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Abstract
We study a vacation queueing model where an arriving customer, upon finding the
server to be on vacation, is offered an opportunity to pay a fee to instantaneously end the
server’s vacation, which is referred to as pay-to-activate-service (PTAS). If no one uti-
lizes PTAS, the service will automatically resume when the system’s workload reaches
a critical level. We investigate customers’ equilibrium strategies: (i) joining or balking
and (ii) if joining, accepting PTAS or rejecting PTAS, in response to such a mechanism;
we show that customers’ equilibrium strategies exhibit both avoid-the-crowd (ATC)
and follow-the-crowd (FTC) types of behavior. Our results indicate that the adoption
of PTAS is efficient in improving the system performance (e.g., revenue and through-
put) when the demand volume is intermediate. We also discover that, upon selecting
the appropriate queue-length information disclosure policy, the service provider has to
trade off between collecting a higher revenue through PTAS and improving the system
throughput, because revealing the queue-length information will impact the aforemen-
tioned two performance metrics in opposing directions. Finally, we compare our new
setting to other common mechanisms including regular vacation queues and pay-for-
priority queues.
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1 INTRODUCTION

In service systems, allowing servers to take vacations when
the congestion level is low can help reduce the system’s oper-
ating cost and arouse servers’ enthusiasm, see Tian and Zhang
(2006). An efficient vacation mechanism in practice is to let
the server resume service once the system’s workload reaches
a critical level. For example, in make-to-order production sys-
tems with high setup costs, the production line usually begins
to operate only when the number of tasks reaches a critical
level, see Guo and Hassin (2011) and Li et al. (2016) for more
detailed discussions of make-to-order production systems.

This type of vacation termination rule is referred to as the
N-policy (Yadin & Naor, 1963), that is, the vacation con-
tinues as long as the total number of waiting customers is
below a threshold N and it terminates otherwise. In a vacation
queue with a relatively low threshold N, customers’ waiting
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times have little variations because it only takes a few more
arrivals to activate the server (if it is not already active). For
instance, a special case of N = 1 is equivalent to the conven-
tional queueing model without vacation. On the other hand,
when the vacation termination threshold is high, customers’
delays can exhibit significant fluctuations because an arrival
at the beginning of the server’s vacation time has to passively
wait for N − 1 additional arrivals before the service eventu-
ally resumes, while the last arrival will immediately activate
the service. This may give rise to an issue on service unfair-
ness (variance of customers’ waiting times has been proven a
useful metric for the service fairness, see for example Cao
et al. (2021) and the references therein); also see Liu and
Whitt (2014) and Aras et al. (2018) for analysis on variance
of waiting times.

In this paper, we consider a new mechanism in a vacation
queueing system, where each arriving customer, upon find-
ing the server to be on vacation, is offered an opportunity
to pay a fee to instantaneously end the server’s vacation; we
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refer to this option as pay-to-activate-service (PTAS). Ideas
similar to PTAS have already been implemented in several
practices. One relevant application is manufacturing systems
of high-end products, such as new energy vehicle (NEV).
Since the Chinese government has terminated the NEV sub-
sidy policy in 2020,1 NEV productions have experienced a
significant slowdown. Manufacturers intend to adopt more
cautious production plans; they begin producing new cars
only when the number of pending orders reaches a certain
level, unless consumers are willing to pay a premium; see
Li and Xu (2020). Another example is the production line of
labor-intensive products (e.g., fashion clothing and designer
handbags), where the products are made by one designer
exclusively. Due to the labor-intensive nature, the designer
often resumes to work when there is a sufficient number of
orders or a considerable premium is paid by some highly
delay-sensitive consumers; see Guo and Hassin (2011) and
Li et al. (2016). Other applications close to the PTAS mech-
anism include online group buying of beauty products (Hu
et al., 2021) and car-pooling in ride-sharing platforms (Jacob
& Roet-Green, 2021) in those the service may be initiated
either by having a sufficient number of requests or fees paid
by impatient consumers.

PTAS enables customers to gain proactive control of their
own service experience because, if they deem PTAS to be
worthy, customers no longer need to wait for other (future)
customers to help advance the service process. In some sense,
PTAS can help address the fairness issue from the customers’
perspective, it turns the control of the server’s state from pas-
sive to active. In addition, the impact of PTAS is beyond the
scope of an individual customer. A customer adopting PTAS
may help improve the service experience of other customers,
including (i) old customers already buffered in queue await-
ing the server to return to work and (ii) new customers arriv-
ing in the near future before the server takes another vacation.

In our vacation queueing model endowed with PTAS, cus-
tomers are delay-sensitive and strategic. They make the fol-
lowing one-time decisions immediately upon their arrivals:
(i) to join or to balk and (ii) if joining, to pay (for PTAS) or
not to pay, in anticipation of their expected individual wel-
fare. If no one utilizes PTAS and the server is on vacation,
the service will automatically resume when the queue length
reaches some designated threshold N. At a glance, the idea of
using PTAS to reduce delay can be in some sense similar to
paying for a service priority (e.g., the FastPass service in Dis-
ney World for reduced waiting times and the Amazon Prime
service for quick deliveries). Nevertheless, we draw a distinc-
tion: In conventional priority service models, purchasing a
higher priority will only reduce the delay cost for that partic-
ular customer, while PTAS proposed here will help advance
the service process for the entire waiting line, which bene-
fits all customers present in the system. We study customers’
equilibrium joining-and-purchasing strategies in response to
such a new mechanism under two main information policies:
observable and unobservable queue length. From the perspec-
tive of the service provider, we aim to answer the following
questions: Does the implementation of PTAS help generate
a higher revenue and system throughput? If yes, when is the

improvement most significant?What is the optimal informa-
tion disclosure policy when PTAS is in effect?

1.1 Literature review

Our analysis has points of contact to four extant streams of
research: (i) strategic behavior in vacation queues, (ii) strate-
gic behavior in priority queues, (iii) two-dimensional cus-
tomer strategies, and (iv) information provision policies.

1.1.1 Strategic behavior in vacation queues

The research on strategic customers in queues was pioneered
by Naor (1969), where arriving customers decide on whether
to join an M/M/1 queue based on the available queue length.
The case of unobservable queue for an M/M/1 model was
developed by Edelson and Hilderbrand (1975). Following
Naor (1969), strategic customer behavior in queueing sys-
tems has been widely studied in the literature, see Hassin and
Haviv (2003), Stidham Jr (2009), and Hassin (2016) for com-
prehensive reviews. We hereby focus on reviewing works on
vacation queues. The first work on vacation queues with N-
threshold policy dates back to Yadin and Naor (1963) where
the service is resumed whenever N or more customers are
present in the waiting line. Following Yadin and Naor (1963),
various vacation queue models have been studied during the
past decades. Interested readers can refer to the comprehen-
sive monograph of Tian and Zhang (2006) and the references
therein. In particular, Economou and Kanta (2008) studied an
observable queue with server vacations due to breakdowns
and developed the equilibrium joining strategy for customers.
Guo and Hassin (2011) was the first work that studied cus-
tomer equilibrium behavior in an N-policy vacation queue,
and they discovered that customers may prefer to join a longer
queue, in anticipation that the service will start sooner. Such
an effect is referred to as positive externalities in the queue-
ing game literature. The case of heterogeneous customers was
investigated by Guo and Hassin (2012).

1.1.2 Strategic behavior in priority queues

Allowing customers to pay for priority has been proven an
efficient way to increase service profit and social welfare in
queueing systems. Adiri and Yechiali (1974) were the first
to develop the pure equilibrium priority purchasing strategy
in an observable queueing model. Their results were later
extended by Hassin and Haviv (1997) to allow for mixed
strategies in the same settings. Gavirneni and Kulkarni (2016)
studied the equilibrium strategy in unobservable queues hav-
ing heterogeneous customers. Wang et al. (2019) conducted
a comparison analysis for the equilibrium performance of
a priority queue under different information structures. The
partial priority scheme is proposed by Yang et al. (2022)
in Covid-19 testing queues. Offering PTAS to customers
looks in a way similar to allowing them to purchase a higher
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priority over others. Nevertheless, we draw a major distinc-
tion: In priority queues, the purchasing behavior is shown to
be of pure follow-the-crowd (FTC) type, that is, a customer is
more inclined to purchase priority when others do so as well,
see, for example, Hassin and Haviv (1997, 2003). However,
in our vacation queue model endowed with PTAS, as we will
show later, FTC and avoid-the-crowd (ATC) often coexist
when the threshold N is neither too large nor too small.
Such a distinction is due to the fact that a PTAS-purchasing
customer not only will reduce her own delay cost but also
will benefit all other customers present in the system.

1.1.3 Two-dimensional customer strategies

In contrast to previous queueing game literature that focuses
on either the customers’ joining strategy or purchasing strat-
egy (e.g., in priority queues), our framework allows cus-
tomers’ strategy to be a combination of both. At the heart of
our equilibrium analysis is to establish the two-dimensional
joining-and-purchasing strategy. To our best knowledge, only
a few papers in the queueing game literature have investi-
gated this type of two-dimensional equilibrium strategy. Has-
sin and Roet-Green (2017) studied a queueing model where
customers first decide on whether to inspect the queue length
and then make a second join-or-balk decision. This work was
later extended by Hassin and Roet-Green (2018) to a two-
server queue with inspection costs. Wang et al. (2019) stud-
ied the joining and priority purchasing strategy in a prior-
ity queueing model. Besides the joining decisions, Cui et al.
(2020) and Yang et al. (2021) considered queueing models
where customers can choose to pay to improve their queue-
ing positions. Other two-dimensional settings can be found in
referral priority models (Yang & Debo, 2019), online retail-
ing queueing models (Wang et al., 2021a), multichannel ser-
vice models with product exchange (Sun et al., 2022a), and
restaurant models allowing orders to be placed ahead and then
picked up later (Sun et al., 2022b). Motivated by cloud ser-
vices, Dierks and Seuken (2021) solved the service provider’s
profit optimization problem and established a multidimen-
sional equilibria. Abhishek et al. (2012) considered two pric-
ing schemes for selling cloud services to two user classes.
Gao et al. (2019) investigated a service system with two com-
peting firms offering services under two different pricing and
service rules, in which arriving customers need to decide on
(i) whether to receive service; (ii) if yes, from which firm; and
(iii) if choosing the bid-based firm, the amount of her bid.
We emphasize that the consideration of a two-dimensional
customer strategy adds significant complexity to the equilib-
rium analysis.

1.1.4 Information revelation policies

There is a stream of queueing literature that studies the impact
of information provision on queueing outcomes. By studying
social welfare under both full and no queue information, Has-

sin (1986) discovered that the revelation of real-time queue
length improves the social welfare because such information
helps better match service capacity with customer demand.
Chen and Frank (2004) investigated the system throughput
under the two aforementioned information provision policies
and discovered that delayed information may have both pos-
itive and negative effects on the system throughput. Simhon
et al. (2016) considered the optimal information disclosure
problem in an M/M/1 queue, and concluded that the com-
monly adopted threshold policy is never optimal. Hassin and
Koshman (2017) proposed a new profit-maximizing mech-
anism in that customers will be notified whether the queue
length is below a certain threshold. Hu et al. (2018) found
that throughput and social welfare can be unimodal in the
fraction of informed customers; their findings infer that cre-
ating the “right” amount of information heterogeneity among
customers may lead to improved outcomes. Similar results
can be found in the retrial and priority queueing models,
see Wang and Wang (2019) and Wang and Fang (2022).
Anunrojwong et al. (2020) studied the effective design of
information policies with the objective of reducing conges-
tion in social services. Recently, Lingenbrink and Iyer (2019)
solved a long-standing open problem on the optimal signaling
mechanism in unobservable queues; their illuminating find-
ings suggested that such a signaling mechanism can be effec-
tive in achieving the optimal revenue in settings where state-
dependent pricing is infeasible.

1.2 Contributions and organization

In summary, we make the following contributions.

∙ Benefit of PTAS. To the best of our knowledge, the present
work is the first to study a vacation queueing model
endowed with PTAS, which can be viewed as an exten-
sion of regular vacation queues operated under the N-
policy. The ingenuity of PTAS lies in its ability to allow
the server (when on vacation) to be activated immediately
by arriving customers, giving them more controls over
their service experiences. We study customers’ equilibrium
joining-and-purchasing strategies and the corresponding
system performance measures. Our results show that, from
the service provider’s perspective, the model with PTAS
can achieve a higher system-level performance than that
without PTAS; and from the customers’ perspective, they
also benefit from receiving additional welfare through the
utilization of PTAS.

∙ Information provision policies. We study two base infor-
mation policies. In case the queue length is unobserv-
able, we discover that the equilibrium PTAS purchasing
behavior shifts from FTC to ATC as the threshold N
increases. Specifically, the equilibrium is FTC when N is
small (e.g., N = 2) and is ATC when N is large (e.g., N ≥

5). And interestingly, when N is intermediate (e.g., n =
3, 4), the equilibrium exhibits both FTC and ATC behav-
ior. When the queue length is observable, we establish a
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subgame-perfect equilibrium (SPE) strategy, which, on an
equilibrium path, reduces to a parameter-dependent thresh-
old policy. We also consider the third information policy,
called the “no-information” case, where neither the queue
length nor the server’s state is available.

∙ Nonmonotonic performance functions. Under all infor-
mation policies, we show that the equilibrium system
throughput is not necessarily increasing in the service
reward, and that the PTAS revenue is in fact decreasing
in the service reward. These seem to counter the general
intuitions. Another interesting result is that the PTAS rev-
enue is a unimodal function in the demand volume (it is
close to 0 when the demand volume is either too small
or too large). The performance under different information
policies is studied and compared. To gain understanding of
these results, we conduct numerical experiments and pro-
vide in-depth discussions.

1.3 Organization of the paper

The rest of the paper is structured as follows. The model
description is given in Section 2. In Section 3, we study an
unobservable vacation queue model endowed with PTAS. We
conduct equilibrium analysis in three steps: We first report
the equilibrium joining strategy under a fixed PTAS pur-
chasing probability (Propositions 2 and 3); we next develop
the equilibrium PTAS purchasing strategy with exogenous
arrival rates (Proposition 4); and finally, we integrate results
in the previous two steps to establish the joint joining-and-
purchasing strategy (Theorem 1). In Section 4, we study an
observable vacation queue endowed with PTAS and charac-
terize the SPE strategies (Theorems 2 and 3); we also pro-
vide the system performance in equilibrium. In Section 5 we
compare the system performance under the two base infor-
mation policies, investigate the revenue/pricing implications,
and contrast our PTAS setting to other common mechanisms.
We develop some extensions of our base models in the Sup-
porting Information and draw concluding remarks in Sec-
tion 6. All proofs are given in the Supporting Information.

2 MODEL DESCRIPTION

We consider a production system with N-policy, where an
arriving customer, upon finding the server to be on vacation,
is offered a one-time opportunity to pay a fee to instanta-
neously end the server’s vacation. Such a mechanism is called
PTAS. Specifically, we study an M/M/1 queue having arrivals
according to a Poisson process with rate Λ, and independent
and identically distributed (i.i.d.) service times that are expo-
nentially distributed with rate 𝜇.2 We denote by 𝜌 ≡ Λ∕𝜇
the system’s workload. The server alternates between two
states: active (i.e., at service) and inactive (i.e., on vacation).
When the server is active, waiting customers are being served
under the first-come first-served (FCFS) discipline; when no
customer is present, the server becomes inactive (takes a

vacation). The server’s vacation will end either (i) when the
total number of waiting customers reaches a critical level N
or (ii) an arriving customer adopts PTAS. The fee of PTAS is
P > 0.

Customers are homogeneous and delay-sensitive. They
incur a delay cost at rate C during their total sojourn time
and receive a reward R upon completion of their services.
All arriving customers are informed of the state of the server
(because it may appear to be unreasonable to ask customers
to pay for PTAS when the server is already active). Know-
ing the server’s state, each customer needs to decide whether
to join the queue or to balk; if the server is on vacation
(inactive), a joining customer also has to decide whether to
accept PTAS or reject PTAS (in the latter case she relies
on future customers to activate the service either by increas-
ing the queue length to N or by adopting PTAS). In sum-
mary, arrivals finding the server to be on vacation have three
pure strategies: (i) balking; (ii) joining and accepting PTAS;
(iii) joining and rejecting PTAS. We assume that customers
are risk-neutral, and they aim to maximize their expected
utilities conditional on the system state observed upon
arrival.3

We first study two main information policies: (1) unobserv-
able queue (so customers’ behavior will rely on their antici-
pation of the expected mean delay) and (2) observable queue
(so that customers can make strategic decisions using the real-
time queue length).4 We conduct equilibrium analysis in both
cases and study which one provides more benefits from the
service provider’s perspective. To model the system dynam-
ics as a continuous-time Markov chain (CTMC), we track the
two-dimensional process {(B(t),X(t)), t ≥ 0} where B(t) = 1
(B(t) = 0) if the server is active (inactive) at time t, and X(t)
is the total number of customers in the system at t. Under the
N-policy, the state space of this CTMC is

 = {(0, n) : 0 ≤ n ≤ N − 1} ∪ {(1, n) : n ≥ 1}. (1)

3 UNOBSERVABLE QUEUE

In this section, we establish customers’ equilibrium strategy
when the queue length is unobservable. In Section 3.1 we first
study the steady-state system performance under an arbitrary
(mixed) strategy. In Sections 3.2–3.4, we fully describe the
joint joining-and-purchasing equilibrium strategy.

3.1 Preliminaries

Because the server’s state is observable, we let 𝜆0 and 𝜆1
be the effective customer arrival rates when the server is
inactive and active, respectively, and let p be the probabil-
ity that a customer finding an inactive server accepts PTAS.
Therefore, customers’ strategy can be described by the triplet
𝜋 ≡ (p, q0, q1), where q0 = 𝜆0∕Λ and q1 = 𝜆1∕Λ. We also
define 𝜌0 ≡ 𝜆0∕𝜇 and 𝜌1 ≡ 𝜆1∕𝜇 as the effective traffic inten-
sities in the two cases.
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F I G U R E 1 State transition diagram under strategy (p, q0, q1)

3.1.1 Steady-state performance

The state transition diagram of the CTMC {(B(t),X(t)), t ≥ 0}
is depicted in Figure 1. To understand Figure 1, for example,
consider the state (1,2), one of two events may occur next:
a service completion with rate 𝜇 (in which case state (1,1)
follows) because the server is active, or a new customer
arrival with rate 𝜆1 (in which case (1, 3) follows). On the
other hand, since an external customer arrival seeing B(t) = 0
can activate the server with probability p, the CTMC will
move from states (0,1), (1, 1), and (1,3) to state (1,2) with
rate 𝜆0p, 𝜆1, and 𝜇, accordingly. Transitions regarding other
states are similar.

Let 𝜋i,n denote the steady-state probabilities of (B,X),
which satisfy the following balance equations

𝜋0,0𝜆0 = 𝜋1,1𝜇, (2)

𝜋0,i𝜆0 = 𝜋0,i−1𝜆0(1 − p), i ∈ {1, 2, … ,N − 1}, (3)

𝜋1,i(𝜆1 + 𝜇) = 𝜋0,i−1𝜆0p + 𝜋1,i−1𝜆1 + 𝜋1,i+1𝜇,

i ∈ {1, 2, … ,N − 1}, (4)

𝜋1,N(𝜆1 + 𝜇) = 𝜋0,N−1𝜆0 + 𝜋1,N−1𝜆1 + 𝜋1,N+1𝜇, (5)

𝜋1,i(𝜆1 + 𝜇) = 𝜋1,i−1𝜆1 + 𝜋1,i+1𝜇, i ∈ {N + 1,N + 2, …}.

(6)

For any given strategy (p, q0, q1), the steady-state proba-
bilities and expected queue length along with other system
performance measures are given below.

Proposition 1 (Steady-state system performance under a
given strategy (p, q0, q1)). Consider an unobservable M/M/1
vacation queue with PTAS. Assume that all customers follow
strategy (p, q0, q1).

(i) The steady-state probabilities are

𝜋0,i = C0p(1 − p)i, 0 ≤ i ≤ N − 1;

𝜋1,i = C0

𝜌0p
[
(1 − p)i∧N − 𝜌i∧N

1

]
𝜌

(i−N)+

1

1 − p − 𝜌1
, i ≥ 1;

(7)

where C0 ≡
1−𝜌1

[1−(1−p)N ](1+𝜌0−𝜌1)
, x ∧ y ≡ min(x, y), and

x+ ≡ max{x, 0}.
(ii) The expected queue length is

𝔼[X] = Q(p, q0, q1) = Q̄(q0, q1) + QN(p), (8)

where Q̄(q0, q1) ≡
𝜌0

(1−𝜌1)(1+𝜌0−𝜌1)
, QN(p) ≡

(1−p)[1+(N−1)(1−p)N−N(1−p)N−1]

p[1−(1−p)N ]
.

(iii) The conditional expected waiting times of an arriving
customer seeing an inactive server and an active server
are

w0(p, q0) =
1
𝜇
+

QN(p)
𝜇

[
1 +

1
𝜌0

]
and

w1(p, q1) =
1
𝜇

[
1

1 − 𝜌1
+ 1 + QN(p)

]
. (9)

(iv) The system throughput is

𝜆u(q0, q1) =
𝜆0

1 + 𝜌0 − 𝜌1
. (10)

(v) The service provider’s revenue collected by selling PTAS
is

Πu(p, q0, q1) =
(1 − 𝜌1)p𝜆0P
1 + 𝜌0 − 𝜌1

. (11)

Remark 1 (Decomposition of steady-state queue length).
According to (8), the mean steady-state queue length
Q(p, q0, q1) can be separated to two parts: Q̄(q0, q1) and
QN(p). The first term Q̄(q0, q1), which is independent of
threshold N and purchasing probability p, is the mean queue
length in a conventional M/M/1 queue having state-dependent
arrivals (with arrival rates 𝜆0 and 𝜆1 when the server is inac-
tive and active, respectively); the second term QN(p), which
is independent of 𝜆0 and 𝜆1, can be interpreted as the extra
queue size incremented due to the vacation mechanism. This
term will become smaller when p increases (it will vanish if
everyone adopts PTAS). Because QN(p) will play an impor-
tant role in characterizing customers’ equilibrium strategies,
we next establish the structural properties for QN(p).

Lemma 1. QN(p) is decreasing in p, with QN(0) = (N − 1)∕2
and QN(1) = 0.
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Remark 2 (Important special cases). To make contact with
existing results in the literature, we advocate that our model is
general and covers several previously studied queueing mod-
els. If no one adopts PTAS (i.e., p = 0), we have

w0(0, q0) =
1
𝜇
+

N − 1
2𝜇

[
1 +

1
𝜌0

]
and

w1(0, q1) =
1
𝜇

[
1

1 − 𝜌1
+

N + 1
2

]
, (12)

which coincide with the waiting time formulas for the N-
policy vacation queue model (Guo & Li, 2013). On the other
hand, if everyone accepts PTAS (i.e., p = 1), we have

w0(1, q0) =
1
𝜇

and w1(1, q1) =
1
𝜇
+

1
𝜇 − 𝜆1

, (13)

which are the conditional expected delays of customers find-
ing the server to be inactive and that of those finding the
server to be active in a standard M/M/1 queue, respectively.
Finally, if we take N →∞, we have

lim
N→∞

w0(p, q0) =
1
𝜇
+

1 − p
p𝜇

[
1 +

1
𝜌0

]
and

lim
N→∞

w1(p, q1) =
1
𝜇

[
1

1 − 𝜌1
+

1
p

]
, (14)

which degenerate to delays in a vacation queue with Bernoulli
schedule (Gao & Liu, 2013), where the system can be acti-
vated by each arriving customer with a certain probability p.

Using results derived so far, we can investigate the equilib-
rium joining-and-purchasing strategies. When all customers
adopt strategy (p, q0, q1), the expected utilities of an arriving
customer seeing an inactive server and an active server are

Û0(p, 𝜌0) = R −
C
𝜇

(
1 + QN(p)

[
1 +

1
𝜌0

])
− pP and

Û1(p, 𝜌1) = R −
C
𝜇

[
1

1 − 𝜌1
+ 1 + QN(p)

]
, (15)

which are increasing and decreasing in 𝜆0 and 𝜆1, respec-
tively. Then the ex ante expected utility is given by

Û(p, q0, q1) =
1 − 𝜌1

1 + 𝜌0 − 𝜌1
⋅ Û0(p, 𝜌0)

+
𝜌0

1 + 𝜌0 − 𝜌1
⋅ Û1(p, 𝜌1), (16)

where (1 − 𝜌1)∕(1 + 𝜌0 − 𝜌1) and 𝜌0∕(1 + 𝜌0 − 𝜌1) are the
steady-state probabilities that the server is inactive and
active, respectively.

Although customer arrivals arise from a homogeneous
Poisson stream, we assign one of two “labels” to all arrivals
immediately upon their arrivals; we do so according to the
specific server state (busy working or on vacation) they
observe. In particular, customers seeing an active server (i.e.,
B(t) = 1), thus assigned with a label “B1,” need to deter-
mine the joining probability q1, while those finding the server
on vacation (B(t) = 0), thus assigned with a label “B0,”
will first determine their joining probability q0 and next the
PTAS purchasing probability p. To characterize customers’
best response functions, we let U0((p, q0); (p′, q′0, q

′
1)) be the

expected utility of a tagged B0-customer who adopts (p, q0),
while assuming that all other B0-customers adopt (p′, q′0) and
all B1-customers adopt q′1. Similarly, let U1(q1; (p′, q′0, q

′
1)) be

the expected utility of an individual B1-customer who adopts
q1, while assuming that all B0-customers adopt (p′, q′0) and
all other B1-customers adopt q′1. Below we carefully define a
symmetric Nash equilibrium.

Definition 1 (Symmetric Nash equilibrium). A strategy pro-
file (𝜶e, qe

1) with 𝜶e ≡ (pe, qe
0) is a symmetric Nash equilib-

rium strategy if and only if

𝜶e ∈ arg max
𝜶∈[0,1]×[0,1]

U0(𝜶; (𝜶e, qe
1)) and

qe
1 ∈ arg max

q1∈[0,1]
U1(q1; (𝜶e, qe

1)). (17)

Throughout the paper, we restrict our attention to symmet-
ric Nash equilibrium. Similar definitions of state-dependent
symmetric equilibria can be found in (3.3) and (3.4) of Wang
and Wang (2019).

As will soon become clear in subsequent analysis, there
often exist multiple equilibria. To identify those that are most
relevant, we resort to notion of utility dominance.

Definition 2 (Pareto-dominant equilibrium). Given two equi-
librium strategies (𝜶, q1) and (𝜶′, q′1), we say (𝜶, q1) strictly

dominates (𝜶′, q′1) if Û(𝜶, q1) > Û(𝜶′, q′1). An equilibrium
(𝜶∗, q∗1) is a Pareto-dominant equilibrium strategy if no other
equilibrium strictly dominates it.

In what follows, we will adopt the notion of Pareto dom-
inance to identify the most efficient equilibrium strategy
among multiple equilibria (whenever exist) that maximizes
the ex ante expected utility of customers. We will first charac-
terize the equilibrium strategy for B1-customers while assum-
ing that the B0-customer strategy is held fixed.

3.1.2 Equilibrium strategy for B1-customers

The following lemma guarantees the uniqueness of the equi-
librium for B1-customers for any given strategy of B0-
customers.
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Proposition 2. For any given strategy of B0-customers 𝜶 =
(p, q0), the unique equilibrium strategy of B1-customers is
given by

(1) If QN(p) > 𝜇R∕C − 2, then qe
1(p) = 0.

(2) If QN(p) ≤ 𝜇R∕C − 2, then

qe
1(p) =

⎧⎪⎨⎪⎩
1, if 𝜌 ≤ 𝜌l(p);

1
𝜌
−

1
𝜌[𝜇R∕C − QN(p) − 1]

, if 𝜌 > 𝜌l(p),
(18)

where 𝜌l(p) = 1 −
1

𝜇R∕C−QN (p)−1
and qe

1(p) is independent of
q0.

Proposition 2 indicates that B1-customers’ equilibrium
joining probability is independent of q0 (only dependent on
the PTAS purchasing probability). To see this, note that if the
server is already active, there will be no future arrival of any
B0-customers as long as the queue has a positive content, so
that B0-customers’ strategy has no bearing whatsoever on B1-
customers’ joining behavior. In the subsequent subsections,
we first develop the equilibrium strategy for B0-customers
with that of B1-customers held fixed.

3.2 Equilibrium strategy for B0-customers

Because B0-customers make two decisions, the characteri-
zation of their equilibrium strategy is less straightforward.
We describe our roadmap in three steps. First, we derive
the equilibrium joining probability qe

0 with any given p
(Section 3.2.1); Next, we obtain the equilibrium PTAS pur-
chasing strategy with all other strategies held fixed (Sec-
tion 3.2.2); Last, we fully characterize the joint equilibrium
strategy building on results in Section 3.1 and Section 3.2
(Section 3.3).

It should be noted that in the subsequent analysis,
the Pareto-dominance criteria are no longer helpful in
distinguishing two mixed equilibria because they can
both induce a zero expected utility. In these cases, we
will turn to the so-called evolutionarily stable strategy
(ESS) (Hassin & Haviv, 2003) in face of multiple mixed
equilibria.

Definition 3 (ESS). A two-dimensional equilibrium strategy
𝜶 is said to be an ESS if U0(𝜶; 𝜷) > U0(𝜷; 𝜷) for all 𝜷 ≠ 𝜶.

ESS is useful in excluding the unstable mixed equilib-
ria: If an equilibrium is stable, the system dynamics, when
facing a small perturbation in customer behavior, is guaran-
teed to return to that equilibrium point. But this is not true
for an unstable equilibrium. Following the steps to estab-
lish Proposition 2, we first obtain the best response of B0-
customers with a given q1 ∈ [0, 1], and we investigate it
stability.

3.2.1 Joining strategy

Proposition 3 (Equilibrium joining strategy with a fixed
p). Consider an unobservable M/M/1 vacation queue with
PTAS. For a given PTAS purchasing probability p ∈ [0, 1],
when 𝜌 ≤ 𝜌s(p), qe

0(p) = 0; when 𝜌 > 𝜌s(p), both qe
0(p) = 1

and qe
0(p) =

QN (p)

𝜌[𝜇(R−pP)∕C−QN (p)−1]
are the equilibria, where

𝜌s(p) =
QN (p)

𝜇(R−pP)∕C−QN (p)−1
and qe

0(p) = 1 is the ESS.

Remark 3 (Monotonicity in 𝜌 and R).

(i) According to Propositions 2 and 3, qe
0 and qe

1, the equi-
librium joining probabilities for both B0 and B1 cus-
tomers exhibit opposite monotonicity in 𝜌. We provide
some intuitive explanations: When the server is inactive,
more frequent arrivals reduce the server’s vacation times
to mitigate the queueing congestion, which encourages
more customers to join the queue. On the other hand, if
the server is already active, increasing the system’s con-
gestion level will incur a bigger waiting cost, leading to
an increased number of customer balking.

(ii) For a given p, a bigger service reward R attracts more
customers to join the queue, hence both qe

0(p) and qe
1(p)

are increasing in R.

3.2.2 PTAS purchasing strategy

In this subsection, we develop B0-customers’ equilibrium
purchasing strategy with arrival rates 𝜆0 and 𝜆1 (or equiva-
lently q0 and q1) held fixed. As will soon become clear in
the next section, integration of results in Sections 3.2.1 and
3.2.2 will establish the joint join-and-purchase strategy for
B0-customers.

Note that when N = 1, p = 0 is a dominant strategy
because it is never optimal for an arriving customer to accept
PTAS. Hence, we hereby focus on the case N ≥ 2. When
all other customers adopt the strategy (p, q0, q1), consider a
“tagged” customer who arrives and finds the system in state
(0, i) with 0 ≤ i < N. Suppose she rejects PTAS, then let Ni
be the number of additional future arrivals until the server
becomes active. It is obvious that Ni is a geometric random
variable with parameter p truncated at N − i, so

𝔼[Ni] =
N−i−1∑

j=1

ℙ[Ni ≥ j] =
N−i−1∑

j=1

(1 − p)j−1

=
1 − (1 − p)N−i−1

p
. (19)

If the tagged customer adopts PTAS with probability p′, her
expected delay is

Wi(p
′; p) = (1 − p′) ⋅

(
1
𝜆0

⋅ 𝔼[Ni] +
i + 1
𝜇

)
+ p′ ⋅

i + 1
𝜇

.

(20)
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When all other customers adopt strategy (p, q0, q1), by Pois-
son arrivals see time averages (PASTA), the system probabil-
ities as observed by an arriving customer are identical to the
steady-state probabilities, which are given in Proposition 1.
By switching from rejecting PTAS to accepting PTAS, the
tagged customer can reduce her expected delay cost by

ΔWN(p) ≡ C
N−2∑
i=0

[
Wi(0; p) − Wi(1; p)

]
𝜋0,i

=
C
[
1 − [1 + p(N − 1)](1 − p)N−1

]
(1 − 𝜌1)

𝜆0p[1 − (1 − p)N](1 + 𝜌0 − 𝜌1)
. (21)

Therefore, the best response of the tagged customer is to pur-
chase PTAS if and only if P ≤ ΔWN(p). Since the equilib-
rium strategies largely depend on the structural properties of
ΔWN(p), we next provide a careful analysis of ΔWN(p).

Lemma 2 (Structural properties of ΔWN(p)).

(i) For any given p ∈ [0, 1], ΔWN(p) is increasing in N for
N ≥ 2.

(ii) When N = 2, ΔWN(p) is increasing in p ∈ [0, 1]; when
N = 3, 4, ΔWN(p) is unimodal in p ∈ [0, 1]; when N ≥ 5,
ΔWN(p) is decreasing in p ∈ [0, 1].

Remark 4 (On structural properties of ΔWN(p)). Part (i) of
Lemma 2 is intuitive because a higher threshold N is more
difficult to reach, which makes PTAS more effective in acti-
vating the server and thus reducing the delay cost. Using Part
(i) of Lemma 2, we can show that ΔWN(p) > 0 for any N ≥ 2
and p ∈ [0, 1] when the system is stable (i.e., 𝜌1 ∈ [0, 1)),

because ΔWN(p) > ΔW2(p) =
1−𝜌1

𝜆0(2−p)(1+𝜌0−𝜌1)
> 0.

Part (ii) of Lemma 2 characterizes the impact of p on the
customers’ best responses. At a first glance, offering PTAS is
similar to offering a “higher priority” to customers who are
willing to pay. Nevertheless, unlike priority queueing models
where customers’ equilibrium strategy always exhibits FTC
behavior (Hassin and Haviv 1997), Part (ii) of Lemma 2 infers
the coexistence of both FTC and ATC behavior. We provide
some intuitions in the following three cases:

∙ When N is small (e.g., N = 2), PTAS benefits only when
a customer arrival finds the system in state (0,0) (because
if the state is (0,1), the server is automatically activated).
When more customers adopt PTAS (i.e., p is bigger), the
server’s vacation time is reduced so it is more likely for
the tagged customer to find an empty system (i.e., 𝜋0,0
increases). In this situation, the adoption of PTAS gives a
bigger delay reduction for the tagged customer. Therefore,
the equilibrium exhibits FTC behavior.

∙ When N is large (e.g., N ≥ 5), if all other customers choose
PTAS with a higher probability, there will be a bigger
chance for the server to be activated by future customer

0 0.2 0.4 0.6 0.8 1
p

0.5

1

1.5

2

2.5

Δ
W

N
(p

)

N = 2
N = 3
N = 4
N = 5
N = 6

F I G U R E 2 The function ΔWN (p) with 0 ≤ p ≤ 1, 2 ≤ N ≤ 6,
𝜆0 = 𝜆1 = 0.5, and C = 𝜇 = 1

arrivals, making it unnecessary for the tagged customer to
pay for PTAS. Therefore, ΔWN(p) decreases in p, indicat-
ing ATC behavior.

∙ When N is intermediate (e.g, N = 3, 4), the equilibrium
exhibits both FTC and ATC behavior. If p is small, adopt-
ing PTAS is an efficient way to reduce the delay as the
probability 𝜋0,i (0 ≤ i ≤ N − 2) increases in p; but if p is
large, PTAS is already adopted by many other customers,
it becomes less effective for the tagged customer to pay for
PTAS.

See Figure 2 for a graphical illustration of these three cases.

Proposition 4 (Equilibrium purchasing strategy with exoge-
nous arrival rates). Consider an unobservable M/M/1 vaca-
tion queue with PTAS. For a given joining probability (q0, q1),
the equilibrium purchasing strategy pe(q0, q1) is given as fol-
lows:

(i) If N = 2,

pe(q0, q1) =

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

0, if P >
C(1 − 𝜌1)

𝜆0(1 + 𝜌0 − 𝜌1)
;

0,
2P𝜆0(1 + 𝜌0 − 𝜌1) − C(1 − 𝜌1)

P𝜆0(1 + 𝜌0 − 𝜌1)
, 1, if

C(1 − 𝜌1)
2𝜆0(1 + 𝜌0 − 𝜌1)

< P ≤
C(1 − 𝜌1)

𝜆0(1 + 𝜌0 − 𝜌1)
;

1, if P ≤
C(1 − 𝜌1)

2𝜆0(1 + 𝜌0 − 𝜌1)
.

(22)
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(ii) If N = 3,

pe(q0, q1) =

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

0, if P >
2
√

3C(1 − 𝜌1)
3𝜆0(1 + 𝜌0 − 𝜌1)

;

0, p(1)
3 , p(2)

3 , if
C(1 − 𝜌1)

𝜆0(1 + 𝜌0 − 𝜌1)
< P ≤

2
√

3C(1 − 𝜌1)
3𝜆0(1 + 𝜌0 − 𝜌1)

;

1, if P ≤
C(1 − 𝜌1)

𝜆0(1 + 𝜌0 − 𝜌1)
.

(23)

(iii) If N = 4,

pe(q0, q1) =

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

0, if P > ΔWN(p̂4);

0, p(1)
4 , p(2)

4 , if
3C(1 − 𝜌1)

2𝜆0(1 + 𝜌0 − 𝜌1)
< P ≤ ΔWN(p̂4);

p4, if
C(1 − 𝜌1)

𝜆0(1 + 𝜌0 − 𝜌1)
< P ≤

3C(1 − 𝜌1)
2𝜆0(1 + 𝜌0 − 𝜌1)

;

1, if P <
C(1 − 𝜌1)

𝜆0(1 + 𝜌0 − 𝜌1)
.

(24)

(iv) If N ≥ 5,

pe(q0, q1) =

⎧⎪⎪⎪⎨⎪⎪⎪⎩

0, if P >
C(N − 1)(1 − 𝜌1)
2𝜆0(1 + 𝜌0 − 𝜌1)

;

pN , if
C(1 − 𝜌1)

𝜆0(1 + 𝜌0 − 𝜌1)
< P ≤

C(N − 1)(1 − 𝜌1)
2𝜆0(1 + 𝜌0 − 𝜌1)

;

1, if P ≤
C(1 − 𝜌1)

𝜆0(1 + 𝜌0 − 𝜌1)
,

(25)

where p(1)
3 =

3

2
−

(1−𝜌1)C+

√
[(1−𝜌1)C]2−

3(𝜆0(1+𝜌0−𝜌1)P)2

4

𝜆0(1+𝜌0−𝜌1)P
, p(2)

3 =

3

2
−

(1−𝜌1)C−

√
[(1−𝜌1)C]2−

3(𝜆0(1+𝜌0−𝜌1)P)2

4

𝜆0(1+𝜌0−𝜌1)P
, p(2)

4 is the solution

of ΔWN(p) = P in p ∈ (p̂4, 1), p̂4 ∈ (0, 1) uniquely solves
4 − 24p + 32p2 − 16p3 + 3p4 = 0, and pN uniquely solves

ΔWN(p) = P when
C(1−𝜌1)

𝜆0(1+𝜌0−𝜌1)
< P ≤

C(N−1)(1−𝜌1)

2𝜆0(1+𝜌0−𝜌1)
for N ≥ 4.

In the presence of multiple equilibria, the ESS is underlined.

Remark 5 (PTAS vs. priority: mixed ESS). First, it is the FTC
behavior that gives rise to multiple equilibria (as in Cases (i)–
(iii)). In this sense, the structure appears to be somewhat sim-
ilar to the priority-purchasing strategy in priority queueing
models. Nevertheless, a major distinction here is that a mixed
strategy, which is never an ESS in priority queues (Hassin
& Haviv, 1997), can in fact be an ESS in the present PTAS
model (Cases (ii) and (iii) in Proposition 4 when N = 3, 4).
Such a result is due to the coexistence of both FTC and ATC;
also see Remark 4 and Figure 2.

3.3 Joint equilibrium strategy

We are now ready to derive the joint equilibrium of B0 and B1
customers. We denote by the triplet  = (pe, qe

0, q
e
1) the joint

joining-and-purchasing equilibrium strategy. By Definition 1
and Propositions 2–4, a strategy (p, q0, q1) is an equilibrium
if and only if it satisfies

p ∈ pe(q0, q1), q0 ∈ qe
0(p), q1 ∈ qe

1(p), (26)

where qe
1(p), qe

0(p), and pe(q0, q1) are identified in Propo-
sitions 2, 3, and 4, respectively. For p, q1 ∈ [0, 1], we call
0e ≡ (p, 0, q1) the “zero” equilibrium strategy, under which
no customer will join the system (because qe

0 = 0 means that
no B0-customer joins for service, the system will never be
activated regardless of the values of pe and qe

1).
Characterizing the explicit form of equilibrium is challeng-

ing because (1) the joining-and-purchasing behavior depends
on the values of all model parameters (such as the PTAS fee
P and traffic intensity 𝜌) and (2) multiple equilibria can exist.
We first focus on the case 5 ≤ N ≤ 𝜇R∕C − 1. This case is
relatively straightforward because the customer utility is a
monotone function when N ≥ 5, which warrants the unique-
ness of equilibrium, and the condition N ≤ 𝜇R∕C − 1 ensures
an active service even without PTAS.5

Theorem 1 (Joint joining-and-purchasing equilibrium strat-
egy). Consider the unobservable M/M/1 vacation queue
with PTAS. Assume 5 ≤ N ≤ 𝜇R∕C − 1, the joint equilibrium
strategy is given below:

(i) If P̄1 ≤ P
2
,  is given in the table below
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𝜌 (0, 𝜌s(p̃)] (𝜌s(p̃), 𝜌s(0)] (𝜌s(0), 𝜌l(0)] (𝜌l(0), 𝜌l(p̃)] (𝜌l(p̃), 𝜌l(p̄)] (𝜌l(p̄), 𝜌l(1)] (𝜌l(1),∞)

P ≤ P
1

(1, 1, 1) (1, 1, 1) (1, 1, 1) (1, 1, 1) (1, 1, 1) (1, 1, 1) (1, 1, q11)

P
1
< P ≤ P̄1 0e (p̃, 1, 1) (p̃, 1, 1) (p̃, 1, 1) (p′, q01, q14) (p′, q01, q14) (1, 1, q11)

P̄1 < P ≤ P
2

0e 0e (0, 1, 1) (p′, q01, q14) (p′, q01, q14) (p′, q01, q14) (1, 1, q11)

P
2
< P ≤ P̄2 0e 0e (0, 1, 1) (p′, q01, q14) (p′, q01, q14) (p̄, 1, q12) (p̄, 1, q12)

P > P̄2 0e 0e (0, 1, 1) (0, 1, q13) (0, 1, q13) (0, 1, q13) (0, 1, q13)

(ii) If P̄1 > P
2
,  is given in the table below

𝜌 (0, 𝜌s(p̃)] (𝜌s(p̃), 𝜌s(0)] (𝜌s(0), 𝜌l(0)] (𝜌l(0), 𝜌l(p̃)] (𝜌l(p̃), 𝜌l(p̄)] (𝜌l(p̄), 𝜌l(1)] (𝜌l(1),∞)

P ≤ P
1

(1, 1, 1) (1, 1, 1) (1, 1, 1) (1, 1, 1) (1, 1, 1) (1, 1, 1) (1, 1, q11)

P
1
< P ≤ P

2
0e (p̃, 1, 1) (p̃, 1, 1) (p̃, 1, 1) (p′, q01, q14) (p′, q01, q14) (1, 1, q11)

P
2
< P ≤ P̄1 0e (p̃, 1, 1) (p̃, 1, 1) (p̃, 1, 1) (p′, q01, q14) (p̄, 1, q12) (p̄, 1, q12)

P̄1 < P ≤ P̄2 0e 0e (0, 1, 1) (p′, q01, q14) (p′, q01, q14) (p̄, 1, q12) (p̄, 1, q12)

P > P̄2 0e 0e (0, 1, 1) (0, 1, q13) (0, 1, q13) (0, 1, q13) (0, 1, q13)

where all relevant parameters are given by (S33)–(S35) in the
Supporting Information.

In Theorem 1, all nonzero equilibria can be classified into
three categories: pe = 0, pe ∈ (0, 1), and pe = 1, which cor-
respond to the three regions in the tables. As P increases, the
probability to adopt PTAS decreases, and eventually pe = 0
when P is large enough, resulting in a regular vacation queue
operated under the N-policy. When P is small, it is never opti-
mal for an arriving customer to wait for the future customers
to activate the server (pe = 1); this case reduces to a stan-
dard M/M/1 queue. When P is large, PTAS is almost never
in effect so the only way to activate the service is by accu-
mulating enough waiting customers. However, if in addition,
𝜌 is small (so interarrival times are long), it will take a long
time for the server’s vacation to end. As a result, the overall
delay cost becomes too high so that no one is willing to join
the queue. See the lower left part of the tables in Theorem 1
with  = 0e.

Careful partition of the parameter space is less straight-
forward, and multiple equilibria may coexist due to the
nonmonotonicity of ΔWN(p). Following the criterion in Def-
inition 2, we can identify the Pareto-dominant equilibrium
by comparing customers’ ex ante expected utilities (see (16))
under different equilibrium strategies. For example, when
N = 2, R = 4, P = 0.2, and Λ = 𝜇 = C = 1, 1 = (0, 1, 0.6),
and 2 = (1, 1, 2∕3) are both equilibrium strategies, of which
the ex ante expected utilities are Û(0, 1, 0.6) = 0.569 and
Û(1, 1, 2∕3) = 0.7. Since Û(0, 1, 0.6) < Û(1, 1, 2∕3), 1 is
strictly dominated by 2, it follows that 2 is the unique
Pareto-dominant equilibrium.

We next conduct a numerical example with Λ = 𝜇 = C =
1, N = 2, 5, 0 ≤ R ≤ 8, and 0.1 ≤ P ≤ 0.7 to investigate the
impact of service reward on the equilibrium outcomes. In

Figure 3, we graph the equilibrium purchasing probability
pe, throughput 𝜆u

e , and PTAS revenue Πu. We summarize our
observations: First, both pe and 𝜆u

e are (weakly) decreasing in
P; as P increases, fewer customers adopt PTAS (i.e., pe ↓).
Consequently, the server’s vacation time increases, discour-
aging future customers from joining the queue (i.e., 𝜆u

e ↓).
Next, plots a and b of Figure 3 show that pe decreases in R.
To see this, we point out that, when R is small, the equilib-
rium effective arrival rate is small so the queue size almost
never reaches the threshold N. Hence, the PTAS purchasing
probability needs to increase in order to achieve an acceptable
delay. On the other hand, a bigger R leads to a bigger effective
arrival rate, which in turn reduces the individual PTAS pur-
chasing probability. Hence, the PTAS purchasing probability
is nonincreasing in R. This result stands in sharp contrast to
the equilibrium strategy in priority queues where customers
are more inclined to purchase priority when R increases
(Wang et al., 2019). Furthermore, we observe from panel c
of Figure 3 that the throughput 𝜆u

e is not always increasing in
the service reward R. According to Remark 5, there exist mul-
tiple equilibrium purchasing probabilities when N < 5, thus
the Pareto-dominant purchasing probability pe may shift from
one equilibrium to another when R varies (this explains why
pe is discontinuous in R as shown in panel a of Figure 3). In
particular, when R is neither too large nor too small, pe drops
from a positive value to 0 as R increases, leading to surged
vacation times, and hence a sharp fall in the throughput. How-
ever, when R is sufficiently small or large, the equilibrium
PTAS purchasing probability pe is unique and remains contin-
uous in R. In fact, increasing R leads to two opposite effects:
On the one hand, it reduces the PTAS purchasing probability
pe, and on the other hand, it attracts more customers to join
the queue. In this case, the latter effect outweighs the former,
so the throughput 𝜆u

e is increasing in R.
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F I G U R E 3 The unobservable case: equilibrium purchasing probability pe, throughput 𝜆u
e , and revenue Πu, with Λ = 𝜇 = C = 1, N = 2, 5, 2 ≤ R ≤ 8,

0.2 ≤ P ≤ 0.7
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4 OBSERVABLE QUEUE

In this section, we investigate the M/M/1 vacation queue
with PTAS when the real-time queue length is revealed to
all arriving customers. Unlike the unobservable case where
customers join the queue with a probability (independent
with the queue length), their joining-and-purchasing deci-
sions are now based on the real-time system state, see Naor
(1969). When a customer (if joining) is indifferent between
accepting and rejecting PTAS upon arrival, we assume for
simplicity that she will choose to pay for PTAS. A simi-
lar assumption can be found in observable priority queues,
see Wang et al. (2021b). Next, we characterize the equilib-
rium strategy, and then compute the system performance in
equilibrium.

Since state-dependent decisions are made in the observ-
able case, we consider this model with infinitely many deci-
sion makers (customers), each facing a state sampled from
the state-space  = {(0, n) : 0 ≤ n ≤ N − 1} ∪ {(1, n) : n ≥

1}. Each system state s ∈  is associated with a set of actions
A(s) such that

A(s) =

{
{J0,B}, if s = (1, j) for j ≥ 1;

{J0, J1,B}, if s = (0, j) for 0 ≤ j ≤ N − 1,
(27)

where B denotes “balking,” and J0 and J1 denote “join-
ing without purchasing PTAS” and “joining and purchas-
ing PTAS,” respectively. Then a pure strategy 𝛿, specifies
an action, 𝛿(s) ∈ A(s), for every s ∈  . Using the preceding
notations, we next give the formal definition of SPE strategy;
also see Fudenberg and Tirole (1991) and Hassin and Haviv
(2002) for discussions of SPE.

Definition 4 (SPE). A strategy 𝜹e is an SPE if a ∈
arg max

a∈A(s)
Us(a; 𝜹e) and a = 𝛿e(s) ∈ A(s) for every s ∈  .

To characterize an SPE, one needs to consider all the sys-
tem states in ; specifically, customers’ best responses need
to be determined in all scenarios (including transient states).
SPE is especially useful in describing the dynamic evolution
of the system, for example, in the case that a customer, due
to some reason, deviates from her optimal strategy. It should
be noted that an SPE specifies the best response actions in all
states, even though not all of them can occur in the equilib-
rium. Hence, an SPE strategy must be an equilibrium strat-
egy, but the inverse statement is not necessarily correct (Has-
sin & Haviv, 2002). To characterize the equilibrium strategy,
we first need to identify customers’ best responses to every
system state, and then refine the unique SPE on the equilib-
rium path.

4.1 Equilibrium analysis

Suppose a tagged customer arrives and finds an active server,
along with n existing customers waiting in line (excluding

herself), that is, s = (1, n), for any strategy 𝜹 , her expected
utility is

Us(a; 𝜹) =

{
R −

(n + 1)C
𝜇

, if a(s) = J0;

0, if a(s) = B.
(28)

Hence, the tagged customer will join the system if and only
if R − (n + 1)C∕𝜇 ≥ 0, or equivalently, n < ⌊𝜇R∕C⌋,6 which
gives

𝛿e(1, n) =

{
J0, if n ≤ ⌊𝜇R∕C⌋;

B, if n > ⌊𝜇R∕C⌋.
(29)

Therefore, it remains to characterize the equilibrium strat-
egy of a customer finding the server to be on vacation (i.e.,
s = (0, n) for 0 ≤ n ≤ N − 1), which is what we shall do
in the rest of this subsection. We consider two cases: (1)
P ≤ C∕Λ (low PTAS fee) and (2) P > C∕Λ (high PTAS
fee).

Suppose the server is inactive when the tagged customer
arrives. When P ≤ C∕Λ, that is, the PTAS fee is lower than
the expected cost spent waiting for the next arrival (who may
or may not be able to activate the server), then it is optimal
for the customer to adopt PTAS (i.e., it is not worthy to wait
for even a single arrival), provided that she decides to join
the queue.

If, in addition R ≥ P + C∕𝜇, then the tagged customer
must join the system because doing so guarantees a nonneg-
ative utility. Hence, under the two conditions P ≤ C∕Λ and
R ≥ P + C∕𝜇, the system reduces to a regular M/M/1 model
(the server will be activated by the very first arriving customer
in equilibrium). On the other hand, if R < P + C∕𝜇, joining
and adopting PTAS will induce a negative utility so that it is
optimal for all arrivals to balk (the system is never active).
Below we formally describe the equilibrium strategy when
P ≤ C∕Λ.

Theorem 2 (Observable queue with low PTAS fee). Con-
sider an observable M/M/1 vacation queue with P ≤ C∕Λ,
the SPE on the equilibrium path is given as follows:

∙ High reward: If R ≥ P + C∕𝜇, then 𝛿e(0, 0) = J1 and

𝛿e(1, n) =

{
J0, if 1 ≤ n ≤ ⌊𝜇R∕C⌋ − 1;

B, if n ≥ ⌊𝜇R∕C⌋.
(30)

∙ Low reward: If R < P + C∕𝜇, then 𝛿e(0, n) = B for n ∈ ℕ.

According to Theorem 2, when the PTAS fee is suffi-
ciently small, any joining customer purchases PTAS (if see-
ing an inactive server) so the system will be activated by
the first arriving customer in equilibrium. Besides, the sys-
tem reduces to a standard work-conservation queue in which
customers join if and only if the queue length is below some
threshold.
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When the PTAS fee is higher than the cost of waiting for
one future arrival, the tagged customer’s best response has
to take into account the behavior of future arrivals. Note that
it may be worthwhile to wait for one arrival, but there is no
guarantee that she will activate the server for sure. Let I ≡
min{n : nC∕Λ > P} = ⌈ΛP∕C⌉ be the minimum number of
future arrivals a tagged customer awaits until her cumulative
waiting cost exceeds P. We next present our results for the
case P > C∕Λ (where I plays a critical role).

Theorem 3 (Observable queue with high PTAS fee). Con-
sider an observable M/M/1 vacation queue with P > C∕Λ,
the SPE on the equilibrium path is given as follows:

𝛿e(0, n) =

{
J0, if n ≤ mod (n̄, I) − 1;

J1, if mod (n̄, I) = n.

𝛿e(1, n) =

{
J0, if mod (n̄, I) + 1 ≤ n ≤ ⌊𝜇R∕C⌋ − 1;

B, if ⌊𝜇R∕C⌋ ≤ n,

(31)

where n̄ = N − 1 if R ≥ max{u(i)} and n̄ = ⌊(R − P)𝜇∕C⌋ −
1 otherwise; and

u(i) =

⎧⎪⎪⎨⎪⎪⎩

(i + 1)C
𝜇

+ P, if mod (N − 1 − i, I) = 0;

(i + 1)C
𝜇

+
mod (N − 1 − i, I)C

Λ
, if mod (N − 1 − i, I) > 0

(32)

for i ∈ {0, 1, … ,N − 2}.

Remark 6. According to Theorem 3, the SPE on the equi-
librium path is of a threshold type, that is, when the server is
on vacation, arriving customers will join without purchasing
PTAS until the queue size reaches a threshold mod (n̄, I),
by that time the system will be activated by an arriving
customer via PTAS. Afterwards, it remains active, and all
future arrivals follow the standard Naor threshold strategy
(see (29)). Unlike the standard vacation queues where the
service-resumption threshold is exogenous, the threshold
of the PTAS queue is dependent on the system parameters.
We provide additional explanations regarding the structure
of the threshold mod (n̄, I) in Section D of the Supporting
Information.

4.2 System performance

Next, we derive the system performance under the equilib-
rium strategy in the observable case. In particular, we com-
pute the system throughput and the PTAS revenue, which is

the rate at which customers pay for PTAS, multiplied by the
PTAS fee P.

Theorem 4 (Throughput and PTAS revenue). Consider an
observable M/M/1 vacation queue with PTAS, the steady-
state probabilities, throughput, and revenue are given
below.

(i) If P ≤ C∕Λ, the steady-state probabilities are

𝜋0,0 =
1 − 𝜌

1 − 𝜌n1+1
, 𝜋1,i =

(1 − 𝜌)𝜌i

1 − 𝜌n1+1
, i = 1, 2, … , n1,

(33)

where n1 = ⌊𝜇R∕C⌋. The system throughput and PTAS
revenue are given by

𝜆o
e =

Λ(1 − 𝜌n1 )

1 − 𝜌n1+1
and Πo =

ΛP(1 − 𝜌)

1 − 𝜌n1+1
. (34)

(ii) If P > C∕Λ, the steady-state probabilities are

𝜋0,i =
(1 − 𝜌)2

(1 − 𝜌)(n2 + 1) + 𝜌n1+1(𝜌 − 𝜌−n2 )
,

𝜋1,k+1 =
𝜌(1 − 𝜌)(1 − 𝜌k+1)

(1 − 𝜌)(n2 + 1) + 𝜌n1+1(𝜌 − 𝜌−n2 )
,

𝜋1,j =
𝜌j−n2 (1 − 𝜌)(1 − 𝜌n2+1)

(1 − 𝜌)(n2 + 1) + 𝜌n1+1(𝜌 − 𝜌−n2 )
(35)

for i = 0, 1, … , n2, k = 0, 1, … , n2, and j = n2 + 2, n2 +
3, … , n1, where n2 = mod (n̄, I).
The system throughput and PTAS revenue are given by

𝜆o
e =

Λ[(1 − 𝜌)(n2 + 1) + 𝜌n1 (𝜌 − 𝜌−n2 )]

(1 − 𝜌)(n2 + 1) + 𝜌n1+1(𝜌 − 𝜌−n2 )
and

Πo =
ΛP(1 − 𝜌)2

(1 − 𝜌)(n2 + 1) + 𝜌n1+1(𝜌 − 𝜌−n2 )
. (36)

Remark 7 (Queueing dynamics in equilibrium). The server,
whenever on vacation, will be activated as soon as the queue
length reaches a certain level. Unlike standard N-policy vaca-
tion queues having a designated threshold N, the activat-
ing threshold of our PTAS queue depends on several model
parameters (i.e., R, P, 𝜇, C, and Λ). Specifically, when P is
small (Case (i)), it is optimal to purchase PTAS whenever the
server is on vacation, and customers will join as long as the
queue length is less than the Naor threshold ⌊𝜇R∕C⌋. And
the model reduces to the Naor model (Naor, 1969). When P
is large (Case (ii)), the server remains inactive until an arriv-
ing customer finds n2 = mod (n̄, I) existing customers in the
queue, so the model reduces to an N-policy vacation queue
with N = n2.
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We consider a numerical example to visualize results in
Theorem 4. In Figure 4 we plot the throughput 𝜆o

e and PTAS
revenue Πo for N = 2, 5, 10. Intuitively, a bigger R drives
more customers to join the system (so a bigger 𝜆o

e ), making
it less necessary for customers to adopt PTAS (so a smaller
Πo). However, Figure 4 indicates that neither 𝜆o

e nor Πo

is monotone in the service reward. Unlike regular vacation
queues where the threshold N is independent of R, the equi-
librium threshold of our PTAS queue is a function of the ser-
vice reward, in particular, the equilibrium threshold n2(R) =
mod(⌊(R − P)𝜇∕C⌋ − 1, I), which itself is not monotone in
R. This explains the cyclic “up-and-down” behavior of 𝜆o

e and
Πo (see cases N = 5 and N = 10). By contrast, when N = 2,
n2 does not vary much (n2 = 1 or 2), so both 𝜆o

e and Πo are
monotone in R.

5 COMPARISONS AND IMPLICATIONS

In this section, we first compare the system performance
(e.g., throughput and PTAS revenue) and pricing implica-
tions under two information disclosure policies. Next, we
benchmark the performance of our PTAS vacation model to
that of a regular vacation queue without PTAS. Finally, we
study how our PTAS model distinguishes from the pay-for-
priority queues.

5.1 Impact of service reward

Theorem 5. For any fixed PTAS fee P, there exists a threshold
R for the service reward such that Πu > Πo if R < R.

In the observable case, the expected customer utility
depends on their queueing positions. So a smaller service
reward R discourages more customers from joining the queue,
leading to a smaller throughput. In contrast, hiding the queue-
ing position becomes an advantage in an unobservable queue
because customers make their joining decisions based on the
average queue length. As a result, the unobservable setting
yields a higher revenue.

In Figure 5, we plot the PTAS revenue under two infor-
mation policies as a function of the service reward. Consis-
tent with Theorem 5, Figure 5 shows that, when R is small,
a higher revenue can be achieved by hiding the queue-length
information; on the other hand, when R is large, more cus-
tomers join the system in the unobservable case, making
it less necessary to purchase PTAS (hence a lower PTAS
revenue).

5.2 Impact of congestion level

Theorem 6. For any fixed PTAS fee P, there exists a threshold
Λ for the congestion level Λ such that 𝜆u

e > 𝜆o
e if Λ < Λ.

Results in Theorem 6 are consistent with the general con-
sensus: When the potential arrival rate is sufficiently small,

all customers in the unobservable model join the system; but
in the observable case, balking can still happen when cus-
tomers observe a longer queue upon arrival. Next, we pro-
ceed to compare the system performance measures under two
information levels relative to the case without PTAS. Note
that the server in a standard vacation queue can never be acti-
vated if R < CN∕𝜇. To avoid triviality, we focus on the case
R ≥ CN∕𝜇 in the rest of this section. Let Πu(Λ) (Πo(Λ)) be
the maximum revenue collected from PTAS with demand vol-
ume Λ in the unobservable (observable) case, the following
result reveals the impact of the congestion level on the system
revenue.

Theorem 7. Under both information policies, the PTAS rev-
enue is nonmonotonic in the congestion levelΛ, withΠo(0) =
Πo(∞) = Πu(0) = Πu(∞) = 0.

At a quick look, the fact that the PTAS revenue is not
monotonically increasing in the potential demand seems
to counter the conventional wisdom. In fact, the market
size Λ impacts the revenue in two opposite directions. On
the one hand, increasing Λ helps create bigger customer
demand for purchasing PTAS; on the other hand, when
Λ is sufficiently large, the high congestion level almost
always warrants an active server, which impedes customers
from paying for PTAS. When Λ is small, increasing the
demand size yields a higher revenue because the first effect
dominates. However, when Λ is already large enough, the
server hardly has any vacation time, so the second effect
prevails.

In the unobservable (observable) case, the revenue reaches
its peak at some finite Λu (Λo). Let Pu(Λ) (Po(Λ)) be the opti-
mal PTAS fee in the unobservable (observable) case with a
demand volume Λ. We have Px(Λ) ∈ [0,R − C∕𝜇] for x =
u, o, otherwise no one will ever purchase PTAS. The follow-
ing theorem compares the optimal PTAS fees under the two
information policies.

Theorem 8 (Optimal PTAS fee: observable queue vs. unob-
servable queue). The optimal prices satisfy Pu(0) = R − C∕𝜇
and Pu(∞) = 0. Furthermore, there exists a threshold Λ̄ such
that Po(Λ) > Pu(Λ) if Λ > Λ̄.

When the demand volume is sufficiently low, the only way
to activate the server is through purchasing PTAS (because
the queue length almost never reaches N). This motivates the
service provider to set an increase in the PTAS fee to gain
improved revenue. We next discuss the case of high-demand
volume (with a large Λ). In the unobservable model, cus-
tomers anticipate a low expected delay (because the average
system size should not be far below N), so most customers are
reluctant to purchase PTAS. As a result, the service provider
needs to lower the PTAS fee in order to achieve improved rev-
enue. In the observable case, customers who observe a shorter
queue length (due to the stochastic nature of the queueing
system) will likely use PTAS to mitigate their waiting costs.
This should explain why the observable model has a higher
PTAS fee.
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F I G U R E 4 Throughput and PTAS revenue in the observable vacation queue for different R, with Λ = 𝜇 = C = 1 and P = 1.5
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F I G U R E 5 Comparison of revenue and system throughput under two information structures for different R, with Λ = 𝜇 = C = 1
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F I G U R E 6 Comparisons of optimal PTAS revenue and corresponding PTAS fee under two information structures for different Λ, with N = 2, R = 5,
and 𝜇 = C = 1

In Figure 6 we use a numerical example to illustrate the
PTAS revenue (left panel) and optimal PTAS fee (right panel)
under the two information policies. Consistent with results in
Theorem 8, Figure 6 shows that a higher PTAS fee should
be set in the observable case. In addition, the PTAS revenue
has a unimodal form in the demand volume, and the optimal
PTAS fee is weakly decreasing in Λ (with Po ≥ Pu).

5.3 Advantage of PTAS in vacation queues

In this subsection, we investigate how the PTAS mechanism
benefits vacation queues. In particular, we provide a compar-
ison of throughput in two models: an M/M/1 vacation queue
with PTAS and an N-policy M/M/1 vacation queue without
PTAS.
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F I G U R E 7 Comparing the system’s throughput functions in unobservable vacation queues with and without PTAS, with Λ = 𝜇 = C = 1, N = 5, and
P = 0.5 [Color figure can be viewed at wileyonlinelibrary.com]

Theorem 9 (PTAS improves throughput). PTAS achieves
improved system throughput for the M/M/1 vacation queue
in both the observable and unobservable cases.

PTAS improves the system throughput by allowing cus-
tomers to activate service immediately upon their arrivals
rather than awaiting future arrivals to increment the queue
length to level N. Indeed, a customer adopting PTAS can not
only reduce her own waiting time, it can also mitigate the
delay cost for other customers (those present in the system
and those yet to arrive). These effects work collectively to
improve the system throughput.

In support of Theorem 9, we give a numerical example to
compare the system throughput for vacation models with and
without PTAS for different service reward R (see Figure 7a
for the unobservable case and Figure 7b for the observable
case). These results not only confirm that PTAS is useful
in improving the system throughput, they also reveal some
additional insights: PTAS is especially effective as long as
the service reward R is relatively small. A bigger service
reward attracts more customers to join for service so that
queue size N is easily attained, which impedes joining cus-
tomers from purchasing PTAS (Figure 7a confirms that, in the
unobservable case, the system throughput of the PTAS model
coincides with that of the vacation model under N-policy
when R is large enough). In addition, Figure 7b shows that
the superiority of PTAS remains in effect for both large and
small Λ in the observable case.

5.4 PTAS versus pay-for-priority

In Section 3, we have given a brief discussion on how the
equilibrium strategy of our PTAS queue differs from that of
the priority queue. To reiterate, a major distinction is that

the priority queue exhibits a pure FTC behavior while PTAS
shows a more sophisticated behavior that is the hybrid of
both FTC and ATC. To further this discussion, we next com-
pare the optimal revenue (i.e., revenue under the optimal fee)
of these two models. We hereby restrict our attention to the
unobservable setting (i.e., the server’s state is observable but
the queue length is not).7 Denote by Πp(Λ) the optimal rev-
enue by selling priorities, we can have the following result.

Theorem 10 (Comparison of optimal revenue: PTAS vs. pay-
for-priority). In the unobservable case, we have Πu(Λ) <
Πp(Λ) (Πu(Λ) > Πp(Λ)) as long as the market size Λ is suffi-
ciently large (small).

When the demand volume is low, customers in a priority
queue anticipate a smaller expected delay so they intend not
to pay for priority service, whereas in our PTAS model, cus-
tomers are more inclined to purchase PTAS, because other-
wise the server’s vacation may last for a longer time. When
the demand volume is high, customers are incentivized to mit-
igate their delay via the purchase of priority, while PTAS
becomes less necessary because the queue is already long
enough to reach level N (see Theorem 7). See Figure 8 for
a numerical example, which shows a distinct structure of
the two revenue functions: Πu is unimodal in Λ while Πp is
increasing in Λ. In addition, there exists a cutoff point for the
market size Λ, below (above) which the PTAS model yields a
higher (lower) revenue than the priority model.

6 CONCLUSION

In this paper, we study the equilibrium performance of a
vacation queueing model with strategic customers. Unlike
standard vacation queues in the extant literature where the
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F I G U R E 8 Comparison of Πu(Λ) and Πp(Λ) for different Λ, with
𝜇 = C = 1, N = 5, and R = 5

server’s vacation is ended whenever the queue length reaches
a critical level, we introduce a new mechanism in that a cus-
tomer, upon finding the server to be on vacation, may choose
to pay a fee to end the server’s vacation. This mechanism is
referred to as PTAS. The ingenuity of PTAS lies in its abil-
ity to allow the server (when on vacation) to be activated
immediately by arriving customers, which gives customers
more active controls on the server’s state (so earlier customer
arrivals no longer need to passively wait for future customers
to reach the critical queue threshold).

In the present model, customers seeing an inactive server
need to make two decisions: (i) whether to join the queue
and (ii) if yes, whether to pay for PTAS. We investigate cus-
tomers’ equilibrium joining-and-purchasing strategies, and
study their responses to this mechanism under three infor-
mation cases: (i) observable queue and server state, (ii) unob-
servable queue and observable server state, and (iii) unob-
servable queue and server state. Our theoretical analysis
reveals results that are seemingly contrary to the conven-
tional wisdom. For example, due to the coexistence of FTC
and ATC behavior, a higher service reward does not always
guarantee a higher system throughput. In addition, the PTAS
revenue is a nonmonotone function in the demand volume
(a higher potential demand may even yield a lower revenue).
These findings provide quantitative and qualitative insights
into the system design of vacation queue systems. We also
conduct a careful performance comparison of different infor-
mation policies.

There are several avenues for future research. One inter-
esting direction is to study customers’ rational abandonment
behavior in response to the new PTAS mechanism. Another
potential topic is to allow the service provider to dynamically
adjust the PTAS fee based on the real-time queue length in
order to further improve the system revenue.
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E N D N O T E S
1 The NEV subsidy policy aims at contributing toward energy independence

and addressing local air quality concerns by promoting the development of
NEV (detailed benefits include purchase tax exemption, low interest loan,
etc.; https://dieselnet.com/standards/cn/nev.php).

2 Throughout the paper we refer toΛ as the demand volume as well as market
size, and to 𝜇 as the service capacity.

3 The term “system state” refers to different information under different poli-
cies: In the observable case it includes both the queue length and server’s
state, and in the unobservable case it means solely the server’s state.

4 In Supporting Information, we extend our base models by investigating
the third case, called “no-information,” where neither the server’s state nor
queue length is available.

5 Equilibrium strategies in other cases (i.e., N = 2, 3, 4, and N ≥ 𝜇R∕C) are
reported in Proposition 8 in Section C of the Supporting Information.

6 In the observable case, when the server is active, customers will join (with-
out purchasing PTAS) if and only if the queue length is less than a threshold⌊𝜇R∕C⌋ in Naor’s model.

7 Explicit equilibrium results in the observable priority queue are more com-
plex and less tractable, see Adiri and Yechiali (1974) and Hassin and Haviv
(1997).
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