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APPENDIX

to

Pay to Activate Service in Vacation Queues

This appendix provides supplementary materials to the main paper. In Section A, we extend our base

model in several directions. In Section B, we give all technical proofs omitted from the main paper. In Section

C, we supplement Theorem 1 by developing the equilibrium strategies with N excluded from the condition

in Theorem 1. In Section D, we further explains the cyclic form of the threshold mod (n̄, I) in the observable

case.

Appendix A: Extensions

In this section, we extend our base model in several directions. In §A.1 we consider a vacation model under

the third information provision rule - neither the queue or the server’s state is observable. In §A.2 we consider

the case of setup cost for a newly activated server.

A.1. Unobservable Server’s State

In our base model, we assume that the server state (busy or on vacation) is available to all customers, and the

operational flexibility lies solely in the information provision of the real-time queue length. In this subsection,

we consider a new setting, the so-called no-information, i.e., both the server’s state and the queue length

are held unavailable. We continue to study the symmetric mixed strategy. Suppose customers will join the

system with probability q ∈ [0,1] (and balk with probability 1− q) upon arrival, and a joining customer will

purchase PTAS with probability p ∈ [0,1]. Then the strategy space of the customers can be described as a

pair (p, q) ∈ [0,1]× [0,1] in the two-dimensional space. Under (p, q), the effective arrival rate to the system

is λ≡Λq.

A.1.1. System Performance For any given strategy (p, q), we are able to derive the steady-state perfor-

mance using results in Proposition 1, specifically, with q0 = q1 = q, because the unavailability of the server’s

state makes it unnecessary to assign customers with B0 or B1 labels as in §3. The steady-state probabilities,

expected queue length, and expected waiting time can be obtained immediately.

Corollary 1 (Steady-state performance in the no-information queue) Consider the no-

information M/M/1 vacation queue with PTAS, suppose customers adopt strategy (p, q), the expected

number of customers in the system is given by

N(p, q) =
ρq

1− ρq
+QN(p).

The expected waiting time is

w(p, q) =
1

µ−λ
+
QN(p)

λ
.

The following lemma reports useful structural properties for the mean delay w(p, q).
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Lemma 3 Consider the no-information M/M/1 vacation queue with PTAS.

(i). The mean delay w(p, q) is decreasing in p∈ [0,1].

(ii). The mean delay w(p, q) is convex in q ∈ [0,min{1, µ/Λ}).
a. If p= 1, w(p, q) is strictly increasing in q ∈ [0,min{1, µ/Λ}).

b. If p∈ [0,1), w(p, q) is increasing first and then decreasing in q.

(iii). For a given p∈ [0,1], w(p, q) can be minimized at q̂=

√
QN (p)

ρ
(
1+
√
QN (p)

) . Furthermore, q̂ is decreasing in

p.
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Figure 9 The mean delay w(p, q) for different p and q, with Λ = 0.9, µ= 1, N = 5.

Figure 9 illustrates the structure of the mean delay for different values of p and q. First, for any given

λ, w(p, q) is decreasing in p, because when p increases, the system is more likely to be activated. Next, for

any p < 1, w(p, q) has a bathtub shape in q (consistent with Lemma 3). To understand this, recall that the

delay in vacation queues may be expressed as the sum of two terms w(p, q) =wb(q)+wv(p, q), where the first

term, representing the delay induced by existing waiting customers, is an increasing function in q, and the

second term, representing the incremented delay due to the server’s vacation time, is decreasing in q. When

the effective arrival λ= Λq is small, increasing q is more efficient in reducing the vacation time (the decrease

in wv(p, q) outweighs the increases in wb(q)). On the other hand, when the system is already congested with

a large q, the reduced vacation time (when q increase) is negligible and not enough to offset the customers’

negative externalities. Once again, ATC and FTC co-exist. To understand part (iii) of Lemma 3, note that

customer arrivals impact the system performance in two opposing directions: on the one hand, more arrivals

can expedite the activation of service which helps relieve the incremented customer delay due to the server’s

vacations; on the other hand, they bring negative externalities by increasing the system congestion. When p

is large, the server can be activated mostly by PTAS, so increasing the effective arrival rate (or equivalently

q) leads to a prolonged customer delay. Therefore, a smaller q is required to minimize the average wait

time. In particular, we can verify that lim
p→1

q̂(p) = lim
p→1

√
QN (p)

ρ[1+
√
QN (p)]

= 0 by noticing that lim
p→1

QN(p) = 0. This

is consistent with Figure 9.
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A.1.2. Equilibrium Analysis

When all customers adopt strategy (p, q), the expected utility of an arbitrary customer is given by

UNI(p, q) =R− pP −Cw(p, q).

Similar to the analysis in §3.2.2, we define ∆wN(p, q) = ∆WN(p)|ρ0=ρ1=ρq as the reduced delay by purchasing

PTAS when all other customers adopt strategy (p, q), and it is not difficult to verify that ∆wN(p, q) is

decreasing in q. Thus, when all other customers adopt strategy (p, q), the average reduced delay cost for

tagged joining customer by deviating from purchasing probability p to p′ is given by

∆(p′; (p, q)) =

N−2∑
i=0

{
π0,i

[
(1− p) ·

(
1

λ
·E[Ni] +

i+ 1

µ

)
+ p · i+ 1

µ

]
−π0,i ·

i+ 1

µ

}
= (p′− p)∆wN(p, q). (14)

Therefore, when all others adopt strategy α = (p, q), if the tagged customer adopts strategy α′ = (p′, q′),

her expected utility is given by

ÛNI(α
′;α) = q′ [R− p′P −Cw(p, q) + (p′− p)∆wN(p, q)] .

Unlike the case in §3, customers in the no-information model are homogeneous. Hence, a strategy profile

αe = (pe, qe) is a symmetric Nash equilibrium strategy if and only if

αe ∈ arg max
α∈[0,1]×[0,1]

ÛNI(α;αe). (15)

Theorem 11 (Equilibrium strategy in no-information case) Consider the no-information M/M/1

vacation queue with PTAS. The joint equilibrium joining and purchasing strategy is given below:

αe =


(0,min{1, qL}) , if ∆wN (0,min{1, qL})≤ P ;(
pe,min

{
1, µ(R−P )

Λ(R−peP )

})
, if ∆wN

(
pe,min

{
1, µ(R−P )

Λ(R−peP )

})
= P ;(

1,min
{

1, µ(R−P )−C
Λ(R−P )

})
, if ∆wN

(
1,min

{
1, µ(R−P )−C

Λ(R−P )

})
≥ P ,

where qL =

√
C2(N−3)2−4Cµ(N+1)R+4µ2R2+C(N−3)+2µR

4ΛR
.

The equilibrium αe characterized in Theorem 11 is not necessarily unique, in which we can further refine

these derived equilibria using criteria specified by Definitions 2-3.

Paralleling our steps to treat the base models, we derive the system throughput and PTAS revenue. Under

the equilibrium strategy α = (p, q), the system throughput is given by

λNI(p, q) = Λq, (16)

which only depends on the joining strategy (independent of the purchasing strategy p). The next result

benchmarks the present model with a standard vacation queue.

Proposition 5 (PTAS improves throughput) PTAS achieves improved system throughput for an

M/M/1 vacation queue in the no-information case.
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Proposition 5 supplements Theorem 9 to confirm that PTAS is effective under all information revelation

policies. For a given (p, q), the service provider’s revenue collected via PTAS is a function of Λ

ΠNI(Λ) = pΛq(1−Λq/µ)P, (17)

where 1−Λq/µ is the steady-state probability that the server is inactive.

Proposition 6 (No information excels in high congestion) When R≥CN/µ, there exists a threshold

Λ̃′ such that ΠNI(Λ)>max{Πu(Λ),Πo(Λ)} if Λ> Λ̃′.

We conduct a numerical example to compare the revenue under all three information policies, see Figure

10. Similar to the other two information cases, the PTAS revenue ΠNI(Λ) under the no information policy is

non-monotonic in Λ. The intuition is indeed similar (see discussions following Theorem 7). However, different

from Πu(Λ) and Πo(Λ) both diminish to zero as Λ grows large, ΠNI(Λ) quickly becomes stable and plateaus

afterwards. We give some explanations: Unlike the other two information cases where the effective arrival rate

increases in Λ, the effective arrival rate in the no-information case eventually becomes a constant (guaranteed

by a decreasing joining probability q coping with the increasing Λ). This is consistent with the standard

unobservable queue (Edelson and Hilderbrand 1975). Since increasing Λ (when it is already large enough)

has no further impact on the system dynamics and does not increase the workload, a fraction of joining

customers will continue to purchase PTAS and warrant a positive system revenue.
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Figure 10 The comparison of Πu, Πp and ΠNI for different Λ, with µ=C = 1, N = 2 and R= 5.

A.2. Server’s Setup Cost

In our base model, the system incurs no cost when the server changes its state. However, in practice, it is

often the case that when the server’s vacation ends, it generates a inconvenient cost before returning to its

normal working state. This is widely observed in make-to-order production systems with large machinery. In

this section, we will extend our base model in this direction; we call this service-resumption cost the “setup
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cost”. And we will investigate when it is beneficial for the service provider to provide PTAS in order to

appropriately balance the throughput, PTAS revenue and setup cost.

Let K > 0 be the step cost, which can be incurred either by PTAS or the N th customer arrival. For any

fixed PTAS fee P , in equilibrium, we denote by SCu(P ) and SCo(P ) the setup cost per unit time in the

unobservable and observable case, respectively. We next formulate the following optimization problem, where

the service provider aims to maximize his net benefit by selecting the optimal PTAS fee.

max
P∈[0,R]

Π̃x(P ) = Πx(Λ, P )−SCx(P ), x= u, o, (18)

where Πx(Λ, P ) is the PTAS revenue rate under information structure x in equilibrium when the demand

volume and price are Λ and P , respectively. Let λx(P ) be the system throughput under information structure

x when the PTAS fee is P . Because no customer has incentive to purchase PTAS when P =R, so λx(R) is

the system throughput without PTAS. Note that it is profitable to provide PTAS if and only if

Π̃x(P )≥ Π̃x(R), x= u, o,

where Π̃x(R) =−SCx(R). In the unobservable case, i.e., x= u, we have

SCu(P ) =K[λ0π0,N−1 +

N−2∑
i=0

π0,iλ0p
e] =

peρ0µ(1− ρ1)K

[1− (1− pe)N ] (1 + ρ0− ρ1)
,

Πu(Λ, P ) =
(1− ρ1)peρ0µP

1 + ρ0− ρ1

.

According to Proposition 1, it gives

Π̃u(P ) =
(1− ρ1)peρ0µ

1 + ρ0− ρ1

[
P − K

1− (1− pe)N

]
, Π̃u(R) =− ρ′0µ(1− ρ′1)K

N(1 + ρ′0− ρ′1)
,

where (ρ′0, ρ
′
1) are the equilibrium pair without PTAS, see Li et al. (2016). On the other hand, in the

observable case, we have (according to Theorem 4)

SCo(P ) =
ΛK(1− ρ)2

(1− ρ)(n̄2 + 1) + ρn1+1(ρ− ρ−n̄2)
, SCo(R) =

ΛK(1− ρ)2

(1− ρ)(N + 1) + ρn1+1(ρ− ρ−N)

It follows that

Π̃o(P ) =
Λ(P −K)(1− ρ)2

(1− ρ)(n̄2 + 1) + ρn1+1(ρ− ρ−n̄2)
, Π̃o(R) =− KΛ(1− ρ)2

(1− ρ)(N + 1) + ρn1+1(ρ− ρ−N)
,

where n̄2 = 1 if P ≤ CΛ and n̄2 = n2 otherwise, n1 and n2 are specified in Theorem 4. We next provide

a numerical example. In Figure 11 we plot Π̃u(P ) and Π̃o(P ) for different P and Λ. Figure 11 shows that

PTAS is an effective measure for improving the system revenue when the demand volume Λ is intermediate.

Such an observation is consistent with our base model (see Theorem 7). In addition, providing the real-time

queue length information helps improve the PTAS revenue.
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Figure 11 Π̃u(P ) and Π̃o(P ) for different P and Λ, with µ=C =K = 1, N = 5 and R= 10.

A.3. Reward from Taking Vacations

We now consider a more general setting in that the service provider aims to optimize a reward that is the

sum of two terms: (i) revenue by completing services, and (ii) gain from taking vacations. Let V denote

the gain from vacation per unit time8 and B be the revenue per service completion. The service provider’s

objective function is

max
P∈[0,R],N∈N∗

Π̃x
N(P ) =Bλxe(P ) +V ·πxV , x= u, o, (19)

where πxV which is the steady-state fraction of time the server is inactive under information policy x. The

system throughput is λxe(P ) = µπxB, where πxB = 1 − πxV is the steady-state probability that the server is

active. Thus, the above optimization problem is reformulated below.

max
P∈[0,R],N∈N∗

Π̃x
N(P ) = V + (Bµ−V )πxB, x= u, o. (20)

When V <Bµ, maximizing Π̃x
N(P ) is equivalent to maximizing the steady-state probability that the server

is active, or equivalently, maximizing the system throughput. Thus it is optimal to set a sufficiently low

vacation threshold to attract as many customers as possible to join. When V ≥Bµ, maximizing Π̃x
N(P ) is

equivalent to maximizing πxV , or equivalently, minimizing the system throughput. Then it is optimal to set a

sufficiently large vacation threshold to let all arriving customers balk. Solutions to the optimization problem

(20) are summarized below.

Proposition 7 If V <Bµ, (P ∗,N∗) = (0,1) is an optimal solution to (20); otherwise, (P ∗,N∗) = (R,∞) is

an optimal solution to (20).

The result in Proposition 7 is intuitive. When the benefit of taking a vacation is small compared to the

benefit by serving a customer, it is optimal for the service provider to remain active as much as possible.

Thus N should be selected at 1, which reduces to the work-conservation queues and the PTAS will never

8 Here V may mean the reduction of the system’s operating cost, or the improvement on the servers’ mental and

physical condition, from taking a vacation.



7

be used. By contrast, when the benefit of taking a vacation is relatively large, the service provider could

benefit in taking vacation instead of working at any time. As a result, it is optimal to close down the service

industry by setting a sufficiently large PTAS fee and vacation threshold.

The above results are due to the linearity of the problem structure of (20). We admit that it will be more

interesting to consider nonlinear problems which should yield “non-trivial” solution for N . Nevertheless,

Problem (20) is only an initial attempt of this new setting. The more in-depth investigation of this subject

is beyond the scope of the present paper. We plan to consider the more general settings in future works.

Appendix B: Technical Proofs

Proof of Proposition 1. Combining (2)-(3) gives

π0,i = π1,1 ·
(1− p)i

ρ0

(21)

for i= 0,1, . . . ,N − 1. From (6), we can obtain that

π1,i = π1,N · (ρ1)i−N (22)

for i≥N . Notice that (4) can be rewritten as

(π1,1− 0)ρ1 = π0,0ρ0p+ (π1,2−π1,1) (23)

...

(π1,N−1−π1,N−2)ρ1 = π0,N−2 · ρ0p+ (π1,N −π1,N−1). (24)

Summing up from (23) to (24) and combining (21), we can obtain

π1,N = π1,N−1 · ρq+π1,1 · (1− p)N−1. (25)

Let ai = π1,i−π1,i−1 for i= 1,2, . . . ,N − 1, by combining (21), equations (23) to (24) can be rewritten as

a1ρ1 = π1,1(1− p)0p+ a2 (26)

a2ρ1 = π1,1(1− p)1p+ a3

...

aN−1ρ1 = π1,1(1− p)N−2p+ aN . (27)

Multiplying (ρq)i−k−1 to both sides of equation akρq = π1,1(1 − p)k−1p + ak+1 for k = 1,2, . . . , i − 1, and

summing them up from k= 1 to i− 1 yield

ai = a1ρ
i−1
1 −π1,1

i−1∑
k=1

(1− p)k−1ρi−k−1
1 p

= π1,1ρ
i−1
1 −π1,1

i−1∑
k=1

(1− p)k−1ρi−k−1
1 p

= π1,1 ·
[

(1− ρ1)ρi−1
1 − p(1− p)i−1

1− p− ρ1

]
. (28)
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Because π1,0 = 0, a1 = π1,1, and π1,i =
∑i

k=1 ak, it follows that

π1,i = π1,1 ·
i∑

k=1

[
(1− ρ1)ρk−1

1 − p(1− p)k−1

1− p− ρ1

]

= π1,1 ·

[
(1− ρ1)

1− p− ρ1

i∑
k=1

ρk−1
1 − p

1− p− ρ1

i∑
k=1

(1− p)k−1

]

= π1,1 ·
[

(1− p)i− ρi1
1− p− ρ1

]
(29)

for i= 1,2, . . . ,N − 1. When i=N − 1, by plugging (29) into (25), we can get

π1,N = π1,1 ·
[

(1− p)N − ρN1
1− p− ρ1

]
. (30)

Combining (22) and (30) gives

π1,i = π1,1 · ρi−N1

[
(1− p)N − ρN1

1− p− ρ1

]
(31)

for i≥N . So far, all steady-state probabilities have been expressed by π1,1, then π1,1 can be derived through

normalization condition
∑N−1

i=0 π0,i +
∑N−1

i=1 π1,i +
∑∞

i=N π1,i = 1. From (21), (29) and (31), we have

N−1∑
i=0

π0,i =
1− (1− p)N

ρ0p
·π1,1,

N−1∑
i=1

π1,i =

[
(1− p)(1− ρ1)(1− (1− p)N−1)− ρ1p(1− ρN−1

1 )

(1− ρ1)p(1− p− ρ1)

]
·π1,1,

∞∑
i=N

π1,i =

[
(1− p)N − ρN1

(1− p− ρ1)(1− ρ1)

]
·π1,1.

Therefore, it follows that

π1,1 =
ρ0(1− ρ1)p

[1− (1− p)N ](1 + ρ0− ρ1)
.

Then all steady-state probabilities can be derived using π1,1. On the other hand, the mean number of

customers in the system can be expressed as N(p, q0, q1) = N0 + N1,1 + N1,2, where N0 =
∑N−1

i=0 π0,i · i,
N1,1 =

∑N−1
i=1 π1,i · i and N1,2 =

∑∞
i=N π1,i · i. After some algebraic manipulations, we can obtain

N0 =
(1− p) (1− (1− p)N −N(1− p)N−1p) (1− ρ1)

(1− (1− p)N)p(1 + ρ0− ρ1)
,

N1,1 =
ρ0

[
(1− (1− p)N) (1− ρ1)2− (1− (1− p)N +N(1− p)N)p(1− ρ1)2− p2

(
ρ1−NρN1 + (N − 1)ρN+1

1

)]
(1− (1− p)N)p(1 + ρ0− ρ1)(1− ρ1)(1− p− ρ1)

,

N1,2 =
pρ0(N(1− ρ1) + ρ1) ((1− p)N − ρN1 )

(1− (1− p)N) (1 + ρ0− ρ1)(1− ρ1)(1− p− ρ1)
,

which yield

Q(p, q0, q1) =
ρ0

(1− ρ1)(1 + ρ0− ρ1)
+QN(p).

The expected waiting time for the customers who find a busy server is given by

w1(p, q0, q1) =
1

µ

(
N1,1 +N1,2∑∞

i=1 π1,i

+ 1

)
=

1

µ

[
1

1− ρ1

+ 1 +QN(p)

]
.

The expected waiting time for the customers who find the server to be on vacation is given by

w0(p, q0, q1) =
1

µ

(
N0∑N−1

i=0 π0,i

+ 1

)
+

1− p
λ0

∑N−1
i=0 π0,i

·
N−1∑
i=0

π0,i ·E[Ni] =
1

µ
+
QN(p)

µ

[
1 +

1

ρ0

]
,
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where E[Ni] = [1− (1− p)N−i−1]/p. Accordingly, the system throughput is

λu(p, q0, q1) =

N−1∑
i=0

π0,iλ0 +

∞∑
i=0

π1,iλ1 =
λ0

1 + (λ0−λ1)/µ
.

Finally, the service provider’s revenue collected from PTAS is given by

Πu(p, q0, q1) = P

N−1∑
i=0

π0,iλ0p=
(1−λ1/µ)pλ0P

1 + (λ0−λ1)/µ
,

which completes this proof. �

Proof of Lemma 1. By taking the derivative of QN(p) with respect to p, we have

dQN(p)

dp
=
N2(1− p)N−1p2− [1− (1− p)N ]

2

[1− (1− p)N ]
2
p2

.

Then it is sufficient to show that N2(1− p)N−1p2 ≤ [1− (1− p)N ]
2

for all p∈ [0,1], i.e.,

N(1− p)
N−1

2 p− [1− (1− p)N ]≤ 0. (32)

Taking the derivative of (32) with respect to p gives

dN(1− p)N−1
2 p− [1− (1− p)N ]

dp
=−N(1− p) 1

2
(N−3)

2

(
2
[
(1− p)

1+N
2 − 1

]
+ (N + 1)p

)
d
(

2
[
(1− p) 1+N

2 − 1
]

+ (N + 1)p
)

dp
= (1 +N)(1− (1− p)

N−1
2 )> 0.

Thus 2
[
(1− p) 1+N

2 − 1
]

+ (N + 1)p is minimized at p = 0. When p = 0, 2
[
(1− p) 1+N

2 − 1
]

+ (N + 1)p = 0.

Hence
dN(1− p)N−1

2 p− [1− (1− p)N ]

dp
≤ 0

for all p ∈ [0,1], which implies that N(1− p)N−1
2 p− [1− (1− p)N ] is decreasing in p ∈ [0,1]. When p = 0,

the left-hand side of (32) is 0, which implies that N2(1 − p)N−1p2 ≤ [1− (1− p)N ]
2

for all p ∈ [0,1], i.e.,

dQN(p)/dp < 0. On the other hand, it follows from L’Hospital rule that QN(0) = (N − 1)/2 and QN(1) = 0,

which completes this proof. �

Proofs of Propositions 2-3. To simplify the notations, we define

ρs(p) =
QN(p)

µ(R− pP )/C −QN(p)− 1
, ρl(p) = 1− 1

µR/C −QN(p)− 1
.

For any given strategy p∈ [0,1), we can find that w0(p, q0) and w1(p, q1) are decreasing and increasing in q0 ∈

[0,1], respectively. For the customers who find an inactive server, if U0(p,1)< 0, then the equilibrium arrival

rate for the customers who find the server on vacation is λe0 = 0, and the system can never be activated as all

arriving customers will balk. If U0(p,1)≥ 0, there exist two equilibria: qe0 = 1 and qe0 = QN (p)

ρ[µ(R−pP )/C−QN (p)−1]
,

and we can verify that qe0 = 1 is an ESS.

For the customers who find a busy server, if QN(p)− µR/C + 2 > 0, we have U1(p, q1) < 0 for all q1 ∈

[0,min{µ/Λ,1}], then q1(p)e = 0 is the unique equilibrium. IfQN(p)−µR/C+2≤ 0, we consider two subcases,
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(i) when ρ < 1 and U1(p,1) ≥ 0, i.e., ρ ≤ 1− 1
µR/C−QN (p)−1

, which gives λe1 = Λ. Otherwise, (ii) when ρ >

1− 1
µR/C−QN (p)−1

, it follows that qe1 = 1
ρ
− 1

ρ[µR/C−QN (p)−1]
. In summary, we can get that

qe0(p) =

 0, if ρ≤ ρs(p);

1 or QN (p)

ρ[µ(R−pP )/C−QN (p)−1]
, if ρ> ρs(p),

qe1(p) =


1, if ρ≤ ρl(p) and QN(p)≤ µR/C − 2;

1
ρ
− 1

ρ[µR/C−QN (p)−1]
, if ρ> ρl(p) and QN(p)≤ µR/C − 2;

0, if QN(p)>µR/C − 2,

where qe0(p) = 1 is the unique ESS. �

Proof of Lemma 2. For any given p∈ [0,1], taking the derivative of ∆WN(p) with respect to N , gives

∂∆WN(p)

∂N
=−C(1− ρ1)(1− p)N−1 (1− (1− p)N +N ln(1− p))

λ0(1 + ρ0 + ρ1) (1− (1− p)N)
2 ,

d[1− (1− p)N +N ln(1− p)]
dN

= [1− (1− p)N ] ln(1− p)< 0.

Thus, 1− (1− p)N +N ln(1− p) is decreasing in N ≥ 2. Since [1− (1− p)N +N ln(1− p)] |N=2 = (2− p)p+

2 ln(1− p)≤ 0 for all p ∈ [0,1], we have 1− (1− p)N +N ln(1− p)< [1− (1− p)N +N ln(1− p)] |N=2 ≤ 0 for

all N ≥ 2. It follows that ∂∆WN (p)

∂N
> 0 for all N ≥ 2, i.e., ∆WN(p) is increasing in N .

Next, we consider the following cases according to N .

When N = 2, we have ∆WN(p) = C(1−ρ1)

λ0(1+ρ0−ρ1)(2−p) , which is obviously increasing in p∈ [0,1].

When N = 3, we have ∆WN(p) = 3−2p
3−3p+p2

C(1−ρ1)

λ0(1+ρ0−ρ1)
, by taking the derivative of ∆WN(p) with respect to

p, it gives

∂∆WN(p)

∂p
=

3− 6p+ 2p2

(3− 3p+ p2)
2 ·

1− ρ1

λ0(1 + ρ0− ρ1)
,

∂2∆WN(p)

∂p2
=−2(3− p)p(3− 2p)

(3− 3p+ p2)3
· 1− ρ1

λ0(1 + ρ0− ρ1)
< 0.

This implies that d∆WN (p)

dp
> 0 for p∈ [0,

(
3−
√

3
)
/2] and d∆WN (p)

dp
< 0 for (

(
3−
√

3
)
/2,1]. Then ∆WN(p) is

unimodal in p∈ [0,1].

When N = 4, we have ∆WN(p) = 6−8p+3p2

4−6p+4p2−p3 ·
C(1−ρ1)

λ0(1+ρ0−ρ1)
, taking the derivative of ∆WN(p) with respect

to p gives

∂∆WN(p)

∂p
=

h4(p)

(−4 + 6p− 4p2 + p3)
2 ·

C(1− ρ1)

λ0(1 + ρ0− ρ1)
,

h′4(p) = 4(−6 + 16p− 12p2 + 3p3),

h′′4(p) = 4(16− 24p+ 9p2)> 0,

where h4(p) = 4−24p+32p2−16p3 +3p4. It follows that h′4(p) is increasing in p∈ [0,1]. As h′4(p)|p=0 =−24<

0<h′4(p)|p=1 = 4, we can get that h4(p) is decreasing first and then increasing in p∈ [0,1]. It is not difficult

to verify that h4(p)|p=0 = 4 > 0 > h4(p)|p=1 = −1, thus ∆WN(p) is increasing first and then decreasing in

p∈ [0,1], i.e., ∆WN(p) is unimodal in p∈ [0,1].
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When N ≥ 5, we have

∂∆WN(p)

∂p
=
N(1− p)N [N − 1 + (1− p)N ]p2− (1− p)2[1− (1− p)N ]2

(1− (1− p)N)2(1− p)2p2
· C(1− ρ1)

λ0(1 + ρ0− ρ1)
.

Then it suffices to show

N(1−p)N [N −1 + (1−p)N ]p2− (1−p)2[1− (1−p)N ]2 < 0 or

[
N

1− (1− p)N
− 1

]
N(1− p)N

1− (1− p)N
<

(1− p)2

p2
.

Let x= (1− p)N , it is sufficient to show

x lnx

1−x

(
lnx

1−x
− ln(1− p)

)
<

[
(1− p) ln(1− p)

p

]2

holds for all p∈ [0,1] and x∈ [0, (1− p)5]. Let f(x,p) = x lnx
1−x

(
lnx
1−x − ln(1− p)

)
, we have

∂f(x,p)

∂x
=− (1−x) ln(1− p)(1−x+ lnx)− lnx(2− 2x+ (1 +x) lnx)

(1−x)3
.

Since 1−x+lnx< 0 and ln(1−p) = lnx/N ≥ lnx/5 when N ≥ 5, it follows that ∂f(x,p)/∂x> h5(x)/(1−x)3,

where h5(x) = lnx[9− 8x−x2 + 2(2 + 3x) lnx]. Notice that

dh5(x)

dx
=−2 + 4/x− 2x+ 6 lnx,

d2h5(x) lnx

dx2
=−2 (2− 3x+x2)

x2
< 0,

so that dh5(x)

dx
> dh5(x)

dx
|x=1 = 0. Then 9− 8x− x2 + 2(2 + 3x) lnx < (9− 8x− x2 + 2(2 + 3x) lnx < 0)|x=1 = 0.

Since lnx< 0 for x∈ [0, (1− p)5], it follows that

∂f(x,p)

∂x
>

h5(x)

(1−x)3
> 0.

In other words, we can deduce that
[

N
1−(1−p)N − 1

]
· N(1−p)N

1−(1−p)N is decreasing in N ≥ 5. Then it is sufficient to

show ([
N

1− (1− p)N
− 1

]
N(1− p)N

1− (1− p)N

)
|N=5 <

(1− p)2

p2

or equivalently (1− p)2p5
(
−50 + 140p− 160p2 + 95p3− 30p4 + 4p5

)
< 0.

Let g(p) =−50 + 140p− 160p2 + 95p3− 30p4 + 4p5, we have

dg(p)

dp
= 140− 320p+ 285p2− 120p3 + 20p4,

d2g(p)

dp2
=−320 + 570p− 360p2 + 80p3,

d3g(p)

dp3
= 570− 720p+ 240p2,

d4g(p)

dp4
=−720 + 480p < 0.

Therefore, d
3g(p)

dp3
is decreasing in p∈ [0,1]. Since d3g(p)

dp3
|p=1 > 0, we have d3g(p)

dp3
> 0 for p∈ [0,1]. It implies that

d2g(p)

dp2
is increasing in p ∈ [0,1]. As d2g(p)

dp2
|p=1 < 0, then d2g(p)

dp2
< 0 for all p ∈ [0,1], i.e., dg(p)

dp
is decreasing in

p∈ [0,1]. Because dg(p)

dp
|p=1 = 5> 0, we can get that g(p) is increasing in p∈ [0,1], which follows that g(p)≤ 0

by noticing that g(p)< g(1) =−1. Thus we can complete this proof. �

Proof of Proposition 4. We consider the following four cases:

(1) When N = 2, ∆WN(p) is increasing in p. (i) If ∆WN(0)≥ P , we have ∆WN(p)≥ P for all p ∈ [0,1],

then purchasing PTAS is the unique equilibrium. Since lim
p→0+

∆WN(p) = C(1−ρ1)

2λ0(1+ρ0−ρ1)
, purchasing PTAS is the
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unique equilibrium if and only if P ≤ C(1−ρ1)

2λ0(1+ρ0−ρ1)
. (ii) If ∆WN(1)≤ P , we have ∆WN(p)≤ P for all p∈ [0,1],

then never purchasing PTAS is the unique equilibrium. Since lim
p→1

∆WN(p) = C, never purchasing PTAS is

the unique equilibrium if and only if P > C(1−ρ1)

λ0(1+ρ0−ρ1)
. (iii) Otherwise, if P ∈ (∆WN(0),∆WN(1)), there exist

two pure equilibrium strategies p(1)
e = 0, p(2)

e = 1 and unique mixed equilibrium p(3)
e = 2Pλ0(1+ρ0−ρ1)−C(1−ρ1)

Pλ0(1+ρ0−ρ1)

that uniquely solves ∆WN(p) = P in p ∈ (0,1). Among the three equilibria above, by Definition 3, we can

verify that the mixed equilibrium p(3)
e = 2Pλ0(1+ρ0−ρ1)−C(1−ρ1)

Pλ0(1+ρ0−ρ1)
is not ESS because when others adopt strategy

p(3)
e + δ for some small δ > 0, we have ∆WN(p(3)

e + δ)>P . Thus for the tagged customer, the best response

is to deviate from strategy p(3)
e to pBR = 1.

(2) When N = 3, we have ∆WN(p) = 3−2p
3−3p+p2

C(1−ρ1)

λ0(1+ρ0−ρ1)
, which is unimodal in p. We can verify that

∆WN(p)|p=0 = ∆WN(p)|p=1 = C(1−ρ1)

λ0(1+ρ0−ρ1)
<∆WN(p)|p∈(0,1) and ∆WN(p) is maximized at p̂3 = (3−

√
3)/2,

where QN(p̂3) = 2C
√

3(1−ρ1)

3λ0(1+ρ0−ρ1)
. Therefore, (i) if P ≤ C(1−ρ1)

λ0(1+ρ0−ρ1)
, we have ∆WN(p)≥ P for all p ∈ [0,1], then

purchasing PTAS is the unique equilibrium, i.e., pe = 1. (ii) If P > QN(p̂3), then never purchasing PTAS

is the unique equilibrium by noticing that QN(p) ≤ P for all p ∈ [0,1], i.e., pe = 0. (iii) Otherwise, if P ∈

( C(1−ρ1)

λ0(1+ρ0−ρ1)
, 2C

√
3(1−ρ1)

3λ0(1+ρ0−ρ1)
), there exist one pure equilibrium strategy p(1)

e = 0 and two mixed equilibrium

strategies

p(2)
e =

3P − 2(1− ρ1)C/(λ0[1 + ρ0− ρ1])−
√

4[(1− ρ1)C/(λ0[1 + ρ0− ρ1])]2− 3P 2

2P

<
3P − 2(1− ρ1)C/(λ0[1 + ρ0− ρ1]) +

√
4[(1− ρ1)C/(λ0[1 + ρ0− ρ1])]2− 3P 2

2P
= p(3)

e .

Similar to the argument in case (1), we can verify that p(2)
e is not ESS among the three equilibria.

(3) When N = 4, we have ∆WN(p) = C[1−ρq]
λ

6−8p+3p2

4−6p+4p2−p3 , which is unimodal in p. We can verify that

∆WN(p)|p=0 = 3C(1−ρ1)

2λ0(1+ρ0−ρ1)
>∆WN(p)|p=1 = C(1−ρ1)

λ0(1+ρ0−ρ1)
and ∆WN(p) is maximized at p̂4, where p̂4 ∈ (0,1)

uniquely solves 4− 24p+ 32p2− 16p3 + 3p4 = 0 (see the proof of Lemma 2). Therefore, (i) if P ≤∆WN(1) =

C(1−ρ1)

λ0(1+ρ0−ρ1)
, we have pe = 1. (ii) If P >∆WN(p̂4), then never purchasing PTAS is the unique equilibrium, i.e.,

pe = 0. (iii) If P ∈ (∆WN(1),∆WN(0)), there exists unique equilibrium strategy pe ∈ (p̂4,1), which uniquely

solves ∆WN(p) = P . (iv) If P ∈ [∆WN(0),∆WN(p̂4)), there exist one pure equilibrium strategy p(1)
e = 0

and two mixed equilibrium strategies p(2)
e < p(3)

e , where p(2)
e and p(3)

e are the solutions of ∆WN(p) = P in

p∈ (0, p̂4) and p∈ (p̂4,1), respectively. And we can verify that p(2)
e and p(3)

e are not ESS.

(4) When N ≥ 5, ∆WN(p) is decreasing in p∈ [0,1]. We can verify that lim
p→0+

∆WN(p) = C(N−1)(1−ρ1)

2λ0(1+ρ0−ρ1)
and

lim
p→1−

∆WN(p) = C(1−ρ1)

λ0(1+ρ0−ρ1)
by using L’Hospital rule. (i) If ∆WN(0)≤ P , then pe = 0. (ii) If ∆WN(1)≥ P ,

then pe = 1. (iii) Otherwise, if P ∈ (∆WN(1),∆WN(0)), the unique mixed equilibrium strategy is given

by pe ∈ (0,1), which uniquely solves ∆WN(p) = P . And it is naturally identifies the ESS because of its

uniqueness. By summarizing the results above, the proof is completed. �

Proof of Theorem 1. We define the following thresholds for the PTAS fee

P 1 =
C(1− ρ)

Λ
, P̄1 =

C(N − 1)(1− ρ)

2Λ
, P 2 =

C

Λ[(µR/C − 1)ρ+ 1]
, P̄2 =

C(N − 1)

Λ[2 + ρ(2µR/C −N − 1)]
, (33)
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Let p̃, p̄ and p′ be the unique solutions to equations

CQN(p̃)(1− ρ)

Λ(1− p̃)
= P,

CQN(p̄)

Λ(1− p̄)[(µR/C −QN(p̄)− 1)ρ+ 1]
= P,

CQN(p′)

Λ(1− p′)(QN(p′) + 1)
= P. (34)

And finally, we define

ρs(p) =
QN(p)

µ(R− pP )/C −QN(p)− 1
, ρl(p) = 1− 1

µR/C −QN(p)− 1
,

q01 =
µQN(p′)

Λ[µ(R− p′P )/C −QN(p′)− 1]
, q11 =

µ

Λ
− µ

Λ(µR/C − 1)
, q12 =

µ

Λ
− µ

Λ[µR/C −QN(p̄)− 1]
,

q13 =
µ

Λ
− 2µ

Λ[2µR/C −N − 1]
, q14 = min

{
Λ, µ− µ

µR/C −QN(p′)− 1

}
. (35)

According to our preassumption that µR/C ≥N + 1, we have µR/C ≥QN(p) + 2 for all p ∈ [0,1], which

implies that qe1 > 0 by Proposition 2. Notice that ∆WN(p) is decreasing in p ∈ [0,1] when N ≥ 5 by Lemma

2, then three cases are considered below.

(i) If qe0 = qe1 = 1, by the definitions of ρs(p) and ρl(p), see Propositions 2-3, we consider the following three

subcases.

• pe = 0 is the equilibrium if and only if (1) ρ > ρs(0); (2) ρ ≤ ρl(0); and (3) P > P̄1 = ∆WN(0) =

C(N−1)(1−ρ)
2Λ

.

• pe = 1 is the equilibrium if and only if (1) ρ> ρs(1); (2) ρ≤ ρl(1); and (3) P ≤ P 1 = ∆WN(1) = C(1−ρ)
Λ

.

• pe ∈ (0,1) is an equilibrium if and only if (1) ρ > ρs(p̃); (2) ρ≤ ρl(p̃); and (3) P = ∆WN(p̃) ∈ (P 1, P̄1],

where p̃ is the unique solution of
CQN(p̃)(1− ρ)

Λ(1− p̃)
= P. (36)

(ii) If qe0 = 1> qe1, we consider the following three subcases.

• pe = 0 is the equilibrium if and only if (1) ρ > ρs(0); (2) ρ > ρl(0); and (3) P > P̄2 = ∆WN(0) =
C(N−1)(1−ρe1)

2Λ(1+ρ−ρe1)
, where ρe1 = 1− 2

2µR/C−N−1
, i.e., qe1 = µ

Λ
− 2µ

Λ[2µR/C−N−1]
.

• pe = 1 is the equilibrium if and only if (1) ρ> ρs(1); (2) ρ> ρl(1); and (3) P ≤ P 2 = ∆WN(1) =
C(1−ρe1)

Λ(1+ρ−ρe1)
,

where ρe1 = 1− 1
µR/C−1

, i.e., qe1 = µ

Λ
− µ

Λ(µR/C−1)
.

• pe ∈ (0,1) is the equilibrium if and only if (1) ρ > ρs(p̄); (2) ρ > ρl(p̄); and (3) P = ∆WN(p̄) ∈ (P 2, P̄2],

where ρe1 = 1− 1
µR/C−QN (p̄)−1

, i.e., qe1 = µ

Λ
− µ

Λ[µR/C−QN (p̄)−1]
, and p̄ is the unique solution of

CQN(p̄)(1− ρe1)

Λ(1− p̄)(1 + ρ− ρe1)
= P. (37)

(iii) If 0 ≤ qe0 < 1, then the equilibrium can be determined by qe0U0(p′, qe0) = 0, qe1 = max{q1|U1(p′, q1) ≥ 0}

and ∆WN(p′) = P . Solving the two equations above gives

qe0 =

(
µQN(p′)/Λ

µ(R− p′P )/C −QN(p′)− 1

)+

and qe1 = min

{
1,

1

ρ
− 1

ρ[µR/C −QN(p′)− 1]

}
.

It is not difficult to verify that ρl(p) is increasing in p ∈ [0,1] because of the monotonicity of QN(p). In

addition, notice that ρs(p) can be rewritten as

ρs(p) =
QN(p)/(1− p)

(µ(R−P )/C − 1)/(1− p) +µP/C −QN(p)/(1− p)
,
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where QN(p)/(1−p) is decreasing in p∈ [0,1] when N ≥ 5 by Lemma 2. Then ρs(p) is decreasing in p∈ [0,1].

Since ρs(0)< ρl(0)⇔ µR

C
>N + 1 (holds naturally due to our preassumption that µR/C ≥N + 1), we have

ρs(1) = 0<ρs(p̃)<ρs(0)<ρl(0)<ρl(p̃)<ρl(1). On the other hand, we can verify that P̄1 < P̄2 and P 1 <P 2.

Combining the monotonicity of QN(p)/(1− p) and the fact that

CQN(p)(1− ρe1)

Λ(1− p)(1 + ρ− ρe1)
>
CQN(p)(1− ρ)

Λ(1− p)
,

we can verify that p̄ > p̃ by using equations (36)-(37). Combining the three cases above, we can get the two

tables in Theorem 1 by comparing P̄1 and P 2, which completes this proof. �

Proof of Theorem 2. (1) When R−P −C/µ≥ 0, consider the tagged customer who finds an unavailable

server and n customers. If n=N − 1, she can activate this system if she joins, then she will join if and only

if R≥CN/µ according to (12). If n≤N − 2, her expected utility is given by

U(0,n)(a) =


R−P − (n+1)C

µ
, if a(0, n) = J1;

R−CTn− (n+1)C

µ
, if a(0, n) = J0;

0, if a(0, n) =B,

where Tn is the expected waiting time of the tagged customer before the system is activated. Obviously, we

have Tn ≥ 1/Λ. As P ≤C/Λ, it is optimal for her to purchase the PTAS if she decides to join. Thus she will

join and purchase the PTAS if and only if n≤min{N − 2, bµ(R−P )/Cc− 1}. Therefore, the best response

of the tagged customer for each system state is given by

(i) If s= (0,N − 1), then the customer will join without purchasing if and only if R≥NC/µ, i.e.,

δe(0,N − 1) =

 J0, if R≥NC/µ;

B, if R<NC/µ.

(ii) If s= (0, n) for n≤N − 2, the customer who finds the server on vacation will join and purchase the

PTAS if and only if n≤ bµ(R−P )/Cc− 1, i.e.,

δe(0, n) =

 J1, if n≤ bµ(R−P )/Cc− 1;

B, if n> bµ(R−P )/Cc− 1.

In summary, when all customers adopt the best response, i.e., on the equilibrium path, the system degenerates

to the M/M/1 queue since it will be activated by the first arriving customer. Combining (12) and the analysis

above gives δe(0,0) = J1 and then

δe(1, n) =

 J0, if 1≤ n≤ bµR/Cc− 1;

B, if n≥ bµR/Cc.

(2) When R−P −C/µ< 0, the expected utility of the first arriving customer will not join, thus δe(0, n) =B

for n∈N. �

Proof of Theorem 3. When an arriving customer finds the server to be on vacation, we must have n≤N−1,

otherwise the server has been activated. We consider the following two cases.
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(i) If all customers will join when they find the server is on vacation, i.e., δ((0, n)) = J0 or δ((0, n)) = J1

for n= 0,1, . . . ,N − 1. Then the purchasing strategy of customers can be described in the following order:

ψ(i) =

 1, if she purchases at n= i;

0, if she does not purchase at n= i.

for i= 1,2, . . . ,N − 1. Denote by ψ∗(i) the best response of customers at state (0, i). We firstly show that

ψ∗(i) ·ψ∗(i+ 1) = 0 for all i= 1,2, . . . ,N − 2. That is, ψ∗(i) = 1 implies that ψ∗(i− 1) = 0 and ψ∗(i+ 1) = 0.

Otherwise, if ψ∗(i) = ψ∗(i+ 1) = 1. Consider the tagged customer who finds i customers upon arrival, by

following this strategy, her expected cost is given by (i+1)C

µ
+P . If she deviates to not purchase the PTAS, the

server would be activated by the next arriving customer, then her expected cost is (i+1)C

µ
+ C

Λ
> (i+1)C

µ
+P .

That is, by deviating this strategy ψ∗(i), a lower cost can be derived. Thus ψ(i) cannot be the best response,

i.e., under equilibrium strategy, we must have ψ∗(i) · ψ∗(i+ 1) = 0 for all i = 1,2, . . . ,N − 2. It should be

noted that the customer who finds n=N − 1 would never purchase the PTAS because the server has been

activated if she joins. Then it gives ψ∗(N − 1) = 0. Consider the one who finds N − 2 and decides to join,

her expected cost is given by

cost(N − 2;ψ∗(N − 1) = 0) =


(N−1)C

µ
+P, if ψ(N − 2) = 1;

(N−1)C

µ
+ C

Λ
, if ψ(N − 2) = 0.

Since (N−1)C

µ
+P > (N−1)C

µ
+ C

Λ
, it is never for her to purchase PTAS, which gives ψ∗(N − 2) = 0. Similarly,

consider the one who finds N − 3, her expected cost is given by

cost(N − 3;ψ∗(N − 2) = 0,ψ∗(N − 1) = 0) =


(N−2)C

µ
+P, if ψ(N − 3) = 1;

(N−2)C

µ
+ 2C

Λ
, if ψ(N − 3) = 0.

Based on the definition of I, if I ≥ 2, we have (N−2)C

µ
+ P > (N−2)C

µ
+ 2C

Λ
, then it gives ψ∗(N − 3) = 0.

Similar to this argument, it follows that ψ∗(N − 1− j) = 0 for all 1≤ j ≤ I − 1. Consider the one who finds

n=N − (I + 1), her expected cost is given by

cost(N − (I + 1);ψ∗(N − 1− j) = 0, j ∈ [0, I − 1]) =


(N−I)C

µ
+P, if ψ(N − (I + 1)) = 1;

(N−I)C
µ

+ IC
Λ
, if ψ(N − (I + 1)) = 0.

Then we must have ψ∗(N − (I + 1)) = 1 since (N−I)C
µ

+P ≤ (N−I)C
µ

+ IC
Λ

. Analogically, we can obtain that

ψ∗(i) =

 1, if mod(N − 1− i, I) = 0 ;

0, if mod(N − 1− i, I)> 0 .

for i=N − 2,N − 3, . . . ,0. Under strategy {ψ∗(i), i ∈ [0,N − 2]}, the expected cost of customer is given by

u(i) (see (13)). Therefore, if R≥max{u(i)}, all customer will join when they find n≤N − 1 under the best

response. Then the SPE δe(s) for each state s can be characterized accordingly.

(ii) If R<max{u(i)}, {ψ∗(i), i ∈ [1,N − 1]} cannot be an equilibrium strategy in purchasing PTAS. And

the server can only be activated by receiving a PTAS request from customer (otherwise all customers will join,

which contradicts to R<max{u(i)}). Denote by nJ (nJ <N − 1) the threshold that customers join if and

only if n≤ nJ under equilibrium. Then we must have ψ∗(nJ) = 1 (otherwise the server cannot be activated).
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Thus it gives nJ ≤ (R−P )µ

C
− 1, which implies that nJ = b (R−P )µ

C
c− 1. Based on the similar argument in case

(i), we can obtain that

ψ∗(i) =

 1, if mod(nJ − i, I) = 0 ;

0, if mod(nJ − i, I)> 0 .

for i = 0,1, . . . , nJ , sequently. Under strategy {ψ∗(i), i ∈ [0, nJ ]}, we can also obtain the corresponding

expected cost of customers:

ũ(i) =


(i+1)C

µ
+P, if mod(nJ − i, I) = 0;

(i+1)C

µ
+ mod(nJ−i,I)C

Λ
, if mod(nJ − i, I)> 0.

(38)

for i= 0,1, . . . , nJ . It is not difficult to verify that R≥ ũ(i) for i= 0,1, . . . , nJ since ũ(i)≤ (nJ + 1)C/µ+P

for i= 0,1, . . . , nJ .

That is, under the equilibrium strategy, all customers who find that n≤ nJ will definitely join. Thus, we can

fully characterize the SPE δe as follows:

(i) If R ≥ max{u(i)}, customers join the queue for all n ≤ N − 1 and adopt PTAS if and only if n =

N − 1− k · I for some k= 1,2, ..., b(N − 1)/Ic, i.e., for all n≤N − 1,

δe(0, n) =

 J1, if n=N − 1− k · I for some k= 1,2, ..., b(N − 1)/Ic;

J0, if n 6=N − 1− k · I for all k= 1,2, ..., b(N − 1)/Ic.

(ii) If R<max{u(i)}, customers join the queue if and only if n≤ nJ = b(R−P )µ/Cc−1 and adopt PTAS

if and only if n= nJ − k · I for some k= 1,2, ..., bnJ/Ic, i.e.,

δe(0, n) =


J1, if n≤ nJ and n= nJ − k · I for some k= 1,2, ..., bnJ/Ic;

J0, if n≤ nJ and n 6= nJ − k · I for all k= 1,2, ..., bnJ/Ic;

B, if n> nJ .

Similar to Theorem 2, on the equilibrium path, some states will not appear, then the equilibrium strategy

of customers is given by

(i) If R≥max{u(i)},

δe(0, n) =

 J0, if n≤mod(N − 1, I)− 1;

J1, if mod(N − 1, I) = n.
δe(1, n) =

 J0, if mod(n̄, I) + 1≤ n≤ bµR/Cc− 1;

B, if bµR/Cc ≤ n.

(ii) If R<max{u(i)},

δe(0, n) =

 J0, if n≤mod(nJ , I)− 1;

J1, if mod(nJ , I) = n.
δe(1, n) =

 J0, if mod(nJ , I) + 1≤ n≤ bµR/Cc− 1;

B, if bµR/Cc ≤ n.

�

Proof of Theorem 4. (1) When P ≤ C/Λ, under equilibrium, the customer who finds an empty system

would purchase the PTAS (see Theorem 2). Thus the system degenerates to the classic work-conservation

queueing system, which follows that

π0,0Λ = π1,1µ, π1,iΛ = π1,i+1µ
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for i= 1,2, . . . , n1 − 1, n1 = bµR/Cc. By solving the equations above, we can obtain the steady-state prob-

abilities. The system throughput is λoe = Λ(1− π0,n1
) = Λ(1−ρn1 )

1−ρn1+1 . And the revenue of service provider by

selling PTAS is Πo = Λπ0,0P = ΛP (1−ρ)
1−ρn1+1 .

(2) When P >C/Λ, under equilibrium, the system can be activated by the (n2 + 1)-th customer, where

n2 =

mod(N − 1, I), if R≥max{u(i)};

mod(nJ , I), if R<max{u(i)}.

by Theorem 3. Then the state transition equations are given by

π0,0Λ = π1,1µ, π0,iΛ = π0,i−1Λ,

π1,n2+1(Λ +µ) = (π1,n2
+π0,n2

)Λ +π1,n2+2µ, π1,jΛ = π1,j+1µ,

π1,1(Λ +µ) = π1,2µ, π1,k(Λ +µ) = π1,k−1Λ +π1,k+1µ,

where i= 1,2, . . . , n2, j = n2 + 2, n2 + 3, . . . , n1− 1 and k= 1,2, . . . , n2. Then it gives

π0,i = π0,0, π1,1 = ρπ0,0,

π1,k+1 = π1,kρ+π1,1, π1,j = π1,n2+1ρ
j−n2−1,

where i = 1,2, . . . , n2, j = n2 + 2, n2 + 3, . . . , n1 and k = 1,2, . . . , n2. Then we have π1,k+1 − π1,1

1−ρ = (π1,1 −
π1,1

1−ρ )ρk, which implies that π1,k+1 =
ρπ0,0(1−ρk+1)

1−ρ for k= 0,1, . . . , n2. And it gives π1,j =
ρj−n2π0,0(1−ρn2+1)

1−ρ for

j = n2 + 2, n2 + 3, . . . , n1. Combining the normalization condition follows that

π0,0

(
n2 + 1 +

n2∑
k=0

ρ(1− ρk+1)

1− ρ
+

n1∑
j=n2+2

ρj−n2(1− ρn2+1)

1− ρ

)
= 1,

which gives π0,0 = (1−ρ)2

(1−ρ)(n2+1)+ρn1+1(ρ−ρ−n2 )
. Then we can get

π0,i =
(1− ρ)2

(1− ρ)(n2 + 1) + ρn1+1(ρ− ρ−n2)
,

π1,k+1 =
ρ(1− ρ)(1− ρk+1)

(1− ρ)(n2 + 1) + ρn1+1(ρ− ρ−n2)
,

π1,j =
ρj−n2(1− ρ)(1− ρn2+1)

(1− ρ)(n2 + 1) + ρn1+1(ρ− ρ−n2)

for i= 0,1, . . . , n2, k= 0,1, . . . , n2 and j = n2 +2, n2 +3, . . . , n1. The system throughput is λoe = Λ(1−π1,n1
) =

Λ[(1−ρ)(n2+1)+ρn1 (ρ−ρ−n2 )]

(1−ρ)(n2+1)+ρn1+1(ρ−ρ−n2 )
. The PTAS revenue is given by Πo = ΛPπ0,n2

= ΛP (1−ρ)2

(1−ρ)(n2+1)+ρn1+1(ρ−ρ−n2 )
, which

completes this proof. �

Proof of Theorem 5. When ρ > ρl = 1− 1
µR/C−1

(i.e., R < (2−ρ)C
µ

if ρ < 1) and P < P 2 = C
Λ[(µR/C−1)ρ+1]

(i.e., R< ΛP−(1−ρ)C
Λ

), we have Πu = ΛP (1−ρ1)

1+ρ−ρ1
= ΛP

(µR/C−1)ρ+1
by the proof of Theorem 1. Therefore, let

R=

min
{

(2−ρ)C
µ

, ΛP−(1−ρ)C
Λ

}
, if ρ< 1;

ΛP−(1−ρ)C
Λ

, if ρ≥ 1,

we have

Πu =
ΛP (1− ρ1)

1 + ρ− ρ1

=
ΛP

(µR/C − 1)ρ+ 1
when R<R.
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On the other hand, the revenue in observable case is given by

Πo =
ΛP (1− ρ)2

(1− ρ)(n2 + 1) + ρn1+1(ρ− ρ−n2)
≤ ΛP (1− ρ)

1− ρn1+1

since ΛP (1−ρ)2

(1−ρ)(n2+1)+ρn1+1(ρ−ρ−n2 )
is maximized at n2 = 0. To show Πo <Πu when R<R, it suffices to prove

ΛP

(µR/C − 1)ρ+ 1
>

ΛP (1− ρ)

1− ρn1+1
.

According to the definition of n1, we have µR/C − 1<n1, then it is sufficient to show

1

n1ρ+ 1
≥ 1− ρ

1− ρn1+1
.

We consider the following three cases.

(1) If ρ< 1, then
1

n1ρ+ 1
>

1− ρ
1− ρn1+1

⇔ ρn1 − 1−n1(1 + ρ)< 0.

Since ρn1−1−n1(1+ρ) is decreasing in n1, we have ρn1−1−n1(1+ρ)<ρ0−1−0(1+ρ) = 0, which implies

that Πo <Πu.

(2) If ρ= 1, then 1
n1ρ+1

− 1−ρ
1−ρn1+1 ≡ 0 for any n1, then we can still have Πo <Πu.

(3) If ρ> 1, then
1

n1ρ+ 1
>

1− ρ
1− ρn1+1

⇔ ρn1 − 1−n1(1 + ρ)> 0,

which increases in ρ > 1. Since lim
ρ→1+

ρn1 − 1−n1(1 + ρ) = 0, we can get that Πo <Πu, which completes this

proof. �

Proof of Theorem 6. By the proof of Theorem 1, we have λue = Λ when ρ < ρl(0) ⇔ Λ < Λ ≡ µ −
µ

µR/C−(N+1)/2
. Notice that there always have some customers balk in observable case due to the endogenous

threshold strategy of customers, under which the system throughput satisfies λoe <Λ. It implies that λue >λ
o
e

when Λ<Λ. �

Proof of Theorem 7. (1) In the unobservable case, by (9), it is directly to derive that

lim
Λ→0

Πu(Λ) =
(1−λe1/µ)peΛP

1 + ρ−λe1/µ
= 0.

On the other hand, for any Λ > µ, we have R > CN/µ > C
(
i
µ

+ N−i
Λ

)
for any i = 0,1, . . . ,N . Then B0-

customers will definitely join, i.e., qe0 = 1. Also, in equilibrium, we must have qe1 < 1 to ensure the stability of

system, thus it gives

∆WN(p) =
C [1− [1 + p(N − 1)](1− p)N−1] (1− ρ1)

λ0p[1− (1− p)N ](1 + ρ0− ρ1)
<
Cµ [1− [1 + p(N − 1)](1− p)N−1]

p[1− (1− p)N ]Λ2
.

Therefore, for any given PTAS fee P , if Λ >

√
Cµmax{N−1

2
,2}

P
> max

p∈[0,1]
{
√

Cµ[1−[1+p(N−1)](1−p)N−1]
p[1−(1−p)N ]P

}, we

have P > max
p∈[0,1]

{∆WN(p)}, i.e., pe = 0 is the unique equilibrium. Then we have lim
Λ→∞

Πu(Λ) < lim
Λ→∞

Λ ·
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Cµmax{N−1
2

,2}
Λ2 = 0. Thus we can get that Πu(0) = Πu(∞) = 0. When Λ∈ (0, µ), we can always obtain a posi-

tive PTAS revenue by charging a relatively small PTAS fee, i.e., Πu(Λ)> 0 for Λ∈ (0, µ), that is, the PTAS

revenue is non-monotone in Λ.

(2) In the observable case, when P ≤ C/Λ, we have Πo(Λ) = ΛP (1−ρ)
1−ρn1+1 < ΛR, then it gives lim

Λ→0
Πo(Λ) = 0.

Also, ΛP ≤C implies that Πo(Λ) = ΛP (1−ρ)
1−ρn1+1 <

C(1−ρ)
1−ρn1+1 . Therefore, we conclude that

lim
Λ→∞

Πo(Λ)< lim
ρ→∞

C(1− ρ)

1− ρn1+1
= lim
ρ→∞

C

(n1 + 1)ρn1
= 0.

When P >C/Λ, we have

Πo(Λ) =
ΛP (1− ρ)2

(1− ρ)(n2 + 1) + ρn1+1(ρ− ρ−n2)
<

ΛP (1− ρ)

1− ρn1+1
<

ΛR(1− ρ)

1− ρn1+1

by noticing that ΛP (1−ρ)2

(1−ρ)(n2+1)+ρn1+1(ρ−ρ−n2 )
is decreasing in n2. Then it follows that lim

Λ→0
Πo(Λ) = 0 and

lim
Λ→∞

Πo(Λ)< lim
Λ→∞

µRρ(1− ρ)

1− ρn1+1
= lim

Λ→∞

2

(n1 + 1)n1ρn1−1
= 0.

Therefore, the revenue in the observable case satisfies Πo(0) = Πo(∞) = 0<Πo(Λ) for any Λ∈ (0,∞), i.e.,

Πo(Λ) is non-monotone in Λ. �

Proof of Theorem 8. (1) In the unobservable case, we have

∆WN(p) =
C [1− [1 + p(N − 1)](1− p)N−1] (1− ρ1)

λ0p[1− (1− p)N ](1 + ρ0− ρ1)
≥ C(1−Λ/µ) [1− [1 + p(N − 1)](1− p)N−1]

p[1− (1− p)N ]Λ

since λ0 ≤Λ. For any P <R−C/µ, if Λ< µ

µ(R−C/µ)/A+1
, where A= min

p∈[0,1]

C[1−[1+p(N−1)](1−p)N−1]
p[1−(1−p)N ]

=C/2, we

can get

P <R−C/µ< C(1−Λ/µ) [1− [1 + p(N − 1)](1− p)N−1]

p[1− (1− p)N ]Λ
≤∆WN(p)

for any p ∈ [0,1]. In equilibrium, it follows that pe = 1 for any P < R − C/µ. Recall that when Λ <

min{ µ

µ(R−C/µ)/A+1
,Λ}, Πu(Λ) =

(1−λe
1/µ)peΛP

1+ρ−λe
1/µ

is increasing in P ∈ (0,R − C/µ), where λe1 = min{µ −
µ

µR/C−1
,1}. That is to say, P u(Λ) =R−C/µ when Λ<min{ µ

µ(R−C/µ)/A+1
,Λ}, which implies that P u(0) =

R−C/µ.

On the other hand, for any Λ>µ, by the proof of Theorem 7, for any given PTAS fee P , we have pe = 0 if

Λ>

√
Cµmax{N−1

2
,2}

P
⇔ P >

Cµmax{N−1
2

,2}
Λ2 , we have pe = 0. Therefore, to have a positive PTAS revenue, we

must have P u(Λ)<
Cµmax{N−1

2
,2}

Λ2 , which implies that P u(∞) = 0.

(2) In the observable case, for any Λ> 0, when P ≤ C/Λ, the PTAS revenue is Πo(Λ) = ΛP (1−ρ)
1−ρn1+1 , which

increases in P ∈ [0,C/Λ], i.e., P o(Λ)≥C/Λ.

Combining the results above, for Λ≥ µ, we have P u(Λ)<
Cµmax{N−1

2
,2}

Λ2 and P o(Λ)≥C/Λ. That is to say,

when C
Λ
>

Cµmax{N−1
2

,2}
Λ2 ⇔Λ> Λ̄ = µmax{N−1

2
,2}, we have P o(Λ)>P u(Λ), which completes this proof.

�

Proof of Theorem 9. We just consider the case that R>CN/µ, since when R≤CN/µ, no customer will

join in the regular vacation queues.
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(1) In the unobservable case, by Proposition 1, the throughput is λue (pe) = λ0(pe)

1+ρ0(pe)−ρ1(pe)
. Then it suffices

to show qei (p)≥ qei (0) for any p∈ (0,1], i= 0,1. By Proposition 2, we have

qe1(p)> qe1(0)⇔ ρl(p)>ρl(0)⇔QN(p)≤ (N − 1)/2,

which holds naturally by the definition of QN(p). By Proposition 3, qe0(p) = 1 is an ESS if and only if ρ> ρs(p),

then it follows that

qe0(p)> qe0(0)⇔ ρs(p)<ρs(0).

By the proof of Theorem 1, we have that ρs(p) is decreasing in p∈ [0,1], which gives ρs(p)<ρs(0).

(2) In the observable case, the throughput by providing PTAS is λoe = Λ[(1−ρ)(n2+1)+ρn1 (ρ−ρ−n2 )]

(1−ρ)(n2+1)+ρn1+1(ρ−ρ−n2 )
, while the

throughput in regular vacation queues is λoc = Λ[(1−ρ)(N+1)+ρn1 (ρ−ρ−N )]

(1−ρ)(N+1)+ρn1+1(ρ−ρ−N )
by Guo and Hassin (2011). It is not

difficult to verify that λoe is decreasing in n2. Thus, λoe ≥ λoc if and only if n2 ≤N . By the definition of n2

that

n2 =

mod(N − 1, I), if R≥max{u(i)};

mod(nJ , I), if R<max{u(i)},

it follows that n2 <N immediately. �

Proof of Theorem 10. We first establish the benchmark of non-preemptive priority queues when the

server’s state is disclosed. Denote by F the priority fee and Λ the potential arrival rate. And let the effective

arrival rate of priority and ordinary customers be λp1 and λo1, respectively. Then the steady-state probability

that the server is inactive is given by

π0 =
1− ρ1

1− ρ1 + ρ
,

where ρ= Λ/µ and ρ1 = (λo1 +λp1)/µ. When the server is found to be inactive, all arriving customer will join

without purchasing priority since their expected utility is R−C/µ > 0 and they will not be preempted by

future priority customers. When the server is active, one can check that the average queue length is

L=
ρ

(1− ρ1)(1− ρ1 + ρ)
= π0 · 0 +π1 ·L1,

where π1 = 1−π0 is the steady-state probability that the server is active, and L1 is the average queue length

(including ordinary and priority customers) when the server is active. Thus it gives

L1 =
1

1− ρ1

=
µ

µ−λo1−λ
p
1

.

Since the priority customers own absolute priorities over the ordinary customers arrive at system when the

server is active, they will not be affected by the ordinary ones, the expected queue length of priority queue

(excluding the one in service) when the server is active is Lp1 =
λ
p
1

µ−λp
1
. Thus, the expected queue length

for ordinary queue when the server is active is Lo1 = (L1 − 1)−Lp1 =
λo
1µ

(µ−λp
1)(µ−λp

1−λ
o
1)

(excluding the one in

service). By Little’s law, the expected waiting time in the queue for priority and ordinary customers who

find an active server are given by

wp1 =
Lp1
λp1

=
1

µ−λp1
, wo1 =

Lo1− 1

λo1
=

µ

(µ−λp1)(µ−λp1−λo1)
.
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Thus, under the optimal price fee P , in equilibrium, we have

R−C(wo1 + 1/µ)≥ 0, R−F −C(wp1 + 1/µ)≥ 0, F =C(wo1−w
p
1) =

C(λp1 +λo1)

(µ−λp1)(µ−λp1−λo1)
.

And the revenue collected by selling priority is given by Πp(Λ) = λp1π1F . Next, we consider the following two

cases to compare the revenue by selling PTAS and priorities.

(1) When Λ is relatively small, by Theorem 8, when Λ<min{ µ

2µR/C+1
,Λ}, we have P u =R−C/µ, λ0

e = Λ

and pe = 1. If U1(1, ρ) = R − C
µ

[
1

1−ρ + 1 +QN(1)
]
> 0⇔ Λ < µ

(
1− 1

µR/C−1

)
, then we have λ1

e = Λ, and

the PTAS revenue is given by Πu(Λ) = (1−Λ/µ)Λ(R−C/µ). On the other hand, in priority queues, when

all customers join the system in equilibrium, we have F = CΛ
(µ−Λ)(µ−λp

1)
, then Πp(Λ) =

CΛπ1λ
p
1

(µ−Λ)(µ−λp
1)
≤ CΛ2

(µ−Λ)2
.

Notice that λp1 = Λ is an equilibrium if and only if C
µ−Λ

+ CΛ
(µ−Λ)2

<R⇔ Λ< µ−
√
Cµ/R. Therefore, when

Λ<min
{

µ

2µR/C+1
,Λ, µ

(
1− 1

µR/C−1

)
, µ−

√
Cµ/R

}
, we have

Πu(Λ) = Λ

(
1− Λ

µ

)(
R− C

µ

)
, Πp(Λ)≤ CΛ2

(µ−Λ)2
.

We can verify that Πu(Λ)>Πp(Λ) if

R>
C

µ

[
ρ

(1− ρ)3
+ 1

]
⇔Λ< ρ̂µ,

where ρ̂ uniquely solves R= C
µ

[
ρ

(1−ρ)3 + 1
]
. Let Λ′ ≡min

{
µ

2µR/C+1
,Λ, µ

(
1− 1

µR/C−1

)
, µ−

√
Cµ/R, ρ̂µ

}
, we

have Πu(Λ)>Πp(Λ) for all Λ<Λ′.

(2) When Λ>µ, by the proof of Theorems 7-8, for any fixed P <R−C/µ, we have P u(Λ)<
Cµmax{N−1

2
,2}

Λ2 ,

which implies that Πu(Λ)<
Cµmax{N−1

2
,2}

Λ
. In the pay-for-priority system, in equilibrium, we have

F =
Cλ

(µ−λ)(µ−λp1)
, R= F +

C

µ−λp1
+
C

µ
,

where λp1 and λ are the effective arrival rates of priority customers and total customers, respectively, when

the server is active. Consider the equilibrium that λ= λp1, i.e., all customers purchase priority, we can have

R = Cµ

(µ−λ)2
+ C

µ
, which gives λ = µ −

√
Cµ/(R−C/µ). Then the priority revenue is given by λp1π1F =

Cρ(1−
√
C/(µR−C))2

(
√
C/(µR−C)+ρ)C/(µR−C)

≥ C(1−
√
C/(µR−C))2

(
√
C/(µR−C)+1)C/(µR−C)

, which it is independent of the potential arrival rate Λ.

Therefore, we can get that Πp(Λ)≥ C(1−
√
C/(µR−C))2

(
√
C/(µR−C)+1)C/(µR−C)

>
Cµmax{N−1

2
,2}

Λ
>Πu(Λ) if and only if Λ> Λ̄′ ≡

Cµ(
√
C/(µR−C)+1)max{N−1

2
,2}

(µR−C)(1−
√
C/(µR−C))2

, which completes this proof.

�

Proof of Lemma 3 (1) Since QN(p) is decreasing in p by Lemma 1 and w(p, q) = 1
µ−λ + QN (p)

λ
, which is

obviously decreasing in p. (2) Taking the derivative of w(p, q) with respect to q gives

dw(p, q)

dq
=− 1

Λq2
· (1− p)[1 + (N − 1)(1− p)N −N(1− p)N−1]

p[1− (1− p)N ]
+

1

(µ−λ)2

d2w(p, q)

dq2
=

2

Λq3
· (1− p)[1 + (N − 1)(1− p)N −N(1− p)N−1]

p[1− (1− p)N ]λ
+

2

(µ−λ)3
> 0.

Thus w(p, q) is strictly convex in λ. In particular, if p= 1, we have w(p, q) = 1
µ−λ , which is strictly increasing

in λ.
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When p= 1, w(p, q) is minimized at q̂= 0. Otherwise, if p > 0, the minimum of w(p, q) can be attained at

the unique extreme point that satisfying dw(p,q)

dλ
= 0, i.e., 1

(µ−λ)2
− 1

λ2 · (1−p)[1+(N−1)(1−p)N−N(1−p)N−1]

p[1−(1−p)N ]
= 0. By

solving this equation, we get q̂=
µ
√
QN (p)

Λ(1+
√
QN (p))

, where QN(p) = (1−p)[1+(N−1)(1−p)N−N(1−p)N−1]

p[1−(1−p)N ]
. Also, it is not

difficult to verify that lim
p→1

µ
√
QN (p)

Λ(1+
√
QN (p))

= 0, i.e., q̂ = 0 when p approaches to 1. Since dQN (p)

dp
≤ 0, it follows

that dq̂

dQN (p)
· dQN (p)

dp
≤ 0, i.e., q̂ is decreasing in p∈ [0,1], which completes this proof. �

Proof of Theorem 11 We consider the following two case according to the value of qe.

Case (1) When qe = 1 (must have ρ< 1):

(a) (0,1) is an equilibrium if and only if ∆wN(0,1)≤ P and R−Cw(0,1)≥ 0⇔R≥ C
µ−Λ

+ C(N−1)

2Λ
.

(b) (pe,1) (where pe ∈ (0,1)) is an equilibrium if and only if ∆wN(pe,1) = P and R−Cw(pe,1)− peP ≥

0⇔R− peP − C
µ−Λ
− CQN (pe)

Λ
≥ 0. That is, Λ≤ µ(R−P )−C

R−peP , where pe solves ∆wN(pe,1) = P .

(c) (1,1) is an equilibrium if and only if ∆wN(1,1)≥ P and R−P − C
µ−Λ
≥ 0⇔Λ≤ µ− C

R−P .

Case (2) When qe < 1:

(a) (0, qe) is an equilibrium if and only if ∆wN(0, qe)≤ P and qe is determined by R−Cw(0, qe) = 0⇔

R= C
µ−Λqe

+ C(N−1)

2Λqe
. It should be noted that R= C

µ−Λqe
+ C(N−1)

2Λqe
has at most two solutions, and only the

larger one is an ESS. Then it gives qe =

√
C2(N−3)2−4Cµ(N+1)R+4µ2R2+C(N−3)+2µR

4ΛR
.

(b) (pe, qe) (where pe ∈ (0,1)) is an equilibrium if and only if ∆wN(pe, qe) = P and R−Cw(pe, qe)−peP =

0⇔R− peP − C
µ−Λqe

− CQN (pe)

Λqe
= 0. That is, Λqe = µ(R−P )−C

R−peP and ∆wN(pe, qe) = P .

(c) (1, qe) is an equilibrium if and only if ∆wN(1, qe)≥ P and R−P − C
µ−Λqe

= 0⇔ qe =
µ− C

R−P

Λ
.

By combining all the results above, we can complete this proof. �

Proof of Proposition 5. In no-information case, denote by qc the equilibrium joining probability in regular

vacation queues, it suffices to prove qe ≥ qc.

(1) When qc = 0, i.e., the system cannot be activated, we must have qe ≥ qc.

(2) When 0< qc < 1, it satisfies UNI(0, q
c) = 0. If qe = 1, then it immediately follows that qe > qc. Other-

wise, consider the equilibrium (1, qe), which satisfies R−P −Cw̄(1, qe) = 0. Notice that

qe ≥ qc⇔R−P −Cw̄(1, qc)≥R−Cw̄(0, qc) = 0⇔ P ≤ ∆wN(0, qc)

1−Λqc/µ
.

Thus, if P ≤ ∆wN (0,qc)

1−Λqc/µ
, the equilibrium (1, qe) can induce a higher throughput. On the other hand, if P >

∆wN (0,qc)

1−Λqc/µ
, we will show that (0, qc) is also an equilibrium when PTAS is introduced, then it also induces

that qe ≥ qc. When all others adopt strategy α = (0, qc), assume that the tagged customer adopts strategy

α′ = (p′, q′), her expected utility is given by

ÛNI(α
′;α) = q′ [R− p′P −Cw(0, qc)− p′∆wN(0, qc)] =−p′q′ [P −∆wN(0, qc)]< 0.

Then the best response of the tagged customer is p′ = 0. It follows that (0, qc) is also an equilibrium.

(3) When qc = 1, then UNI(0,1)> 0. If qe < 1, then UNI(p
e, qe) = 0, which is Pareto-nominates by strategy

(0,1). Thus the customers can shift their strategy from (pe, qe) to (0,1) to improve their expected utilities,

which also induces qe = qc = 1. �
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Proof of Proposition 6. In fully unobservable case, for any Λ ≥ µ, we must have qe < 1 to ensure the

stability of system, thus it gives

∆wN(pe, qe) =
C [1− [1 + pe(N − 1)](1− pe)N−1] (1− ρqe)

Λqepe[1− (1− pe)N ]
.

Since pe = 0 and pe = 1 cannot be optimal for service provider (pe = 0 is not optimal for the firm because

the revenue would be zero; pe = 1 is not optimal, either, because the firm can always strictly improve its

revenue by increasing the price). In equilibrium, we must have ∆wN(pe, qe) = P and R−Cw(pe, qe)− peP =

0⇔ R− peP − C
µ−Λqe

− CQN (pe)

Λqe
= 0. That is, Λqe = µ(R−P )−C

R−peP and ∆wN(pe, qe) = P . That is to say, pe is

determined by

∆wN(pe, qe) = P ⇔ C [1− [1 + pe(N − 1)](1− pe)N−1] [(1− pe)P +C/µ]

(µ(R−P )−C)pe[1− (1− pe)N ]
= P.

It follows that pe is independent of Λ. Then the revenue via PTAS is given by

ΠNI(Λ) =
µ(R−P )−C
R− peP

(
1− µ(R−P )−C

R− peP

)
peP > 0,

which is also independent of Λ. Thus, we have ΠNI(Λ) = ΠNI(µ)> 0 for all Λ≥ µ. Recall that lim
Λ→∞

Πu(Λ) =

Πo(Λ) = 0. There must exists a sufficiently large Λ̃′ such that ΠNI(Λ)>Πu(Λ) and ΠNI(Λ)>Πo(Λ) when

Λ> Λ̃′. �

Appendix C: Equilibrium Strategies with N = 2,3,4 and N ≥ µR/C

We hereby supplement Theorem 1 by establishing the equilibrium strategies in the unobservable case for N

not satisfying conditions as required in Theorem 1.

Proposition 8 Consider the unobservable M/M/1 vacation queue with PTAS. When N = 2,3,4 or

N ≥ µR/C, the joint equilibrium strategy is given below:

E =



(1,1,1), if ρs(1)<ρ≤ ρl(1) and P ≤m(Λ,Λ);

(p̃,1,1), if ρs(p̃)<ρ≤ ρl(p̃) and m(Λ,Λ)<P ≤M(Λ,Λ);

(0,1,1), if ρs(0)<ρ≤ ρl(0) and P >M(Λ,Λ);

(1,1, q11) , if ρ> ρl(1) and P ≤m(Λ, q11Λ);

(p̄,1, q12) , if ρ> ρl(p̄) and m(Λ, q12Λ)<P ≤M(Λ, q12Λ);

(0,1, q13) , if ρ> ρl(0) and P >M(Λ, q13Λ);

(p′, q01, q14), otherwise,

where M(λ0, λ1)≡max
p

∆WN(p) and m(λ0, λ1)≡min
p

∆WN(p). p̃, p̄, p′ and qi1 for i= 0,1,2,3,4 are defined

in the proof of Theorem 1.

Proof. When N = 2,3,4 or N ≥ µR/C, ∆WN(p) is not necessarily decreasing in p∈ [0,1] by Lemma 2, thus

for any fixed pair (λ0, λ1), we let M(λ0, λ1) = max
p

∆WN(p) and m(λ0, λ1) = min
p

∆WN(p) to characterize the

equilibrium. Similar to Theorem 1, three cases are considered below:

(i) If λe0 = λe1 = Λ, we have the following three subcases.
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• pe = 0 is the equilibrium if and only if (1) ρ> ρs(0); (2) ρ≤ ρl(0); and (3) P >M(Λ,Λ).

• pe = 1 is the equilibrium if and only if (1) ρ> ρs(1); (2) ρ≤ ρl(1); and (3) P ≤m(Λ,Λ).

• pe ∈ (0,1) is an equilibrium if and only if (1) ρ > ρs(p̃); (2) ρ≤ ρl(p̃); and (3) m(Λ,Λ)< P ≤M(Λ,Λ),

any p̃ satisfies
CQN(p̃)(1− ρ)

Λ(1− p̃)
= P. (39)

is a mixed equilibrium.

(ii) If λe0 = Λ>λe1, we consider the following three subcases.

• pe = 0 is the equilibrium if and only if (1) ρ > ρs(0); (2) ρ > ρl(0); and (3) P >M(Λ, λe1), where ρe1 =

1− 2
2µR/C−N−1

, i.e., λe1 = µ

Λ
− 2µ

Λ[2µR/C−N−1]
.

• pe = 1 is the equilibrium if and only if (1) ρ > ρs(1); (2) ρ > ρl(1); and (3) P ≤m(Λ, λe1), where ρe1 =

1− 1
µR/C−1

, i.e., λe1 = µ

Λ
− µ

Λ(µR/C−1)
.

• pe ∈ (0,1) is the equilibrium if and only if (1) ρ> ρs(p̄); (2) ρ> ρl(p̄); and (3) m(Λ, λe1)<P ≤M(Λ, λe1),

where ρe1 = 1− 1
µR/C−QN (p̄)−1

, i.e., λe1 = µ

Λ
− µ

Λ[µR/C−QN (p̄)−1]
, and p̄ satisfies

CQN(p̄)(1− ρe1)

Λ(1− p̄)(1 + ρ− ρe1)
= P. (40)

(iii) If λe0 < Λ, the equilibrium can be determined by U0(p′, λe0/µ) = 0, λe1 = max{λ|U1(p,λe1/µ) ≥ 0} and

∆WN(p′) = P , which gives λe0 = µQN (p′)
Λ[µ(R−p′P )/C−QN (p′)−1]

λe1 = min
{

Λ, µ− µ

µR/C−QN (p′)−1

}
.

In summary, when N = 2,3,4 or N ≥ µR/C, the joint equilibrium can be obtained in Proposition 8. �

Appendix D: Additional Discussions on the Observable Case

It should be noted that in a standard M/M/1 observable queues, the Naor-threshold joining strategy is not

only an equilibrium strategy, but also a dominant strategy. That is, the best response of a tagged customer

is unaffected by other customers’ actions; this is true even when their actions deviate from the equilibrium

strategy. By contrast, in our PTAS model, a tagged customer’s best response will be altered when some other

customers do not follow the equilibrium strategy; and such an impact leads to a cyclic strategy structure in

the system state (see the proof of Theorem 3). Specifically, in case customers seeing mod(n̄, I) customers do

not purchase PTAS, the best response of future customers is to join without paying for PTAS until there

are in total mod(n̄, I) + I customers in the system. This is a major distinction from the standard model in

Naor (1969). It should be noted that the SPE characterized in Theorems 2–3 is unique because a customer’s

best response (in the pure strategy case) is unique for all states.

To illustrate how the SPE reduces to a threshold-type strategy, we consider a numerical experiment with

µ= 2, N = 10, R= 7, P = 1.5, Λ = 1.5, C = 1, nJ = b(R−P )µ/Cc− 1 = 13, n̄= 9. In Figure 12 we describe

customers’ best responses when in different system states (panel (a)) and the induced SPE on the equilibrium

path (panel (b)). When n<N , we only discuss the best responses of those finding the server to be inactive.

As depicted in panel (a), the joining strategy is of a threshold type, and the best response of PTAS purchasing

strategy is cyclic with a cycle I = dΛP/Ce= 3. We explain in the backward order of all arrival customers:

• An arrival finding an inactive server and N −1 existing customers will automatically activate the server

and has no incentive to purchase PTAS.
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0   1    2    3    4    5    6    7    8     9               11   12  13 

:  Joining with purchasing

:  Joining without purchasing

n

0   1    2    3    4    5    6    7    8     9               11   12  13 

Equilibrium

n

Best response

(a) Best responses to each system state

(b) SPE on the equilibrium path

N =10

N =10

Figure 12 An illustration of the SPE in an observable vacation queue with PTAS when µ= 2, N = 10,

R= 7, P = 1.5, C = 1 and Λ = 1.5, n̄= 9, nJ = 13.

• A customer seeing n existing customers satisfying N − 1− I < n≤N − 2 will not adopt PTAS either,

because her expected delay disutility (i.e., waiting cost for future customers to activate the service) is lower

than P .

• A customer finding n=N − 1− I existing customers will have to pay for PTAS because the expected

waiting cost until the server is activated by future customers is IC/Λ> 1.5 = P .

• Similarly, those observing a queue length n=N − 2− I will not adopt PTAS because she “knows” that

the server will be activated by the next customer arrival (an arrival observing a queue length n=N −1− I).

Best responses for customers observing a queue length n∈ {N−1−2I,N−2I, . . . ,N−2−I} can be obtained

in a similar way.

Following this analysis, the best response of the first arriving customer is to purchase PTAS. But when all

customers adopt the best responses (See panel (a) of Figure 12), states state (0,1), . . . , (0,N − 1) will not

occur. Therefore, on an equilibrium path, the SPE reduces to the simple threshold-type form (see panel (b)

of Figure 12).
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