 1€C(j)

With the assumption that there are at least two nonzero Q;(t), for each server 7, >icery Qi(t) >
0. As a result, from ,

1—2 )=0, for jeJ.

i€C(j)
Thus, W'(t) = 0, which can be implied by a special case that there are at least two nonempty

queues from the following lemma.

LEMMA EC.1. Assume that at a regular time t, at least two Q;(t) are nonzero, then under any

service policy such that holds, we have

)= Qi) =

i€l
The lemma is direct and we omit the proof. From Lemma it is enough to prove that
for all t > tg, there are at least two Q;(t) being nonzero. We consider (ty,t;] and (t;,00). For
(t1,00), the result is obvious because Y Q! (t) > 0. For (to,t,], note that

QL (1) +Q5(t) = A1 + A3+ (Par + Pag) (pa1 + paz) >0,

because at least one of the above terms on the right hand side should be positive.

Proof of Step 4: Assume it does not hold. Then there is one ¢ such that Q(t) # Q(t,). Because

W (t) = W (t), we can conclude that 320 .Qi(t) < S20_, 7 (W(to)). Let e=>""_, q¢*(W(to)) —
S22 .Qi(t), then due to the continuity, there is a time s € [ty,] such that 327 .Q;(s) =
S Z*(V_V( 0)) — 5 and for u € (s, 1), S Qi(u) <0 @ (W(to)) — $. However, from step 2,
S22 .Ql(:) is always positive, thus it cannot decrease to >0, ¢F (W (t,)) — €. Hence, we arrive
at a contradiction.

Now we prove (b). Assume the conclusion in (b) does not hold. Then there is a ¢ such that
Q(t) # 0. Denote by € = 3" y7Qi(t). Due to the continuity, there must be a time #; € (0,1)
such that Y27 4 Qi(ty) = 5. Then from step 3 above, for all s > 1, Sy Qi(s) = $. Hence,

we arrive at a contradiction. |

REMARK EC.1. Step 3 gives a different result from that in Mandelbaum and Stolyar| (2004])
(see the bound using a constant K >1 in their Theorem 3). The significance of this result is
that even if the initial status is not a fixed point, the workload has no jump; therefore the
proposed policy is always optimal. This is mainly due to the fact that there are no nonbasic

activities according to the system structure. ([
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EC.3. Proof of Lemma (4

The proof is similar to the one for Lemma 6 in |Chen and Ye (2012), and we provide it here
for completeness. From Proposition [I| there is some time T sufficiently long, so that in any
hydrodynamic limit, Q(¢) will approach the fixed-point state from an initial state Q(0) with

W(O0)<x+c+1fort>T. Let
T:TX+C+1' (ECl)

The initial state bound y + ¢+ 1 is used as the subscript to remind us that 71" varies on the
initial state.

1. The case £ =0:

Property (a): From assumption (38), (W"°(0),@"°(0)) — (x,¢"*(x)) as r — oco. Hence, it fol-
lows from the hydrodynamic convergence (Lemma [2)) and the uniform attraction (Proposition

, that as r — oo,
(W), Q7(w)) = (W (), Q(u)) = (x.¢"(). woc. inue0.7].  (BC2)

(Because the limit is unique, the convergence is along the whole sequence of r.) Let r be
sufficiently large, such that |[W"°(u) — x| < min;ezyfe/2 and |Q°(u) — ¢*(x)| < €/2 for all
u € [0,T). Then, we have

Q7" () — ¢ (W7 ()] <IQ™ () — 4" ()| + g" (W () — 4" ()]

€ . (EC.3)
S5 T IW (W) = x|/miny; <e,

for all u € [0,T]. Hence, property (a) holds for £ =0 when r is sufficiently large.

Property (b): It follows from that W"°(u) is close to y for all u € [0,7] when r is
sufficiently large, which leads to property (b) for £=0.

Property (c): From the assumption of cost function C, ¢} (z) will not be zero unless z = 0.

Then by (EC.3)), for any small enough €, >0 with ¢} (¢) > € and large enough r
Q7 (u) = q; (W"(u)) — eo-

The increase of ¢} (-) implies that ¢; (W™°(u)) > ¢} (€) when W™ (u) > €. Thus, for any u € [0, 7],
Q:’O(u) >0 for i € Z and

Y™O(u) — Y"0(0) = Z Zu— Y T7w)=0.

i€C(j)

2. The case £ =1,---,|\/rd/T]: Suppose, to the contrary, there exists a subsequence R; of
{r}, such that for any r € Ry, at least one of the properties fails to hold for some integers
¢ € [1,4/rd/T). Then, for any r € Ry, there exists a smallest integer, denoted by ¢,., in the interval
[1,4/r0/T], such that at least one of the properties fails to hold. To reach a contradiction, it
suffices to construct an infinite subsequence R, C Ry, such that the properties hold for ¢ =2¢,

for sufficiently large r € R,.
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Property (a): From the contradictory assumption, we know that the properties hold for
¢=0,1,--- ¢, — 1, r € Ry. Specifically, for £ =/, — 1, we have W ~1(0) < x + ¢+ 1, for all
r € R,. Hence, it follows from the hydrodynamic limit, that there exists a further subsequence
Ry C Ry, such that (W= (u), Q" (u)) — (W(u),Q(un)), wo.c., as r — oo along R, with
W(0) < x+c+1. Then Q(u) = ¢*(W(u)) for all u>T by (EC.I)). Hence, for sufficiently large
r€R,,

Q4 () — 4" (W (u)) | =[Q~ (w4 T) — " (W (w4 T))
<|IQ™ N u+T) = Qu+T)|+g"(W(u+T)) - ¢" (W (u+T))

<e

for all u € [0,T]. Hence, property (a) holds with ¢ = ¢, for sufficiently large r € R,.

Property (c): It is similar to the proof of Property (a) in the case £ =0. From property
(a) in this case above, for small enough €, >0 with ¢(¢) > ¢ and all u € [0,T], Q" (u) >
g (Wt (u)) — €0 and then Q7" (u) >0 when W (u)) > e. Thus, for any u € [0,T], Y™ (u) —
Y7 (0) = 23:1 25 (U= e T ‘(1)) = 0. Hence, property (c) holds for £, with sufficiently
large r € R,.

Property (b): Fix any ug € [0,7]. We consider two mutually exclusive cases: (i) The con-
dition in (c¢) holds for all £ =0,1,---,¢,_;, and for ¢ =¥, with u <wy; (ii) the condition in (c)
does not hold for some ¢ € [0, 4, — 1], or £ =/, but with some u < u.

In the first case, Y™!(u) does not increase in u € [0,T], for £=0,--- £, — 1 and for £ =/, with
u € [0,up]. As a result, for sufficiently large r,
-1

W) <W0)+ 320 (1) = W7(0) + (97 () = 177 0)
eT 1
=700+ 3 ()X (D) = )X 0+ () X o) )X 0)
)+ ()X )~ ()T KO
=W"(7) + (v*) "X (T + 6T /1 +uo/r) — (y*) X" (7 +T/r)
<+ )+ W) X (T +6T/r+uo/r) = (y") X (1) + ¢
<(x+e)+(c+e)<x+c+1.
Here, the second equality is from Property (c); the fourth equality is from and ; and
the last two inequalities are from the condition of this lemma and the fact that X" X* wo.c.
In the second case, if there is a u € [0, uo], such that W™ (u) <, then let £ =/, and let u, =
sup{0 < ' <wug: W™ (u') < €}; otherwise, let £2 (among 0,1,--- £, — 1) be the largest integer,
such that the condition in (c) does not hold. Moreover, let u, =sup{0 <w' < T : W™ (u/) < €}.
Then, we can conclude that Y™ (u) does not increase for £, =2 and u > u, or £, > (°.

According to the definition of w,, we can find a time point u, such that

— 0
u, —e<us <u,, and W"r(u)<e
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Then we have

W (u) =W (ul) + W (u,) — W (uf)
Lr—1
FWIT) =W )+ 3 (W) = WH(0))
0=£0+1

+ (W (u) = W™ (0))
=W ) Y () = Y () + (") X () = ()X ()
-1
* .00 * .00 * au * YT
+ ()" X (T) = () X () + D ()" XUT) = ()T X7(0)
£=£9+1
+ ()X () = (y) T X" (0))
ST ) + 77 ) — T ) + () X () — () X )
W () + Y zie+ [(y) X (T + 6T r+ufr) — ()X (7 + T fr +ul /r)]
jeg
<X+ + > 2+ (W) X (T + 6T r+u/r) = (y') X (7 + LT /r +u, /1) + ]
jeg
<X+ 2+ e+ (c+e)<x+e+l.
jeg
Hence, we have shown that the properties hold for £ = ¢, when r € R, is sufficiently large, which

contradicts the definition of the subsequence R.. O
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