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We introduce and analyze a deterministic fluid model that
serves as an approximation for the G¢/PH/s; + GI many-
server queueing model, which has a general time-varying
arrival process (the G;), a phase-type (PH) service distribu-
tion (the PH), a time-dependent number of servers (the s¢)
and allows abandonment from queue according to a general
abandonment distribution (the +GI). We provide an effi-
cient algorithm, using matrix-analytic methods, to compute
all standard transient (time-dependent) performance mea-
sures, such as the fluid content in queue, potential waiting
time, abandonment and service-completion rate, etc.

Time-varibility of the model data. An important and
realistic feature of this Gy/PH/s; + GI model is the time-
varibility of its arrival rate and staffing function. Unlike
most textbook queueing models, customers arrive at real
service systems with a time-varying stream, which has sig-
nificant variations over the day. To cope with the nonsta-
tionary arrival pattern and to stabilize and control the sys-
tem performance, staffing functions (number of servers) are
designed to be time-dependent as well.

Non-Markovian probability structure. We make a sig-
nificant step beyond queueing models with Markovian prob-
ability structures by considering non-exponential service and
patience distributions. The extension is necessary because
(i) the transient system dynamics depends heavily on these

distributions beyond the means; (ii) statistical analysis showed

that these distributions can be far from exponential in real
service systems. Since queues with general service distribu-
tions are difficult to analyze, the PH assumption becomes
a reasonable balancing point between model generality and
computation tractability. On the one hand, the PH distri-
bution is mathematically tractable using matrix-geometric
methods, see [2]; on the other hand, this class of distri-
butions can be used to approximate any distributions sup-
ported on (0,00). Here we provide examples of fitting PH
distributions to Log-normal distributions, using the EM al-
gorithm developed in [1].

Transient dynamics. Based on solving a finite-dimensional
ordinary differential equation (ODE), we develop an efficient
algorithm to compute the standard time-dependent perfor-
mance functions in a finite time interval. Solving this ODE,
we obtain B(¢), an n-dimensional row vector of the fluid in
service, where n is the total number of service phases. This
algorithm characterizes the performance separately in two
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system regimes: overloaded (OL) intervals and underloaded
(UL) intervals. We provide regime switching criteria, with
which the computation alternates between OL and UL in-
tervals until reaching the end of the time horizon.

Steady-state performance. When all model parameters
are constants, we establish a steady state for the G/PH/s+
G stationary model and demonstrate the convergence to
this steady state as t — co. The result extends [5] and [3].
In [5] the steady state of the G/GI/s + GI model was first
established; in [3] the convergence to the steady state of the
G/M /s + GI model was developed.

A network of queues. Extending [4] where the (G¢/M/s;+
GI)™ /M, fluid network with an exponential service distri-
bution was treated, we hereby generalize the analysis from
the G¢/PH /s, + GI single-queue model to the (G;/PH /s +
GI)™/M,; network with a single customer class, multiple
service pools, and a Markovian routing (the M;). This net-
work model has m queues or stations, each of which is a
G:/PH/s¢+GI model. What is difficult here is that the to-
tal arrival rate at each queue is not part of the model data
because it is the sum of the rates of external arrivals and
feedbacks from other queues. To resolve this problem, we
consider a bigger vector B(t) = (B1(t),...,Bm(t)), where
Bi(t) is an n;-dimentional row vector of the fluid in service
at queue ¢ and n; is the total number of service phases at
queue i, ¢ = 1,2,...,m. We provide another ODE based
algorithm to compute B(t) and other standard performance
measures.
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