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Mind your own customers and ignore the others: Asymptotic optimality
of a local policy in multi-class queueing systems with customer feedback
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ABSTRACT
This work contributes to the investigation of optimal routing and scheduling policies in multi-class
multi-server queueing systems with customer feedback. We propose a new policy, dubbed local
policy that requires access to only local queue information. Our new local policy specifies how an
idle server chooses the next customer by using the queue length information of not all queues,
but only those this server is eligible to serve. To gain useful insights and mathematical tractability,
we consider a simple W model with customer feedback, and we establish limit theorems to show
that our local policy is asymptotically optimal among all policies that may use the global system
information, with the objective of minimizing the cumulative queueing costs measured by convex
functions of the queue lengths. Numerical experiments provide convincing engineering confirma-
tions of the effectiveness of our local policy for both W model and a more general non-W model.
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1. Introduction

Stochastic Processing Networks (SPNs) have been widely
used to model complex manufacturing, telecommunications,
computer systems, and service networks; see Harrison
(2000). General SPNs consist of flexible servers, multi-class
arrivals, customer feedback, and a set of activities, where an
activity refers to the processing of a class of customers by a
specific server. In SPNs, two important decisions are: (i)
routing: Paring a new arrival to one of the available servers;
and (ii) scheduling: Paring a newly available server to the
next waiting customer. In this article, we consider a multi-
class multi-server queueing system with customer feedback;
we study the optimal routing and scheduling decisions with
the objective of minimizing the cumulative congestion cost
(measured by a convex function of the queue lengths).

Customer feedback commonly occur in many service sys-
tems, such as healthcare, call centers, mobile networks, and
computer systems (Tran-Gia and Mandjes, 1997; Yom-Tov
and Mandelbaum, 2014; Wang et al. 2020). In realistic set-
tings, a customer’s statistical parameters (e.g., retrial prob-
ability, service rate, etc.) may indeed depend on the
customer’s entire service history (Liu and Whitt, 2017).
Nevertheless, due to the complex nature of queueing systems
with customer feedback, researchers often resort to approxi-
mating models with a Markovian feedback structure to gain
model tractability (Yom-Tov and Mandelbaum, 2014).

Customer feedback may also have a significant influence on
the design of an SPN’s routing and scheduling policies, because

when a server is deciding on which one of the next customers
to serve, it has to take into account the customer’s potential
future behavior (e.g., which queue to join if the customer
decides to retry for more service). This seems to suggest that it
will be beneficial for the server to have access to the real-time
state of the entire SPN (e.g., queue lengths and customer delay
at all queues). However, real-time information retrieval in
SPNs may be costly, slow, or inconvenient. For example, in
emergency departments, it may be inconvenient to keep track
of the status of patients waiting to be treated in other units. In
web service systems and data centers, acquiring timely global
system states requires high communication overhead (Lu et al.,
2011), so that researchers are motivated to develop policies that
only use local information, such as join-the-idle-queue and the
power-of-d policies (Vvedenskaya et al., 1996; Lu et al., 2011).

In this article, we propose a new scheduling rule that is based
on only local information, and we study its optimality. To gain
insights into the operational control for multi-class multi-ser-
ver SPNs with customer feedback, we focus on a simple W
model (see Figure 1) having three customer classes and two
servers. Server 1 can serve class 1 and 2 customers, whereas
server 2 can serve class 2 and 3 customers. After finishing the
current service, a customer may be internally transferred to
join another customer queue, or leave the system permanently.

A new “local” policy
Our proposed new policy, dubbed the local policy, is a gen-
eralized cl-type policy which requires access of queue length
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information of not all queues, but only those eligible to the
deciding server. Specifically, let Cið�Þ and Qi be the cost rate
function and queue length and CðjÞ be the set of customer
classes that server j is eligible to serve. When server j is
ready to serve a new customer, he/she will choose the head-
of-line customer from class

i� 2 argmaxi2CðjÞ
C0
iðQiðtÞÞ
y�i

, (1)

where the constant y�i is some properly selected weight for
class i customers (see (10) for details of y�i ). The intuition
behind this is that, by appropriately controlling local queues,
we expect to achieve some local State-Space Collapse (SSC)
result for each server. As class 2 customers serve as a con-
necting class, the local SSC results for both servers would
then combine to form a global SSC (thus, though implicitly,
class 3 customers influence the decision made on server 1’s
end, and so do class 1 customers on server 2’s end). The
idea is to make the two servers work collaboratively as a
“super-server” (as in Mandelbaum and Stolyar (2004)), so
that the scheduling policy is expected to play the same role
as in a system with only one server (Huang et al., 2015).
Here, the properly designed weight y� ¼ ðy�i Þ measures the
role of different customer classes in the “super-serv-
er” system.

Following this idea, we prove that, under the conven-
tional heavy traffic condition, i.e., the traffic intensity is near
one, this policy is asymptotically optimal among all “global”
policies (policies that may use all queue lengths). Hence, our
new local scheduling rule is not only conceptually simpler
than the policy proposed in Mandelbaum and Stolyar
(2004), it is also easier to implement in certain applications
- especially those in which less information about queue
lengths can be accessed.

1.1. Related literature

The literature on SPNs and parallel-server queueing systems
is well established. We sketch related studies in the literature

without the intention of being exhaustive. Analysis of the
Brownian control problem introduced in Harrison (1988)
initiates a series of papers suggesting “good” control policies
of SPN, which are summarized in Bell and Williams (2001).
Although there are various heuristic schemes in the extant
literature, very few have been theoretically substantiated
with rigorious asymptotic optimality analysis. Difficulties
arise in two aspects: network topology and realistic cost/util-
ity function. A specific SPN with simple topology (a single-
server multi-class queueing system) is considered by Van
Mieghem (1995), where the generalized cl-rule is proved to
be asymptotically optimal. Over the past two decades, some
progress has been made in complete resource pooling struc-
tured networks (Harrison and Lopez, 1999). Based on linear
cost functions, Harrison (1998) proves asymptotic optimality
in a two-server case. Harrison and Lopez (1999) extend
Harrison (1998) to a general system and heuristically derive
conditions for discrete-review optimality; whereas Ata and
Kumar (2005) prove the asymptotic optimality for the sto-
chastic network with feedback (activity-based routing). For a
mean cumulative discounted cost of holding jobs in the sys-
tem, Bell and Williams (2001) consider an “N” structured
network and prove the asymptotic optimality of a threshold-
type policy. Stolyar (2004) considers a discrete time general-
ized switch system with parallel servers, which even allows
for arbitrary dependence between servers. The max-weight
scheduling policy has been proved to be asymptotically opti-
mal for a polynomial-type cost function. For a general SPN
Dai and Lin (2008) propose a max-pressure policy, which is
also asymptotically optimal for a quadratic holding cost
under some mild assumptions. Ye and Yao (2008) focus on
a broad class of utility-maximizing resource allocation
schemes (which includes the generalized cl-rule and max-
weight scheme as special cases) in a SPN and prove it to
also be asymptotically optimal. Extending the system consid-
ered in Van Mieghem (1995) to a parallel-server system,
Mandelbaum and Stolyar (2004) establish the asymptotic
optimality of the generalized cl-rule. Furthermore, by allow-
ing for customer feedback, Mandelbaum and Stolyar (2004)
conjecture that another copy of the generalized cl-rule with
feedback customers could be asymptotically optimal, which
is left as an open question (see page 852). In the current art-
icle, instead of addressing this open question, we consider a
W-structured parallel system with customer feedback and
propose a “local” policy that works reasonably well.

1.2. Contributions and organization

The contributions of this article are as follows:

(a) New policy using local queue length information.
We propose a novel control policy using only local
queue length information in a W model, and we
establish that our local policy is asymptotically optimal
with the objective of minimizing the system’s conges-
tion cost (a convex function of the queue lengths).
The practical relevance of our local policy is that it
can reduce the information retrieval cost. Despite the

Figure 1. A W queueing system.
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simplicity of the present model, our results serve as an
initial attempt to investigate efficient control policies
only using local information in more general SPNs.

(b) New method to establish SSC in the presence of cus-
tomer feedback. A key step to proving SSC (Bramson,
1998) is to establish the uniform attraction results for
the hydrodynamic limit. However, with customer
feedback, establishing the required uniform attraction
results does not seem easy. Even for the W-structured
system, existing methods in the literature may not
work (see Example 1). In this work, we construct a
four-step procedure by heavily exploring the W struc-
ture to prove the uniform attraction, and then the glo-
bal SSC, that is, all three queue lengths are
determined by a one-dimensional workload process.
This, along with the standard sandwich method (Chen
and Shanthikumar, 1994), will establish the diffusion
limit of the queue lengths under the proposed policy
and in turn conclude its asymptotic optimality.

Organization of the current article
The rest of this article is organized as follows: We introduce
the model and system dynamics in Section 2 and the heavy
traffic framework in Section 3. The main results are pre-
sented in Section 4 and proved in Section 5. Numerical
experiments are performed in Section 6. We conclude in
Section 7 with some discussions on the possibility of extend-
ing the local policy to more general SPNs. There we provide
a non-W example to explain how a local policy may be
implemented and how it performs; we also illustrate how
the current proof of SSC may fail for this non-W model.
Additional technical proofs are presented in the
“Supplemental Online Materials”.

Notation
We conclude this section with some notations and conven-
tions. All vectors are understood to be column vectors. A
superscript “T” of a matrix (vector) is interpreted as trans-
pose. We use the standard notation R for the set of real
numbers and R

n
þ ¼ fx ¼ ðx1, x2, :::, xnÞ, xi � 0, i ¼

1, 2, :::, ng: Denote by D½0,1Þ the space of R-valued func-
tions that are right continuous on ½0,1Þ with left limit on
ð0,1Þ: We use the symbol ) for weak convergence of ele-
ments in the space D½0,1Þ: For a sequence of functions
f rð�Þ 2 D½0,1Þ, f rðtÞ ! f ðtÞ u.o.c. as r ! 1 means that
f rðtÞ uniformly converges to f(t) on compact sets as r ! 1:
We use “�” for equality by definition.

2. The model and system dynamics

Consider a queueing system with three customer classes,
indexed by i 2 I ¼ f1, 2, 3g, and two server stations,
indexed by j 2 J ¼ f1, 2g, where there is a single server at
each server station. Throughout this article, we use “server”
and “server station” interchangeably. The set of customer
classes that can be served by server j is denoted by CðjÞ
(that is, Cð1Þ ¼ f1, 2g and Cð2Þ ¼ f2, 3g), and the set of

servers that can serve customer class i is denoted by SðiÞ
(hence Sð1Þ ¼ f1g,Sð2Þ ¼ f1, 2g and Sð3Þ ¼ f2g). Among
class i customers, the service principle is First-Come First-
Served (FCFS). After finishing the current service, a cus-
tomer may immediately return for further service (with a
possible change of class), or leave the system permanently.
See Figure 1 for an illustration of the W model.

General external arrival processes
Let ki denote the exogenous arrival rate for customer class i,
and the vector k ¼ ðkiÞi2I is the exogenous arrival rate vec-
tor. We assume that there is at least one ki, i 2 I , being
positive, i.e.,

P
i2I ki > 0: To model the interarrival times of

external customers, for each i 2 I , define a sequence of
independent and identically distributed (i.i.d.) random varia-
bles fuiðnÞg with E½uið1Þ� ¼ 1 and Var½uið1Þ� ¼ a2i < 1:
The random variable uiðnÞ=ki represents the exogenous
inter-arrival time between the ði� 1Þth and ith exogen-
ous arrivals.

Introduce the partial summation

Uið0Þ ¼ 0 and UiðnÞ ¼
Xn
l¼1

uiðlÞ, n � 1:

The exogenous arrival process is E ¼ fðEiðkitÞ, i 2 IÞ; t � 0g
with

EiðtÞ ¼ max n : UiðnÞ � t
� �

:

The term EiðkitÞ denotes the numbers of exogenous arrivals
of class-i customers until time t.

General service processes
For each pair (i, j) with j 2 SðiÞ, let mij and lij ¼ 1=mij be
the mean and rate of service time for a class-i customer
served by server j. Define a sequence of i.i.d. random varia-
bles fvijðnÞg such that E½vijð1Þ� ¼ 1 and Var½vijð1Þ� ¼ b2ij <
1 for i 2 I , j 2 SðiÞ: The random variable mijvijðkÞ denotes
the service time of the kth (external or internal) class-i cus-
tomers served by server j.

Introduce the partial summation

Vijð0Þ ¼ 0 and VijðnÞ ¼
Xn
l¼1

vijðlÞ, n � 1,

and the renewal process S ¼ fðSijðlijtÞ, i 2 I , j 2 SðiÞÞ; t �
0g with

SijðtÞ ¼ max n : VijðnÞ � t
� �

:

Then SijðlijtÞ denotes the number of class-i customers com-
pleting service by server j if server j has devoted t time units
to class-i customers.

Markovian feedback structure
For class-i customers, consider a sequence of i.i.d. random
variables f/iðnÞg with /iðnÞ recording which class the nth
class-i customer transfers to upon service completion. Let el
be a three-dimensional vector with the lth entry being one
and the others being zeros; We let Pil � Pð/ið1Þ ¼ elÞ be the
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probability that an old class-i customer transitions to a new
class-l customer, and Pi, 0 � 1�P3

l¼1 Pil ¼ Pð/ið1Þ ¼ 0Þ be
the probability that the customer leaves the system perman-
ently. We assume the 3	 3 sub-stochastic matrix (transition
matrix) P ¼ ðPilÞ has a spectral radius strictly less than one,
which ensures that with probability 1, all customers will
eventually leave the system. Introduce the process U ¼
fUiðnÞ; n � 0g with

UiðnÞ :¼
Xn
l¼1

/iðlÞ,

which records the feedback process of the first n class-i cus-
tomers upon finishing service. Let UilðnÞ be the lth entry of
UiðnÞ: We assume f/iðnÞg is independent of all other
primitive data. The aforementioned processes, fEiðtÞ, t �
0g, fSijðtÞ, t � 0g and f/iðnÞ, n � 0g, i 2 I , j 2 SðiÞ, are all
assumed to be mutually independent.

In summary, the model parameters
include ðki,mij, Pil, i 2 I , j 2 SðiÞ, l 2 J Þ:

2.1. System dynamics and objective function

The system dynamics depend on the scheduling policy. A
scheduling policy is defined by

p � fTijðtÞ; i 2 I , j 2 SðiÞ, t � 0g,
where TijðtÞ denotes the time that server j has spent on
class-i customers in time interval ½0, t�: Under a scheduling
policy p, the number of class-i customers departing (leaving
or transferring) from server j is

DijðtÞ � SijðlijTijðtÞÞ, (2)

and in the interval ½0, t�, the number of class-i customers
transferring to class-l customers is

Uil

X
j2SðiÞ

DijðtÞ
� �

:

A scheduling policy p is called admissible if the following
equations hold:

Tijð�Þis non decreasing and Tijð0Þ ¼ 0, for i 2 I , j 2 SðiÞ,X
i2CðjÞ

TijðtÞ � TijðsÞ
� � � t � s, for s < t, j 2 J :

Note that an admissible policy needs not to be work-con-
serving. Denote by P the set of all admissible policies.

For i 2 I , denote by Qp
i ðtÞ the number of class-i custom-

ers at time t under a scheduling policy p 2 P: Then, we
have

Qp
i ðtÞ ¼ Qp

i ð0Þ þ EiðkitÞ þ
X
l2I

Uli

X
j2SðlÞ

DljðtÞ
� �

�
X
j2SðiÞ

DijðtÞ,

for i 2 I ,

(3)

Qp
i ðtÞ � 0, for i 2 I , t � 0: (4)

Following from (2)–(4), we further have

Qp
i ðtÞ ¼ Xp

i ðtÞ þ kit þ
X
l2I

Pli
X
j2SðlÞ

lljTljðtÞ

�
X
j2SðiÞ

lijTijðtÞ � 0, for i 2 I ,
(5)

where

Xp
i ðtÞ ¼ Qp

i ð0Þ þ EiðkitÞ � kit

þ
X
l2I

Uli

X
j2SðlÞ

SljðlljTljðtÞÞ
� �

� Pli
X
j2SðlÞ

SljðlljTljðtÞÞ
� �

þ
X
l2I

Pli
X
j2SðlÞ

ðSljðlljTljðtÞÞ � lljTljðtÞÞ
� �

�
X
j2SðiÞ

ðSijðlijTijðtÞÞ � lijTijðtÞÞ:

Writing (5) in matrix notations yields

QpðtÞ ¼ XpðtÞ þ kt � ðI � PTÞRðtÞ: (6)

Here RðtÞ � ðRiðtÞ, i 2 IÞ with RiðtÞ �
P

j2SðiÞ lijTijðtÞ:
We assume that class-i customers incur a queueing cost

at rate CiðQp
i ðtÞÞ at time t with the cost rate function Ci

satisfying the condition below.

Assumption 1 (Cost functions). The function Ci satisfies
Cið0Þ ¼ 0 and C0

ið0Þ ¼ 0 and is strictly increasing and convex.
Then the cumulative total cost by time t is

UpðtÞ ¼
ðt
0

X3
i¼1

CiðQp
i ðsÞÞds:

Our objective is to minimize the cumulative congestion cost
for each T> 0, that is,

min
p2P

UpðTÞ: (P-1)

2.2. The scheduling rule: Local information vs. global
information

A global policy
For more general SPNs with multiple customer classes, mul-
tiple servers and customer feedback, Mandelbaum and
Stolyar (2004) proposed a promising scheduling policy,
hereby dubbed the MS policy, of which the asymptotic opti-
mality still remains an open problem. See Mandelbaum and
Stolyar (2004) for detailed definition of the MS policy for
more general SPNs. The MS policy, when applied to our W
queueing system, reduces to the policy that server j serves a
customer from class

i 2 argmaxi C0
iðQiðtÞÞ �

X3
k¼1

PikC
0
kðQkðtÞÞ

" #
lij, (7)

unless the maximum is nonpositive, in which case the server
remains idle.

To implement the MS policy in (7), one is required to
have the global information of the SPN, that is, access to the
queue lengths of all customer classes. In the following, we
propose a generalized cl-type policy with l appropriately
modified. Comparing with the “global” MS policy, our new
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policy not only has a simpler structure, but also uses only
“local” information, in the sense that each server needs only
to have access to queue lengths of customer classes the ser-
ver is eligible to serve, not to all customer classes. It is
straightforward to see that the set of admissible policies
using only local information is a strict subset of all admis-
sible policies P.

A “local” policy
Recall that lij is the service rate of customer class i 2 I by
server j 2 SðiÞ: Define a constant vector �� such that

�� ¼ 1,
l11
l21

,
l11
l21

	 l22
l32

� �T

: (8)

It is straightforward to see that, with �� defined in (8), we
have

��1l11 ¼ ��2l21 and ��2l22 ¼ ��3l32: (9)

As ��1=�
�
2 ¼ m11=m21 and ��2=�

�
3 ¼ m22=m32, ��1 : �

�
2 : �

�
3 can

be viewed as the ratio of the workload, or expected service
times by eliminating the role of different servers. Indeed, the
average service time is determined by two factors: the cus-
tomers’ average workload and the server’s speed (or cap-
acity). For example, if class 1 customers have an average
workload of 2 and server 1’s speed is 1 workload per unit
time, then m11 ¼ 2; similarly, if class 3 customers have an
average workload of 0.5 and server 2’s speed is 0.5 workload
per unit time, then m32 ¼ 1: If class 2 customers have an
average workload of 1, then m21 ¼ 1 and m22 ¼ 2: We can
calculate that ��1 : �

�
2 : �

�
3 ¼ 1 : 0:5 : 0:25 ¼ 2 : 1 : 0:5: Note

that this is exactly the ratio of average workloads.
We can define z�j ¼ ��i lij for j 2 J and any i 2 SðjÞ: Let

y� ¼ ðI � PÞ�1��: (10)

Consequently, y� can be understood as the effective expected
service times, which have taken into account the potential
future service times due to feedback. The queue lengths
weighted by y� represent “workloads” (see (21) for details).

We propose the following policy, denoted by p�, which
has a form similar to the generalized cl-rule introduced by
Van Mieghem (1995), except that we use 1=y�i , instead of li
for i 2 I : Note that the transition probability matrix P is
implicitly used via y� in the policy. We specify p� below:

(a) Routing: When a customer arrives (either external or
internal), the customer joins any available server is eli-
gible to serve him/her if there are any; otherwise the
customer joins the waiting queue.

(b) Scheduling: When server j finishes serving a customer
and there exist waiting customers that he/she is eligible
to serve, the server chooses a customer from the class

i 2 argmaxi2CðjÞ
C0
iðQiðtÞÞ
y�i

: (11)

As policy p� is locally work-conserving, we have for
j 2 J ,

ð1
0
1�P

i2CðjÞ QiðsÞ>0
�d s�

X
i2CðjÞ

TijðsÞ
� �

¼ 0, (12)

where 1A is the indicator of event A. Also, it is easy to ver-
ify, based on the second part of p�, that for j 2 J ,ð1

0
max
l2CðjÞ

C0
lðQlðtÞÞ
y�l

� C0
iðQiðtÞÞ
y�i

 !
dTijðsÞ ¼ 0: (13)

We will prove that p� is asymptotically optimal among all
policies in P.

3. Heavy traffic framework

The notion of asymptotic optimality requires the construc-
tion of a sequence of W queueing systems that have the
same structure as in Section 2. The sequence of W models
are indexed by r " 1, where r measures the system’s scale.
For the rth system, we append a superscript “r” to all nota-
tions: The exogenous arrival process is Er ¼ fðEri ðtÞ, i 2
IÞ; t � 0g with Eri ðtÞ ¼ Eiðkri tÞ; the service process is Sr ¼
fðSrijðtÞ, i 2 I , j 2 SðiÞÞ; t � 0g with SrijðtÞ ¼ SijðlrijtÞ, and the
transition sequence is Ur ¼ fðUr

ilðnÞ, i, l 2 IÞ; n ¼ 0, 1, 2, :::g:
The arrival rate vector is kr. We assume the customer classes
with positive arrival rates are invariant to r. Without loss of
generality, we assume the transition sequence Ur and
flrij, i 2 I , j 2 SðiÞg are invariant to r, hence, we can omit
the superscript r for these two processes. Similarly, all other
quantities associated to the rth system will be appended
with a superscript r.

We assume the sequence of queueing systems satisfies the
following assumption:

Assumption 2 (Heavy traffic assumption). A sequence of
queueing systems satisfies the heavy traffic assumption if

(a) There is a three-dimensional vector k ¼ ðkiÞ � 0 and a
four-dimensional vector l ¼ ðlijÞ, such that the vector
ke defined via

ke ¼ ðI � PTÞ�1k (14)

satisfies

ke1 < l11, ke3 < l32,

and ke2 ¼ 1� ke1
l11

� �
l21 þ 1� ke3

l32

� �
l22:

(b) When r ! 1, ari ! ai and brij ! bij for some ai � 0
and bij � 0,

kri ! ki, i 2 I , and r
X3
i¼1

y�i ðkri � kiÞ ! c,

for some c 2 R:

Remark 1. Under the aforementioned setting, the exogenous
interarrival times are fuiðnÞ=krig and the service times of
class-i customers by server j are fvijðnÞ=lrijg. Thus, it is easy
to verify that, under the above heavy traffic assumption, there
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exists a function g(a), such that gðaÞ ! 0 as a ! 1 and

E
uiðnÞ
kri

1 uiðnÞ
kr
i
�a

n o" #
� gðaÞ and E

vijðnÞ
lrij

1 vijðnÞ
lr
ij
�a

n o" #
� gðaÞ:

(15)

Note that these two inequalities are needed for establishing
the SSC, following the framework of Bramson (1998).

We define x�ij as the nominal capacity allocation of server
j to customer class i, specifically,

x�11 �
ke1
l11

, x�32 �
ke3
l32

, x�21 � 1� x�11, and x�22 � 1� x�32:

(16)

Then x�11 < 1, x�32 < 1 and

kei ¼
X
j2SðiÞ

x�ijlij, for i 2 I : (17)

Writing (17) in a matrix form and using (14), one can show
that (17) is equivalent to

ki þ
X
l2I

Pli
X
j2SðlÞ

x�ljllj ¼
X
j2SðiÞ

x�ijlij, for i 2 I : (18)

The above two equations (17) and (18) exhibit the input–out-
put relationship: the right-hand side is the output rate with kei
in (17) interpreted as the effective input rate; it is equal to the
left-hand side of (18).

Under a policy pr ¼ fTr
ijðtÞ; i 2 I , j 2 SðiÞ, t � 0g, for i 2

I , j 2 SðiÞ, we define the centered busy-time process Irij �
fIrijðtÞ; t � 0g with IrijðtÞ � x�ijt � Tr

ijðtÞ: ThenX
i2CðjÞ

IrijðtÞ ¼ t �
X
i2CðjÞ

Tr
ijðtÞ: (19)

Following from (5) and (18), we have

Qr, pr
i ðtÞ ¼ Xr,pr

i ðtÞ �
X
l2I

Pli
X
j2SðlÞ

lljI
r
ljðtÞ þ

X
j2SðiÞ

lijI
r
ijðtÞ,

where

Xr,pr
i ðtÞ¼Qr,pr

i ð0Þþkri t�kitþEri ðkri tÞ�kri t

þ
X
l2I

Uli

X
j2SðlÞ

SrljðlljTr
ljðtÞÞ

� �
�Pli

X
j2SðlÞ

SrljðlljTr
ljðtÞÞ

� �
þ
X
l2I

Pli
X
j2SðlÞ

ðSrljðlljTr
ljðtÞÞ�lljT

r
ljðtÞÞ

� �
�
X
j2SðiÞ

ðSrijðlijTr
ijðtÞÞ�lijT

r
ijðtÞÞ:

Rewriting the above in matrix notation, we have

Qr, prðtÞ ¼ Xr, prðtÞ þ ðI � PTÞZrðtÞ, (20)

with the ith component of ZrðtÞ defined as Zr
i ðtÞ �P

j2SðiÞ lijI
r
ijðtÞ: In the following, we remove superscript pr

for ease of notation; all processes are specified under pol-
icy pr.

Introduce the workload process Wr � fWrðtÞ, t � 0g with
WrðtÞ defined by

WrðtÞ � ðy�ÞTQrðtÞ: (21)

With y� � ðI � PÞ�1�� and YrðtÞ � ð��ÞTZrðtÞ, we write

WrðtÞ ¼ ðy�ÞTXrðtÞ þ YrðtÞ:
Following from (9) and (19), we get

YrðtÞ ¼
X
i2I

��i
X
j2SðiÞ

lijI
r
ijðtÞ ¼

X
j2J

z�j
X
i2CðjÞ

IrijðtÞ

¼
X
j2J

z�j t �
X
i2CðjÞ

Tr
ijðtÞ

� �
:

Under any admissible policy, Yrð�Þ is a nondecreas-
ing process.

Diffusion-scaled processes
We define the diffusion-scaled processes ð bWr

, bYr
, bQrÞ �

fð bWrðtÞ, bYrðtÞ, bQr

i ðtÞ, i 2 IÞ, t � 0g, where

bWrðtÞ � 1
r
Wrðr2tÞ, bYrðtÞ � 1

r
Yrðr2tÞ,

and bQr

i ðtÞ �
1
r
Qr

i ðr2tÞ:
(22)

Class-i customers incur a cost at rate CiðbQr

i ðtÞÞ at time t,
with Ci satisfying Assumption 1. Then the cumulative cost
incurred until time t is

Ur
pðtÞ ¼

ðt
0

X3
i¼1

CiðbQr

i ðsÞÞds:

The objective of the rth problem is to stochastically minim-
ize Ur

pðtÞ, for each t> 0, by choosing an appropriate policy
p among Pr, the set of all admissible policies for the
rth system.

A sequence of local policies
We adopt the local policy in Section 2.2 in each of the
sequence of W queueing systems. Let p� � fpr�g, with pr�
defined below for the rth system:

(a) Routing: When a customer arrives (external or
internal), the customer chooses any available server
that is eligible.

(b) Scheduling: When server j finishes serving a customer
and there remains waiting customers that server j is
eligible to serve, it chooses a customer from the class

argmaxi2CðjÞ
C0
iðbQr

i ðtÞÞ
y�i

:

If there is a tie, the server can arbitrarily break the tie.
In the next section, we will show that this sequence of

local policies can asymptotically minimize the cumulative
cost (in a stochastic order sense), and hence, is asymptotic-
ally optimal.

4. Diffusion limit and asymptotic optimality

We next introduce a pair of mappings ðhð�Þ, q�ð�ÞÞ : Rþ !
R

4
þ: Specifically, for x � 0, let
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hðxÞ � min
X
i2I

CiðqiÞ

s:t:
X
i2I

y�i qi ¼ x, and qi � 0:
(23)

From Assumption 1 and the Karush–Kuhn–Tucker condi-
tion, for each x � 0, h is well defined and there is a unique
q� ¼ ðq�i , i 2 IÞ satisfying hðxÞ ¼Pi2I Ciðq�i Þ and

C0
i1ðq�i1Þ
y�i1

¼ C0
i2ðq�i2Þ
y�i2

, for i1, i2 2 I :

We also denote by q� ¼ q�ðxÞ because q� depends on x.
Denote the one-dimensional manifold M� ¼ fq�ðxÞ; x � 0g
and call a point in M� a fixed point. We can see that q�i ðxÞ
is increasing and nonzero for x> 0 and all i 2 I : SinceP

i2I y
�
i ðq�i ðxþ DxÞ � q�i ðxÞÞ ¼ Dx and y�i > 0 for i 2

I , q�ðxÞ is Lipschitz continuous (with the Lipschitz constant
no greater than 1=mini2Iy�i ).

Assumption 3 (Initial condition). Assume thatbQrð0Þ ) bQð0Þ, as r ! 1,

for a random vector bQð0Þ with PðbQð0Þ 2 M�Þ ¼ 1:

Remark 2. Different from the initial queue length condition
enforced in Mandelbaum and Stolyar (2004) which plays an
critical role in asymptotic optimality, our Assumption 3 is
imposed only to simplify the analysis; see discussions in the
online appendix on how to relax the above condition.

Let bX�
be a Brownian motion with initial value

ðy�ÞTbQð0Þ, drift rate c, and variance ðy�ÞTCy� with

C ¼ diagðkia2i Þ þ
X
l2I

X
j2SðlÞ

b2ljlljx
�
lj 	 ðCl

ijÞ

þ ðI � PTÞdiag
X
j2SðiÞ

b2ijlijx
�
ij

� �
ðI � PÞ,

in which

Cl
ij ¼

Plið1� PliÞ, if i ¼ j,
�PliPlj, if i 6¼ j:

�
Define

ð bW�
, bY �Þ ¼ ðu,wÞðbX�Þ:

Here, ðu,wÞ is the standard (one-dimensional) reflection
mapping (see Section 6.2 in Chen and Yao (2001)). We next
present our main result.

Theorem 1 (Asymptotic optimality of the local policy).
Assume Assumptions 1–3 hold. Then,

(a) Under the sequence of policy p� ¼ fpr�g, the following
holds when r ! 1bWr

, bYr
, bQr	 


) bW�
, bY �

, bQ�	 

,

with bQ� ¼ q�ð bW �Þ. As a result, for any t > 0, as
r ! 1

Ur
p� ðtÞ )

ðt
0
hð bW�ðsÞÞds:

(b) The sequence of local policies p� ¼ fpr�g is asymptotic-
ally optimal in the sense that for any sequence of
admissible policies p ¼ fprg and any t > 0, x > 0,

liminf
r!1 P Ur

pðtÞ > x
	 
 � lim

r!1P Ur
p� ðtÞ > x

	 

:

Remark 3 (From local SSC to global SSC). First, it is not
hard to understand that the local policy helps achieve the
local SSC. Next, to establish the global SSC, we note that the
relationship bQ� ¼ q�ð bWÞ guarantees that the behavior of bQr

is close to the one-dimensional manifold process M�.
Therefore, we can link one queue length (e.g., Q1) to another
(e.g., Q3), even though they are not directly controlled by the
same server. In this way we are able to achieve a global SSC
among all queue length processes. (The connecting class 2
plays an important role to keep two servers collaboratively
acting as one “super-server”, even though each server only
keeps track of its own customers and ignores those in
other classes.)

Remark 4 (Generality of the stochastic ordering result). Part
(b) of the Theorem claims that asymptotically, Ur

p, under any
other admissible policy, is stochastically larger than Ur

p� on
any finite horizon. We emphasize that this notion of asymp-
totic optimality is quite general. For example, under some
additional regularity conditions (e.g., cost functions Cið�Þ are
required to be bounded), it is straightforward to obtain
asymptotic optimality results in other forms, such as the most
predominantly considered mean congestion cost, that is,

liminf
r!1 E Ur

pðtÞ
� � � lim

r!1E Ur
p� ðtÞ

� �
¼
ðt
0
E hð bW �ðsÞÞ
h i

ds, as r ! 1:

5. Proof of theorem 1

5.1. Preliminaries

Using the Skorohod representation theorem (Theorem 5.1
in Chen and Yao (2001)), we will adopt the sample path
approach. That is, we assume all primitive processes are
defined in a probability space such that the weak conver-
gence becomes the almost sure u.o.c. convergence. As acces-
sory expressions for the diffusion-scaled processes, we first

introduce the fluid-scaled processes ��Q
r ¼ fð��Qr

i ðtÞ, i 2 IÞ, t �
0g, ��Er � fð��Er

i ðtÞ, i 2 IÞ, t � 0g,��Sr � fð��SrijðtÞ, i 2 I , j 2
SðiÞÞ, t � 0g, ��Tr � fð��Tr

ijðtÞ, i 2 I , j 2 SðiÞÞ, t � 0g and ��U
r �

fð��Ur

ilðtÞ, i, l 2 IÞ, t � 0g with

ð��Qr

i ðtÞ, ��Q
r

i ðtÞ, ��Q
r

ijðtÞ, ��Q
r

ijðtÞ, ��Q
r

ilðtÞÞ

� 1
r2
ðQrðkri r2tÞ, Eðkri r2tÞ, Sijðlijr2tÞ,Tr

ijðr2tÞ,Uilðbr2tcÞÞ,

We define the diffusion-scaled processes bEr � fðbEr
i ðtÞ, i 2

IÞ, t � 0g,bSr � fðbSrijðtÞ, i 2 I , j 2 SðiÞÞ, t � 0g, bUr � fðbUr

il

ðtÞ, i, l 2 IÞ, t � 0g and bXr � fðbXr
i ðtÞ, i 2 IÞ, t � 0g, with
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bEr
i ðtÞ �

1
r
ðEðkri r2tÞ � kri r

2tÞ, i 2 I ,

bSrijðtÞ � 1
r
ðSijðlijr2tÞ � lijr

2tÞ, i 2 I , j 2 SðiÞ,

bUr

ilðtÞ �
1
r
ðUilðbr2tcÞ � Pilbr2tcÞ, i, l 2 I ,

bXr
i ðtÞ �

1
r
Xr
i ðr2tÞ, i 2 I :

More specifically, for the last expression

bXr
i ðtÞ ¼ bQr

i ð0Þ þ rðkri � kiÞt þ bEr
i ðtÞ

þ
X
l2I
bUr

li

� X
j2SðlÞ

��S
r

ljð��T
r

ljðtÞÞ
�
þ
X
l2I

Pli
X
j2SðlÞ

bSrð��Tr

ljðtÞÞ

�
X
j2SðiÞ

bSrijð��Tr

ijðtÞÞ:
(24)

Then, we assume that when r ! 1, with probability 1,bQrð0Þ ! bQð0Þ and
ðbEr

,bSr, bUrÞ ! ðbE,bS, bUÞ, u:o:c:

In our analysis, we will fix any sample such that the above
convergence holds. With the definition of bWrðtÞ, bYrðtÞ in
(22) we have bWrðtÞ ¼ ðy�ÞTbXrðtÞ þ bYrðtÞ: (25)

5.2. Hydrodynamic model

Lemma 5.1 (Lemma 1 in Chen and Ye (2012)). Let t� and u�

be any given time lengths, and assume condition (15). Then the
following convergence holds with probability one: as r ! 1,

sup
0�t�rt�

sup
0�u�u�

jðbEr
i ððt þ uÞ=rÞ � bEr

i ðt=rÞÞj ! 0, i 2 I ,

sup
0�t�rt�

sup
0�u�u�

jðbSrijððt þ uÞ=rÞ � bSrijðt=rÞÞj ! 0, i 2 I , j 2 SðiÞ,

sup
0�t�rt�

sup
0�u�u�

jðbUr

ilððt þ uÞ=rÞ � bUr

ilðt=rÞÞj ! 0, i, l 2 I :

We consider a time interval ½s, sþ d�, where s � 0 and
d > 0: Let T> 0 be a fixed time to be specified later. Divide
the time interval ½s, sþ d� into a total of drd=Te segments
with equal length T=r (except the last one). Next, we use the
hydrodynamic model in Bramson (1998) (also refer to, e.g.,
Stolyar (2004) and Ye and Yao (2008)), introduced below, to
investigate the diffusion-scaled processes:

�Wr,‘ðuÞ� bWr
sþ‘Tþu

r

� �
, (26)

�Qr,‘ðuÞ� bQr
sþ‘Tþu

r

� �
,

�Xr,‘ðuÞ� bXr
sþ‘Tþu

r

� �
,

�Er,‘
i ðuÞ�bEr

i sþ‘Tþu
r

� �
�bEr

i sþ‘T
r

� �
þkiu,i2I ,

�Sr,‘ij ðuÞ�bSrij sþ‘Tþu
r

� �
�bSrij sþ‘T

r

� �
þliju,i2I ,j2SðiÞ,

�U
r,‘
il ðuÞ� bUr

il sþ‘Tþu
r

� �
� bUr

il sþ‘T
r

� �
þPilu,i,l2I ,

�Tr,‘ðuÞ�bTr
sþ‘Tþu

r

� �
�bTr

sþ‘T
r

� �
,

�Yr,‘ðuÞ� bYr
sþ‘Tþu

r

� �
�bYr

sþ‘T
r

� �
,

(27)

for u�0 and ‘¼0,1,:::,brd=Tc:

As in Chen and Ye (2012), Lemma 5.1 guarantees the fol-
lowing convergence:

�Er, ‘r
i ðtÞ ! kit, u:o:c: (28)

�Sr, ‘rij ðtÞ ! lijt, i 2 I , j 2 SðiÞ, u:o:c: (29)

�U
r, ‘r
il ðtÞ ! Pilt, i, l 2 I , u:o:c: (30)

Given this convergence, we can prove the following lemma,
which is simply a modification of Theorem 2 and
Proposition 3 in Chen and Ye (2012) to the systems with
customer feedback.

Lemma 5.2 (Hydrodynamic limits). Let M be a given posi-
tive constant and ‘r be some integer in ½0, rd=T�. Suppose
j�Qr, ‘rð0Þj � M for sufficiently large r. Then, under the pro-
posed family of control policies, almost surely, for any
sequence of {r} there exists a further subsequence, denoted by
R, such that along R, the hydrodynamic-scaled processes
ð �Wr, ‘r , �Qr, ‘r , �Yr, ‘r , �Tr, ‘rÞ converge uniformly on compact time
intervals to limit process ð �W , �Q, �Y , �TÞ, which satisfies the fol-
lowing equations:

�QðtÞ ¼ �Qð0Þ þ kt � ðI � PTÞ�DðtÞ, (31)X
i2CðjÞ

�TijðtÞ � �TijðsÞ
� � � t � s, for s < t, j 2 J , (32)

�WðtÞ ¼ ðy�ÞT �QðtÞ ¼ �Wð0Þ þ �Y ðtÞ (33)

�Y ðtÞ ¼
X
j2J

z�j t �
X
i2CðjÞ

TijðtÞ
� �

, (34)

ð1
0
1�P

i2CðjÞ
�QiðsÞ>0

�d s�
X
i2CðjÞ

�TijðsÞ
� �

¼ 0, j 2 J , (35)

ð1
0

maxl2CðjÞ
C0
lð�QlðtÞÞ
y�l

� C0
ið�QiðtÞÞ
y�i

 !þ
d�TijðsÞ ¼ 0,

j 2 J and i 2 CðjÞ:
(36)

In (31), �DðtÞ ¼ ð�DiðtÞ, i 2 IÞ with �DiðtÞ ¼P
j2SðiÞ lij�TijðtÞ:

Remark 5. We call any ð �W , �Q, �Y , �TÞ satisfying (31)–(36) a
hydrodynamic model solution. One can prove that any hydro-
dynamic model solution is Lipschitz, hence, absolutely con-
tinuous and differentiable almost everywhere. We refer to
such time points t as regular points (and adopt the conven-
tion that t ¼ 0 is not a regular point).

5.3. Uniform attraction

Denote by

I�ðtÞ � i 2 I C0
ið�QiðtÞÞ
y�i

¼ max
i2I

C0
ið�QiðtÞÞ
y�i





 �
,

(
and

I�ðtÞ � i 2 I C0
ið�QiðtÞÞ
y�i

¼ min
i2I

C0
ið�QiðtÞÞ
y�i





 �
:

(
Writing in a matrix form, (31) is equivalent to
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�LðtÞ � ðI � PTÞ�1 �QðtÞ ¼ ðI � PTÞ�1 �Qð0Þ þ ket � �DðtÞ:

Lemma 5.3. There exists a constant �1 > 0, such that if �QðtÞ
is not a fixed point, thenX

i2I�ðtÞ
��i �L

0
iðtÞ � ��1,

X
i2I�ðtÞ

��i �L
0
iðtÞ � �1:

This is a generalization of Lemma 4 in Mandelbaum and
Stolyar (2004) to systems with customer feedback. The proof
idea is similar to the one there. We provide the proof of the
second inequality in the “Supplemental Online Materials” as
an illustration.

Introduce

� �QiðtÞ � fn � 0jC0
iðnÞ=y�i ¼ mini2IC0

ið�QiðtÞÞ=y�i g
and

� �QiðtÞ � fn � 0jC0
iðnÞ=y�i ¼ maxi2IC0

ið�QiðtÞÞ=y�i g:
Then � �Q and � �Q are also Lipschitz, and hence, have deriva-
tives almost everywhere (such times t are called
strictly regular).

We note here that even with the above lemma, we cannot
use an argument similar to that in Mandelbaum and Stolyar
(2004) to establish the uniform attraction. In particular, one
cannot establish the following inequality, which is similar to
their (28):

d
dt

�xðtÞ½ � � �� if �QðtÞ is not a fixed point, (37)

where �xðtÞ :¼P3
i¼1 �

�
i �� �QiðtÞ and � > 0: This is because � �Q

may not be a positive combination of �L: Below is an
example in which (37) does not hold.

Example 1. Consider a system with k ¼ ð1, 1, 1ÞT , l11 ¼
8=7,l21 ¼ 4,l22 ¼ 1 and l32 ¼ 4. Assume P23 ¼ 1 and
P1i ¼ P3i ¼ 0, i 2 I . Then ke ¼ ð1, 1, 2ÞT , x�11 ¼ 7=8,
x�21 ¼ 1=8, x�32 ¼ x�22 ¼ 1=2:

Assume that at time t, I�ðtÞ ¼ f3g and I�ðtÞ ¼ f1g.
Then �T 0

32ðtÞ ¼ 1, �T 0
21ðtÞ ¼ 1, � �Q3ðtÞ ¼ �Q3ðtÞ and � �Q0

3ðtÞ
¼ �Q0

3ðtÞ. Note that
�Q0
3ðtÞ ¼ k3 þ l21P23 � ð1� P33Þl32 ¼ k3 þ l21 � l32 ¼ 1:

Thus, � �Q0
3ðtÞ ¼ �Q0

3ðtÞ > 0. Because all � �Q0
iðtÞ have the same

sign, then �x0ðtÞ :¼P3
i¼1 �

�
i �� �Q0

iðtÞ > 0. This means (37) may
be not always true. w

Given the above example, our analysis will not be based
on � �Q: Instead, the analysis will be based on a linear com-
bination of � �Q:

Proposition 1. For any hydrodynamic limit model under the
proposed policy and any fixed time t0 � 0,

(a) If �Qðt0Þ 6¼ 0, there exists a fixed constant T1 � 0
(depending on �Qðt0Þ), such that �Q reaches the fixed
point q�ððy�ÞT �Qðt0ÞÞ within the finite time T1 and then
stays there.

(b) If �Qðt0Þ ¼ 0, then for all t � t0,

�QðtÞ ¼ 0:

The detailed proof of Proposition 1 depends heavily on
the “W” structure and is postponed to the “Supplemental
Online Materials”. Here we provide a sketch of the proof for
Part (a), which consists of four steps:

Step 1: There exists a finite t1 � t0, such that for
all t � t1, I�ðtÞ 6¼ f2g:

Step 2: For t � t1, such that �QðtÞ is not a fixed point,P3
i¼1 � �Q0

iðtÞ � �1 for some �1 > 0:
Step 3: For all t � t0, �WðtÞ ¼ �Wðt0Þ:
Step 4: Assume that �Qðt2Þ is a fixed point, then for
all t � t2, �QðtÞ ¼ �Qðt2Þ ¼ q�ð �Wðt0ÞÞ:

The existence of the constant T1 then follows easily from
Steps 2 and 3.

5.4. Proof of theorem 1

With Proposition 1, we can establish the following lemma,
which plays a key role in the proof of Theorem 1. The
lemma is similar to Lemma 6 in Chen and Ye (2012), and
its proof is postponed to the “Supplemental
Online Materials”.

Lemma 5.4. Consider the time interval ½s, sþ d�, with s � 0
and d > 0; choose a constant c > 0, such that

sup
s�t1<t2�sþd

jðy�ÞTbX�ðt1Þ � ðy�ÞTbX�ðt2Þj � c:

Suppose that

lim
r!1

bWrðsÞ ¼ v and lim
r!1

bQrðsÞ ¼ q�ðvÞ (38)

for some v � 0. Let � > 0 be any given number. Then, there
exists a sufficiently large T, such that, for sufficiently large r,
the following results hold for all integers ‘ 2 ½0, rd=T�:

(a) (SSC)

j�Qr, ‘ðuÞ � q�ð �Wr, ‘ðuÞÞj � �

for all u 2 ½0,T�;
(b) (Boundedness)

�Wr, ‘ðuÞ � vþ cþ 1

for all u 2 ½0,T�:
(c) (Complementarity) If �Wr, ‘ðuÞ > � for all u 2 ½0,T�,

then

�Yr, ‘ðuÞ � �Yr, ‘ð0Þ ¼ 0,

for all u 2 ½0,T�:
Now we are ready to prove Theorem 1 .

We first prove (a). First, from the properties of the reflec-
tion mapping (refer to Propositions 1 and 2 in Reiman
(1984); or the least element characterization on page 163 of
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Chen and Yao (2001)), we havebWrðtÞ � uððy�ÞTbXrÞðtÞ, and bYrðtÞ � wððy�ÞTbXrÞðtÞ:
(39)

Let s¼ 0 and d be an arbitrary positive number in Lemma
5.4. Then, we have the followingbYrð�Þdoes not increase at t if bWrðtÞ � �, t 2 0, d½ �:
Thus, from Theorem 2.2 in Chen and Shanthikumar (1994),bWrðtÞ � uððy�ÞTbXr � �ÞðtÞ,bYrðtÞ � wððy�ÞTbXr � �ÞðtÞ: (40)

Note that the limits of fluid-scaled processes
ð ��Wr

, ��Q
r
, ��Y

r
, ��T

rÞ, denoted by ð ��W , ��Q, ��Y , ��TÞ, will share equa-
tions (31)–(36) with the hydrodynamic limit model. That is,
equations (31)–(36) still hold with ð �W , �Q, �Y , �TÞ replaced by
ð ��W , ��Q, ��Y , ��TÞ accordingly. Under Assumption 3, ��Qð0Þ ¼ 0,
which means ��Qð0Þ 2 M�: Thus, ��QðtÞ ¼ ��Qð0Þ ¼ 0 by
Proposition 1, which implies that ��WðtÞ ¼ ��Wð0Þ ¼ 0: From
equations (31)–(36), those facts imply the following linear
system holds for ��TijðtÞ, i 2 I , j 2 SðiÞ :

��T11ðtÞ þ ��T21ðtÞ ¼ t (41)

��T22ðtÞ þ ��T32ðtÞ ¼ t (42)

l11
��T11ðtÞ ¼ ke1t (43)

l21
��T21ðtÞ þ l22

��T22ðtÞ ¼ ke2t (44)

l32
��T32ðtÞ ¼ ke3t: (45)

Then, one can verify that the unique solution of the afore-
mentioned linear system is ��TijðtÞ ¼ x�ijt, and further bXr !bX�

u.o.c. Combining (39) and (40), letting r ! 1 and then
� ! 0,

ð bWr
, bYrÞ ! ðuðbX�Þ,wðbX�ÞÞ:

The convergence of bQr
follows from Lemma 5.4(a) and the

continuous mapping theorem.
Next, we prove (b). This part is similar to the proof of

Proposition 2 in Ata and Kumar (2005), where a linear cost
function is handled. For concreteness, we sketch the proof.
It suffices to prove the following for any fixed sample path:
for any subsequence R of r, there exists a further subse-
quence R0 
 R, such that along R0 ¼ fr0g and for t � 0,

liminf
r0!1

X3
i¼1

CiðbQr0

i ðtÞÞ � hðuðbX�ÞðtÞÞ: (46)

We now let R be fixed. Due to the functional central limit
theorem for the renewal process Er0ðtÞ and the Lipschitz
continuity of ��T

r0ðtÞ, there exists a subsequence R0, such
that, for t � 0 and along R0

��E
r0ðtÞ ! kt, ��T

r0ðtÞ ! ~�TðtÞ, u:o:c:, as r0 ! þ1:

Here, we put a “~” above the symbol to distinguish from the
other fluid limit ��T : Consequently, the fluid-scaled processes
��Q
r0ðtÞ, ��W

r0ðtÞ and ��Y
r0ðtÞ also converge along R0 to Lipschitz

continuous processes ~�QðtÞ, ~�WðtÞ and ~�Y ðtÞ, which satisfy the

following equations (as in (31)–(36)):

~�QiðtÞ¼ ~�Qið0Þþkit�
X
j2SðiÞ

lij
~�TijðtÞþ

X3
l¼1

Pli
X
j2SðlÞ

llj
~�TljðtÞ,

X
i2CðjÞ

~�TijðtÞ� ~�TijðsÞ
h i

� t� s, for s< t, j2J ,

~�WðtÞ¼ðy�ÞT ~�QðtÞ¼ ~�Wð0Þþ ~�Y ðtÞ,
~�Y ðtÞ¼

X
j2J

z�j t�
X
i2CðjÞ

~�TijðtÞ
 !

,

ð1
0
1nP

i2CðjÞ
~�QiðsÞ>0

od s�
X
i2CðjÞ

~�TijðsÞ
 !

¼0, j2J ,

ð1
0

maxl2CðjÞ
C0
lð~�QlðtÞÞ
y�l

�C0
ið~�QiðtÞÞ
y�i

 !þ

d~�TijðsÞ¼0,

j2J and i2CðjÞ:

We consider two cases:

1. ~�QðtÞ 6¼ 0 : Then ðy�ÞT ~�QðtÞ > 0: Since bWr0ðtÞ ¼
ðy�ÞTbQr0ðtÞ ¼ r0ðy�ÞT ��Qr0ðtÞ and r0ðy�ÞT ��Qr0ðtÞ ! 1 as r0

tends to 1, we have that limr0!1 bWr0ðtÞ ¼ 1: As a
result,

liminf
r0!1

X3
i¼1

CiðbQr0

i ðtÞÞ � liminf
r0!1

hð bWr0ðtÞÞ ¼ 1,

which implies (46).

2. ~�QðtÞ ¼ 0 : Then ~�WðtÞ ¼ ðy�ÞT ~�QðtÞ ¼ 0: Since ~�WðtÞ is
non-decreasing under heavy traffic, ~�WðsÞ ¼ 0 for s 2
½0, t� and then ~�QðsÞ ¼ 0 for s 2 ½0, t�: Under policy p�,
this fact implies that equations (41)–(45) still hold with
��TijðtÞ, i 2 I , j 2 SðiÞ replaced by ~�TijðtÞ, i 2 I , j 2 SðiÞ:
Then ~�TijðtÞ ¼ x�ijt, and further bXr0 ! bX�

u.o.c. From
the definition of hð�Þ in (23) and the least element prop-
erty of reflection mapping, we have

X3
i¼1

CiðbQr0

i ðtÞÞ � hð bWr0ðtÞÞ � hðuððy�ÞTbXr0ÞðtÞÞ:

This inequality implies (46) by taking the limit on
both sides.

6. Numerical experiments

To supplement our theoretical result of asymptotic optimal-
ity, we next provide some engineering confirmations by con-
ducting computer simulation experiments. In Section 6.1 we
first consider a simple W model operated under the local
policy. To understand the potential of the local policy for
the more general non-W models, in Section 6.2 we focus on
a non-W example.

10 J. YANG ET AL.



6.1. Simulation results for a W model

We consider a W model with arrival rates ki ¼ 1, i 2 I , ser-
vice rates l11 ¼ 5, l32 ¼ 7,l21 ¼ 2 and l22 ¼ 1, and transi-
tion probabilities P11 ¼ 0:6,P12 ¼ 0:2,P23 ¼ P33 ¼ 0:5 and
Pij ¼ 0. In this example we consider quadratic congestion
costs C1ðxÞ ¼ 3x2,C2ðxÞ ¼ x2,C3ðxÞ ¼ 2x2: In this setting,
we obtain that ke ¼ ð5=2, 3=2, 7=2ÞT and x�ij ¼ 0:5 for i 2 I
and j 2 SðiÞ:

To evaluate the performance of our local policy, we pro-
vide simulation results for the W model under several poli-
cies. In particular, we will benchmark the simulated
congestion costs under the local policy with those under the
following three policies:

1. MS policy. The scheduling rule proposed by
Mandelbaum and Stolyar (2004) (see (7) for details)
that requires the “global” queue lengths information.

2. Static priority policy. The policy in that server 1 and
server 2 always prioritize on serving classes 1 and 3 cus-
tomers over class 2 customers (because classes 1 and 3
customers are more costly).

3. Global FCFS. Both servers serve customers in the order
of their arrivals across all customers that they are eli-
gible to serve.

Under each policy, we generate N¼ 800 independent
sample paths, each of which has a length of T ¼ 24	 60	
100 ¼ 144, 000 time units. Using the simulated data, we con-
struct 95% confidence intervals using sample means and
sample variances obtained by averaging results in N inde-
pendent runs. The average cumulative costs under the corre-
sponding policies are summarized in Table 1.

According to Table 1, it is evident that our local policy
generates a much smaller costs than the FCFS and priority
policies. This is quite intuitive because neither FCFS nor the
priority policy is directly designed to minimize the conges-
tion cost. The most promising observation in Table 1 is that
our local policy even outperforms the MS policy, despite the
point that MS utilizes the global queue length information
whereas our policy does not. We attempt to explain this
observation below. First, although the MS policy conjectured
in Mandelbaum and Stolyar (2004) seems intuitive and
appropriate, it may not be optimal or asymptotically optimal
at all. (Theoretical proof of the optimality of the MS policy
remains an open problem after all.) Second, the MS policy is

not work-conserving: when the MS policy is being imple-
mented, a server should always remain idling as long as the
maximum in (7) is nonpositive, even though there are posi-
tive queues that the server is eligible to serve.

6.2. Local policy for more general SPNs

The present simple W model has shed lights on the possibil-
ity and potential effectiveness of control policies utilizing
only local information. But eventually we hope to be able to
treat more general and practical SPNs. At this point there
remains two open questions for a general (non-W) SPN:

1. How to properly define a general local policy?
2. How to provide mathematical justification for the

effectiveness of the general local policy?

To answer the first question, we will need to properly
define the weight parameter y� for a general SPN, and even
this does not seem to be straightforward. The identification
of y� should be closely related to the equivalent workload
formulation in general multi-class multi-server queues;
closed-or expressions for y� may not be available, but we
envision that the framework in Harrison and van Mieghem
(1997) and Harrison (2000) may help to derive a computa-
tional scheme to compute y�:

The proof of asymptotic optimality for the general local
policy is another challenge. We point out that the W struc-
ture plays an important role in our current proof; and new
methodologies are needed to prove the uniform attraction
for the more general (non-W). We leave this as future
research. To give the readers a taste of how a general local
policy may look like and how it performs comparing to
other well-known policies, we next consider a simple non-
W model.

Example 2 (A simple non-W example). There are four
customer classes and two servers (see Figure 2). Server 1
serves classes 1 and 2, whereas Server 2 serves classes 2,
3, and 4. Assume that ðk1, k2, k3, k4Þ ¼ ð1, 0, 1, 0Þ and
ðl11,l21, l22,l32, l42Þ ¼ ð6, 1, 1=2, 8, 4Þ. The feedback transi-
tion probabilities are P14 ¼ 1, P1i ¼ 0 (i ¼ 1, 2, 3); P21 ¼
1=2,P2i ¼ 0 (i ¼ 2, 3, 4); P32 ¼ 1,P3i ¼ 0 (i ¼ 1, 3, 4); and
P4i ¼ 0 (i ¼ 1, 2, 3, 4). Then the arrival of class 2 can only be
from the departure of class 3. Then ke ¼ ð3=2, 1, 1, 3=2ÞT and
x�11 ¼ 1=4, x�21 ¼ 3=4, x�22 ¼ 1=2, x�32 ¼ 1=8 and x�42 ¼ 3=8:

The local policy has the same expression as in (11), with
cost functions C1ðxÞ ¼ 3x2,C2ðxÞ ¼ C3ðxÞ ¼ C4ðxÞ ¼ x2 and
weight y� ¼ ðI � PÞ�1��, where

�� ¼ 1,
l11
l21

,
l11
l21

	 l22
l32

,
l11
l21

	 l22
l42

� �T

¼ 1, 6,
3
8
,
3
4

� �T

:

The definition of �� follows the similar idea as in (9).
Next we conduct simulation experiments. Following the

settings in Section 6.1, we report the average cumulative costs
under the corresponding policies in Table 2. We remark that
under the static priority policy, class 2 has the lowest priority,
class 3 has lower priority than class 4.

Table 1. Comparisons of simulated congestion costs under four policies: (i)
local policy, (ii) MS policy, (iii) static priority policy, and (iv) global FCFS.

Policies Local Policy MS Policy Priority FCFS

Costs
(	105)

2:178
ð60:175Þ

2.290
ð60:188Þ

3.957
ð60:343Þ

5.113
ð60:398Þ

Table 2. Comparisons of simulated congestion costs under four policies for
the non-W model depicted in Figure 2: (i) local policy, (ii) MS policy, (iii) static
priority policy, and (iv) global FCFS.

Policies Local Policy MS Policy Priority FCFS

Costs
(	105)

0:717
ð60:055Þ

0.740
ð60:062Þ

1.542
ð60:125Þ

2.546
ð60:191Þ
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Similar to results in Section 6.2, our local policy outperforms
all other policies, including the MS policy that utilizes local
information. Although Table 2 reveals the remarkable perform-
ance of our local policy, the proof of the asymptotical optimality
remains an open question. The methods in Mandelbaum and
Stolyar (2004) and ours show that at least one of � �Q and � �Q is
moving towards the fixed point in the proof of the uniform
attraction. However, it is not true for this example. To see that,
assume that at time t, I�ðtÞ ¼ f4g and I�ðtÞ ¼ f2g. Then it is
easy to verify that �Q0

2ðtÞ ¼ 0. For �Q4ðtÞ:
� �Q0

4ðtÞ ¼ �Q0
4ðtÞ ¼ l11 � l42 ¼ 2 > 0:

Hence,
P

� �Q
0
iðtÞ ¼ �Q0

2ðtÞ ¼ 0 but
P � �Q0

iðtÞ ¼ �Q0
4ðtÞ > 0,

which means that Lemma 5.3 does not directly apply to this
case, so that we cannot follow the four-step approach in the
present article to prove the uniform attraction. It will be
necessary to construct a new Lyapunov function L, which is
left for the research.

7. Conclusion

In this article, we study a routing and scheduling problem in a
multi-class multi-server W queueing model with customer feed-
back. We propose a new control policy called the local policy.
Different from previously studied policies in SPNs with customer
feedback (e.g., Mandelbaum and Stolyar (2004)) which requires
knowledge of the queue length information of the entire system,
our local policy demands only local information (i.e., accesses to
only queue lengths information of those customer classes that a
server is eligible to serve). Despite of the simplicity of the present
W model, our analysis and results serve as an initial attempt to
gain insights into the scheduling of SPNs where information
retrieval is costly, slow or inconvenient.

We substantiate the performance of our local policy by
showing that it is asymptotically optimal as the traffic inten-
sity approaches one, with the objective of minimizing the
system’s congestion cost (measured by a convex cost func-
tion of the queue lengths). To prove SSC (a key step to
establish the asymptotic optimality), we follow the general
framework in Bramson (1998), where one needs to verify
the uniform attraction for the hydrodynamic limit.
However, existing methods in the literature for uniform

attraction do not apply to SPNs having customer feedback.
In our proofs, we construct a four-step procedure by heavily
exploring the W structure to prove the uniform attraction,
and then the global SSC, which in turn guarantees that all
queue length processes reduce asymptotically to a one-
dimensional workload process. Supplementing our theoret-
ical results, we also report convincing computer simulations
experiments; these results confirm that our local policy per-
forms well by benchmarking with other well-known policies.

One natural extension is to devise appropriate local poli-
cies for multi-class multi-server queues having a more gen-
eral topological structure (e.g., a W model with n classes
and n – 1 servers with n � 3, and the more general non-W
model configured by a general skill-based customer–server
matching matrix). The first step is to carefully define the
notion of local policies, which itself is not a trivial task; the
second step is to develop new methodologies for the proof
of the asymptotic optimality. Although numerical examples
have revealed promising results, the required theoretical
analysis in the aforementioned two directions remain open.
We leave this extension to future research.
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