Appendix

EC.1. Proof of Lemma 3

We prove the second inequality as an illustration. Because there is only a finite number of subsets of \mathcal{I}, it is enough to prove that

$$
\sum_{i \in \mathcal{I}_{*}(t)} \nu_{i}^{*} \bar{L}_{i}^{\prime}(t) \geq \epsilon
$$

for some ϵ which depends on $\mathcal{I}_{*}(t)$.
Denote by $\mathcal{J}_{*}(t)$ the subset of \mathcal{J} such that $\mathcal{C}(j) \cap \mathcal{I}_{*}(t) \neq \emptyset$ for $j \in \mathcal{J}_{*}(t)$. Then $i \in \mathcal{I}_{*}(t)$ and $j \in \mathcal{S}(i)$ implies $i \in \mathcal{I}_{*}(t)$ and $j \in \mathcal{J}_{*}(t)$. Also, $i \in \mathcal{I}_{*}(t)$ and $j \in \mathcal{J}_{*}(t) \backslash \mathcal{S}(i)$ implies $\mu_{i j}=0$. As a result, we can write

$$
\sum_{i \in \mathcal{I}_{*}(t)} \nu^{*} \bar{L}_{i}^{\prime}(t)=\sum_{i \in \mathcal{I}_{*}(t)} \nu_{i}^{*} \lambda_{i}^{e}-\sum_{i \in \mathcal{I}_{*}(t)} \nu_{i}^{*} \sum_{j \in \mathcal{S}(i)} \mu_{i j} \bar{T}_{i j}^{\prime}(t)=\sum_{i \in \mathcal{I}_{*}(t)} \nu_{i}^{*} \lambda_{i}^{e}-\sum_{i \in \mathcal{I}_{*}(t)} \nu_{i}^{*} \sum_{j \in \mathcal{J}_{*}(t)} \mu_{i j} \bar{T}_{i j}^{\prime}(t) .
$$

From (9) and (17),

$$
\begin{aligned}
\sum_{i \in \mathcal{I}_{*}(t)} \nu_{i}^{*} \sum_{j \in \mathcal{J}_{*}(t)} \mu_{i j} \bar{T}_{i j}^{\prime}(t) & =\sum_{j \in \mathcal{J}_{*}(t)} \sum_{i \in \mathcal{I}_{*}(t)} \nu_{i}^{*} \mu_{i j} \bar{T}_{i j}^{\prime}(t) \\
& =\sum_{j \in \mathcal{J}_{*}(t)} z_{j}^{*} \sum_{i \in \mathcal{I}_{*}(t)} \bar{T}_{i j}^{\prime}(t) \\
& <\sum_{j \in \mathcal{J}_{\mathcal{F}}(t)} z_{j}^{*} \sum_{i \in \mathcal{I}_{*}(t)} x_{i j}^{*} \\
& =\sum_{j \in \mathcal{J}_{*}(t)} \sum_{i \in \mathcal{I}_{*}(t)} \nu_{i}^{*} \mu_{i j} x_{i j}^{*} \\
& \leq \sum_{i \in \mathcal{I}_{*}(t)} \sum_{j \in \mathcal{S}(i)} \nu_{i}^{*} \mu_{i j} x_{i j}^{*} \\
& =\sum_{i \in \mathcal{I}_{*}(t)} \nu_{i}^{*} \sum_{j \in \mathcal{S}(i)} \mu_{i j} x_{i j}^{*}=\sum_{i \in \mathcal{I}_{*}(t)} \nu_{i}^{*} \lambda_{i}^{e} .
\end{aligned}
$$

This strict inequality is because, for $j \in \mathcal{J}_{*}(t)$, if $\mathcal{C}(j) \cap\left(\mathcal{I}_{*}(t)\right)^{c}=\emptyset$, then $\sum_{i \in \mathcal{I}_{*}(t)} \bar{T}_{i j}^{\prime}(t) \leq 1=$ $\sum_{i \in \mathcal{I}_{*}(t)} x_{i j}^{*}$; and there exists at least one j, such that $\mathcal{C}(j) \cap\left(\mathcal{I}_{*}(t)\right)^{c} \neq \emptyset$; for such j, from (36), $\sum_{i \in \mathcal{I}_{*}(t)} \bar{T}_{i j}^{\prime}(t)=0<\sum_{i \in \mathcal{I}_{*}(t)} x_{i j}^{*}$.

EC.2. Proof of Proposition 1

We first prove (a). For ease of reference, we list the four steps for proving (a) again:
Step 1: There exists a finite $t_{1} \geq t_{0}$, such that for all $t \geq t_{1}, \mathcal{I}^{*}(t) \neq\{2\}$;
Step 2: For $t \geq t_{1}$, such that $\bar{Q}(t)$ is not a fixed point, $\sum_{i=1}^{3} * \bar{Q}_{i}^{\prime}(t) \geq \epsilon_{1}$ for some $\epsilon_{1}>0$;
Step 3: For all $t \geq t_{0}, \bar{W}(t)=\bar{W}\left(t_{0}\right)$;
Step 4: Assume that $\bar{Q}\left(t_{2}\right)$ is a fixed point, then for all $t \geq t_{2}, \bar{Q}(t)=\bar{Q}\left(t_{2}\right)=q^{*}\left(\bar{W}\left(t_{0}\right)\right)$.

Proof of Step 1: If $\mathcal{I}^{*}\left(t_{0}\right) \neq\{2\}$, let $t_{1}=t_{0}$; otherwise, note that if $\mathcal{I}^{*}(t)=\{2\}$, then from (36) and (35), $\bar{T}_{11}^{\prime}(t)=\bar{T}_{32}^{\prime}(t)=0$ and $\bar{T}_{21}^{\prime}(t)=\bar{T}_{22}^{\prime}(t)=1$. As a result,

$$
\bar{Q}_{1}^{\prime}(t) \geq 0 \quad \text { and } \quad \bar{Q}_{3}^{\prime}(t) \geq 0,
$$

and

$$
\begin{aligned}
\bar{Q}_{2}^{\prime}(t) & =\lambda_{2}-\left(1-P_{22}\right)\left(\mu_{21}+\mu_{22}\right) \\
& <\lambda_{2}+P_{12} \mu_{11} x_{11}^{*}+P_{32} \mu_{32} x_{32}^{*}-\left(1-P_{22}\right)\left(\mu_{21} x_{21}^{*}+\mu_{22} x_{22}^{*}\right) \\
& =0,
\end{aligned}
$$

thus, starting from t_{0}, \bar{Q}_{2} decreases while \bar{Q}_{1} and \bar{Q}_{3} are nondecreasing. As a result, in a finite time (which can be bounded), say at time $t_{1}, \mathcal{I}^{*}\left(t_{1}\right) \neq\{2\}$.
Next assume there is a $t \geq t_{1}$, such that $\mathcal{I}^{*}(t)=\{2\}$. Denote by $\epsilon:=\frac{C_{2}^{\prime}\left(\bar{Q}_{2}(t)\right)}{y_{2}^{*}}-$ $\max _{i=1,3} \frac{C_{i}^{\prime}\left(\bar{Q}_{i}(t)\right)}{y_{i}^{*}}>0$, then due to the continuity, and from the fact that $\frac{C_{2}^{\prime}\left(\bar{Q}_{2}\left(t_{1}\right)\right)}{y_{2}^{*}} \leq$ $\max _{i=1,3} \frac{C_{i}^{\prime}\left(\bar{Q}_{i}\left(t_{1}\right)\right)}{y_{i}^{*}}$, there exists a time $s_{0} \in\left[t_{1}, t\right]$ such that $\frac{C_{2}^{\prime}\left(\bar{Q}_{2}\left(s_{0}\right)\right)}{y_{2}^{*}}-\max _{i=1,3} \frac{C_{i}^{\prime}\left(\bar{Q}_{i}\left(s_{0}\right)\right)}{y_{i}^{*}}=\frac{\epsilon}{2}$ and for all $s \in\left[s_{0}, t\right], \frac{C_{2}^{\prime}\left(\bar{Q}_{2}(s)\right)}{y_{2}^{*}}-\max _{i=1,3} \frac{C_{i}^{\prime}\left(\bar{Q}_{i}(s)\right)}{y_{i}^{*}} \geq \frac{\epsilon}{2}$. However, similar to the argument above, $\frac{C_{2}^{\prime}\left(\bar{Q}_{2}(s)\right)}{y_{\bar{*}}^{*}}$ decreases on $\left[s_{0}, t\right]$ and $\max _{i=1,3} \frac{C_{i}^{\prime}\left(\overline{Q_{i}}(s)\right)}{y_{i}^{*}}$ does not decrease. As a result, one cannot get $\frac{C_{2}^{\prime}\left(\bar{Q}_{2}(t)\right)}{y_{2}^{*}}-\max _{i=1,3} \frac{C_{i}^{\prime}\left(\bar{Q}_{i}(t)\right)}{y_{i}^{*}}=\epsilon$. Hence, we must have $\mathcal{I}^{*}(t) \neq\{2\}$ for all $t \geq t_{1}$.

Proof of Step 2: First note that $\bar{Q}_{i}(t) \geq{ }_{*} \bar{Q}_{i}(t)$ and $\bar{Q}_{i}(t) \leq{ }^{*} \bar{Q}_{i}(t)$. If $i \in \mathcal{I}_{*}(t)$, then $\bar{Q}_{i}(t)=$ ${ }_{*} \bar{Q}_{i}(t)$, hence $\bar{Q}_{i}^{\prime}(t)={ }_{*} \bar{Q}_{i}^{\prime}(t)$. Similarly, if $i \in \mathcal{I}^{*}(t)$, then $\bar{Q}_{i}^{\prime}(t)={ }^{*} \bar{Q}_{i}^{\prime}(t)$. Finally note that all ${ }_{*} \bar{Q}_{i}^{\prime}$ have the same sign, and all ${ }^{*} \bar{Q}_{i}^{\prime}$ have the same sign.
Because $\bar{Q}(t)$ is not a fixed point and $I^{*}(t) \neq\{2\}$, we know that $\mathcal{I}_{*}(t)$ can be one of these: $\{1\},\{2\},\{3\},\{1,2\}$ and $\{2,3\}$. We discuss these sets case-by-case.

1. $\mathcal{I}_{*}(t)=\{2\}$: from (35) and (36), we have $\bar{T}_{11}^{\prime}(t)=1, \bar{T}_{32}^{\prime}(t)=1, \bar{T}_{21}^{\prime}(t)=0$ and $\bar{T}_{22}^{\prime}(t)=0$, hence

$$
\begin{aligned}
{ }_{*} \bar{Q}_{2}^{\prime}(t) & =\bar{Q}_{2}^{\prime}(t)=\lambda_{2}+P_{12} \mu_{11}+P_{32} \mu_{32} \\
& >\lambda_{2}+P_{12} \mu_{11} x_{11}^{*}+P_{32} \mu_{32} x_{32}^{*}-\left(1-P_{22}\right)\left(\mu_{21} x_{21}^{*}+\mu_{32} x_{32}^{*}\right)=0 .
\end{aligned}
$$

Because all ${ }_{*} \bar{Q}_{i}^{\prime}(t)$ have the same sign, then

$$
\sum_{i=1}^{3} * \bar{Q}_{i}^{\prime}(t) \geq * \bar{Q}_{2}^{\prime}(t)>0
$$

2. $\mathcal{I}_{*}(t)=\{1\}$ or $\mathcal{I}_{*}(t)=\{3\}$. We use $\mathcal{I}_{*}(t)=\{1\}$ to illustrate. There are two subcases:
(a) $\mathcal{I}^{*}(t)=\{3\}$:
from (35) and (36), we have $\bar{T}_{21}^{\prime}(t)=1, \bar{T}_{32}^{\prime}(t)=1, \bar{T}_{11}^{\prime}(t)=0$ and $\bar{T}_{22}^{\prime}(t)=0$, hence

$$
{ }_{*} \bar{Q}_{1}^{\prime}(t)=\bar{Q}_{1}^{\prime}(t)=\lambda_{1}+P_{31} \mu_{32}+P_{21} \mu_{21}>0,
$$

the last strict inequality is because at least one of these three terms is positive. Then $\sum_{i=1}^{3}{ }^{*} \bar{Q}_{i}^{\prime}(t) \geq{ }_{*} \bar{Q}_{1}^{\prime}(t)>0$.
(b) $\mathcal{I}^{*}(t)=\{2,3\}$:

First note that from (36), $\bar{Q}_{1}^{\prime}(t) \geq 0$. Also note that $\bar{Q}_{2}^{\prime}(t)$ and $\bar{Q}_{3}^{\prime}(t)$ have the same sign because $\bar{Q}_{2}^{\prime}(t)={ }^{*} \bar{Q}_{2}^{\prime}(t)$ and $\bar{Q}_{3}^{\prime}(t)={ }^{*} \bar{Q}_{3}^{\prime}(t)$, and ${ }^{*} \bar{Q}_{2}^{\prime}(t)$ has the same sign as ${ }^{*} \bar{Q}_{3}^{\prime}(t)$. From the first inequality in Lemma $3\left(\sum_{i \in \mathcal{I}^{*}(t)} \nu_{i}^{*} \bar{L}_{i}^{\prime}(t) \leq-\epsilon_{1}\right)$, we conclude that both $\bar{Q}_{2}^{\prime}(t)$ and $\bar{Q}_{3}^{\prime}(t)$ are negative. From the second inequality in Lemma $3\left(\sum_{i \in \mathcal{I}_{*}(t)} \nu_{i}^{*} \bar{L}_{i}^{\prime}(t) \geq \epsilon_{1}\right)$, then $\bar{Q}_{1}^{\prime}(t)$ is lower bounded by a strictly positive constant. Then $\sum_{i=1}^{3} * \bar{Q}_{i}^{\prime}(t) \geq{ }_{*} \bar{Q}_{1}^{\prime}(t)=\bar{Q}_{1}^{\prime}(t)>0$.
3. $\mathcal{I}_{*}(t)=\{1,2\}$ or $\mathcal{I}_{*}(t)=\{2,3\}$. We use $\mathcal{I}_{*}(t)=\{1,2\}$ to illustrate.

From (35) and (36), $\bar{T}_{32}^{\prime}(t)=1, \bar{T}_{22}^{\prime}(t)=0$ and $\bar{T}_{11}^{\prime}(t)+\bar{T}_{21}^{\prime}(t)=1$. For \bar{Q}_{1} and \bar{Q}_{2} :

$$
\begin{aligned}
& \bar{Q}_{1}^{\prime}(t)=\lambda_{1}+P_{31} \mu_{32}+P_{21} \mu_{21} \bar{T}_{21}^{\prime}(t)-\left(1-P_{11}\right) \mu_{11} \bar{T}_{11}^{\prime}(t), \\
& \bar{Q}_{2}^{\prime}(t)=\lambda_{2}+P_{32} \mu_{32}+P_{12} \mu_{11} \bar{T}_{11}^{\prime}(t)-\left(1-P_{22}\right) \mu_{21} \bar{T}_{21}^{\prime}(t) .
\end{aligned}
$$

From (35), $\bar{T}_{11}^{\prime}(t)+\bar{T}_{21}^{\prime}(t)=1$. Then (using (9))
$\left(\nu_{1}^{*}, \nu_{2}^{*}\right) \cdot\left(\begin{array}{cc}1-P_{11} & -P_{21} \\ -P_{12} & 1-P_{22}\end{array}\right)^{-1}\binom{\bar{Q}_{1}^{\prime}(t)}{\bar{Q}_{2}^{\prime}(t)}=\left(\nu_{1}^{*}, \nu_{2}^{*}\right) \cdot\left(\begin{array}{cc}1-P_{11} & -P_{21} \\ -P_{12} & 1-P_{22}\end{array}\right)^{-1}\binom{\lambda_{1}+P_{31} \mu_{32}}{\lambda_{2}+P_{32} \mu_{32}}-z_{1}^{*}$.
Note that

$$
\begin{aligned}
& \lambda_{1}+P_{21}\left(\mu_{21} x_{21}^{*}+\mu_{22} x_{22}^{*}\right)+P_{31} \mu_{32} x_{32}^{*}-\left(1-P_{11}\right) \mu_{11} x_{11}^{*}=0, \\
& \lambda_{2}+P_{12} \mu_{11} x_{11}^{*}+P_{32} \mu_{32} x_{32}^{*}-\left(1-P_{22}\right)\left(\mu_{21} x_{21}^{*}+\mu_{22} x_{22}^{*}\right)=0 .
\end{aligned}
$$

Thus

$$
\begin{aligned}
& \lambda_{1}+P_{31} \mu_{32}+P_{21} \mu_{21} x_{21}^{*}-\left(1-P_{11}\right) \mu_{11} x_{11}^{*}=P_{31} \mu_{32}\left(1-x_{32}^{*}\right)-P_{21} \mu_{22} x_{22}^{*}, \\
& \lambda_{2}+P_{32} \mu_{32}+P_{12} \mu_{11} x_{11}^{*}-\left(1-P_{22}\right) \mu_{21} x_{21}^{*}=P_{32} \mu_{32}\left(1-x_{32}^{*}\right)+\left(1-P_{22}\right) \mu_{22} x_{22}^{*} .
\end{aligned}
$$

Thus, using (9) and (16) $\left(x_{11}^{*}+x_{21}^{*}=1\right)$,

$$
\begin{aligned}
& \left(\nu_{1}^{*}, \nu_{2}^{*}\right) \cdot\left(\begin{array}{rc}
1-P_{11} & -P_{21} \\
-P_{12} & 1-P_{22}
\end{array}\right)^{-1}\binom{\lambda_{1}+P_{31} \mu_{32}}{\lambda_{2}+P_{32} \mu_{32}}-z_{1}^{*} \\
\geq & \left(\nu_{1}^{*}, \nu_{2}^{*}\right) \cdot\left(\begin{array}{rr}
1-P_{11} & -P_{21} \\
-P_{12} & 1-P_{22}
\end{array}\right)^{-1}\binom{-P_{21}}{1-P_{22}} \times \mu_{22} x_{22}^{*} \\
= & \nu_{2}^{*} \times \mu_{22} x_{22}^{*}>0 .
\end{aligned}
$$

Note that $\bar{Q}_{1}^{\prime}(t)={ }_{*} \bar{Q}_{1}^{\prime}(t), \bar{Q}_{2}^{\prime}(t)={ }_{*} \bar{Q}_{2}^{\prime}(t)$, and ${ }_{*} \bar{Q}_{1}^{\prime}(t)$ and ${ }_{*} \bar{Q}_{2}^{\prime}(t)$ have the same sign, they must be both positive and also

$$
\left(\nu_{1}^{*}, \nu_{2}^{*}\right) \cdot\left(\begin{array}{cc}
1-P_{11} & -P_{21} \\
-P_{12} & 1-P_{22}
\end{array}\right)^{-1}\binom{{ }_{*} \bar{Q}_{1}^{\prime}(t)}{{ }_{*} \bar{Q}_{2}^{\prime}(t)} \geq \nu_{2}^{*} \times \mu_{22} x_{22}^{*} .
$$

Then

$$
\sum_{i=1}^{3}{ }_{*} \bar{Q}_{i}^{\prime}(t) \geq \sum_{i=1}^{2}{ }_{*} \bar{Q}_{i}^{\prime}(t) \geq C\left(\nu_{1}^{*}, \nu_{2}^{*}\right) \cdot\left(\begin{array}{cc}
1-P_{11} & -P_{21} \\
-P_{12} & 1-P_{22}
\end{array}\right)^{-1}\binom{* \bar{Q}_{1}^{\prime}(t)}{{ }_{*} \bar{Q}_{2}^{\prime}(t)}
$$

for an appropriate positive constant C. Thus, $\sum_{i=1 *}^{3} \bar{Q}_{i}^{\prime}(t)$ has a (positive constant) lower bound.

Proof of Step 3: From (34),

$$
\bar{W}^{\prime}(t)=\sum_{j \in \mathcal{J}} z_{j}^{*}\left(1-\sum_{i \in \mathcal{C}(j)} T_{i j}^{\prime}(t)\right) .
$$

With the assumption that there are at least two nonzero $\bar{Q}_{i}(t)$, for each server $j, \sum_{i \in \mathcal{C}(j)} \bar{Q}_{i}(t)>$ 0 . As a result, from (35),

$$
1-\sum_{i \in \mathcal{C}(j)} T_{i j}^{\prime}(t)=0, \quad \text { for } \quad j \in \mathcal{J}
$$

Thus, $\bar{W}^{\prime}(t)=0$, which can be implied by a special case that there are at least two nonempty queues from the following lemma.

Lemma EC.1. Assume that at a regular time t, at least two $\bar{Q}_{i}(t)$ are nonzero, then under any service policy such that (35) holds, we have

$$
\bar{W}^{\prime}(t)=\sum_{i \in \mathcal{I}} y_{i}^{*} \bar{Q}_{i}^{\prime}(t)=0 .
$$

The lemma is direct and we omit the proof. From Lemma EC.1, it is enough to prove that for all $t>t_{0}$, there are at least two $\bar{Q}_{i}(t)$ being nonzero. We consider $\left(t_{0}, t_{1}\right]$ and $\left(t_{1}, \infty\right)$. For $\left(t_{1}, \infty\right)$, the result is obvious because $\sum_{i=1}^{3} * \bar{Q}_{i}^{\prime}(t)>0$. For $\left(t_{0}, t_{1}\right]$, note that

$$
\bar{Q}_{1}^{\prime}(t)+\bar{Q}_{3}^{\prime}(t)=\lambda_{1}+\lambda_{3}+\left(P_{21}+P_{23}\right)\left(\mu_{21}+\mu_{22}\right)>0,
$$

because at least one of the above terms on the right hand side should be positive.
Proof of Step 4: Assume it does not hold. Then there is one t such that $\bar{Q}(t) \neq \bar{Q}\left(t_{2}\right)$. Because $\bar{W}(t)=\bar{W}\left(t_{0}\right)$, we can conclude that $\sum_{i=1 *}^{3} \bar{Q}_{i}(t)<\sum_{i=1}^{3} q_{i}^{*}\left(\bar{W}\left(t_{0}\right)\right)$. Let $\epsilon=\sum_{i=1}^{3} q_{i}^{*}\left(\bar{W}\left(t_{0}\right)\right)-$ $\sum_{i=1 *}^{3} \bar{Q}_{i}(t)$, then due to the continuity, there is a time $s \in\left[t_{2}, t\right]$ such that $\sum_{i=1}^{3} * \bar{Q}_{i}(s)=$ $\sum_{i=1}^{3} q_{i}^{*}\left(\bar{W}\left(t_{0}\right)\right)-\frac{\epsilon}{2}$ and for $u \in(s, t), \sum_{i=1 *}^{3} \bar{Q}_{i}(u)<\sum_{i=1}^{3} q_{i}^{*}\left(\bar{W}\left(t_{0}\right)\right)-\frac{\epsilon}{2}$. However, from step 2, $\sum_{i=1 *}^{3} \bar{Q}_{i}^{\prime}(\cdot)$ is always positive, thus it cannot decrease to $\sum_{i=1}^{3} q_{i}^{*}\left(\bar{W}\left(t_{0}\right)\right)-\epsilon$. Hence, we arrive at a contradiction.

Now we prove (b). Assume the conclusion in (b) does not hold. Then there is a t such that $\bar{Q}(t) \neq 0$. Denote by $\epsilon=\sum_{i=1}^{3} y_{i}^{*} \bar{Q}_{i}(t)$. Due to the continuity, there must be a time $t_{1} \in(0, t)$ such that $\sum_{i=1}^{3} y_{i}^{*} \bar{Q}_{i}\left(t_{1}\right)=\frac{\epsilon}{2}$. Then from step 3 above, for all $s \geq t_{1}, \sum_{i=1}^{3} y_{i}^{*} \bar{Q}_{i}(s)=\frac{\epsilon}{2}$. Hence, we arrive at a contradiction.

Remark EC.1. Step 3 gives a different result from that in Mandelbaum and Stolyar (2004) (see the bound using a constant $K \geq 1$ in their Theorem 3). The significance of this result is that even if the initial status is not a fixed point, the workload has no jump; therefore the proposed policy is always optimal. This is mainly due to the fact that there are no nonbasic activities according to the system structure.

EC.3. Proof of Lemma 4

The proof is similar to the one for Lemma 6 in Chen and Ye (2012), and we provide it here for completeness. From Proposition 1, there is some time T sufficiently long, so that in any hydrodynamic limit, $\bar{Q}(t)$ will approach the fixed-point state from an initial state $\bar{Q}(0)$ with $\bar{W}(0) \leq \chi+c+1$ for $t \geq T$. Let

$$
\begin{equation*}
T=T_{\chi+c+1} . \tag{EC.1}
\end{equation*}
$$

The initial state bound $\chi+c+1$ is used as the subscript to remind us that T varies on the initial state.

1. The case $\ell=0$:

Property (a): From assumption (38), $\left(\bar{W}^{r, 0}(0), \bar{Q}^{r, 0}(0)\right) \rightarrow\left(\chi, q^{*}(\chi)\right)$ as $r \rightarrow \infty$. Hence, it follows from the hydrodynamic convergence (Lemma 2) and the uniform attraction (Proposition 1), that as $r \rightarrow \infty$,

$$
\begin{equation*}
\left(\bar{W}^{r, 0}(u), \bar{Q}^{r, 0}(u)\right) \rightarrow(\bar{W}(u), \bar{Q}(u))=\left(\chi, q^{*}(\chi)\right), \text { u.o.c. in } u \in[0, T] . \tag{EC.2}
\end{equation*}
$$

(Because the limit is unique, the convergence is along the whole sequence of r.) Let r be sufficiently large, such that $\left|\bar{W}^{r, 0}(u)-\chi\right| \leq \min _{i \in \mathcal{I}} y_{i}^{*} \epsilon / 2$ and $\left|\bar{Q}^{r, 0}(u)-q^{*}(\chi)\right| \leq \epsilon / 2$ for all $u \in[0, T]$. Then, we have

$$
\begin{align*}
\left|\bar{Q}^{r, 0}(u)-q^{*}\left(\bar{W}^{r, 0}(u)\right)\right| & \leq\left|\bar{Q}^{r, 0}(u)-q^{*}(\chi)\right|+\left|q^{*}\left(\bar{W}^{r, 0}(u)\right)-q^{*}(\chi)\right| \\
& \leq \frac{\epsilon}{2}+\left|\bar{W}^{r, 0}(u)-\chi\right| / \min _{i \in \mathcal{I}} y_{i}^{*} \leq \epsilon, \tag{EC.3}
\end{align*}
$$

for all $u \in[0, T]$. Hence, property (a) holds for $\ell=0$ when r is sufficiently large.
Property (b): It follows from (EC.2) that $\bar{W}^{r, 0}(u)$ is close to χ for all $u \in[0, T]$ when r is sufficiently large, which leads to property (b) for $\ell=0$.

Property (c): From the assumption of cost function $C, q_{i}^{*}(x)$ will not be zero unless $x=0$. Then by (EC.3), for any small enough $\epsilon_{0}>0$ with $q_{i}^{*}(\epsilon)>\epsilon_{0}$ and large enough r

$$
\bar{Q}_{i}^{r, 0}(u) \geq q_{i}^{*}\left(\bar{W}^{r, 0}(u)\right)-\epsilon_{0} .
$$

The increase of $q_{i}^{*}(\cdot)$ implies that $q_{i}^{*}\left(\bar{W}^{r, 0}(u)\right)>q_{i}^{*}(\epsilon)$ when $\bar{W}^{r, 0}(u)>\epsilon$. Thus, for any $u \in[0, T]$, $\bar{Q}_{i}^{r, 0}(u)>0$ for $i \in \mathcal{I}$ and

$$
\bar{Y}^{r, 0}(u)-\bar{Y}^{r, 0}(0)=\sum_{j=1}^{2} z_{j}^{*}\left(u-\sum_{i \in \mathcal{C}(j)} \bar{T}_{j}^{r, 0}(u)\right)=0
$$

2. The case $\ell=1, \cdots,\lfloor\sqrt{r} \delta / T\rfloor$: Suppose, to the contrary, there exists a subsequence \mathcal{R}_{1} of $\{r\}$, such that for any $r \in \mathcal{R}_{1}$, at least one of the properties fails to hold for some integers $\ell \in[1, \sqrt{r} \delta / T]$. Then, for any $r \in \mathcal{R}_{1}$, there exists a smallest integer, denoted by ℓ_{r}, in the interval $[1, \sqrt{r} \delta / T]$, such that at least one of the properties fails to hold. To reach a contradiction, it suffices to construct an infinite subsequence $\mathcal{R}_{2} \subset \mathcal{R}_{1}$, such that the properties hold for $\ell=\ell_{r}$ for sufficiently large $r \in \mathcal{R}_{2}$.

Property (a): From the contradictory assumption, we know that the properties hold for $\ell=0,1, \cdots, \ell_{r}-1, r \in \mathcal{R}_{1}$. Specifically, for $\ell=\ell_{r}-1$, we have $\bar{W}^{r, \ell_{r}-1}(0) \leq \chi+c+1$, for all $r \in \mathcal{R}_{1}$. Hence, it follows from the hydrodynamic limit, that there exists a further subsequence $\mathcal{R}_{2} \subset \mathcal{R}_{1}$, such that $\left(\bar{W}^{r, \ell_{r}-1}(u), \bar{Q}^{r, \ell_{r}-1}(u)\right) \rightarrow(\bar{W}(u), \bar{Q}(u))$, u.o.c., as $r \rightarrow \infty$ along \mathcal{R}_{2} with $\bar{W}(0) \leq \chi+c+1$. Then $\bar{Q}(u)=q^{*}(\bar{W}(u))$ for all $u \geq T$ by (EC.1). Hence, for sufficiently large $r \in \mathcal{R}_{2}$,

$$
\begin{aligned}
\left|\bar{Q}^{r, \ell_{r}}(u)-q^{*}\left(\bar{W}^{r, \ell_{r}}(u)\right)\right| & =\left|\bar{Q}^{r, \ell_{r}-1}(u+T)-q^{*}\left(\bar{W}^{r, \ell_{r}-1}(u+T)\right)\right| \\
& \leq\left|\bar{Q}^{r, \ell_{r}-1}(u+T)-\bar{Q}(u+T)\right|+\left|q^{*}(\bar{W}(u+T))-q^{*}\left(\bar{W}^{r, \ell_{r}-1}(u+T)\right)\right| \\
& \leq \epsilon
\end{aligned}
$$

for all $u \in[0, T]$. Hence, property (a) holds with $\ell=\ell_{r}$ for sufficiently large $r \in \mathcal{R}_{2}$.
Property (c): It is similar to the proof of Property (a) in the case $\ell=0$. From property (a) in this case above, for small enough $\epsilon_{0}>0$ with $q_{i}^{*}(\epsilon)>\epsilon_{0}$ and all $u \in[0, T], \bar{Q}_{i}^{r, \ell_{r}}(u) \geq$ $q_{i}^{*}\left(\bar{W}^{r, \ell_{r}}(u)\right)-\epsilon_{0}$ and then $\bar{Q}_{i}^{r, \ell_{r}}(u)>0$ when $\left.\bar{W}^{r, \ell_{r}}(u)\right)>\epsilon$. Thus, for any $u \in[0, T], \bar{Y}^{r, \ell_{r}}(u)-$ $\bar{Y}^{r, \ell_{r}}(0)=\sum_{j=1}^{2} z_{j}^{*}\left(u-\sum_{i \in \mathcal{C}(j)} \bar{T}_{j}^{r, \ell_{r}}(u)\right)=0$. Hence, property (c) holds for ℓ_{r} with sufficiently large $r \in \mathcal{R}_{2}$.

Property (b): Fix any $u_{0} \in[0, T]$. We consider two mutually exclusive cases: (i) The condition in (c) holds for all $\ell=0,1, \cdots, \ell_{r-1}$, and for $\ell=\ell_{r}$ with $u \leq u_{0}$; (ii) the condition in (c) does not hold for some $\ell \in\left[0, \ell_{r}-1\right]$, or $\ell=\ell_{r}$ but with some $u \leq u_{0}$.

In the first case, $\bar{Y}^{r, \ell}(u)$ does not increase in $u \in[0, T]$, for $\ell=0, \cdots, \ell_{r}-1$ and for $\ell=\ell_{r}$ with $u \in\left[0, u_{0}\right]$. As a result, for sufficiently large r,

$$
\begin{aligned}
\bar{W}^{r, \ell_{r}}\left(u_{0}\right) & =\bar{W}^{r, 0}(0)+\sum_{\ell=1}^{\ell_{r}-1}\left(\bar{W}^{r, \ell}(T)-\bar{W}^{r, \ell}(0)\right)+\left(\bar{W}^{r, \ell_{r}}\left(u_{0}\right)-\bar{W}^{r, \ell_{r}}(0)\right) \\
& =\bar{W}^{r, 0}(0)+\sum_{\ell=1}^{\ell_{r}-1}\left(\left(y^{*}\right)^{T} \bar{X}^{r, \ell}(T)-\left(y^{*}\right)^{T} \bar{X}^{r, \ell}(0)\right)+\left(\left(y^{*}\right)^{T} \bar{X}^{r, \ell_{r}}\left(u_{0}\right)-\left(y^{*}\right)^{T} \bar{X}^{r, \ell_{r}}(0)\right) \\
& =\bar{W}^{r, 0}(0)+\left(y^{*}\right)^{T} \bar{X}^{r, \ell_{r}}\left(u_{0}\right)-\left(y^{*}\right)^{T} \bar{X}^{r, 1}(0) \\
& =\widehat{W}^{r}(\tau)+\left(y^{*}\right)^{T} \widehat{X}^{r}\left(\tau+\ell_{r} T / r+u_{0} / r\right)-\left(y^{*}\right)^{T} \widehat{X}^{r}(\tau+T / r) \\
& \leq(\chi+\epsilon)+\left[\left(y^{*}\right)^{T} \widehat{X}\left(\tau+\ell_{r} T / r+u_{0} / r\right)-\left(y^{*}\right)^{T} \widehat{X}(\tau)+\epsilon\right] \\
& \leq(\chi+\epsilon)+(c+\epsilon) \leq \chi+c+1
\end{aligned}
$$

Here, the second equality is from Property (c); the fourth equality is from (26) and (27); and the last two inequalities are from the condition of this lemma and the fact that $\widehat{X}^{r} \rightarrow \widehat{X}^{*}$ u.o.c.

In the second case, if there is a $u \in\left[0, u_{0}\right]$, such that $\bar{W}^{r, \ell_{r}}(u) \leq \epsilon$, then let $\ell_{r}^{0}=\ell_{r}$ and let $u_{r}=$ $\sup \left\{0 \leq u^{\prime} \leq u_{0}: \bar{W}^{r, \ell_{r}}\left(u^{\prime}\right) \leq \epsilon\right\}$; otherwise, let ℓ_{r}^{0} (among $0,1, \cdots, \ell_{r}-1$) be the largest integer, such that the condition in (c) does not hold. Moreover, let $u_{r}=\sup \left\{0 \leq u^{\prime} \leq T: \bar{W}^{r, \ell_{r}^{0}}\left(u^{\prime}\right) \leq \epsilon\right\}$. Then, we can conclude that $\bar{Y}^{r, \ell_{r}}(u)$ does not increase for $\ell_{r}=\ell_{r}^{0}$ and $u \geq u_{r}$ or $\ell_{r}>\ell_{r}^{0}$.

According to the definition of u_{r}, we can find a time point u_{r}^{ϵ}, such that

$$
u_{r}-\epsilon \leq u_{r}^{\epsilon} \leq u_{r}, \quad \text { and } \quad \bar{W}^{r, \ell_{r}^{0}}\left(u_{r}^{\epsilon}\right) \leq \epsilon
$$

Then we have

$$
\begin{aligned}
\bar{W}^{r, \ell_{r}}(u)= & \bar{W}^{r, \ell_{r}^{0}}\left(u_{r}^{\epsilon}\right)+\bar{W}^{r, \ell_{r}^{0}}\left(u_{r}\right)-\bar{W}^{r, \ell_{r}^{0}}\left(u_{r}^{\epsilon}\right) \\
& +\bar{W}^{r, \ell_{r}^{0}}(T)-\bar{W}^{r, \ell_{r}^{0}}\left(u_{r}\right)+\sum_{\ell=\ell_{r}^{0}+1}^{\ell_{r}-1}\left(\bar{W}^{r, \ell}(T)-\bar{W}^{r, \ell}(0)\right) \\
& +\left(\bar{W}^{r, \ell_{r}}(u)-\bar{W}^{r, \ell_{r}}(0)\right) \\
= & \bar{W}^{r, \ell_{r}^{0}}\left(u_{r}^{\epsilon}\right)+\bar{Y}^{r, \ell_{r}^{0}}\left(u_{r}\right)-\bar{Y}^{r, \ell_{r}^{0}}\left(u_{r}^{\epsilon}\right)+\left(y^{*}\right)^{T} \bar{X}^{r, \ell_{r}^{0}}\left(u_{r}\right)-\left(y^{*}\right)^{T} \bar{X}^{r, \ell_{r}^{0}}\left(u_{r}^{\epsilon}\right) \\
& +\left(y^{*}\right)^{T} \bar{X}^{r, \ell_{r}^{0}}(T)-\left(y^{*}\right)^{T} \bar{X}^{r, \ell_{r}^{0}}\left(u_{r}\right)+\sum_{\ell=\ell_{r}^{0}+1}^{\ell \ell_{r}-1}\left(\left(y^{*}\right)^{T} \bar{X}^{r, \ell}(T)-\left(y^{*}\right)^{T} \bar{X}^{r, \ell}(0)\right) \\
& +\left(\left(y^{*}\right)^{T} \bar{X}^{r, \ell_{r}}(u)-\left(y^{*}\right)^{T} \bar{X}^{r, \ell_{r}}(0)\right) \\
= & \bar{W}^{r, \ell_{r}^{0}}\left(u_{r}^{\epsilon}\right)+\bar{Y}^{r, \ell_{r}^{0}}\left(u_{r}\right)-\bar{Y}^{r, \ell_{r}^{0}}\left(u_{r}^{\epsilon}\right)+\left(\left(y^{*}\right)^{T} \bar{X}^{r, \ell_{r}}(u)-\left(y^{*}\right)^{T} \bar{X}^{r, \ell_{r}^{0}}\left(u_{r}^{\epsilon}\right)\right. \\
\leq & \bar{W}^{r, \ell_{r}^{0}}\left(u_{r}^{\epsilon}\right)+\sum_{j \in \mathcal{J}} z_{j}^{*} \epsilon+\left[\left(y^{*}\right)^{T} \widehat{X}^{r}\left(\tau+\ell_{r} T / r+u / r\right)-\left(y^{*}\right)^{T} \widehat{X}^{r}\left(\tau+\ell_{r}^{0} T / r+u_{r}^{\epsilon} / r\right)\right] \\
\leq & (\chi+\epsilon)+\sum_{j \in \mathcal{J}} z_{j}^{*} \epsilon+\left[\left(y^{*}\right)^{T} \widehat{X}\left(\tau+\ell_{r} T / r+u / r\right)-\left(y^{*}\right)^{T} \widehat{X}\left(\tau+\ell_{r}^{0} T / r+u_{r} / r\right)+\epsilon\right] \\
\leq & \chi+\left(\sum_{j \in \mathcal{J}} z_{j}^{*}+1\right) \epsilon+(c+\epsilon) \leq \chi+c+1 .
\end{aligned}
$$

Hence, we have shown that the properties hold for $\ell=\ell_{r}$ when $r \in \mathcal{R}_{2}$ is sufficiently large, which contradicts the definition of the subsequence \mathcal{R}_{2}.

