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ABSTRACT

Efficient patient flow through an emergency department is a critical factor that contributes to a
hospital’s performance, which influences overall patient health outcomes. In this work, we model
a multiclass multiserver queueing system where patients of varying acuity receive care from one
of several wards, each ward is attended by several nurses who work as a team. Supported by
empirical evidence that a patient’s time-in-ward is a function of the nurse-patient ratio in that
ward, we incorporate state-dependent service times into our model. Our objective is to reduce
patient time in system and to control nurse workload by jointly optimizing patient routing and
nurse allocation decisions. Due to the computational challenges in formulating and solving the
queueing model representation, we study a corresponding deterministic fluid model which serves
as a first-order approximation of the multiclass queueing model. Next, we formulate and solve an
optimization model using the first-order control equations and input the results into a discrete-
event simulation to estimate performance measures, such as patient length-of-stay and ward
workload. Finally, we present a case study using retrospective data from a real hospital which
highlights the importance of accounting for nurse workload and service behavior in developing
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routing and staffing policies.

1. Introduction

The emergency department (ED) is arguably the most oper-
ationally complex clinical setting of the modern hospital.
EDs in most hospitals around the world suffer from com-
mon issues such as long waits, inefficient processes and
poor patient satisfaction (Derlet & Richards, 2000). The
issue of long waits, in particular, is a result of increasing ED
volumes and a sign of ED overcrowding. According to the
Agency for Healthcare Research and Quality (AHRQ, 2018),
90% of EDs in the country reported that they were
“holding” admitted patients in the ED while awaiting
inpatient beds. This backlog of patients having to wait
within the ED disrupts the efficient flow of patients
throughout the hospital system. Efficient patient flow has
been shown to be an important factor contributing to
patient safety (Carayon & Wood, 2009). Some indicators of
effective patient flow include high patient throughput, and
low patient waiting times while maintaining adequate staff
utilization rates and low physician idle times (Jun
et al., 1999).

Improving patient flow is challenging because the rate of
patient arrivals to a hospital is uncertain both in timing and
volume (Denton, 2013). Despite this uncertainty, EDs have
it in their power to manage the flow of patients once they
arrive in order to provide effective care. Emergency

departments typically stratify incoming patients into groups
based on their severity. Examples of triage systems being
used by hospital systems today to assess the severity of
incoming patients’ conditions include the Australasian
Triage Scale (ATS) (Considine et al., 2004), the Canadian
Triage and Acuity Scale (CTAS) (Murray, 2003), the
Manchester Triage System (MTS) (Parenti et al.,, 2014), and
the Emergency Severity Index (ESI) (Tanabe et al, 2004).
Hospitals use such groupings of patients to route them to
appropriate units (or wards) within the ED for treatment.
This routing (also known as “streaming”) of patients plays a
vital role in improving the efficiency of an ED’s operations.
There exists extensive literature on the operational and
monetary benefits of efficient patient flow and routing
(Armony et al., 2015; Carnes et al., 2015; Haraden & Resar,
2004). Furthermore, there is a recent focus on better under-
standing the impact of workload experienced by nurses and
providers resulting from flow redesign (Nicosia et al., 2018).
The workload experienced by clinicians and nurses is a crit-
ical factor in the evaluation of operational metrics (e.g., clin-
ician performance and staffing decisions) in healthcare
systems (Mazur et al, 2016; Upenieks et al., 2007). High
workload is associated with nurse turnover and shortages,
clinician burnout, and undesired patient outcomes. Some
examples of negative patient outcomes as a result of high
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Figure 1. Pictorial representation for the status quo values of patient arrival rates, routing proportions, ward staffing, and ward capacity at the hospital’s ED.

workload include increased mortality in the intensive care
unit (ICU) and during post-operative recovery, prolonged
length-of-stay (LOS) and higher rates for procedure related
infections (Ball et al., 2018; Holden et al., 2011; Lamy Filho
et al,, 2011; Magalhaes et al., 2017).

Because workload plays a significant role in affecting the
efficiency and quality of care, there is a need to redesign
routing protocols and restructure resource allocation policies
while considering workload.

1.1. Motivating example - How nurse workload affects
patient service time

We motivate our work using findings from preliminary
analyses of how workload affects patient time-in-ward (ser-
vice time) based on data from a regional hospital in North
Carolina, USA. The dataset contains information on over
88,000 unique ED visits from November 2017 to April
2019, each with over 150 variables including timestamps,
visit attributes and patient outcomes. We also have infor-
mation on physician and nurse schedules and daily bed
assignments. Patients arriving to this ED were triaged into
one of five different severity types (with a severity level of
1 being the highest and a severity level of 5 being the low-
est) and were assigned to one of three different wards. The
wards were named critical care (CC), minor care (MC),
and fast track (FT). The CC ward was typically occupied
by patients of severity levels 1 and 2, while the FT ward
was usually visited by less severe patients (levels 4 and 5).
We inferred patient arrival rates by calculating the inter-
arrival times for each patient severity type. Figure 1 gives
the values for arrival rates, staffing levels, maximum cap-
acity and routing proportions that we obtained from the
data and used in our numerical analyses. We refer the
reader to work by Swan et al. (2019) for a more detailed
description of the data. Our goal, during this preliminary
review of the data, was to investigate the relationship
between workload experienced by nurses in a ward and
the average time patients spend in a ward. As universal
measures for workload do not exist (Fishbein et al., 2019),
we used the ratio of patients to nurses in a ward as a
proxy measure for workload.

In Figure 2, we demonstrate this relationship for
patients of severity level 3 assigned to the MC ward. For
each patient we calculate the average patient-nurse ratio.

For example, suppose a patient is in the ward from 8 am
to 11 am with one nurse, he/she is the only patient from 8
am to 9 am, and another patient joins from 9 am to 11
am and a third patient is there from 10 am to 11 am,
then the average patient-nurse ratio for that patient is 2
and the time-in-ward is 180 minutes. Next, we aggregated
average patient-nurse ratio (x-axis) into buckets and calcu-
lated the average value of patient time-in-ward (y-axis)
within each of those buckets. (We note here that we
excluded data points with time-in-ward values greater than
24 hours to remove outliers.) We see that the curve follows
a distinct polynomial form. We fit the curve in Figure 2
using a second order polynomial function (dashed red line)
as well as a LOESS (Locally Estimated Scatterplot
Smoothing) regression (black line). We see that the LOESS
fit matches quite well with the polynomial fit in this case.
A similar analysis for all combinations of patient severity
types and wards shows similar trends, as is later shown in
Section 4. Considering the form of Figure 2, we see that a
patient’s time-in-ward first increases on increasing patient-
nurse ratio as each nurse in the ward is required to care
for more patients on average. However, at higher values of
patient-nurse ratio, the patient time-in-ward begins to
decrease, leading to an inverted U-shaped curve. Though
workload is measured in different ways, this observation is
well-supported by prior literature. For example Batt and
Terwiesch (2012) find that the service time in an ED is a
U-shaped function of the number of patients in the waiting
room. Based on inpatient data from over 200 California
hospitals, Berry Jaeker and Tucker (2017) find that patient
LOS (which includes service time and wait time) increases
as occupancy increases, until a tipping point, resulting in
an inverted U-shaped relationship between utilization and
throughput time. Both studies find similar reasons for this,
where initially a slow-down occurs due to the strain on a
complex system with shared resources, then a speed-up
due to change in service such as early discharge to alleviate
congestion.

The key takeaway from this exploratory analysis is that
patient time-in-ward is clearly dependent on the workload
experienced by nurses in that ward. We argue that a model
that attempts to assign resources to reduce LOS should take
into account the functional relationship between workload
and service time. This observation sets the stage for the
work we undertake in the remainder of this article.
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Figure 2. Average patient time-in-ward (for patients of severity level 3 in MC ward) fit against bucketed values of average patient-nurse ratio showing actual data,

a LOESS fit, and a polynomial fit that we used in our experimental analyses.

1.2. Setting and related literature

In the US patients arriving to an ED are usually routed to
wards based on their severity. These areas are sometimes
referred to as Dbays, zones, or units-within-units.
Furthermore, team-based care (or pods), in which physicians
and nurses are assigned to work in teams in specific areas,
has gained popularity as it has shown to be efficient and
improve patient outcomes (Dinh et al., 2015; Mitchell &
Golden, 2012). In this article we model a multiclass multi-
server queueing system where patients of different acuity
levels are assigned to one of several ED wards and receive
care from the medical team in their ward. While a team
may consist of physicians, technicians, clerks and nurses,
here we focus on the assignment of nurses to units and
assume the other staff is held constant’. We assume that a
patient’s service time is a function of the workload of nurses
represented as the ratio of patients-to-nurses in their ward
(as shown in Figure 2). Our model reduces patient LOS
(which includes time-in-ward and wait time) and controls
nurse workload by optimizing routing and nurse allocation
decisions between the units.

In this work we consider joint staffing and routing in an
emergency department, modeled as a multiclass multiserver
queueing control problem. While there is much literature
related to staffing and/or patient assignment, some ignore
time dynamics and queueing effects. Thus we focus our dis-
cussion on multiclass multiserver queueing models with
healthcare applications.

1.2.1. Multiclass multiserver queueing control

The patient assignment or admission control problem has
been studied by several, including (Helm et al, 2011;
Saghafian et al., 2012, 2014), who use dynamic programming
to improve flow in the ED. In recent work, Dai and Shi

The following articles discuss how team-based care was implemented in ED pods
at Sharp Memorial Hospital in San Diego CA https://healthmanagement.org/c/
hospital/news/pod-and-huddle-ed-model-speeds-processes and at NYU Lutheran
Medical Center in Brooklyn NY https://www.reliasmedia.com/articles/140681-
team-based-pod-system-reduces-lengths-of-stay-for-treat-and-release-patients

(2019) model hospital inpatient flow as a multiclass, multi-
pool parallel-server queueing system and formulate the over-
flow decision problem, where overflow is used to re-route
patients to different server pools if their primary unit assign-
ment is at capacity, the problem is solved using approximate
dynamic programming. We refer the reader to work by
Saghafian et al. (2015) for a more comprehensive review of
articles that discuss patient flow optimization in emergency
departments. Staffing decisions have also been studied. Liu
and Whitt (2012c) determine staffing levels in a queueing
model with non-exponential service times and time-varying
arrivals; they later extend the model to feedforward (Liu &
Whitt, 2014c) and feedback (Liu & Whitt, 2017) queueing
networks. Cohen et al. (2014) allocate surgeons to an ED in
a mass casualty context. In recent work, Chan et al. (2021)
consider staffing decisions, where the ability to reassign
servers happens at discrete-time intervals, or under partial
flexibility and this work is extended to consider two types of
nurses (Chan et al., 2020). These articles use fluid approxi-
mations to solve the problem, due to their complexity.
While staffing decisions are closely related to routing, as
optimal staffing depends on the choice of routing rule used
and vice versa (Gans et al.,, 2003), the articles above treat
these decisions separately. In fact, Harrison and Zeevi
(2005) note that nurse staffing and patient routing are often
treated in a separate but hierarchical manner due to the
computational complexity involved. We do find one closely
related stream of work, which is motivated by emergency
departments and the Canadian triage and acuity scale, devel-
ops a dynamic staffing-and-routing rule for a multiclass V
model subject to chance constraints on customer delays
(Liu, 2018; Liu et al., 2022). In addition to tackling the joint
staffing and routing problem, our work considers pooled
service (team-based care) and state-dependent service.

1.2.2. Pooled service

In our work we consider team-based care; few analytical
models for resource allocation in healthcare consider the
fact that resources within units are partially shared, central
resources. In general service systems, the use of pooled
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resources is related to the concept of “processor sharing”
(Kleinrock, 1967). Processor sharing is a service policy
where customers are all served simultaneously in a queueing
system. Under processor sharing, each customer receives an
equal fraction of the service capacity available. Sharing
resources within a unit is an idea that is relatively new in
healthcare analytics literature. Agor et al. (2017) developed a
simulation model in which incoming patients are assigned
to teams of providers of different skill levels. Mandelbaum
et al. (2012) showed that based on empirical hospital data
the Inverted-V queueing model best models patients spend-
ing time in units within a hospital. The Inverted-V model
assumes that upon entering a queueing system, an agent
(patient) is assigned to a “pool” of servers instead of being
assigned to a single server. Several authors continued to
build on this by proposing a variety of patient/customer
routing algorithms in an Inverted-V queueing context
(Almehdawe et al., 2013; Armony & Ward, 2010; Ward &
Armony, 2013). In addition to considering pooled service,
we model state-dependent service.

1.2.3. Workload-dependent service

We next review both empirical and theoretical works on
queues with workload-dependent service times. Kc and
Terwiesch (2009), Kc and Terwiesch (2012), and Anderson
et al. (2011) study how high workload impacts ICU LOS;
these works reveal that high occupancy rates can lead to
shorter LOS due to the need for accommodating new and
more critical patients. Also see Kim et al. (2021) for an
empirical study on how an ICUs’ capacity strain affects the
patients’ LOS. Chan et al. (2017) study a new hospital
queueing model in which excessive patient delay leads to
adverse health conditions, which in turn result in a longer
LOS. Batt and Terwiesch (2012); Berry Jaeker and Tucker
(2017) find that the service time in an ED exhibits a U-
shaped function of occupancy; these works serve as the pri-
mary motivation for the workload-dependent assumption in
the present work (see Figure 2). The present work is also
related to the more general literature on queues having a
state-dependent service rate. See Ata and Shneorson (2006);
George and Harrison (2001); Powell and Schultz (2004) for
settings of queueing systems where service rates may be
dynamically controlled based on the system’s congestion
level; these theoretical works show that service rates should
increase with congestion in order to achieve the optimal sys-
tem-level performance. The present work draws distinctions
from the above extant literature by studying the multiclass
multiserver setting, and in addition, it investigates the joint
staffing-and-routing decisions in response to the workload-
dependent aspect of the model.

To summarize, our main contributions are as follows:

e Queueing model with joint staffing and routing assign-
ments. We propose a multiclass and multiserver queue-
ing system that allows for dynamic server assignment
and routing in a joint optimization framework.

e Team-based care and ward-level workload considera-
tions. We model team-based care, in which servers are

shared within a pool (or ward). Staffing and routing
decisions can often lead to imbalanced workload between
units. We specifically model workload, show the impact
that staffing and routing have on workload, and optimize
subject to workload constraints.

o State-dependent service. We are the first to consider the
impact of workload on patient service time in a decision-
modeling framework. While this phenomenon has been
observed empirically, this form of state-dependent service
time has not been previously incorporated into a multi-
class and multiserver queueing system. The control prob-
lem under this assumption introduces new complexities,
and thus cannot be modeled using the typical Markov
decision process (MDP) approach. Thus we conduct a
fluid analysis and find asymptotically optimal policies.

An outline of the remainder of this article is as follows.
Section 2 describes the multiclass multiserver queueing
model with pooled service and workload dependent service.
To solve the problem, we develop a fluid model approxima-
tion and optimization model, which we validate with simu-
lation, this is described in Section 3. In Section 4, we
conduct several experiments by optimizing patient routing
and nurse staffing for a case study under different con-
straints. Lastly, we conclude with Section 5.

2. Model description & formulation

To describe our model formulation we first describe the
abstraction of the process of patient flow through an ED as
a multiclass multiserver queueing model. Then we specify
two key features of our model (pooled service and consider-
ation for nurse workload) and define them mathematically.

2.1 Queueing model
We define a multiclass queueing model to represent the arrival
and service process within a hospital emergency department.
Let us consider patients of I different severity types and ] wards,
with ward j, V 1 <j <] containing ¢ nurses. Each ward j
can house a maximum of M patients which would presumably
be greater than the number of nurses s/, though this is not a
requirement for our model. Unlike a traditional queueing
model, where a single patient is served by a single nurse, we
assume that the patients within a ward receive team-based care,
or pooled service from a team of nurses in the ward.

A pictorial representation of the patient flow process is pro-
vided in Figure 3. Patients of severity type i arrive to the system
with average inter-arrival time /li These patients may be

assigned to ward j according to a routing proportion rf with

;:1 r, =1 for 1 <i <. In other words, a proportion . of
patients of severity i are served by nurses in ward j. These pro-
portions may be thought of as probabilities and are treated as
decision variables in our model. We assume that each patient
severity type is associated with a queue where they wait if they
are unable to enter service immediately upon arrival. We
assume an infinite buffer for this queue. After arrival and

before joining service, patients may abandon (leave after
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Severity [
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Figure 3. An overview of the patient flow process being considered in this article. Patients, following triage into one of several different severity levels, arrive to an
ED and are assigned to a ward if space is available and depending on the given routing policy. If there is no space, patients wait until they are able to join a ward.
Patients waiting for too long may abandon the system before entering service in a ward.

joining the queue but before starting service). We assume that
the successive times to abandon for patients of severity type i
are i.i.d random variables with CDF F,. We note here that F; is
dependent on the workload present within a ward (as later
described). Following ward assignment, the time spent by a
patient in the ward before departure is assumed to be a random
variable drawn from a distribution such that this time is a func-
tion of the number of nurses and the number of patients of all
severity types in the ward.

Our model has two decisions to be made: staffing and
routing. Staffing is the choice of numbers s for 1 <j <]
that specifies how many nurses must be assigned to each

ward while routing is the choice of numbers rjl for1 <i<I
and 1<j<] that specify the proportion of incoming
patients of severity type i that must be routed to ward j.
Characterizing the queueing model described so far via
closed-form expressions is difficult due to non-exponential
distributions, pooled service, and workload-dependent ser-
vice rates. In the next section, we will define an approximat-
ing fluid model that allows us to characterize the system via
a set of equations.

2.2. Pooled service and workload dependent service

We assume that the time spent in service by a patient is a
function of the number of nurses in the ward and the num-
ber of patients in the ward. In other words, the random

variable S]l: corresponding to the amount of time a patient of
severity type i spends in service in ward j depends on the
number of nurses s’ in ward j and the number of patients
v = (), >”]1) of all severity types i € {1,..,I} in the ward.
We characterize this dependency by assuming the mean

value of this random variable E[S/] to be the function m/ as

]E{S’l} = ml(s, ) — Rog.

Here, we do not specify the form of the function mé,

though a particular form is provided for the case study in
Section 4.1.2.

The operations research literature that operationalizes
workload metrics via mathematical modeling to balance/
minimize nurse workload is sparse. Most of the existing
work provides models within the context of an inpatient
(Agor et al., 2017; Milburn, 2012) or home health care set-
ting (Punnakitikashem et al., 2006; Sir et al., 2015), or
attempt to balance and minimize workload by redesigning
existing staffing methods (Wright et al., 2006). A recent art-
icle by Fishbein et al. (2019) takes the important step of
reviewing objective measures of workload that can be
obtained from electronic records to inform operationaliza-
tion of workload measurement.

An important feature of our model is the ability to opti-
mize staffing and routing while ensuring that the workload
experienced by nurses in wards is maintained below pre-
defined thresholds. We assume that the workload experi-
enced by nurses in ward j depends both on the number of
nurses in the ward § and the number of patients of each

different severity type n/ = (n’l,n’z,nll) according to the
function 7; as

3(5, 1) — R (1)

We will use this workload function y; to define con-
straints within our optimization model stating that the
workload of all the wards be within some desired range
determined by the decision maker. When performing experi-
ments, we will consider two types of workload constraints.
The first attempts to keep the workload of each ward under
a pre-defined threshold while the second attempts to keep
the absolute difference in workload across all pairs of wards
under a pre-defined balance threshold.

3. The fluid model

The multiclass queueing model described in Section 2 is
complex and difficult to express in a closed-form. As a
result, it becomes difficult to formulate a model to optimize
staffing and routing. Toward this, we approximate our sto-
chastic queueing model by its fluid limit, which requires
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scaling up the arrival rates of patients, ward capacity, and
nurse staffing, while fixing abandonment-time and service
time distributions. In what follows, in Section 3.1 we briefly
review relevant literature on fluid models and discuss why it
is an effective approach for our problem. In Section 3.2 we
describe how to obtain the fluid limits using its stochastic
pre-limit processes. In Section 3.3, we develop a perform-
ance optimization problem based on fluid functions. In
Section 3.4, we explain how the performance of fluid solu-
tions can be verified via computer simulations.

3.1. Literature review of fluid models

Our article is related to the vast literature on fluid approxi-
mations for queues. In what follows, we introduce different
queueing models following the standard Kendall’s nota-
tion;” see Ross (2019) for example. We hereby only review
Many-Server Heavy-Traffic (MSHT) fluid queues that are
most closely related to the present work. Heavy-traffic fluid
and diffusion limits were developed by Mandelbaum et al.
(1998) for time-varying Markovian queueing networks with
Poisson arrivals and exponential service times. Adopting a
two-parameter queue length descriptor, the pioneering
work by Whitt (2006a) studied the G/GI/s+ GI fluid
model having non-exponential service and abandonment
times. Whitt (2006b) confirms that the discrete-time setting
can be used as an approximation for the continuous-time
setting (of the G;(n)/GI/s + GI model) as time increments
of the discrete-time setting can be arbitrarily short. Scaling
a stochastic system to its fluid limits has been shown to be
asymptotically correct in the scaled regime for the
Markovian M/M/s + M model (Mandelbaum & Pats, 1995;
Whitt, 2004) and for a discrete-time analog of the general
G;(n)/GI/s+ GI model (Whitt, 2006a). Extending the
work in Whitt (2006a), Liu and Whitt (2012a) developed a
fluid approximation for the G,/GI/s; + GI queue with
time-varying arrivals and non-exponential distributions;
they later extended it to the framework of fluid networks
(Liu and Whitt (2011), Liu and Whitt (2014a)). A func-
tional weak law of large numbers (FWLLN) (Liu & Whitt,
2012b) was established to substantiate the fluid approxima-
tion in Liu and Whitt (2012a) and functional central limit
theorems (FCLTs) were developed for the G,/M/s; + GI
model by Liu and Whitt (2014b) and for the overloaded
G/GI/s + GI model by Aras et al. (2018).

3.1.1. Advantages of fluid models

The complexity of a stochastic system is often due to chal-
lenges in two separate dimensions: (i) time variability (non-
stationary variability in time relative to its “steady-state”
level) and (ii) stochastic variability (sample-path fluctuation
relative to its sample average trajectory). As a limiting model

%Following Kendall's notation, a queueing model is specified by notation
Arr/Ser/s + Ab, where “Arr” means the arrival process, “Ser” means the service
distribution, s is the number of servers, and +Ab means the abandonment-time
distribution. For example, “M” means exponential distribution, G or G/ means
general (nonexponential) distribution, and a subcript t (e.g., M; and G,) indicates
the time nonstationarity of the arrival process.

driven by FWLLN, a fluid model is useful for capturing the
time variability while ignoring the stochastic variability. The
biggest advantage of fluid analysis is its tractability. For
queueing systems, exact analysis is often extremely challeng-
ing due to the sophistication of sample stochasticity and
state-space discreteness. Fluid limits of queueing systems
nicely address the above two issues by working with deter-
ministic and continuous fluid processes (which are in gen-
eral specified by a set of differential equations). We next
give more in-depth discussions on the benefit of fluid mod-
els relative to two commonly adopted methods.

e Fluid model vs. MDP. Unlike the standard Markov deci-
sion process (MDP) analysis which often suffers from the
curse of dimensionality, the large-scale assumption in
fact becomes an advantage for the fluid model rather
than a disadvantage. This is because the asymptotic opti-
mality of fluid models requires that the system size grows
large. Besides, the system’s scale has no bearing on the
analysis complexity and solution efficiency of the fluid
dynamics because its performance functions arise from
the asymptotic setting in which all “entities” (e.g., cus-
tomers and servers) are shrunk down to infinitely divis-
ible “atoms” of fluid.

e Fluid model vs. simulation. Comparing to simulation-
based methods (e.g., sample average approximations and
scenario generation), fluid models do not require build-
ing complex discrete-event simulation models, of which
the accuracy relies on sufficiently large simulation budg-
ets. In addition, fluid solutions are often in closed
forms which can be used to generate useful structural
insights. For example, the seminal work by Whitt
(2006a) gives a clear-cut description of how the service
time and abandonment-time distributions play a role in
system performance functions and capacity sizing deci-
sions. The analytic clarity of this result has opened a
new research line and sparked many subsequent works.
See for example Liu and Whitt (2012¢) for an applica-
tion to optimal staffing in queues with time-vary-
ing demand.

Past researchers have used fluid models to solve OR
problems in service systems and healthcare; see Anderson
(2014); Dotoli et al. (2009); Yom-Tov and Mandelbaum
(2014); Yousefi et al. (2019).

3.2. From stochastic model to fluid limit

In our work, we follow the procedure outlined by Whitt
(2006b), to perform the fluid scaling. Accordingly, we intro-
duce a sequence of models indexed by a scaling parameter
1, and then let # — oo. The arrival rates, maximum patient
capacity in a ward, and number of servers are then set to be
functions of 7 as

. J ) i )
}4(77) N )\'i’ M (;7) — M] and S’(’7) — S]
n n n
as 11— oQ.



Thus, 4;(n) = n4; is the arrival rate of patients into the

queueing model indexed by 5 but 4; is the arrival rate of
class-i fluid after scaling. Similar interpretations hold for
Mi(n) and $(1).
Our fluid model is characterized by the parameter sextuple
(4, x,F1,S,s) where 4 = (A1, 4,..,4;) is an I-tuple of num-
bers corresponding to arrivals, F = (Fy, ..., Fy) is an I-tuple
of CDFs corresponding to abandonment, § = (Sjl 1< <
J,1 <i<I) is an Ix] matrix of service time CDFs, x =
(x: :1<j<J,1<i<I)is an I x ] matrix of numbers cor-
responding to number of patients of each severity type in a
ward, rE(rf:lgjg],lgigl) is an IxJ matrix of
numbers corresponding to patient routing proportions, and
s =(s;,..,5) is a J-tuple of numbers corresponding to
ward staffing.

To describe how the fluid model evolves over time, we
define w; as a deterministic time a fluid of class-i waits
before entering service. This measure is relevant as the pro-
portion of customers who do not abandon while waiting for
service equals F{(w;) (the CCDF of the abandonment distri-
bution after class-i fluid has waited for time w;).

One aspect of our model that is different from the frame-
work outlined by Whitt (2006b) is in our relationship
between offered load and service capacity. We begin by rec-
ognizing that fluids of two different classes within a ward do
not interact. This is because the fluids of two different
classes are able to share the same pool of nurses at the same
time. This is unlike in a traditional queueing system where
if one of the servers was occupied due to serving a particular
class of fluid, that server is unavailable to other fluid classes.
As a result, we define service capacity and offered load for
any given fluid class independently from other fluid classes
present in the same ward.

Before we define the system control equations, we note
that since service time in our original queueing model is
dependent on the number of patients, we require a scaling
of the number of patients and need to represent it by a cer-

tain amount of fluid. Thus, if ni is the number of patients of

type i in ward j in the queueing model, we define xf as its
scaled counterpart in the fluid model as

M — xf as 1 — oo.

n

The service time function 7,(s/,x) can thus be defined as
a fixed deterministic quantity since both s’ and ¥/ are fixed
deterministic numbers.

We can now express the system control equations for
each ward in terms of the system control equations for each
fluid type within the ward. In other words, we can express
the system control equations via the expression “rate-
in=rate-out” for each class-i fluid in ward j. Now, the
arrival rate of class-i fluid entering service at ward j (which
is also the “rate-in”) equals /l,-rfFf(wi). The first term (4,) is
the overall arrival rate of fluid i. The second term (ri:) is the
proportion of fluid i that is routed to ward j while the last
term (Ff(w;)) is the proportion of class-i fluid that does not
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abandon after having waited for w; units of time. The mean
service time for class-i fluid entering ward j equals mﬁ(s/,xj).
The rate-out thus equals the inverse of the mean service
time (17(s,x/) ") multiplied by the service capacity (x}) giv-
ing us the following control equation:

2 X 1l X F(wi) = ) x mil($,%) 7", Vi, Vi
In addition we have the following sets of constraints to
prevent fluid loss during routing

doh=1, v1<j<].

Finally, we have a set of constraints to ensure that the
total amount of fluid (of all classes) is capped in each ward j
according to maximum capacity M as

dYox<M vi<j<].

3.3. A fluid optimization problem

Before defining the objective of our optimization model, we
first define the associated cost and reward coefficients. We
break the objective function into three parts -

e A reward v, is earned per ward for serving a unit of
class-i fluid in ward j. Within the context of our ED set-
ting, a higher reward is earned on serving more patients.
The reward for class-i fluid is obtained for all fluid which
has not abandoned after waiting w; time units (F;(w;)),
under routing proportions r. The total reward for class-i
fluid is given by AF;(w;) >, 1.

e A cost ¢} is incurred for a unit of class-i fluid that aban-
dons after waiting for time t. Within the context of our
ED setting, a higher cost is incurred as more fluid
(A; [} dF;(t)) abandons the system after having to wait
for w; units of time. We assume a linear function for
abandonment cost.

e A holding cost of c/(y) is incurred for having y units of
class-i fluid waiting in queue. Here, y is the amount of
class-i fluid waiting in queue in the fluid limit and is cal-
culated using the expression y =, [, F¢(f)dt. Within
the context of our ED setting, a higher holding cost ¢(-)
is incurred as more patients are forced to wait before
being assigned to a bed in a ward.

We note here that our reward functions and coefficients
are adapted from (Whitt, 2006b). We thus have the follow-
ing expression for total reward.

R=R(s,r,w) = Z ()LiFf(Wi) Z v — J“’i ctdF;(t)
j

0

1

Wi
—c?(z,-J F;(t)dt)). )
0

We note here that the above expression does not expli-
citly minimize a patient’s LOS. However, by attempting to
reduce wait times with abandonment penalties, the model
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incentivizes the system to establish smart routing and staff-
ing policies that lead to faster patient service. This in turn
ensures that patient wait time is reduced further down-
stream in the wait queues. The complete fluid optimization
problem (FOP) may now be written as follows

ma‘i(,igqsize Z(A,Ff(w,) Z T’i’jVé — /1,' IOWi C?dF,‘(t)
i j
—cf.'(/l'i OW’ Ff(t)dt)) ‘
subject to Lt FE(wy)m(§, %) = X,
1<j<), <i<lI
doA=1  1<i<I

J
Y oH<M, 1<j<]

Y9, %), v, j)ey)

0§1j<1
> -0
j

0<w

©)

Here, ® is the maximum number of servers available for
assignment. We have not placed any restriction on the

nature of the functions 7/(s/,x/) and m(s/,x/). Presumably,
7/(s/,x/) would increase with an addition to the amount of
fluid (x/) in the ward and would decrease with the addition
of servers (s/). However, we do not place any restrictions on
the functional forms. Similarly, we do not place any restric-

tions on the form of m{(si,xf).

The workload constraint (W(}/(s,%/), V j) € ¢) is a key
component within our model. When performing numerical
analyses, we consider two types of workload constraints, 1)
workload threshold constraint, and 2) workload balance
constraint. The workload threshold constraint guarantees
that the maximum allowable workload for each ward to be
under a certain pre-defined limit. The constraint thus takes
the form 9/(¢,x') <Tj, V, j. The workload balance con-
straint on the other hand aims to keep the absolute differ-
ence in workload between any two pairs of wards below a
pre-determined value. In this scenario, the constraint takes
the form |7/(s/, %) — y%(s5,x%)| <T? V, j,k. We note here
that both of these constraints as we define them are linear
(or easily linearized) and do not pose additional modeling
complexity offered by the first flow balance constraint.

We note here that additional constraints may be included
depending on the decision maker’s requirements. An
example of such constraints would be to specify a minimum
number of nurses required in any given ward. Another
example would be to specify that some patient severity types
be routed only to a certain ward.

To test the performance of the optimal strategy obtained
via the fluid optimization model described earlier, we devel-
oped a computer simulation that functions as a virtual
abstraction of the real ED. Details about the simulation
model are provided in the following subsection.

Remark 1. The deterministic FOP (3) largely reduces the
complexity of the original stochastic optimization problem by

omitting the random fluctuation. Nevertheless, the solution to
the FOP is still not straightforward. Indeed, the problem is
clearly non-convex (because neither the constraints or the
objective are convex), thus there is no guarantee that the opti-
mal solution ought be unique. Also see Lee et al. (2021) and
Whitt (2006a) for discussions on why uniqueness of fluid-
based optimization problems can be challenging. Although
the technical investigation of FOP’s existence and uniqueness
is not the focus of the article, we hope to provide some guide-
line on how to select an initial feasible solution to the FOP.
This will be useful because, as soon will become clear in
Section 3.4, our FOP will be solved by commercial solvers
which require an available feasible policy as an initial candi-
date solution. Determining an initial feasible solution can be
fairly straightforward if the existing routing and staffing poli-
cies being used within the emergency department being con-
sidered are available. Given these existing staffing and routing

values for rJl and ¢ (which are inherently feasible on account
of being the existing policy values we wish to optimize), solv-
ing the first equation within the optimization model gives us
an initial value for w;, which gives us a full set of initial feas-
ible values for our decision variables. In the event that infor-
mation about the existing policy is unavailable, it is sufficient
to identify values for r and s that satisfy the constraints

Z]rf =1, lei < M/, and sti = ©. This is due to the fact
that the only remaining variable w; within the flow balance

constraint is flexible and can be adjusted to ensure constraint
feasibility as F{(w;) always lies between 0 and 1.

3.4. Performance validation via simulations

We test the performance of our fluid approximation by ana-
lyzing the approximate model against the original queueing
model. As we discussed earlier, analyzing the queueing model
in its closed form is difficult; thus we developed a simulation
to represent the dynamics of the queueing model. We devel-
oped the simulation using AnyLogic software’s personal learn-
ing edition. Each new agent within the simulation is generated
from one of I=5 different source modules (one for each
severity type) with an inter-arrival time distributed exponen-
tially with a rate value as shown in Figure 1. If all delay mod-
ules (representing wards) are at capacity, the patient enters a
queue module (representing the wait room). On entry to the
queue module, a random variable is drawn from the CDF for
the patient’s abandonment distribution. Once a patient has
waited in the queue module for an amount of time equal to
the drawn random variable, the patient is pushed out of the
module and the counter for abandonment of the patient’s
severity type is incremented by one.

Patients are routed to wards according to pre-defined
routing proportions (read in from an external file). Once a
patient enters a ward, the time that they will spend in the
ward is determined by drawing a random variable from an
exponential distribution with a rate function (m]l:) that
depends on the patient’s severity type, the ward that the
patient is in, and the patient-nurse ratio of the ward. It
must be noted here that each time a patient enters or leaves



a ward, the simulation draws a new random variable for
each patient’s remaining time in service. This allows us to
effectively capture the memoryless property of the state-
dependent exponential distribution that we assume for a
patient’s time in service.

Output statistics include average patient LOS and average
ward workload. The average patient LOS includes the time
spent by a patient waiting in queue and the time in service.
The average ward workload is obtained by averaging the
workload of the ward calculated from Eq. (1) over the mod-
el’s time horizon. We use a time horizon of one year, which
begins after a warm-up period (set as two weeks in our
simulation). To collect summary statistics, we run 20 repli-
cations leading to a total run-time of 5minutes for each
simulation experiment on a Windows 10-based personal
device consisting of an 8-core, 16-thread, 3.6 GHz CPU and
32GB of RAM.

3.4.1. Solution procedure to optimize and analyze routing
and staffing

The full solution procedure to optimize and analyze patient

routing and ward staffing policies is outlined as follows.

Step 1. Solving the fluid optimization problem in Eq. (3). We
note here that the fourth constraint corresponding to the
workload constraint is modified and chosen according to
the experiment being considered. To solve the optimization
model, we use a nonlinear programming solver fmincon
provided in MATLAB’s Optimization Toolbox. Specifically,
we use the Sequential Quadratic Programming (SQP)
method provided within the solver. In this method, a
Quadratic Programming (QP) subproblem is solved at
each iteration with an estimate of the Hessian of the
Lagrangian being updated at each iteration.

Step 2. Constructing operational policies for the queueing
model based on fluid solutions. The solution of the fluid
optimization problem, specifically the routing proportions
and staffing levels 7/ and ¢, are then fed into the stochastic
simulation model in AnyLogic software.

Step 3. Validating effectiveness of the fluid-based results using
simulations. We run multiple replications of the simulation
model and store the value of average patient LOS and
ward workload for each replication. We record the result
for optimal patient LOS and ward workloads as the aver-
age across all the replications.

We note here that the optimization model presented in
Eq. (3) does not constrain staffing decisions to be integer
valued. However, staffing is often discussed in terms of the
number of personnel, which is an integer value. In the case
study presented later, we ensure integer staffing values from
the output of the fluid model by solving for the optimal
routing policy for all possible staffing combinations and
selecting the best objective over all staffing combinations.
While more sophisticated algorithms may be employed, our
method is efficient for our case study. One can also incorp-
orate additional staffing constraints by restricting the
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generated staffing combinations as desired, as we do in the
case study.

Before proceeding to describe the data for our case study,
we wish to remind the reader about the importance of
obtaining engineering confirmation that the control equa-
tions representing the fluid model match up with the real
system in the scaled regime. We refer the reader to previous
work by Nambiar (2020) for an empirical discussion about
how values of # > 10 lead to a practically significantly
accurate match between the control equations representing
the fluid model and the real system in the scaled regime.

4. Numerical analysis and case study

We demonstrate an application of the approach developed
in Section 3 by considering data from a hospital in North
Carolina as an experimental case study. We thus outline the
data available to us and how we inferred the various input
parameters from the data to inform the fluid optimization
and simulation. Consider the hospital described in Section
1.1, with patients triaged into one of five severity types
(with 1 being the highest) and assigned to one of three
wards with a maximum of 11 nurses. The arrival rates and
routing proportions were shown in Figure 1 along with the
current assignment of nurses. For the optimization problem,
we assume that there are always at least 3 nurses assigned to
the ward seeing the most severe patients.

4.1. Data Analysis and experiment settings

To fully characterize our fluid and queueing/simulation
models, we require the following six sets of parameter esti-
mates related to patient flow: (1) arrival rate by patient
severity type (4;), (2) current nurse staffing levels for each
ward during the status quo (s/), (3) maximum ward capacity
(M), (4) CDF for patient abandonment for each patient
severity type (F;), (5) routing proportion of patient severity

type to each ward (rf), and (6) rate function for the time

spent by a patient in service (,ué). We note here that any
mention of status quo henceforth in this article refers to the
set of operational parameters being used in the hospital dur-
ing our observation period. Our goal is to modify and opti-
mize the parameters corresponding to nurse staffing (s/) and

patient routing (rﬁ). As mentioned earlier, (1)-(3) above are
shown in Figure 1. What remains is to describe patient
abandonment estimates and to provide functional form for
mean patient service time categorized by patient severity
type and ward.

4.1.1. Patient abandonment estimates

Estimating the CDF for patient abandonment from data is not
trivial, due to the hospital being unable to keep records of
when a patient abandons. Though the data had a small per-
centage of patient departures from the system coded as LWBS
(left without being seen), this number refers to those patients
who, after triage, had been assigned to a bed but departed
before being seen by a nurse or physician. The lack of
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Table 1. Mean patient service time categorized by patient severity type and
ward. pn in the above expressions refers to patient-nurse ratio of the ward.

Severity Type (i) Ward (j) Mean Service Time (m{.)
Critical Care 185.1 — 6.54pn + 0.86pn>
Critical Care 140.37 + 22.52pn — 0.87pn?
Critical Care 84.63 + 28.06pn — 1.05pn>
Critical Care 113.07 + 3.78pn — 0.09pn?
Critical Care 21.52 4 14.97pn — 0.29pn?

Minor Care N/A

VP WN-_URARWN=ULITA WN =

Minor Care 224.05 + 39.05pn — 2.25pn?
Minor Care 107.81 + 25.39pn — 1.12pn?
Minor Care 43.75 4 19.70pn — 0.77pn?
Minor Care 56.46 -+ 10.48pn — 0.05pn?
Fast Track N/A

Fast Track N/A

Fast Track 149.97 + 1.5pn — 0.05pn?

Fast Track 76.55 + 7.55pn — 0.28pn?

Fast Track 172.33 + 25.46pn — 1.5pn?

sufficient data meant that we assumed patients were unlikely
to abandon in our model unless they waited for an extremely
long period of time. We thus assumed in our model an expo-
nential function for patient abandonment distribution with
mean values assumed to be 15, 12, 10, 8, 6hrs for patient
severity types 5, 4, 3, 2, and 1, respectively. Such a distribution
ensured that the probability of patient abandonment
remained low unless they waited for an unreasonable amount
of time. For instance, the probability of patients of severity
type 1 abandoning becomes greater than 10% only after wait-
ing at least about 1.5hours before being assigned to a ward.
We note here that average patient wait times were never that
high (e.g., 15hours for Severity type 1) in the fluid model or
simulation and therefore patients were not likely to abandon
as a result of using this distribution. However, the CDF of the
abandonment distribution plays a critical role in determining
the final steady-state performance of the system. We refer the
reader to the work by Whitt (2006b) for details.

4.1.2. Patient time in service estimates

In Section 1.1 we described the methodology we used to
estimate how patient time in service varies based on the
workload experienced by nurses within the wards. We noted
that the mean patient time in service can be represented
using polynomial functions per ward, number of other
patients in the ward, and number of nurses in the ward.
The resulting equations for each patient severity type within
each ward are provided in Table 1. We note here that some
combinations for patient type and ward are listed as N/A
since there was not enough data to infer any sort of a func-
tional form. These included patients of severity type 1 in
minor care and fast track wards and patients of severity type
2 in the fast track ward. Accordingly, we restrict these rout-
ing combinations in our optimization model while perform-
ing experimental analyses. In other words, we enforce
constraints that force the model to prevent patients of type
1 from going to minor care and fast track wards, and
patients of type 2 from going to fast track wards.

We note from Table 1 that the functional form of the mean
patient service time for patients of severity 1 within the critical
care ward is different compared to all of the other combina-
tions for severity type and assigned ward. The functional form

Table 2. Baseline parameter values used in case study.

Parameter Description Values for Severity 1-5
u; Workload (10, 8,7,3,2)

v; Throughput reward (200, 150, 100, 50,10)
Ca Abandonment cost (10,15,12,8,4)

& Waiting cost (10,7,4,2,1)

for mj indicates that the mean service time for severity type 1
patients decreases in the patient-nurse ratio until the ratio
reaches about 3.5, and starts to increase beyond that point. A
ratio this high is unusual for this system as Type 1 patients are
the most severe, require critical care, and have the lowest
arrival rate of any type. If there were many critically ill
patients this would strain resources beyond any efficiencies
that could be gained by changes in service, such as early dis-
charge, as these strategies may not be possible with patients
requiring critical care. While a detailed analysis of the rela-
tionship between functional form and optimal policy is out-
side the scope of this work, we note the solution to the fluid
model is independent of functional form.

4.1.3. Ward workload function

We assume a linear function for workload by separating the
patient-nurse ratio terms by each patient severity type. The
workload function thus takes the form

V’(S”n’)zzguig’ 4)

where #} is a measure of workload experienced by a single
nurse caring for a single patient of severity i in ward j. For

instance, the value of «, is higher for patients of higher
severity (say, severity 1 compared to severity 3) within the

same ward. Similarly, the value of i/, is higher for patients of
similar severity receiving care in the critical care ward as
opposed to the minor care ward. While performing numer-

ical experiments we assumed similar workload coefficients v/,
across wards and only assumed differences across patient
severity types. We did this to allow for easier representation
of the workload measure when attempting to keep it under
desired thresholds or to balance it across wards. However,
we note that differences in patient health outcomes across
wards are captured by variation in coefficient values for
patient service time for patients of the same severity type
across different wards, as seen in Table 1. The parameter
values chosen for the case study are listed in Table 2. As
can be seen they indicate that more severe patients lead to
higher level of workload, reward for completion, and cost
for abandoning and holding.

Having defined the operational parameters for our case
study, we next proceed to conduct numerical analyses and
optimize existing patient routing and ward staff-
ing strategies.

4.2. Numerical results and discussions

Before conducting numerical analyses, we first calibrate
patient arrival rates within the simulation and fluid model
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Figure 4. A comparison of patient LOS and ward workloads using the calibrated arrival rates within the simulation vs actual values obtained from data.

in order to better match the patient LOS computed from
data from the real system. We note here that we chose to
calibrate the arrival rates (instead of other parameters such
as service times or abandonment probability) because our
model inherently ignores structural characteristics of the sys-
tem that lead to the actual arrival rates varying over time.
For instance, the fast track ward at the hospital is only open
from 7 am to 10pm and all patients arriving outside of
those times are sent to the critical care ward. Our analysis
of the data to estimate patient arrival rates did not include
this structural characteristic and therefore calibrating patient
arrival rates helps in better estimating actual arrival rates.
Figure 4 compares the patient LOS for each of the five
patient severity types obtained from simulating the system
using calibrated patient arrival rates against the patient LOS
as computed directly from the data. We note that real
patient LOS post-calibration is a close match to the simu-
lated LOS. The workload of the real system and the simu-
lated workload are also shown in Figure 4 on the right (note
that we do not calibrate to workload directly).

We test the fluid optimization model by comparing the
performance of the resulting optimal staffing and routing
policies against the status quo. Specifically, we look at
patient LOS and nurse workload, separated by patient sever-
ity type and ward, respectively. Recall that the the fluid opti-
mization model provides us with estimates in the scaled
(“fluid”) regime. As a result, we need to use the results from
the fluid optimization model to obtain patient LOS and
nurse workload estimates from the real system
via simulation.

In the remainder of the numerical analysis section, we
describe multiple experimental scenarios to showcase the
flexibility offered by our methodology before providing
results for each experimental scenario.

4.2.1. Numerical analyses & optimal strategies

In this section we wish to optimize the routing and staffing
values for the hospital's ED being considered in our case
study under different experimental settings that aim to con-
trol for workload by either balancing it between wards or by
minimizing it across wards. Under each experimental scen-
ario, we follow the solution procedure from Section 3.4.1 to

obtain optimal values for patient LOS and ward workload
then simulate the LOS and workload resulting from these
routing and staffing policies. In addition to LOS for each
patient severity type, we compute the weighted average for
LOS across all severity types using arrival rates as the
weights for each patient severity type. We compare our
results to status quo by simulating the current routing and
staffing rules.

Recall here the addition of a few constraints based on
observations from data such as 1) patients of severity type 1
only being admitted to critical care and not minor care or
fast track, and 2) patients of severity type 2 only being
admitted to critical care and minor care and not to fast
track. These constraints allow us to demonstrate special
problem structure that may be necessary from an implemen-
tation standpoint, such as ensuring that patients of higher
severity are not sent to a ward with nurses who are not
equipped to handle them.

The experimental studies show the flexibility offered by
the model to a decision maker in setting their desired opera-
tions goals for the system and are outlined below.

e Optimization w/o workload constraints: Here, we solve
the fluid optimization model in Eq. (3) without the
workload constraint.

e Optimization w/workload threshold constraints: Here,
we solve the fluid optimization model in Eq. (3) with the
workload constraint formulated to keep the long-run
average workload of each ward under a pre-defined
threshold (y*). The objective here is to minimize patient
LOS while ensuring that ward workload does not exceed
the specified thresholds. Specifically, the constraint set is
formulated as

Y(,%) <y, Vi=1,2,3.

While performing the experiment, we test multiple values
of y; which is kept the same for all three wards.
Specifically, we vary the value of y between 20 and 14
for all j. Intuitively, the workload of a ward having one
patient of each severity type being cared for by two
nurses equals 15. Additionally, we note from Figure 4
that one of the three wards experiences a workload value
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Table 3. Simulation results from experiments restricting ward workloads. The
LOS for each severity type and the average weighted LOS is given for each
value of y*, as well as the percent change in LOS when compared to sta-
tus quo.

LOS

Sev1l Sev?2 Sev3 Sev4 Sev5 Weighted Average
Status Quo 204.95 260.55 199.82 13583 127.91 22247
00 199.80 229.67 21347 17241 147.5 216.96

—25% —119% 6.8% 269% 15.0% —2.5%
20 207.50 220.02 277.52 12711 39.57 234.46

12% —156% 389% —64% —69.1% 5.4%
18 204.58 23840 187.73 148.74 129.02 208.18

—02% —85% —6.0% 9.5% 0.9% —6.4%
16 22827 231.83 20850 158.12 111.05 214.82

114% —-11.0% 43% 164% —13.2% —3.4%
14 196.25 21120 17713 129.72  33.67 188.79

—42% —189% —114% —45% —73.7% —15.1%

of over 20 and our goal is to manage routing and staffing
such that all wards experience workload values under
our pre-defined thresholds.

e Optimization w/workload balance constraints: Here, we
solve the fluid optimization model in Eq. (3) with the
workload constraint formulated to keep the difference in
workload between any two pairs of wards (j, k) under a
pre-defined threshold (). The objective here is to bal-
ance the workload across wards while also reducing
patient LOS. Specifically, the constraint set is formulated
as

(5,5 — yk(sk’xk)’ <1’ v, G, k)
€{(1,2),(2,3),(1,3)}

While performing the experiment, we test three values
for T? including 7.5, 5, and 2.5. To provide some intu-
ition behind this number, let us consider two wards with
one patient of each severity type in each ward. A differ-
ence in workload value of 2.5 would mean that one ward
has 4 nurses while the other has 3. A difference in ward
workload of 2.5 is highly restrictive as the number of
nurses is limited and in order to satisfy the workload bal-
ance constraint, the model would need to increase the
number of nurses in all the wards. We note here that a
unique value of T'® could be chosen for each pair of
wards being considered for workload balance.

Under each experimental setup, we compare a variety of
performance measures, including LOS, a weighted average
measure of patients LOS (LOS), workload, and workload
differences. To compute the weighted average LOS, we use a
combination of arrival rate and severity weights, represented
by objective function reward coefficient v;. These weights
were chosen to appropriately weight patient traffic and
patient severity. Thus, the weighted average LOS (LOS) is
calculated as

LOS _ Zi (LOSi X A X V,') .
Zi (/Li X V,‘)

Finally, since we assume a fixed value for the total num-
ber of nurses in our model, we discuss the possible

Table 4. Simulation results from experiments restricting ward workloads.
Workload in each ward and maximum difference in workload between wards.

y* Critical Care Minor Care Fast Track Max Diff.
Status Quo 13.08 21.84 12.58 9.26
00 11.80 19.70 30.38 18.58
20 20.34 12.19 9.42 10.92
18 13.75 18.11 17.73 4.36
16 14.46 16.48 14.76 2.02
14 13.64 16.02 14.21 2.38

improvements in system performance as a result of increas-
ing the total number of nurses available for staffing.

4.2.1.1. On restricting workload threshold. Simulated results
from our experiments varying the workload threshold y* are
shown in Table 3 and Table 4. Table 3 shows LOS for each
severity type as well as LOS, and the percent difference in
LOS compared to status quo as a percent shown below each
LOS value. Table 4 presents the workload in each ward, as
well as the maximum difference in workload between wards.
First, from Table 3 we see that the unconstrained problem
provides lower average weighted LOS by decreasing the LOS
of severity 1 and severity 2 patients; however this value is
close to the results obtained from simulating the routing
and staffing values currently being used at the hospital (sta-
tus quo), indicating that the current policy does a good job
at maintaining low LOS. In addition, initially, constraining
the workload threshold leads to increased LOS, but as the
workload threshold is decreased we see even further reduc-
tions in average weighted LOS. When 7" =14, we see
reduced LOS for all severity types and over a 15% reduction
in average weighted LOS.

From Table 4 we see that status quo has a large workload
in minor care, and the unconstrained problem also results
in high workload and high workload imbalance. As we
tighten the workload constraint, not only does the workload
decrease, but so does the difference in workload. When we
look at both the LOS and workload results together we see
that tightening the workload constraint not only has a posi-
tive effect on workload, but also indirectly improves LOS.
Even though the optimization model does not directly opti-
mize LOS, this result makes sense since LOS depends
on workload.

We note here that the simulated workloads may exceed
the theoretical workload constraints (y*). This is because
while the solution from the fluid model is able to satisfy the
fluid constraints, the estimate for workload obtained from
inputting the solution of the fluid optimization model into
the simulation does not necessarily need to satisfy the
threshold constraint as the fluid model result is a determin-
istic approximation of the stochastic system.

4.2.1.2. On balancing ward workload. Results for changes in
the workload balance constraint are shown in Table 5. Here
we show both the LOS and workload results in one table.
The status quo and unconstrained results are shown again
for comparison. Decreasing the value of I'’ not only
improves workload balance as expected, but also results in
lower average weighted LOS. While not shown here, we find
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Table 5. Simulation results from experiments balancing workload. LOS for each type as well as workload for each ward are shown.

LOS Workload

Workload Balance (I'®) Sev 1 Sev 2 Sev 3 Sev 4 Sev 5 Weighted Average Critical Care Minor Care Fast Track Max Diff.
Status Quo 204.9 260.5 199.8 135.8 127.9 222.5 13.08 21.84 12.58 9.26
oo 199.8 229.7 2135 1724 147.1 217.0 11.80 19.70 3038 18.58
7.5 191.8 212.0 2393 1354 38.9 215.5 17.78 18.23 9.19 9.03
5 220.5 2411 191.8 150.4 129.6 2115 13.78 19.46 18.83 5.69
2.5 222.0 244.0 192.6 149.8 100.6 2131 14.08 17.72 16.41 3.64

220 optimizing for staffing and routing within the fluid approxi-

- mation and inputting the results into a simulation model

7 provides us with an efficient means of improving patient

3 210 LOS and ward workload estimates for a hospital's ED.

E 705 Second, we note that in our case study, despite being able to

§200 see improvements in ward workload, the optimal staffing

@ and routing policies from our model without workload con-

< . . . . .

195 straints do not necessarily lead to significant improvements

190 in patient LOS. This indicates that the hospital’s existing

11 12 13 14 15 routing and staffing protocols already perform reasonably

Total Number of Available Nurses

Figure 5. Results for increasing resources.

that the results are not very sensitive to the cost and reward
parameters, as long as the cost/reward for higher severity
patients is higher than that of other patients. The solution is
sensitive to the workload constraints, as shown above.

4.2.1.3. On increasing available resources. In all of our
experiments we assumed a fixed number of nurses and
attempted to redistribute the nurses across wards. However,
we note from Sections 4.2.1.1 and 4.2.2.1 that attempting to
optimize for patient LOS and ward workload leads to rela-
tively small improvements. This indicates to us that the cur-
rent system is already operating at capacity and to see
significant improvements in performance, we may require
additional nurses/resources. Thus, we test the impact of add-
ing nurses (with no workload constraints). As is evident
from Figure 5, increasing the number of resources available
leads to a reduction in average patient LOS. The reduction
in LOS is around 3% on adding one additional nurse, and
increases to about 7% on adding 4 additional nurses.
However, the marginal benefit decreases in the number of
nurses. This may be attributed once again to the U-shaped
nature of the patient service time curve. Essentially, adding
a large number of nurses means that they are under less
pressure to work faster and this effect is seen in average
measures of patient LOS. However, the key takeaway here is
that in order for the hospital to significantly reduce patient
LOS under the current ward system, it is necessary for them
to increase the number of available nurses on staff. We note
here that a more rigorous cost benefit analysis is required
before concluding whether adding staff members is econom-
ically viable and that our analysis is focused purely on oper-
ational improvements in terms of patient LOS and
nurse workload.

4.2.2 Discussion. The key takeaways from our numerical
analyses are as follows. First, our modeling framework of

well as far as our objective function is concerned but has
room for improvement as far as nurse workload is con-
cerned. Restricting workload does lead to both reduced
workload and reduced LOS if the constraints are not too
loose. Finally, we note that in our case study, achieving sig-
nificant improvements in both patient LOS and ward work-
load requires an increase in the number of available staff.

5. Conclusion

We developed in this article a framework to improve patient
LOS and nurse workload by adjusting staffing and routing
policies for a hospital ED modeled as a multiclass multi-
server queueing system with pooled service and state-
dependent service times. We used a hybrid method by com-
bining fluid approximations to queues and simulation to
solve the combined routing and staffing problem. We used
data from the emergency department of a regional hospital
in North Carolina to conduct a case study showing the
implementation of our framework. Our analyses showed
that making small modifications to the routing proportions
and staffing policies can lead to reduction and better balance
of ward workload levels, without negatively impacting
patient LOS. We must note here our data did not provide
us with any information about patient recidivism or out-
comes. It is likely that patients who are cared for under high
patient-nurse ratio values return to the hospital or experi-
ence worse outcomes despite departing initially after a
smaller time spent in the ward. Furthermore, we note here
our assumption that patient outcomes are not dependent on
the time they spend in the system. In other words, we do
not account for long-term patient health outcomes or
whether a patient after discharge left the ED to go home or
was admitted to the hospital. We leave this for
future research.

A natural question that arises from an implementation
standpoint is how to use the new routing proportions to send
patients to wards. We suggest that the optimized proportions
obtained from running mathematical models such as ours
must be implemented on an aggregate scale to account for



14 S. NAMBIAR ET AL.

temporal and staffing fluctuations that occur as a result of
normal operations within an emergency department.

Furthermore, our work assumes that workload, while
dynamic, is not explicitly dependent on time. However, the
time since a nurse’s shift started may impact their workload.
Future research could involve developing time-varying pro-
portions that take into account some of these drawbacks.

An important future direction of research could consider
the use of transient analysis instead of fluid approximations
to analyze the complex queueing models we developed in
this article. While fluid approximations are useful in analyz-
ing the average behavior of the system, it does not account
for any of the stochastic behavior. Most real systems rarely
settle into a steady-state, and the ability to analyze a system
in its transient state is often computationally intractable.
Furthermore, the results of a transient analysis is a function
of the initial conditions of the system, something that a
steady-state analysis does not consider. Studying the model
developed in this article in its transient state could be a
potential future direction of research.

A second important direction for future research stems
from consideration for more personalized patient service rates
in the queueing model. During the numerical analyses within
this article, we considered five patient classes to match the five
levels of the Emergency Severity Index (ESI) triage algorithm
adopted by the hospital in our case study to classify patients.
We then inferred functional forms for patient time in service
by separating these five severity types depending on the ward
they were in, thus leading to 15 possible combinations for the
patient time in system functions. However, closer inspection of
patient time in service for each of these combinations indicates
that a higher level granularity may be possible. For example,
separating the severity type 3 patients into two groups, one
requiring higher and the other requiring lower patient times in
service, could lead to increased modeling accuracy.
Determining the separation threshold (for example, patients
requiring more or less than 600 minutes of service) point would
require the use of classification algorithms like decision trees
trained on data available in the ED such as the primary reason
for admission, mode of admission, and initial diagnosis. This
framework of increasing the granularity of patient classes
within the queueing and fluid models would be better at pre-
dicting patient time in service which would then lead to more
accurate patient routing and nurse staffing policies.

Finally, we note that the framework established in this
article can have applications well beyond the field of health-
care and can benefit any service system that involves cus-
tomer arrivals into one of several different server pools,
such as in wireless networks (Qadir et al., 2016) where
resource pooling involves abstracting a collection of net-
worked resources to behave like a single unified
resource pool.
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