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Abstract
The recent outbreak of novel coronavirus has highlighted the need for a benefit-cost

framework to guide unconventional public health interventions aimed at reducing

close contact between infected and susceptible individuals. In this paper, we pro-

pose an optimal control problem for an infectious disease model, wherein the social

planner can control the transmission rate by implementing or lifting lockdown mea-

sures. The objective is to minimize total costs, which comprise infection costs, as

well as fixed and variable costs associated with lockdown measures. We establish

conditions concerning model primitives that guarantee the existence of a straight-

forward optimal policy. The policy specifies two switching points (a, b), whereby

the social planner institutes a lockdown when the percentage of infected individu-

als exceeds b, and reopens the economy when the percentage of infected individuals

drops below a. We subsequently extend the model to cases where the social planner

may implement multiple lockdown levels. Finally, numerical studies are conducted

to gain additional insights into the value of these controls.
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1 INTRODUCTION

The COVID-19 pandemic has led to the implementa-

tion of various non-pharmaceutical interventions, commonly

referred to as lockdowns, such as stay-at-home orders, cur-

fews, quarantines, and other societal restrictions, in numerous

countries and territories worldwide. The primary purpose of

these measures is to control the spread of the coronavirus. As

of April 2020, about half of the world’s population was under

some form of lockdown, with more than 90 countries or terri-

tories mandating or requesting over 3.9 billion people to stay

at home. The extent and severity of these enforced lockdowns

differ from one country or territory to another. Several Asian

countries have effectively contained COVID-19 pandemics

by combining large-scale testing, contact tracing, isolation,

and quarantine with moderate (e.g., South Korea) or strict

(e.g., China) social distancing measures. In recognition of

the potential for a sudden surge in COVID-19 cases to over-

whelm their healthcare systems, many European countries as

well as the United States adopted aggressive social distancing

measures to combat the pandemic.

Although lockdown restrictions were generally supported

by public health experts and economists, there were con-

cerns about the potential health, social, and economic conse-

quences of such measures. The economic downturn induced

by a lockdown can result in health problems such as “deaths

of despair" and create strains on public-health budgets,

which may lead to more non-COVID-19-related deaths than

a lockdown would save from the pandemic. Additionally,

severe social confinement can lead to social tensions and

have a profoundly negative impact on people. Therefore, a

well-designed lockdown entry-and-exit strategy is critical for

countries that choose to implement a lockdown policy. The

ongoing debate over the necessity of lockdown measures

highlights the need for a decision-making framework for gov-

ernments and public health agencies to make well-informed

choices regarding unconventional interventions against infec-

tious diseases. In this paper, we aim to provide preliminary

answers to the following policy questions: (i) Is a lock-

down necessary? (ii) If a lockdown is deemed economi-

cally beneficial, when is the optimal time to implement and

remove it?
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In order to gain analytical insights into the effects of

socioeconomic factors on government intervention strategies,

we introduce a stochastic control formulation that consists of

a stylized disease-spread model and a specific type of gov-

ernmental intervention. The disease-spread model incorpo-

rates three realistic aspects of infectious disease transmission:

(i) the disease can be transmitted from an infected individ-

ual to a virus-free individual through random contact, (ii)

infected individuals may recover from the disease after a cer-

tain period of time, and (iii) environmental factors beyond

contact-based infection and self-healing can contribute to dis-

ease spread, making the trajectory of disease spread partially

unpredictable. The governmental intervention under consid-

eration is binary in structure: the social planner can choose

when to lock down and open the economy at any given time.

When a lockdown is imposed, contact is reduced, and the

transmission rate decreases to a lower level. However, a lock-

down also incurs socioeconomic costs. At a high level, the

problem can be viewed as an optimal switching problem,

where the objective is to balance the burden imposed by the

disease with the economic cost of lockdowns in an optimal

manner.

While there is a substantial amount of literature on infec-

tious disease control, most of it is based on deterministic

disease-spread models, which ignore the inherent randomness

of disease transmission and focus mainly on pharmaceutical

interventions like vaccination. In contrast, our paper focuses

on unconventional government interventions and incorpo-

rates randomness into the disease-spread process. In this

regard, our paper contributes to the literature on epidemic

control. We do acknowledge that the disease spread process

is complex, and more accurate infectious disease models may

require the inclusion of several additional compartments, as

seen in El Housni et al. (2022a). Nevertheless, our aim is to

derive actionable insights using a relatively simple disease

model.

Our key findings can be summarized as follows: First, a

lockdown policy should not be implemented when its eco-

nomic cost exceeds the long-term cost of allowing the dis-

ease to spread uncontrollably. Second, when a lockdown

is economically feasible, a social planner should adopt a

threshold-based strategy, where a lockdown is imposed when

the number of infected individuals exceeds a certain thresh-

old b, and the economy is reopened when the number of

infections falls below another threshold a < b. Although

this strategy seems intuitive, determining the optimal values

of a and b requires a formal analysis, which we conduct in

this paper. Third, we extend our framework to allow for mul-

tiple levels of lockdown, and under certain conditions, we

demonstrate that a multi-level sequential switching policy is

optimal.

The rest of the paper is structured as follows: Section 2

reviews the relevant literature. Section 2 introduces our

disease-spread model and presents the stochastic control

problem. Section 2 characterizes the optimal intervention

strategy via the solution to the corresponding dynamic

programming equation; in the same section, we conduct

numerical explorations to gain additional insights into the

structure of the optimal policy. Section 2 discusses a use-

ful extension of the base model. Section 2 concludes by

highlighting some limitations and suggesting future research

directions.

2 LITERATURE REVIEW

The paper contributes to the literature on stochastic models

of infectious diseases, which has been previously explored

in works such as (Cai et al., 2017; Gray et al., 2011; Mao

et al., 2002; Tuckwell & Williams, 2007). However, this

previous research primarily focused on studying the persis-

tence and extinction of diseases. In contrast, our work focuses

on developing control mechanisms for infectious diseases,

specifically addressing the timing of government interven-

tion.

The present work is related to several studies that have

explored the optimal control of infectious diseases using

deterministic infectious disease models. For example, Sethi

and Staats (1978) used optimal control to minimize the cost

of disease and medical treatment. Behncke (2000) studied

a general susceptible-infected-recovered (SIR) model with

control by vaccination, quarantine, or health campaigns and

showed that it is optimal to exert maximum effort in all

cases. Chehrazi et al. (2019) investigated an optimal control

problem for a susceptible-infected-susceptible (SIS) model

of an infectious disease with resistance and demonstrated

that the optimal prescription policy is of the bang-bang

type with a single switching time. Chen and Kong (2022)

studied the effects of different hospital admission poli-

cies on the spread of infectious diseases using a modified

susceptible-exposed-infected-recovered (SEIR) model under

a static social distancing policy. Additionally, (El Housni

et al., 2022a; El Housni et al., 2022b) developed new com-

partmentalized models to study the effects of testing capacity

and social distancing measures on the pandemic in New York

City and North Carolina. Finally, Chen et al. (2022) devel-

oped a deterministic SIR model with a finite number of test

kits and studied the impact of test capacity management on

the disease transmission process. In contrast to these studies,

our paper employs a stochastic modeling framework, which

adds an extra degree of realism.

Our literature search has revealed a limited number

of papers on the control of stochastic epidemic models.

Lefévre (1981) derived the optimal control policy for a

birth-and-death epidemic model, assuming that both birth

and death rates (representing quarantine and medical treat-

ment, respectively) are subject to control. In addition, the

author examined the effect of model parameters on the opti-

mal strategy. Yaesoubi and Cohen (2011) focused on vacci-

nation and transmission reduction measures, formulating a
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Markov decision process to derive optimal vaccination and

transmission-reducing interventions. The recent work by Lee

et al. (2022) conducted comprehensive agent-based simu-

lations to study how the COVID-19 pandemic responds to

several non-pharmaceutical interventions. Our work is most

closely related to Bai et al. (2022), where the authors studied

an optimal public health intervention problem with the goal

of balancing the cost of infection and socioeconomic losses.

Bai et al. (2022) modeled disease dynamics by a determin-

istic SIR process, and a major consideration of their work is

the response from strategic individuals, each of whom aims

to maximize their own utility. Unlike these papers that con-

sidered rate control driven by vaccination and/or treatment,

we formulate an optimal switching problem, motivated by the

mass implementation of non-pharmaceutical interventions

across the globe during the COVID-19 crisis. Furthermore,

our work is differentiated because we consider a Brownian

model, which enables us to derive an explicit solution and

clear-cut insights.

There exists a stream of literature focused on studying

stochastic control problems that involve sequential switch-

ing decisions. These types of problems have fixed switching

costs, which are investments necessary to realize the bene-

fits of an appropriate regime. This forces the controller to

look beyond immediate advantages to ensure that a regime

switch will provide sufficient long-term benefits to justify the

fixed investment. The problems are formulated using either

a discounted cost criterion (Duckworth & Zervos, 2001;

Ly Vath & Pham, 2007; Zervos et al., 2013) or an average

cost criterion (Wu & Chao, 2014). These authors’ contribu-

tions focus on characterizing solutions to the corresponding

Bellman equation, assuming that the underlying state process

satisfies the standard Lipschitz continuity condition (i.e., the

drift and volatility are Lipschitz continuous functions of the

state process). However, our state process does not satisfy this

Lipschitz continuity assumption due to the super-linear

growth of disease spread. Unlike most papers in this

line of work, our dynamic programming equation fea-

tures a non-Lipschitz singularity at the boundary, presenting

non-trivial technical challenges for our analysis. Thus, our

paper contributes to the literature on optimal switching by

developing a set of tools that we believe are methodologically

novel.

In summary, our paper appears to be the first to analyze the

impact of non-pharmaceutical interventions on a pandemic

within a formal stochastic control framework, while account-

ing for the inherently random nature of epidemic growth and

spread.

3 MODEL

Notation and convention We assume that all random vari-

ables are defined on a common probability space (Ω, ,P).
The expectation with respect to P is denoted by E. For a suf-

ficiently smooth function f , we use f ′ and f ′′ to denote its first

and second derivatives, respectively. The partial derivative of

a multivariate function f (x, y, …)with respect to the variable

x is denoted by fx.

In this paper, we consider a social planner who must make

binary decisions regarding interventions for an infectious dis-

ease that affects a population. The two possible decisions are

“lock down the economy" and “open the economy." To for-

mulate the social planner’s problem, we first establish a math-

ematical framework for disease spread in the absence of any

intervention in Section 2. Our base formulation extends the

classical SIS epidemic model from a deterministic framework

to a stochastic one, where the number of infectious individuals

follows a stochastic differential equation (SDE). In Section 2,

we introduce the intervention mechanism, present relevant

socioeconomic costs, and state the social planner’s problem.

3.1 Disease dynamics

In a closed population of fixed size, there are two categories

of individuals: susceptible individuals and infected individu-

als. We simplify the assumption that all infected individuals

exhibit symptoms and will report their status change (from

susceptible to infected) upon contracting the disease.

The system state at any given time, denoted by Xt, repre-

sents the percentage of infected people, where t ≥ 0. Thus,

for all t ≥ 0, Xt falls within the range of [0, 1], and the

percentage of the susceptible population at time t is given

as 1 − Xt. An infected individual transmits the disease to

a susceptible one through contact, with a transmission rate

determined by the host-population density and the infectious-

ness of the pathogens. Furthermore, all infected individuals

can recover at a rate 𝛾 . Recovery means that the virus is elimi-

nated from the body, and the parameter 𝛾 reflects the strength

of the host’s immune system. We assume that all individuals

who recover return to the susceptible state, which effectively

limits our analysis to infections with low mortality rates and

no conferred immunity. This assumption is appropriate for

viruses that can mutate continuously, allowing the virus to

evade an individual’s immune system. In the absence of any

intervention, the dynamics can be described by the following

stochastic differential equation (SDE):

dXt = (𝛽(1 − Xt) − 𝛾)Xtdt + 𝜎
√

Xt(1 − Xt)dBt, (1)

where the first drift term, 𝛽Xt(1 − Xt), captures the disease

spread dynamics, the second drift term, 𝛾Xt, models the nat-

ural recovery dynamics, and the third term, Bt, denotes a

standard Brownian motion. Here, 𝛽 can be interpreted as the

rate of contact resulting from all activities, including both

essential activities (e.g., grocery shopping and doctor visits)

and nonessential social interactions (e.g., social gatherings

and entertainment events), without any lockdown measures.

The parameter 𝛾 represents the recovery rate of an infected

individual, while 𝜎 is the volatility parameter that charac-

terizes the magnitude of the stochastic fluctuations of the

system.
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To better motivate the dynamic model given by Equation

(1), let us consider a continuous-time Markov chain model for

disease spread. We have a closed population of size N that can

be divided into two compartments, namely the susceptible and

the infected. Let St and It represent the number of susceptible

and infected individuals, respectively, such that St+ It = N. A

susceptible person becomes infected at the rate 𝛽It∕N, indi-

cating that a new infection occurs at a rate of 𝛽StIt∕N. On the

other hand, an infected person recovers and becomes suscep-

tible again at a rate of 𝛾 . We can observe that I ∶= It; t ≥ 0 is

a birth-and-death process. Using the general framework pre-

sented by Kurtz (1971), we can approximate the evolution

of the fraction of infected individuals in the population (i.e.,

I∕N) by a diffusion process ̄I with the following dynamics:

d̄It = (𝛽(1 − ̄It) − 𝛾)̄Itdt + 1
√

N

√
𝛽
̄It(1 − ̄It) + 𝛾 ̄ItdBt. (2)

To obtain (1) from (2), we simply need to remove the term

𝛾
̄It under the square root in (2), set

√
𝛽∕N as the volatil-

ity parameter, and replace ̄I with X. There are two reasons

why we drop the term 𝛾
̄It. Firstly, the reproduction num-

ber, which is defined as 𝛽∕𝛾 , is high for COVID-19, making

the term 𝛽
̄It(1 − ̄It) under the square root in (2) more dom-

inant than 𝛾 ̄It. Secondly, the assumption that recovery times

are exponentially distributed causes the term 𝛾
̄It to arise in

the model in (2). However, recovery times from COVID-19

are less variable than an exponential distribution suggests.

Thus, removing the term 𝛾
̄It from the model in (2) helps

to correct to some extent the overestimation of the system’s

variability.

To summarize, with 𝜎 being

√
𝛽∕N, the process (1) is

considered a diffusion approximation for the corresponding

Markov chain model. The key distinction is that a Markov

chain has a discrete state space, whereas a diffusion process

has a continuous state space. However, we anticipate that the

actual volatility will be greater than what

√
𝛽∕N suggests in

practice due to the contribution of other random factors, such

as environmental factors, to the system’s variability.

Remark 1 (Stochastic model vs. determinis-

tic model). The disease model represented by

(1) belongs to the class of Wright-Fisher pro-

cesses (see, e.g., equation (1) in Jenkins and

Spano (2017)). Moreover, by verifying the con-

ditions of Theorem 5 in Feller (1954), it is evi-

dent that zero is an accessible and absorbing

state. This implies that the process will hit the

zero boundary (without intervention) in a finite

(yet random) time and remain at zero thereafter.

The stochastic model considered in this paper

offers an extra degree of realism by capturing

the stochastic nature of disease transmission and

avoids the need to assume an artificial thresh-

old, as was often done in deterministic models to

capture eradication or extinction (see, e.g.,

Tebbens and Thompson (2009)). In fact, one can

obtain the deterministic counterpart of (1) by

removing the Brownian term, which yields

dxt = (𝛽(1 − xt) − 𝛾)xtdt. (3)

It is worth noting that the solution to (3) cannot

hit zero given x0 > 0, indicating that a disease

governed by (3) cannot go extinct. In contrast, our

stochastic model in (1) yields a control policy that

depends on Xt, enabling the decision maker to

take action at t in response to the real-time state of

the system (i.e., the number of infected individ-

uals), which is not completely predictable before

t. The solution to the deterministic problem in

(3) ignores the random fluctuations in the sys-

tem’s future dynamics because it is a determin-

istic function of time t, rather than the system’s

state.

The disease model given in (1) makes an implicit

assumption that the incubation period of the disease is zero.

Additionally, the assumption of a constant rate parameter

𝛽 ignores potential changes in behavior in response to the

epidemic’s growth, which is a well-known phenomenon. It

should be noted that these simplifications are commonly

made in order to achieve greater mathematical tractability.

However, it is important to keep in mind that using static

parameters can result in an overestimation of disease inci-

dence or prevalence.

3.2 Intervention mechanism and the social
planner’s problem

We consider the scenario where a social planner has the

option to implement a lockdown to reduce the transmis-

sion rate of the disease. During a lockdown, the disease is

transmitted at a potentially much slower rate ̃
𝛽 compared to

the baseline transmission rate 𝛽. Note that 𝛽 accounts for

the transmission rate due to both essential and nonessential

activities, while ̃
𝛽 only captures the transmission rate due to

essential activities required for daily living, such as grocery

shopping and medical visits. It is important to note that a

reduced transmission rate can potentially result in a different

volatility parameter. However, to keep the analysis simple, we

assume that a lockdown only affects the transmission rate and

not the volatility parameter.

To perform a formal cost-benefit analysis, let 𝓁 > 0 be

the marginal cost of infection, so the cost of infection accu-

mulates at a rate of 𝓁Xt. This cost may include expenses

related to symptom relief, hospitalizations, long-term infec-

tion complications, and lost productivity. In addition to the

cost of infections, we consider the costs of implementing a

lockdown. We assume that each time the social planner enacts

a lockdown, there is a fixed cost of K, and that the lockdown
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incurs economic tolls at a rate of 𝜅 for the duration of its

implementation.

Given the possibility of the epidemic dying out without

intervention, it is important to consider the cost-effectiveness

of implementing a lockdown. The system can be in one of two

modes at any given point in time: “on” or “off.” The on mode

refers to the implementation of a lockdown policy, while the

off mode refers to the absence of a policy. The decision to

switch between modes is made by the social planner and con-

stitutes an intervention strategy. To model this strategy, we

use an adapted, finite variation, càdlàg process Y with values

in the set 0, 1. Specifically, Yt = 0 represents the off mode,

and Yt = 1 represents the on mode. Switching from the off to

the on mode incurs a fixed cost of K, whereas switching from

the on to the off mode is free. The objective of the social plan-

ner is to minimize the total cost, which includes both the cost

of infections, accumulated at a rate of 𝓁Xt, the cost of imple-

menting the lockdown policy, which incurs economic tolls at

a rate of 𝜅 for the duration of its implementation, and the cost

due to switching. More formally, the social planner aims to

identify some Y to

minimize J(x, y) ∶= E

[

∫

𝜏

0

𝓁Xudu + 𝜅
∫

𝜏

0

Yudu

+K
∑

u≤𝜏
[ΔYu]+

|||X0 = x,Y0 = y

]

, (4)

where the stopping time 𝜏 denotes the time at which Xt hits

zero for the first time, and Xt is the solution to the SDE

dXt = [b(Yt)(1 − Xt) − 𝛾]Xtdt + 𝜎
√

Xt(1 − Xt)dBt (5)

for b(y) ∶= 𝛽1{y=0} + ̃
𝛽1{y=1}. See Table 1 for a summary of

all notation.

To find the optimal strategy, we need to consider all possi-

ble policies that can be employed by the social planner. While

the optimal strategy can be an arbitrary functional of the sam-

ple paths of X, the strong Markov property of the process

X allows us to focus on a more restricted class of policies,

namely Markov policies (A Markov policy is a function that

maps the current state of the system to an action, and the

choice of action depends only on the current state and not on

the past history of the system.).

TABLE 1 Glossary of model parameters and notation.

Symbol Definition

Xt Fraction of infected population at t

Yt State of intervention at t

𝛾 Individual recovery rate

𝛽 Rate of infection due to all activities (under no intervention)

̃
𝛽 Rate of infection due to essential activities (under lockdown)

𝜎 Volatility parameter

𝓁 Marginal cost of infection

𝜅 Rate of economic tolls under lockdown

K Fixed cost per lockdown

The focus of this work is on the technical treatment of

optimal control in an infectious disease model. However, it

is important to recognize that real-world data can be utilized

to calibrate key parameters of theoretical models. The World

Health Organization (WHO)
1

is one of the primary sources

of data on COVID-19 cases, deaths, and recoveries world-

wide. Other sources of data include national and regional

health departments, academic institutions, and research orga-

nizations. Increasingly, COVID-19 dashboards have gained

popularity, such as the John Hopkins University COVID-19

Dashboard
2
, the European Centre for Disease Prevention

and Control (ECDC) COVID-19 Dashboard
3
, and the Worl-

dometer COVID-19 Dashboard
4
. These dashboards provide

real-time information on cases, deaths, and recoveries in a

specific region, presented in maps, graphs, and charts. Policy-

makers and the public can use these dashboards to understand

the spread of the disease and its impact. Therefore, inte-

grating real-world data into infectious disease models can

significantly improve the accuracy of the model and the

effectiveness of the control measures implemented.

Multiple recent studies have demonstrated how to incorpo-

rate dashboard data to calibrate models that predict disease

trajectory and verify the accuracy of the model’s predic-

tions. For instance, Tatapudi et al. (2020) presented an

agent-based simulation model for COVID-19 as a policy eval-

uation tool for public health decision-makers, which was

calibrated using data from the Florida COVID-19 dashboard

for Miami-Dade County. Similarly, Tatapudi and Das (2021)

used an agent-based simulation model to investigate the

impact of partial/full reopening of school/college campuses

on pandemic spread, calibrated based on public informa-

tion from the same dashboard. Hinch et al. (2021) developed

an agent-based simulation of the epidemic, incorporating

detailed age-stratification and realistic social networks, cal-

ibrated using observed data from the UK Government’s

COVID19 dashboard. Additionally, Bai et al. (2022) provided

a pathway for efficiently estimating the value of 𝛽 and 𝛾 in

their model. However, estimating the disease burden param-

eter 𝓁, as well as 𝜅 and K that characterize socio-economic

losses due to lockdown is far less straightforward and requires

ongoing research. Nonetheless, recent developments have

been made in this area; see, for example, Zhang (2022) and

reference therein.

4 ANALYSIS

This sections is devoted to solving the control problem posited

in the previous section. In Section 2, we describe the dynamic

programming equation that will be used to characterize the

1
https://covid19.who.int/.

2
https://coronavirus.jhu.edu/map.html.

3
https://www.ecdc.europa.eu/en/data/dashboards.

4
https://www.worldometers.info/coronavirus/.

https://covid19.who.int/
https://coronavirus.jhu.edu/map.html
https://www.ecdc.europa.eu/en/data/dashboards
https://www.worldometers.info/coronavirus/
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optimal strategy. In Section 2, we characterize the optimal

intervention strategy via the solution to the dynamic program-

ming equation.

4.1 Dynamic programming equation

Let V(x, y) denote the value function associated with the

problem (4). With reference to the general control theory, the

function V(x, y) ought to solve some dynamic programming

equation. To derive this equation, we begin with setting up a

Bellman equation in a discrete-time setting with time step Δt
and then take Δ → 0.

Suppose that the economy is locked down at time 0, that

is, Y0 = 1. In light of the problem setup, the social planner’s

immediate decisions consist of choosing between two options.

The first is to continue enforcing the lockdown policy for a

short time, Δt, and then continue optimally. With regard to

Bellman’s principle of optimality, we must have

V(x, 1) ≤ E

[

∫

Δt

0

𝓁Xudu + 𝜅
∫

Δt

0

Yudu + V(XΔt, 1)
]
,

where the inequality is due to the fact that continuing locking

down the economy for the next moment may not be optimal.

Assuming that V(x, 1) is sufficiently smooth, we can apply

Itô’s lemma to the second term, divide both sides by Δt, and

send Δt → 0 to get

𝜎

2

2
x(1 − x)Vxx(x, 1) +

(
̃
𝛽x − ̃

𝛽x2 − 𝛾x
)

Vx(x, 1)

+ 𝓁x + 𝜅 ≥ 0.

The second option is to switch to the off mode and then

continue optimally, resulting to

V(x, 1) ≤ V(x, 0).

Since these two are the social planner’s only options, we can

conclude that one of the two preceding inequalities must hold

as an equality. Thus, the function V(x, 1) must satisfy

min

{
𝜎

2

2
x(1 − x)Vxx(x, 1) +

(
̃
𝛽x − ̃

𝛽x2 − 𝛾x
)

Vx(x, 1)

+𝓁x + 𝜅, V(x, 0) − V(x, 1)
}
= 0. (6)

Arguing along similar lines, we can conclude that the function

V(x, 0) must satisfy

min

{
𝜎

2

2
x(1 − x)Vxx(x, 0) +

(
𝛽x − 𝛽x2 − 𝛾x

)
Vx(x, 0)

+𝓁x, V(x, 1) + K − V(x, 0)
}
= 0. (7)

Combining (6) and (7) leads to the following variational
inequality (VI) for V(x, y):

min

{
𝜎

2

2
x(1 − x)Vxx(x, y) +

(
b(y)x − b(y)x2 − 𝛾x

)
Vx(x, y)

+ 𝓁x + 𝜅y, V(x, 1) + K − V(x, 0),

V(x, 0) − V(x, 1)
}
= 0, (8)

subject to the condition V(0, y) = 0 and the requirement that

limx→1 Vx(x, y) exists and is finite. In general, a VI formulation

reveals structural properties of the optimal policy by reduc-

ing a dynamic decision problem to a point-wise optimization

problem.

We now postulate the solution structure of the dynamic pro-

gramming equation. Intuitively, if the costs associated with

a lockdown are not prohibitively high, it would be benefi-

cial for the social planner to implement a lockdown policy on

a temporary basis. This intuition leads us to conjecture that

the optimal control strategy is a sequential switching policy

comprised of the following actions. If the system is currently

operating in its off mode, then it is optimal to remain in that

mode if X is below a threshold, say x∗
1
, and switch to its on

mode once X rises above x∗
1
. On the other hand, if the sys-

tem is currently operating in its on mode, then it is optimal to

remain in that mode if X is above a certain level, say x∗
0
, and

switch to its off mode as soon as X drops below x∗
0
. Clearly,

this strategy is well-defined if x∗
0
< x∗

1
. Moreover, if this strat-

egy, henceforth denoted as Y∗, is indeed optimal, we should

be able to find V0(⋅) and V1(⋅) such that

𝜎

2

2
x(1 − x)V ′′

0
(x) +

(
𝛽x − 𝛽x2 − 𝛾x

)
V ′

0
(x)

+ 𝓁x = 0 for x ∈ [0, x∗
1
) and (9)

𝜎

2

2
x(1 − x)V ′′

1
(x) +

(
̃
𝛽x − ̃

𝛽x2 − 𝛾x
)

V ′
1
(x)

+ 𝓁x + 𝜅 = 0 for x ∈ (x∗
0
, 1] (10)

subject to the boundary conditions:

V0(x) = V1(x) for x ∈ [0, x∗
0
] and

V0(x) = V1(x) + K for x ∈ [x∗
1
, 1], (11)

plus two optimality conditions derived from the “principle of

smooth fit":

V ′
0
(x∗

0
) = V ′

1
(x∗

0
) and V ′

0
(x∗

1
) = V ′

1
(x∗

1
). (12)

4.2 Characterizing the optimal policy

Note that Equation (9) does not involve the unknown function

V itself. Therefore, it is essentially a first-order differential

equation. Indeed, if letting U0 ∶= V ′
0
, then U0 solves

U′
0
(x) + 2

𝜎
2

(
𝛽 − 𝛾

1 − x

)
U0(x) = −

2

𝜎
2

𝓁
1 − x

. (13)

To proceed, let

𝜙(x, 𝜄) ∶= e−2𝛽x∕𝜎2 (1 − x)−2𝛾∕𝜎2

×
(
𝜄 − 2𝓁

𝜎
2 ∫

x

0

e2𝛽u∕𝜎2(1 − u)2𝛾∕𝜎2−1
du
)
. (14)

It is straightforward to verify that 𝜙(⋅, 𝜄) is a solution to (13)

for each fixed 𝜄, and 𝜙(0, 𝜄) = 𝜄.

Proposition 1. There exists a unique 𝜄 such that
limx→1 𝜙(x, 𝜄) exists and is finite.
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Similarly, by letting U1 ∶= V ′
1
, from (10) we can see that

U1 solves the following differential equation:

U′
1
(x) + 2

𝜎
2

(
̃
𝛽 − 𝛾

1 − x

)
U1(x)

= − 2

𝜎
2

(
𝓁

1 − x
+ 𝜅

x(1 − x)

)
. (15)

Consider the class of functions {𝜓(⋅, c)} indexed by c, where

each 𝜓(⋅, c) is defined as

𝜓(x, c) ∶= e2 ̃𝛽(1−x)∕𝜎2(1 − x)−2𝛾∕𝜎2

×
[

2

𝜎
2∫

1−x

0

e−2 ̃𝛽u∕𝜎2 u2𝛾∕𝜎2−1

(
𝓁 + 𝜅

1 − u

)
du + c

]
.

It is straightforward to check that 𝜓(⋅, c) is a solution to (15)

for each fixed c. It is also easy to verify that limx→1 𝜓(x, c)
exits and is finite if and only if c = 0. Moreover,

limx→1 𝜓(x, 0) = (𝓁 + 𝜅)∕𝛾 . For simplicity, in what follows

we will simply write 𝜓(x, 0) as 𝜓(x). Thus,

𝜓(x) = e2 ̃𝛽(1−x)∕𝜎2(1 − x)−2𝛾∕𝜎2 2

𝜎
2∫

1−x

0

× e−2 ̃𝛽u∕𝜎2 u2𝛾∕𝜎2−1

(
𝓁 + 𝜅

1 − u

)
du. (16)

The next result, which examines the number of intersec-

tions that 𝜙(⋅, 𝜄) and 𝜓(⋅) can have, is a key stepping stone

towards the main result to be stated in Theorem 1.

Lemma 1. For any 𝜄 ≤ 𝜄, 𝜙(⋅, 𝜄) and 𝜓(⋅) can
intersect at most twice on the open interval (0, 1).

Assumption 1. The two functions, 𝜙(⋅, 𝜄) and

𝜓(⋅), intersect at two points, x0 and x1, and

K ≤ K ∶=
∫

x
1

x
0

(
𝜙(y, 𝜄) − 𝜓(y)

)
dy. (17)

Theorem 1 (Sequential switching policy). Sup-
pose that Assumption 1 is satisfied. (i) There
exists some 𝜄∗ ≤ 𝜄 such that 𝜙(⋅, 𝜄∗) and 𝜓(⋅)

intersect exactly twice at some x∗
0

and x∗
1
, such

that

K =
∫

x∗
1

x∗
0

(𝜙(y, 𝜄∗) − 𝜓(y)) dy.

(ii) A sequential switching policy characterized
by (x∗

0
, x∗

1
) is optimal for Problem (4).

There are two possible ways Assumption 1 can be violated.

It is possible that the function graphs of 𝜙(⋅, 𝜄∗) and𝜓(⋅) never

intersect. They could also intersect, but the area of intersec-

tion, K is less than the fixed cost K. In both cases, we interpret

the violation to mean that intervention is too costly and there-

fore not worth considering; that is, it is optimal never to lock

down.

We next develop some numerical examples to illustrate our

main results. We first consider a base example with 𝛽 = 1,

̃
𝛽 = 0.2, 𝛾 = 1, 𝜎 = 0.5, 𝓁 = 1, 𝜅 = 0.2, and K = 0.2.

Following Lemma 1, we compute K = 0.266, 𝜄 = 3.92, 𝜄
∗ =

3.86, x∗
0
= 0.033, and x∗

1
= 0.493. In Figure 1, we graph three

functions 𝜓(x), 𝜙(x, 𝜄) and 𝜙(x, 𝜄∗) as functions of x. Here the

area of the shaded region is K = 0.2.

To investigate how the model parameters affect our opti-

mal decision, we perform sensitivity analysis by varying one

parameter at a time while keeping the other parameters at

the values specified in our base case (as given in the caption

of Figure 1). Figure 2 displays the values of the switch-

ing thresholds (x⋆
0
, x⋆

1
) as we vary 𝛽, 𝛾 , and 𝓁. These plots

reveal interesting patterns. For instance, we observe from the

first plot that the gap between the two switching thresholds

initially increases and then decreases as 𝛽 increases. It is

almost self-explanatory that x⋆
0

decreases with 𝛽. The thresh-

old x⋆
1

increases as 𝛽 rises from small to moderate levels

because lockdown is relatively more costly than infection, and

raising the upper threshold helps reduce the rate at which

the system returns to on mode, given that the disease does

not die out. However, as 𝛽 increases to very high levels,

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

1

2

3

4

5

6

FIGURE 1 Illustration of the optimal switching policy: x∗
0
= 0.033, x∗

1
= 0.493, with 𝛽 = 1, ̃𝛽 = 0.2, 𝛾 = 1, 𝜎 = 0.5, 𝓁 = 1, 𝜅 = 0.2, K = 0.2, K = 0.266,

𝜄 = 3.92, 𝜄
∗ = 3.86.
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FIGURE 2 Impact of model parameters 𝛽, 𝛾 and 𝓁 on the values of the switching thresholds (x⋆
0
, x⋆

1
).

suggesting that disease transmission is now devastating, it

becomes more cost-effective to keep transmission under tight

control and eliminate the disease with as few lockdowns as

possible, explaining the decreasing trend in x⋆
1

at high 𝛽. The

first and second plots exhibit symmetric behavior because the

ratio 𝛽∕𝛾 reflects how deadly disease transmissions are in

society. In other words, we can set the value of either rate

parameter to one and normalize the other accordingly. The

non-monotonic behavior of x⋆
1

and monotonic decrease of x⋆
0

with respect to 𝓁 follow similar reasoning. We observe similar

non-monotonic patterns when we vary other model parame-

ters; see Section C in the appendix for sensitivity analysis of

̃
𝛽, 𝜅, 𝜎, and K.

5 AN EXTENSION

We have so far considered scenarios where the social plan-

ner can only implement a binary lockdown policy. However,

in real-world situations, there may be multiple levels of lock-

down available, each with different levels of stringency and

associated costs (e.g., full lockdown versus partial lockdown).

For instance, many universities have adopted a “hybrid"

teaching format, where students attend classes both in-person

and online on alternate days, which can be viewed as a form

of partial lockdown.

Motivated by this observation, we now extend our analysis

to consider situations where the social planner can implement

multiple levels of lockdown and make policy recommenda-

tions on how best to use them. Specifically, we assume that

there are m levels of lockdown, indexed by i = 1, … ,m,

resulting in m+1 different modes. Under level i lockdown, the

disease transmission rate is reduced from 𝛽 to 𝛽i, while incur-

ring continuous economic tolls at the rate of 𝜅i. We assume

that 𝛽 > 𝛽1 > · · · > 𝛽m and 0 < 𝜅1 < · · · < 𝜅m, so that higher

levels of lockdown are more stringent and more costly.

We model the social planner’s decisions using an adapted,

finite variation, càdlàg process Y with values in the set

0, 1, … ,m, where Yt = 0 indicates that no lockdown mea-

sures are being implemented, and Yt = i indicates that level i
lockdown is in effect. For simplicity, we refer to no lockdown

as level 0 lockdown. We assume that switching between adja-

cent levels is possible, and upgrading from level i to level i+1

lockdown incurs a fixed cost Ki,i+1, while downgrading from

level i+ 1 lockdown is free. This assumption is realistic since

small and gradual changes are often more acceptable to the

public. It should be noted that allowing a switch-over to occur

between arbitrary pairs can lead to significant technical diffi-

culties, as observed by Chernoff and Petkau (1978). In fact,

for problems involving more than two control regimes, “the

analytic approach becomes cumbersome”.

Let k(y) =
∑m

i=1
𝜅i1{y=i} and define

K(u, v) ∶=
⎧
⎪
⎨
⎪
⎩

Ku,v if (u, v) = (i, i + 1)
for i = 0, … ,m − 1,

0 otherwise.

The objective of the social planner now becomes to

minimize E

[

∫

𝜏

0

𝓁Xudu +
∫

𝜏

0

k(Yu)du

+
∑

u≤𝜏
K(Yu−,Yu)[ΔYu]+

|||X0 = x,Y0 = y

]

. (18)

In the above, the stopping time 𝜏 again denotes the time at

which X hits zero for the first time, while X now satisfies the

SDE

dXt = [b(Yt)(1 − Xt) − 𝛾]Xtdt + 𝜎
√

Xt(1 − Xt)dBt,

where b is redefined as b(y) ∶= 𝛽1{y=0} +
∑m

i=1
𝛽i1{y=i}.

As before, let V(x, y) denote the value function associ-

ated with the problem. With reference to the general control

theory, we anticipate the function V to satisfy

min

{
𝜎

2

2
x(1 − x)Vxx(x, y)

+
(
b(y)x − b(y)x2 − 𝛾x

)
Vx(x, y) + 𝓁x

+ k(y), min
i
{V(x, i + 1) + K(i, i + 1) − V(x, i),

V(x, i) − V(x, i + 1)}
}
= 0, (19)

subject to the condition V(0, y) = 0 and the requirement that

limx→1 Vx(x, y) exists and is finite.
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Our analysis in the preceding section motivates us to

consider the following functions:

𝜓i(x, c) ∶= e2𝛽i(1−x)∕𝜎2 (1 − x)−2𝛾∕𝜎2

×
[

2

𝜎
2∫

1−x

0

e−2𝛽iu∕𝜎2 u2𝛾∕𝜎2−1

(
𝓁 + 𝜅i

1 − u

)
du + c

]

(20)

for i = 1, … ,m, plus the function 𝜙 as defined by

(14). In particular, note that, for each fixed c, 𝜓i(⋅, c) is

a solution function to the following first-order differentia

l equation:

U′
i (x) +

2

𝜎
2

(
̃
𝛽i −

𝛾

1 − x

)
Ui(x)

= − 2

𝜎
2

(
𝓁

1 − x
+ 𝜅i

x(1 − x)

)
.

Recall from the base-case scenario (i.e., m = 1) that

in order for a sequential switching policy to be optimal,

the fixed cost cannot be too high. Precisely, using the cur-

rent set of notations, we would need to ensure that the

area of intersection between 𝜙(⋅, 𝜄) and 𝜓1(⋅, 0) should be

greater than or equal to K0,1, so that some 𝜄
∗

exists to make

the area of intersection between 𝜙(⋅, 𝜄∗) and 𝜓1(⋅, 0) equal

exactly K0,1. This motivates the following condition as a

natural extension of Assumption 1 to ensure that a sequen-

tial switching policy utilizing all possible lockdown levels is

optimal.

Assumption 2. There exist 𝜄

∗
≤ 𝜄 and

(c∗
1
, … , c∗m) such that the following conditions

hold:

(i) 𝜙(⋅, 𝜄∗) and 𝜓1(⋅, c∗1) intersect twice at x1,0

and x0,1 and

∫

x
0,1

x
1,0

[
𝜙(x, 𝜄∗) − 𝜓1(x, c∗1)

]
dx = K0,1;

(ii) for i = 1, … ,m − 1, 𝜓i(⋅, c∗i ) and

𝜓i+1(⋅, c∗i+1
) intersect twice at xi+1,i and

xi,i+1, and

∫

xi,i+1

xi+1,i

[
𝜓i(x, c∗i )−𝜓i+1(x, c∗i+1

)
]
dx =Ki,i+1;

(iii) limx→1 𝜓m(x, c∗m) is finite.

Some comments are in order. Part (ii) of Assumption 2

implies that 𝜓m−1(x, c∗m−1
) < 𝜓m(x, c∗m) for all x > xm−1,m.

This observation, in turn, implies that c∗m−1
≤ 0, because we

have limx→1 𝜓m(x, c∗m) < ∞ but limx→1 𝜓m−1(x, c) = ∞ for all

c > 0. Using backward induction, we can deduce that ci ≤ 0

for all i = 1, … ,m− 1. By the same token, we can conclude

from part(i) of Assumption 2 that i⋆ ≤ 𝜄. This is because

limx→1 𝜓1(x, c∗1) <∞whereas limx→1 𝜙(x, 𝜄) = ∞ for all 𝜄 > 𝜄.

It is easily verifiable from the explicit expressions given by

(20) that part (iii) of Assumption 2 necessarily implies that

c∗m = 0.

Theorem 2 (Sequential switching under mul-

tiple lockdown levels). If Assumption 2 holds
with x1,0 < x2,1 < · · · < xm,m−1 and x0,1 < x1,2 <

· · · < xm−1,m, then a sequential switching policy
characterized by the two strongly ordered
sequences is optimal for the problem described
by (18). That is, the social planner switches from
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FIGURE 3 Optimal switching policies with multiple lockdown levels: m = 2, 𝛽 = 0.45, 𝛽1 = 0.2, 𝛽2 = 0.1, 𝛾 = 1, 𝜎 = 0.5, 𝓁 = 6, K0,1 = 0.5, K1,2 = 0.45,

𝜅1 = 0.4, 𝜅2 = 0.6 (left) and 0.68 (right).
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level i to i + 1 (i+ 1 to i) as soon as the infection
level becomes above xi,i+1 (below xi+1,i).

It is worth pointing out that a violation of Assumption 2

does not necessarily mean that switching between different

modes is not worthwhile. For example, it could be that all the

conditions in Assumption 2 hold, but with m therein replaced

by some j(< m) but not with j + 1. We interpret this case to

mean that the social planner should consider adopting lock-

down levels up to j but not to j+1. This observation motivates

us to devise an iterative scheme to compute the optimal inter-

vention strategy with m+1 modes. The idea is to examine one

lockdown level at a time, starting from the lowest (i.e., level

1) to see if it is worth consideration, until a lockdown level is

found to be not worth pursuing. A procedure to compute all

switching thresholds is described in Appendix B.

We use a numerical example having three intervention lev-

els (with m = 2) to illustrate our results in Theorem 2. Let

𝛽 = 0.45, 𝛽1 = 0.2, 𝛽2 = 0.1, 𝛾 = 1, 𝜎 = 0.5, 𝓁 = 6, 𝜅1 = 0.4,

𝜅2 = 0.6, and K0,1 = 0.5, K1,2 = 0.45. Using the iterative

scheme described previously, we compute 𝜄
∗ = 27.42, c∗

1
=

−0.0015, c∗
2
= 0, x1,0 = 0.014, x0,1 = 0.301, x2,1 = 0.030,

x1,2 = 0.778. In the left-hand panel of Figure 3 we graph

three functions: 𝜙(x, 𝜄∗), 𝜓1(x, c∗1) and 𝜓(x, c∗
2
) as functions of

x. Here, the areas of the two shaded regions are equal to K0,1

and K1,2. Because x1,0 < x2,1 and x0,1 < x1,2, we conclude

that the optimal sequential switching policy as described in

Theorem 2 is optimal. On the other hand, when we increase

𝜅2 from 0.6 to 0.68 (so that level-2 lockdown becomes more

costly, the optimal policy stipulates that we will never acti-

vate the level-2 lockdown because the bottom shaded area is

smaller than K0,1 as shown in the right-hand panel of Figure 3.

6 CONCLUDING REMARKS

The emergence of new and highly contagious diseases, such

as COVID-19, has brought to the forefront the importance of

developing decision-support tools to aid governments in mak-

ing unconventional interventions that do not rely solely on

vaccines. Unlike previous studies that focus on pharmaceuti-

cal interventions, we propose an optimal control framework

to determine the optimal timing for governments to intervene

and withdraw measures. Our results demonstrate that the deci-

sion to intervene and when to act is heavily influenced by both

the biological properties of the disease and the socioeconomic

costs of the intervention. This highlights the importance of

considering both the health and economic impacts when

designing strategies to control infectious diseases.

There are several avenues for future research in this area.

One potential direction is to consider a finite-time control

problem, which involves minimizing the terminal disease

prevalence by a fixed time rather than the cumulative disease

costs, as proposed by Bai et al. (2022). In this context, the

optimal intervention policy would become time nonstation-

ary, depending not only on the current state of the system but

also on the remaining time until the fixed time horizon. We

leave this extension to future research.

While our work has focused on relatively simple disease

dynamics, we acknowledge that COVID-19 has several real-

istic features, such as the incubation time, symptomatic and

asymptomatic individuals, and isolated individuals, which are

not captured by our model. Incorporating these features would

significantly enlarge the state space and give rise to a control

problem with partial observation. For example, the incorpo-

ration of a positive incubation period would require tracking

the number of individuals who have been exposed but have

not developed symptoms, and the number of new infections

may not be directly observable to the social planner. Hence,

relaxing such assumptions would result in a more complex

problem than a simple sequential switching policy, which we

leave to future studies.

Moreover, our analysis has been based on the assumption

that the infection cost is proportional to the fraction of

infected individuals. However, in reality, medical resources

are limited, and the demand for medical treatment can over-

whelm the healthcare system as the number of infected peo-

ple grows, leading to people not receiving medical care on

time or receiving low-quality care. As a result, the marginal

social-economic cost associated with infection may increase

as the number of infected people grows. This can be modeled

by replacing the linear cost rate with a general cost rate func-

tion that varies with the number of infected individuals. We

propose a specific function, 𝓁(x) = 𝓁1x for 0 < x < x and

𝓁(x) = 𝓁2x for x ≤ x < 1, where x denotes the maximum

level of infected individuals that can be treated by the avail-

able medical resources, and 𝓁i (0 < 𝓁1 < 𝓁2) denotes the

marginal costs of infection when the total number of infec-

tions is below or above the threshold x. We envision that

the dynamic programming equation describing the optimal

intervention strategy can be written directly, subject to appro-

priate conditions, and we leave the analysis of this extension

to future research.
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APPENDIX A: PROOFS

Proof of Proposition 1.

Let

𝜄 ∶= 2𝓁
𝜎

2 ∫

1

0

e2𝛽u∕𝜎2(1 − u)2𝛾∕𝜎2−1
du. (A1)

Substituting (A1) into (14) yields

𝜙(x, 𝜄) = e−2𝛽x∕𝜎2(1 − x)−2𝛾∕𝜎2 2𝓁
𝜎

2

×
∫

1

x
e2𝛽u∕𝜎2(1 − u)2𝛾∕𝜎2−1

du.

By applying l’Hospital rule, we obtain

lim
x→1

𝜙(x, 𝜄)

= lim
x→1

− 2𝓁
𝜎

2
e2𝛽x∕𝜎2 (1 − x)2𝛾∕𝜎2−1

2𝛽

𝜎
2
e2𝛽x∕𝜎2(1 − x)2𝛾∕𝜎2 − 2𝛾

𝜎
2
e2𝛽x∕𝜎2 (1 − x)2𝛾∕𝜎2−1

= 𝓁∕𝛾.

It is easy to see that limx→1 𝜙(x, 𝜄) = ∞ for 𝜄 > 𝜄 and

limx→1 𝜙(x, 𝜄) = −∞ for 𝜄 < 𝜄, meaning that 𝜄 = 𝜄 is the only
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initial value for which limx→1 𝜙(x, 𝜄) is finite. The proof is thus

complete. □

Proof of Lemma 1.

Define 𝜑(⋅, 𝜄) ∶= 𝜙(⋅, 𝜄) − 𝜓(⋅). Suppose, by way of contra-

diction, that 𝜙(⋅, 𝜄) and 𝜓(⋅) cross more than twice. Then for

each fixed 𝜄, the function graph of 𝜑(⋅, 𝜄) must have crossed

the horizontal line at least four times, two times from below

and two times from above. On the other hand, since 𝜙 and 𝜓

are solutions to Equations (13) and (15), we can use the two

equations to deduce that

𝜎

2

2
x(1 − x)𝜑′(x, 𝜄) = 𝜅 − x(1 − x)𝜓(x)

whenever 𝜑(x, 𝜄) = 0. (A2)

A tedious yet straightforward calculation involving (16) will

show that x(1 − x)𝜓(x) is strictly quasi concave. This, how-

ever, implies that the function graph of 𝜑 can the horizontal

line at most three times thanks to (A2), leading to a contra-

diction. Therefore, 𝜙(⋅, 𝜄) and 𝜓(⋅) can cross at most twice,

as desired. □

Proof of Theorem 1.

To establish part (i), we know from Proposition 1 that 𝜙(x, 𝜄)
decreases to negative infinity for any fixed x ∈ [0, 1) as

𝜄 approaches negative infinity. Therefore, there exists some

𝜄 ∈ (−∞, 𝜄) such that 𝜙(x, 𝜄) and 𝜓(⋅) do not intersect for any

𝜄 < 𝜄, intersect but do not cross (i.e., touch each other) for 𝜄 = 𝜄,
and intersect at least twice for any 𝜄 ∈ (𝜄, 𝜄]. On the other hand,

part (i) of the lemma reveals that the number of points of inter-

section that 𝜙(⋅, 𝜄) and 𝜓(⋅) have can be at most two. It follows

that 𝜙(x, 𝜄) and 𝜓(⋅) must intersect exactly twice for 𝜄 ∈ (𝜄, 𝜄].
For such 𝜄, let x0(𝜄) and x1(𝜄) denote the corresponding two

points at which 𝜙(⋅, 𝜄) and 𝜓(⋅) intersect. Then

x1(𝜄) − x0(𝜄)→ 0 and
∫

x
1
(𝜄)

x
0
(𝜄)

[𝜙(x, 𝜄) − 𝜓(x)] dx → 0

as 𝜄→ 𝜄.

When 𝜄 = 𝜄, x0(𝜄) = x0 and x1(𝜄) = x1. Since x0(𝜄) and 𝜙(x, 𝜄)
are monotonically increasing in 𝜄, and x1(𝜄) is monotonically

decreasing in 𝜄, ∫
x

1
(𝜄)

x
0
(𝜄) [𝜙(x, 𝜄) − 𝜓(x)] dx increases from 0 to K,

which is greater than or equal to K by our hypothesis. Hence,

we conclude that there exists some 𝜄
∗ ∈ (𝜄, 𝜄] such that

∫

x
1
(𝜄∗)

x
0
(𝜄∗)

[
𝜙(x, 𝜄∗) − 𝜓(x)

]
dx = K.

Denoting x∗
0
= x0(𝜄∗) and x∗

1
= x1(𝜄∗), we complete the proof

of part (i).

Towards establishing part (ii), let V(x, y) be such that

(a) V(0, 0) = 0, (b) V(x∗
0
, 0) = V(x∗

0
, 1), (c) Vx(x, 0) =

𝜙(x, 𝜄∗)1{x<x∗
1
} + 𝜓(x)1{x≥x∗

1
} and Vx(x, 1) = 𝜙(x, 𝜄∗)1{x≤x∗

0
} +

𝜓(x)1{x>x∗
0
}. By construction, V(x, y) satisfies the variational

inequality (8). For each n ≥ 1, define 𝜏n ∶= 𝜏 ∧ n, where we

recall that 𝜏 is the random time when X hits zero for the first

time. Using the Itô-Tanaka formula, we can find that

V(Xt,Yt) = V(x, y) +
∫

t

0

[
𝜎

2

2
Xu(1 − Xu)Vxx(Xu,Yu)

+ (b(Yu)(1 − Xu) − 𝛾)XuVx(Xu,Yu)
]

du

+
∫

t

0

√
Xu(1 − Xu)Vx(Xu,Yu)dBu

+
∑

u≤t
[V(Xu,Yu+) − V(Xu,Yu)].

This implies that

∫

t

0

𝓁Xudu + 𝜅
∫

t

0

Yudu + K
∑

u≤t
[ΔYu]+

= V(x, y) − V(Xt,Yt) +
∫

t

0

[
𝜎

2

2
Xu(1 − Xu)Vxx(Xu,Yu)

+ (b(Yu)(1 − Xu) − 𝛾)XuVx(Xu,Yu) + 𝓁Xu + 𝜅Yu

]
du

+
∫

t

0

√
Xu(1 − Xu)Vx(Xu,Yu)dBu

+
∑

u≤t
[V(Xu,Yu+) − V(Xu,Yu) + K] [ΔYu]+

+
∑

u≤t
[V(Xu,Yu+) − V(Xu,Yu)] [ΔYu]−.

Because V(x, y) satisfies (8), we know that

∫

t

0

𝓁Xudu + 𝜅
∫

t

0

Yudu + K
∑

u≤t
[ΔYu]+

≥ V(x, y) − V(Xt,Yt) +
∫

t

0

√
Xu(1 − Xu)Vx(Xu,Yu)dBu.

(A3)

Letting t = 𝜏n, taking expectations on both sides, and noting

that 𝜏n is bounded, we obtain

E

[

∫

𝜏n

0

𝓁Xudu + 𝜅
∫

𝜏n

0

Yudu + K
∑

u≤𝜏n

[ΔYu]+
]

≥ V(x, y) − E
[
V(X

𝜏n ,Y𝜏n)
]
. (A4)

Since 𝜏n → 𝜏 almost surely as n → ∞, we can apply the

monotone convergence theorem to conclude

E

[

∫

𝜏n

0

𝓁Xudu + 𝜅
∫

𝜏n

0

Yudu + K
∑

u≤𝜏n

[ΔYu]+
]

→ E

[

∫

𝜏

0

𝓁Xudu + 𝜅
∫

𝜏

0

Yudu + K
∑

u≤𝜏
[ΔYu]+

]

Similarly, we can apply the bounded convergence theorem to

obtain

E
[
V(X

𝜏n ,Y𝜏n)
]
→ E [V(X

𝜏
,Y

𝜏
)] = 0,

where the equality uses the fact that X
𝜏
= 0 and the bound-

ary condition that V(0, 0) = 0. Thus, by passing to the limit

n → ∞ in (A4), we obtain

V(x, y) ≤ E

[

∫

𝜏

0

𝓁Xudu + 𝜅
∫

𝜏

0

Yudu + K
∑

u≤𝜏
[ΔYu]+

]

.

(A5)
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If Y∗ is the sequential switching policy with switching

boundaries x∗
0

and x∗
1
, then (A3) holds with equality. By adopt-

ing the same argument as before, we can conclude that (A5)

holds with equality, which completes the proof of part (ii). □

Proof of Theorem 2.

The key to the proof is to construct a solution to (19). For

this purpose, let V(x, y) be such that (a) V(0, 0) = 0, (b)

V(x∗i,i+1
, i) = V(x∗i,i+1

, i + 1) for i = 0, … ,m − 1, and (c)

Vx(x, y) =

⎧
⎪
⎪
⎪
⎪
⎨
⎪
⎪
⎪
⎪
⎩

𝜙(x, 𝜄∗)1{x<x∗
0,1
} +

∑m
j=1
𝜓(x, c∗j )1{x∗j−1,j<x<x∗j+1,j}

if y = 0,

𝜙(x, 𝜄∗)1{x≤x∗
1,0
} +

∑i−1

j=1
𝜓(x, c∗j )1{x∗j,j−1

<x≤x∗j+1,j}

+𝜓(x, c∗i )1{x∗i,i−1
<x<x∗i+1,i}

+
∑m

j=i+1
𝜓(x, c∗j )1{x∗j−1,j≤x<x∗j,j+1

}

if y ≠ 0.

By construction and applying Assumption 2, it is easy to

see that V(x, y) satisfies (19). Given this, the remaining steps

towards the desired conclusion will mimic those in the proof

of Theorem 1. Hence, we omit the details. □

APPENDIX B: AN ITERATIVE PROCEDURE
TO COMPUTE SWITCHING THRESHOLDS

Suppose level l lockdown is considered worthwhile with

l < m. This would imply that (i) there exist 𝜄
(l)

and

(c(l)
1
, … , c(l)l ) that collectively satisfy a modified version of

Assumption 2 (changing m therein to l), and (ii) the corre-

sponding points of intersection are such that x(l)
1,0

< x(l)
2,1

<

· · · < x(l)l,l−1
and x(l)

0,1
< x(l)

1,2
< · · · < x(l)l−1,l. To examine if

level l + 1 lockdown is worthwhile, one computes the area

of intersection between 𝜓l(⋅, c(l)l ) and 𝜓l+1(⋅, 0), denoted as

K(l)
l,l+1

. (K(l)
l,l+1

= 0 if the two functions graphs touch or do not

intersect).

• If K(l)
l,l+1

≤ Kl,l+1, then level l + 1 lockdown

is not worth consideration. Hence, the proce-

dure terminates and concludes that a sequen-

tial switching policy with lockdowns up to

level l is optimal. In particular, the switch-

ing policy is characterized by two strongly

ordered sequences: x(l)
1,0
< x(l)

2,1
< · · · x(l)l,l−1

and

x(l)
0,1
< x(l)

1,2
< · · · x(l)l−1,l.
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FIGURE C1 Impact of model parameters ̃
𝛽, 𝜎, 𝜅 and K on the values of the switching thresholds (x⋆

0
, x⋆

1
). In the last plot on K, (x⋆

0
, x⋆

1
) = (0, 1) when K is

sufficiently large (in this case K > K = 0.266), meaning that the system stays “off” and never switches “on.”
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• If K(l)
l,l+1

> Kl,l+1, then one looks for 𝜄
(l+1)

and

(c(l+1)
1

, … , c(l+1)
l+1

) that collectively satisfy a

modified version of Assumption 2 (changing

m therein to l + 1).

– If the points of intersection

are such that x(l+1)
1,0

< x(l+1)
2,1

<

· · · x(l+1)
l+1,l and x(l+1)

0,1
< x(l+1)

1,2
<

· · · x(l+1)
l,l+1

, then level l+1 lock-

down is considered worth-

while, in which case the pro-

cedure continues by setting

l ← l+ 1 (unless l+ 1 = m);

– otherwise, the procedure

stops and concludes the pre-

viously identified switching

policy with lockdowns up to

level l is optimal.

APPENDIX C: SENSITIVITY ANALYSIS

Next, we supplement the numerical experiments in the main

paper by conducting sensitivity analyses for the other model

parameters, including ̃
𝛽, 𝜎, 𝜅 and K; See Figure C1. Similar

to our findings in Figure 2, the switching thresholds (x∗
0
, x∗

1
)

exhibits non-monotonic behavior.
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