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To operationalize the psychological principle that “occupied time feels shorter than unoccupied time”,

it is common for service providers to offer entertainment options in the waiting areas. Typical examples

that put in practice this mechanism include amusement parks, car dealers, airports, hospitals, restaurants,

etc. In this paper, we study a queueing system where the server provides entertainment services

to waiting customers. Assuming customers are strategic and delay-sensitive, we formulate a game-

theoretical model and study customers’ equilibrium behavior in response to this mechanism. Because

offering waiting-area entertainment incurs extra operational costs, we discuss whether and when this

option will benefit the service provider and obtain the optimal entertainment capacity that maximizes

the system’s profit. Our analysis reveals that this option is appealing if and only if the market size is

intermediate and that the optimal capacity of the entertainment is a unimodal function in the market

size. Our insights continue to remain valid when the service fee becomes endogenous.

 2022 Elsevier B.V. All rights reserved.

1. Introduction

Waiting is frustrating and annoying. In service systems, cus-

tomers’ experience at the waiting lines can substantially influence

their perception of the overall quality of the service. To reduce cus-

tomers’ waiting times, the majority of the extant queueing theory

literature focuses on improving the management of service capac-

ity and queueing discipline. Yet an equally important (albeit less

explored) dimension in service operations puts in practice the psy-

chological principles of the waiting line, which aims to reduce

customers’ perceived (not actual) waiting times. One of such prin-

ciples is that occupied time feels shorter than unoccupied time [7].

According to [7], service providers can “fill up waiting times”

by offering some activities that should either (a) be related to the

subsequent service encounters, or (b) offer benefit in itself. Both

cases have been predominantly operationalized in practice. As ex-

amples of Case (a), many restaurants hand out menus for waiting

customers to peruse; Disney’s amusement parks provide pre-ride

video tutorials and instructions to waiting customers for the up-

coming rides. As an example of Case (b), Haidilao, a popular hot

pot restaurant chain, provides waiting customers with manicure

and hand massage services, along with a variety of board games,

* Corresponding author.

E-mail address: yliu48@ncsu.edu (Y. Liu).

Fig. 1. Waiting-area entertainment offered by Chuanxi Bazi, a popular restaurant

chain in Sichuan, China.

snacks and drinks for free [2]. Similar waiting-line services have

been adopted by many other restaurants (see Fig. 1 for an example

of Chuanxi Bazi, another popular restaurant chain in China). For

other examples, see [1,3].
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In this paper, we study the impact of waiting-area entertainment

(WAE) on consumer behavior and system revenue by analyzing

a queueing economics model. Of course, the right types of WAE

depend on the context of the service; indeed, in different ser-

vice organizations, WAE options vary from low-end services such

as snacks and magazines, to high-end technologies such as com-

puters and video game consoles, and to human services such as

massaging, shoe shining and manicuring. Motivated by the above

cited examples, we hereby consider two different mechanisms: (i)

Type-1 WAE that requires human servers (e.g., manicurists and

massagers), and (ii) Type-2 WAE that does not directly involve hu-

man resources (e.g., snacks, coffees and computers). Although the

operational cost to maintain WAE activities apparently depends on

the number of WAE “seats” (i.e., WAE’s capacity), a major distinc-

tion of the two mechanisms lies in whether this cost also depends

on the system state: in the former case the WAE cost incurs con-

stantly regardless of how many customers are waiting in line (e.g.,

if 3 manicurists are hired then 3 salaries ought to be paid even

when they may be idling), whereas in the latter case the cost is

modulated by the system state (e.g., only 2 of 3 coffee stands will

be used if there are only 2 waiting customers). Modeling assump-

tions and results of these two WAE mechanisms are detailed in

later sections.

We characterize the customers’ equilibrium behavior in re-

sponse to both WAE mechanisms and establish the system-level

performance functions such as throughput and profit. Our analy-

sis reveals that WAE options can be used to improve the system’s

profit when the market size is intermediate and provide no bene-

fits otherwise. In addition, the optimal number of WAE seats that

maximizes the service provider’s profit exhibits a unimodal shape

in the market size. The above-mentioned phenomena are substan-

tiated by both theoretical results and engineering confirmations

via numerical examples. We also provide in-depth discussions to

give additional insights. We also consider several extensions of the

base model including the case of a random delay cost (to capture

consumers’ heterogeneous responses to WAE) and the case of en-

dogenous pricing (to allow the service provider to jointly set the

service fee and the WAE capacity).

Related literature. The queueing economics literature was pio-

neered by [8] where arriving customers decide on whether to join

an M/M/1 queue based on the available queue length. Follow-

ing [8], strategic customer behavior in queueing systems has been

widely studied in the literature, see [5,4] for comprehensive re-

views. Our work is also related to the small body of literature on

WAE. A recent study by [9] investigated the co-opetition of mul-

tiple service providers in a service cluster where WAE is offered

in a common space as a shared resource; they discovered that

higher profitability may be achieved for all service providers by the

choosing the right cost-allocation scheme that properly addresses

an efficiency-fairness tradeoff. This stream of work has been ex-

tended by [6] with the additional consideration of how to opti-

mally set the service capacity under WAE. The present work draws

distinctions from the above-mentioned literature by focusing on

the capacity sizing aspect of the management of the waiting-line

entertainment. We aim to inform the service providers of whether

and when this option can be an effective measure in terms of im-

proving the system performance, and if yes, how many seats are to

be invested and maintained.

2. Model descriptions

We model a service system as a single-server queue having cus-

tomer arrives according to a Poisson process with rate 3 (also

referred to the potential market size) and independent and identi-

cally distributed (I.I.D.) service times following an exponential dis-

Fig. 2. A queueing model with waiting-area entertainment.

tribution with rate µ (also referred to as the service capacity). In

addition, the arrival and service processes are assumed to be mu-

tually independent. Let ρ ≡ 3/µ be the system’s workload.

Strategic customers. Customers are delay-sensitive and demand

service as soon as possible. Each customer receives a reward V

after completing service and pays a fee P upon arriving at the ser-

vice system. Customers are strategic and make their joining and

balking decisions based on their ex ante utilities. All joining cus-

tomers finding a busy server must wait in the queueing area and

will be served according to the first-come first-served (FCFS) disci-

pline. They incur a waiting cost cH per time unit in the waiting

area. Unlike the conventional queueing economics model in [8]

where the waiting cost is generated throughout a customer’s en-

tire sojourn time, we hereby assume there is no waiting cost when

a customer is already in service.

Waiting-area entertainment. To mitigate customers’ waiting

costs, the service provider offers WAE with a total capacity L.

For example, L may mean the number of massaging chairs or the

number of seats for manicure services. If there are less than L

customers in the waiting area, all customers benefit from WAE;

otherwise, customers receive the WAE services according to FCFS

(that is, WAE is provided to the first L customers in the waiting

line). See Fig. 2 for an illustration. We assume that waiting cus-

tomers currently receiving the WAE service incur a waiting cost cL
per time unit, with 0 ≤ cL < cH .

We assume that customers have the queue length informa-

tion upon their arrivals, so that they are able to make their join-

ing/balking decisions based on the knowledge of the total number

of customers in the system including those in service, in the en-

tertainment area, and outside of the entertainment area (if any).

Motivated from different types of WAE, we consider two mech-

anisms.

• Inflexible (Type-1) WAE: If the WAE requires extra human

servers such as manicurists and massagers, the cost of main-

taining the service is due to their hiring salary. Hence, the

service provider incurs a cost at a fixed rate LK , with K > 0

representing the salary per time unit the service provider

commits to each WAE server. This WAE cost is inflexible and

independent of the number of waiting customers in the queue.

• Flexible (Type-2) WAE: The second kind of WAE does not di-

rectly involve any human resource. For example, if the service

provider maintains a service area with L seats offering snacks

and coffees, K means the cost per time unit these products are

consumed. If the entertainment means L massaging chairs, K

refers to the maintenance cost per chair per time unit. When-

ever there are n customers waiting in line, the service provider

incurs a cost K ·min(n, L) per time unit. This WAE cost is thus

flexible and is adaptively coping with the system’s state.

We treat the above-introduced inflexible (Type-1) WAE case as

our base WAE model. In Section 3 we will carefully analyze the

optimal capacity for the base WAE model that maximizes the sys-

tem’s profit. In Section 4 we will extend the results of the base

2
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Table 1

Glossary of main notation.

Symbol Definition

µ Service capacity/rate

3 Market size

ρ ≡ 3/µ System’s workload

V Service reward

cL , cH Delay costs with and without WAE

pL Probability a customers enjoys WAE in an extension model

P Service fee

L WAE capacity

K WAE cost of maintaining one seat per unit time

π0
n ,πn(L) Steady-state probabilities for models without and with WAE

n0e ,ne(L) Joining thresholds without and with WAE

T H0, T H System throughput in models without and with WAE

50,51,52 Net profit without WAE, with type-1 WAE, and type-2 WAE

E[X], P (A) Expectation of random variable X and probability of event A

model in three directions. First, in Section 4.1 we study the perfor-

mance of the flexible (Type-2) WAE model which exhibits similar

structure to the base WAE model. Second, in Section 4.2 we allow

customers’ delay cost to be heterogeneous. Finally, in Section 4.3

we consider a joint pricing and capacity sizing problem for the

base WAE model. All notations are summarized in Table 1.

3. The base WAE model

We first review the case without WAE (with L = 0) which is

referred to as the no-entertainment model. We next study the cus-

tomer strategy and system performance in the base (Type-1) WAE

Model.

3.1. The no-entertainment model

The no-entertainment model is a special case of the entertain-

ment model (of either type) with L = 0. Apparently, it reduces to a

standard M/M/1 queue with potential arrival rate 3, service rate

µ, and waiting cost cH . (A subtle distinction from the classical

Naor model [8] is that customers do not incur any waiting cost af-

ter entering service.) It is well known that when the queue length

is observable, customers’ joining decision follows a threshold-type

strategy. That is, potential customers join the system only when

the number of existing customers is below a certain threshold n0e ;

otherwise they balk.

We next provide the key performance functions of the no-

entertainment case which will later be used as useful benchmarks

for the entertainment models. We hereby append a superscript “0”

to all notation. Specifically, let π0
i
, T H0 and 50 denote the sys-

tem’s steady-state probability, throughput and profit, respectively.

Lemma 3.1 (The no-entertainment case). In an M/M/1 queue without

WAE, key performance measures are given as follows:

n0e =

⌊
µ(V − P )

cH

⌋
+ 1, π0

i =
ρ i(1− ρ)

1− ρn0e+1
, i = 0, . . . ,n0e ,

(1)

T H0 =

n0e−1∑

n=0

π0
i ≡ 8n0e

(ρ), 50 = 3

n0e−1∑

n=0

π0
i P ≡ 8n0e

(ρ)P ,

where 8n(ρ) ≡ µ
ρ(1 − ρn)

1− ρn+1
. (2)

3.2. The Type-1 (inflexible) WAE model

In this subsection, we study the model under type-1 WAE with

capacity L, and we characterize the system performance in equi-

librium.

We first describe the expected utility function of a “tagged”

customer. For a fixed L, let U (n) denote her expected utility for

joining the system given that she observes n existing customers

already in the system (excluding herself). Thus,

U (n) = Ū (n)1{n≤L} + Ũ (n)1{n>L}, (3)

where the indicator function 1A is 1 if condition A holds and 0

otherwise, and the two functions Ū (n) and Ũ (n) are given by

Ū (n) ≡ V − P −
ncL

µ
, (4)

Ũ (n) ≡ V − P −
(n − L)cH

µ
−

LcL

µ
. (5)

Next, we compute the main performance features. With a given

WAE capacity L, let ne(L), πn(L), T H(L) and 51(L) be the

customers’ joining threshold, system’s steady-state probability,

throughput and net profit (i.e., gross profit minus WAE cost). For

this type-1 WAE, we append a superscript “1” only to the profit

function 51(L) but not to the other notation, because as we will

see soon, type-1 and type-2 models coincide in all performance

functions except for the system’s net profit.

In parallel to (1), we define

n̄e ≡

⌊
µ(V − P )

cL

⌋
+ 1, (6)

which is the joining threshold of an M/M/1 queue having a delay

cost cL . Throughout the paper, we assume that n0e < n̄e (i.e., cH and

cL are not too close) so that the adoption of WAE can be beneficial.

Lemma 3.2 (Type-1 WAE: Performance under a fixed L). Consider an

M/M/1 model under type-1 WAE with a fixed L. We have

ne(L) =





⌊
µ(V−P )+L(cH−cL)

cH

⌋
+ 1, if L ≤ n̄e,

n̄e, if L > n̄e,
(7)

πn(L) =
ρn(1− ρ)

1− ρne(L)+1
, (8)

T H(L) = 3

ne(L)−1∑

n=0

πn(L) = 8ne(L)(ρ), (9)

51(L) = 8ne(L)(ρ)P − K L, (10)

where the function 8n(·) is given in (2).

Using results in Lemma 3.2 with a fixed L, we next discuss how

to select the optimal WAE capacity L∗
1 that maximizes the system’s

net profit in (10). Although L is allowed to be any positive integer,

to facilitate the theoretical analysis, we first truncate the support

of L to a finite set in form of

DL ≡ {L, L + 1, . . . , L̄} for some 0 < L ≤ L̄ < ∞, (11)

without affecting the optimal profit. To see this, note that when L

is already sufficiently large, further increasing L will have no im-

pact on ne(L) or system-level performance but will incur a bigger

WAE capacity cost (see Lemma 3.2). We call DL the effective re-

gion of L.

3
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Fig. 3. Profit and customers’ joining threshold under type-1 WAE, with 3 = 1.2,

µ = 1, V = 10, cL = 0.5, cH = 2, P = 6, K = 0.1, L = 2, L̄ = 8, n0e = 3 and n̄e = 9.

Lemma 3.3 (Effective region of L). The optimal WAE capacity L∗
1 is con-

tained in the effective regionDL in (11) specified by L and L, where

L ≡ min{L > 0 : ne(L) = n0e + 1} and L̄ ≡ min{L > 0 : ne(L) = n̄e}.

We supplement Lemma 3.3 using an example; in Fig. 3 we

graph both the profit 51(L) and the threshold ne(L) as L in-

creases. We make the following observations: First, consistent with

Lemma 3.3, customers’ joining threshold ne(L) is nondecreasing in

L and eventually capped at n̄e . Second, there exists an effective re-

gion (with L = 2 < 8 = L̄) in which the system is able to achieve

improved profit relative to the no-entertainment model. (When

L = 1 < L, WAE is ineffective in improving the system’s throughput

because ne(L) = n0e ; when L = 8 > L̄, the system reaches a satu-

ration point with ne(L) = n̄e .) Last, 51(L) is unimodal in L within

the effective region (for which we will provide theoretical justifi-

cations in what follows).

We are ready to characterize the optimal WAE capacity L∗
1 that

maximizes the system’s net profit. In what follows, we consider

two cases specified by the value of a constant

K̄ ≡ sup
0<3<∞

P [8ne(L+1)(3/µ) − 8ne(L)(3/µ)], (12)

where 8n(·) is defined in (2). The next result describes the effec-

tiveness of WAE and contrasts its performance to the case of no

entertainment.

Theorem3.1 (Type-1WAE: Profit-optimal capacity). There are two cases

specified by K̄ in (12) and the WAE cost K :

(i) When K ≥ K̄ , the optimal WAE capacity L∗
1(3) = 0 so that for all

market size 3, 51(L∗
1(3)) = 50 .

(ii) When K < K̄ , there exists two thresholds of market size 31 and 3̄1

with 31 < 3̄1 being the two roots of the equation

1L(3) ≡ P [8ne(L)(3/µ) − 8n0e
(3/µ)] − K L = 0. (13)

We further consider two subcases of the market size:

a. Small or large: when 3 ∈ [0,31]∪ [3̄1,∞), the optimal enter-

tainment level L∗
1(3) = 0.

b. Intermediate: when 3 ∈ (31, 3̄1), there exists a unique opti-

mal entertainment capacity 0 < L∗
1(3) < ∞ that guarantees that

51(L∗
1(3)) > 50 , with

L∗
1(3) = min

{
L > 0 : 8ne(L+1)

(
3

µ

)
− 8ne(L)

(
3

µ

)
<

K

P

}
.

In addition, L∗
1(3) is first nondecreasing in 3 and then nonin-

creasing in 3.

Remark 3.1. First, it is straightforward to see that WAE is ineffec-

tive if its capacity cost K is too large. When K is not too large,

WAE can always help reduce the customers’ waiting cost, which in

turn boosts the system throughput. However, whether the profit

gain from the incremented throughput can outweight the WAE

cost (so that the overall profit can improve) will largely depend

on the market size 3. When 3 is sufficiently small, almost all cus-

tomers will join for service because they rarely see a long queue;

in this case WAE becomes less cost-effective for the system. Hence,

the service provider should consider setting a small WAE capacity

(if at all). As 3 increases, the waiting queue becomes longer which

drives the service provider to expand the WAE capacity. However,

when 3 becomes sufficiently large, the system becomes saturated

with the throughput approaching the service capacity µ. In this

case, it again becomes unworthy for the service provider to main-

tain any WAE activities (there is no room to further improve the

system throughput).

To visualize our theoretical results, we next consider an ex-

ample for which we numerically compute the profit, throughput,

optimal WAE capacity and customers’ joining threshold in the two

models: no entertainment and base WAE; see Fig. 4. Consistent

with Theorem 3.1, the optimal WAE capacity L∗
1(3) is strictly posi-

tive only when 3 is not too large or too small, and it first increases

and then decreases in 3. So offering WAE is effective in boost-

ing the system’s profit only when the market size is intermediate.

Moreover, in contrast to the case of no entertainment, the through-

put under WAE is not always increasing in 3, because the WAE

capacity decreases when 3 is large due to its reduced cost effec-

tiveness.

4. Extensions

4.1. The Type-2 (flexible) WAE model

We first extend our analysis to the flexible (type-2) WAE case.

Unlike the base WAE model that continuously cost the service

provider K L per time unit regardless of the number of the wait-

ing customers, the capacity cost of type-2 WAE is dependent with

the system state. In particular, let NL be the steady-state num-

ber of customers waiting in line with a given WAE capacity L,

the steady-state WAE cost is KE[L ∧ NL] per time unit, where

x ∧ y ≡ min(x, y). Hence, we modify (10) as below and append

a superscript “2”:

52(L) = 3

ne(L)−1∑

n=0

πn(L)P − KE[L ∧ NL], (14)

Nevertheless, our new setting here has no impact on ne(L), πn(L)

and T H(L) (so their formulas remain the same as in (7)–(9)), but

only on the system’s net profit. In parallel to Theorem 3.1, we next

study the performance of a type-2 WAE model under the profit-

optimal L∗
2 (the L that maximizes (14)). Our result exhibits similar

structure and insights to that of the base WAE model.

Theorem 4.1 (Type-2 WAE: Profit-optimal capacity). There exists a con-

stant K̂ , such that:

(i) When K ≥ K̂ , the optimal WAE capacity L∗
2(3) = 0 so that for all

3 > 0, 52(L∗
2(3)) = 50;

(ii) When K < K̂ , there exists 32 and 3̄2 with 32 < 3̄2 such that,

– If 3 ∈ [0,32] ∪ [3̄2,∞), the optimal WAE capacity L∗
2 = 0, so

that 52(L∗
2(3)) = 50;

4
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Fig. 4. Performance comparison of the two WAE models, with µ = 1, V = 12, cL = 0.2, cH = 2, P = 8, K = 0.12, 31 = 0.63, 3̄1 = 2.19.

– If 3 ∈ (32, 3̄2), the optimal WAE capacity L∗
2(3) > 0 and

52(L∗
2(3)) > 50 .

4.2. Heterogeneous delay cost

Although WAE can in general help reduce the perceived waiting

times, not all customers will fully appreciate the WAE activities.

To capture customers’ heterogeneous responses to WAE, we now

allow the waiting cost under WAE to be a random variable, de-

noted by the capital letter CL (with the pre-WAE cost cH remaining

a deterministic number). For simplicity, we assume that CL fol-

lows a two-point distribution with P (CL = cL) = 1−P (CL = cH ) =

pL ∈ [0,1], and cL < cH . Here event {CL = cL} (event {CL = cH })

means that a customer enjoins (does not enjoin) the WAE activ-

ity. This setting divides all customers into two categories with the

parameter pL denoting the fraction of customers who benefit from

WAE. (The delay cost reduces to that in the base WAE model when

pL = 1 and to that in the no-entertainment model when pL = 0.)

For a fixed L, a customer having delay cost CL = c and observ-

ing a queue length n has utility

U (n|L, c) = V − P −
(n − L)+cH

µ
−

(n ∧ L)c

µ
, c = cL, cH , (15)

and thus adopts a threshold joining strategy with a c-dependent

threshold

ne(L, c) = max{n : U (n|L, c) > 0}. (16)

This threshold reduces to n0e in (1) for customers having CL = cH
and to ne(L) in (7) for those having CL = cL . Hence, the system

dynamics follows a birth-and-death process with birth rates λi =

3 if i < n0e and λi = 3pL when n0e ≤ i < ne(L), and death rates

µi = µ.

The steady-state probabilities, system throughput, and partial

structure of the WAE capacity are summarized in the proposition

below.

Proposition 4.2 (Heterogeneous delay cost under WAE). Consider the

case of the two-point distributed delay cost under WAE:

i. For a given L, the system’s steady-state probabilities are

π̂i(L) =

{
π̂0(L)ρ

i, if 0 ≤ i < n0e

π̂0(L)ρ
n0e (pLρ)i−n0e , if n0e ≤ i ≤ ne(L),

π̂0(L) =

(
1− ρn0e

1− ρ
+ ρn0e

1− (pLρ)ne(L)−n0e+1

1− pLρ

)−1

.

The system’s throughput is

T̂ H(L) = µ(1− π̂0(L)).

ii. WAE is ineffective in improving the service provider’s profit when

the market size 3 is sufficiently small or large.

In Fig. 5 we numerically compare the profits of a type-1 WAE

model with homogeneous delay cost and heterogeneous delay cost.

Unsurprisingly, the profit of the model under a heterogeneous de-

lay cost is lower than that of the base WAE model, because WAE

now becomes less effective in reducing customers’ perceived wait-

ing costs and improving the system throughput. Nevertheless, sim-

ilar to the case of homogeneous costs, we see that WAE has bene-

fits only when the market size is intermediate.

4.3. Joint pricing and capacity sizing

Finally, in our base WAE model, we allow the service provider

to maximize the system’s profit defined in (10) by jointly setting

(i) the WAE capacity L and (ii) the service fee P . To understand the

impact of WAE, we benchmark with the no-entertainment model

where the service provider uses the service fee as the only profit-

maximizing lever. Because the analysis of queueing economics

models under optimal pricing is quite involved and in general ad-

mits no analytic solutions, we will gain qualitative insights via

numerical experiments.

In Fig. 6 we compare the profits in the two models (top left

panel) under their optimal prices (top right panel). Consistent with

the case of exogenous price (Theorem 3.1), our results show that

WAE can help improve the system’s profit only when 3 is inter-

mediate. Specifically, in this example, when 3 is sufficiently small

5
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Fig. 5. Profit comparison of type-1 WAE with homogeneous delay cost and heterogeneous delay cost, with µ = 1, V = 12, cL = 0.2, cH = 2, K = 0.12, L = 2, pL = 0.8, L̄ = 8,

n0e = 3 and n̄e = 9.

Fig. 6. Profit comparison under optimal service price for (a) Type-1 WAE model and (b) no-entertainment model, with µ = 1, V = 12, cL = 0.8, cH = 2, K = 0.25.

(i.e., 3 < 3p = 0.24) or large (i.e., 3 > 3̄p = 9.3), the optimal

WAE capacity L∗
1 = 0 (and of course both the optimal prices and

profits of the two models are identical). Also, when P is endoge-

nous, the throughput is no longer monotone in 3 (even in the

homogeneous-cost case, see the bottom left panel). In addition, we

observe that, as 3 varies, the service fee and WAE capacity always

work together by moving to the same direction (bottom panel): P

decreases (increases) whenever L increases (decreases), aiming to

entice (reject) more customer arrivals.

5. Conclusions

Motivated by the novel practice of WAE in service systems, we

develop a queueing economics model to explore the impact of this

mechanism on customer behavior and system revenue. We de-

termine the optimal service capacity for the WAE by considering

two mechanisms: inflexible WAE that involves human servers and

flexible WAE that involves no human servers, both of which are

relevant to various applications in practice. Our results reveal that,

when WAE capacity cost is not too high, offering such a service

to customers in the waiting area can help improve the system’ net

profit only when the system’s load is intermediate, and in addition,

the profit-optimal WAE capacity is unimodal in the system’s load.

We also consider two extensions including (i) random delay costs

that account for customers’ heterogeneous responses to WAE activ-

ities, and (ii) endogenous pricing that allows the service provider

to jointly set the service fee and WAE capacity.

There are several venues for future research. One interesting

direction is examine the mechanism where WAE is offered to

6
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customers with a fee, so customers may choose to pay for the

activities if they deem them to be worthy. A notable motivating

example of this model is the airport VIP club. Another dimension

is to investigate the level of WAE; for example, providing high-end

WAE activity (e.g., game consoles) can apparently achieve a big-

ger reduction of the perceived waiting time as opposed to low-end

options (e.g., magazines), but this will incur a higher cost for the

service provider.
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Appendix A

Proof of Lemmas 3.1 and 3.2. All results of Lemma 3.1 directly fol-

low from [8] with a slight modification that the a customer in

service incurs no waiting cost. To prove Lemma 3.2, first note that

when L is large enough, all waiting customers incur the lower cost

cL , and each, when seeing n customers, has an expected utility

Ū (n) as specified in equation (4).

The two thresholds n̄e and ne(L) are the largest integers such

that Ū (n) = 0 and U (n) = 0, where U (n) is given in (3). However,

an M/M/1 model with customers following the joining threshold

ne(L) is similar to the Naor model, with the first ne(L) ∧ L cus-

tomers incurring a cost cL and the next (ne(L) − L)+ incurring

cH . The formulas for the steady state probabilities, throughput and

profit function in (8)-(10) naturally follow. 2

Proof of Lemma 3.3. Due to the discrete nature of ne(L), a very

small L will only increase the WAE cost (at a rate K L) without ex-

pending customers’ joining threshold (with ne(L) = n0e ). Therefore,

any L < L cannot be optimal. On the other hand, when L is al-

ready sufficiently large with ne(L) reaching its maximum value n̄e ,

investing any additional entertainment capacity will only increase

the WAE cost which is detrimental to the profit. Hence, any L > n̄e
cannot be optimal. 2

Proof of Theorem 3.1. We first investigate the monotonicity of the

profit function 51(L) (defined in (10)) with respect to L. For now

we stipulate that the workload ρ and 3 remain fixed. Because µ

is fixed, in what follows we work with ρ instead of 3 for the ease

of notation. Note that

51(L) − 51(L − 1) ≥ 0 ⇔ 8ne(L)(ρ) − 8ne(L−1)(ρ) ≥
K

P
,

(1)

where 8n(·) is defined in (2). Taking the second-order derivative of

8ne(L)(ρ) with respect to L (by treating L as a continuous variable)

yields

∂28ne(L)(ρ)

∂L2
=

∂28ne(L)(ρ)

∂n2e (L)
·
∂ne(L)

∂L

=
(ρ − 1)ρne(L)(logρ)2(1+ ρne(L)+1)

(1− ρne(L)+1)3
·
∂ne(L)

∂L
≤ 0,

where the inequality holds because ne(L) is nondecreasing in L.

Hence, we know that 8ne(L)(ρ) − 8ne(L−1)(ρ) is nonincreasing in

L. Next, we consider the following two cases:

(i) K > P [8ne(L+1)(ρ) − 8ne(L)(ρ)] and

(ii) K ≤ P [8ne(L+1)(ρ) − 8ne(L)(ρ)].

In case (i) we must have that 8ne(L)(ρ) − 8ne(L−1)(ρ) < K/P for

all feasible L ∈ {L, · · · , L̄}, which is the opposite of (1). There-

fore, 51(L) is decreasing in L so that it is optimal for the service

provider set L∗
1 = 0.

In case (ii), there exists a unique L∗
1 ≥ 0 such that

8ne(L
∗
1+1)(ρ) − 8ne(L

∗
1)

(ρ) < K/P ≤ 8ne(L
∗
1)

(ρ) − 8ne(L
∗
1−1)(ρ).

(2)

Thus the profit function 51(L) first increases in L ∈ {L, · · · L∗
1} and

then decreases in L ∈ {L∗
1 + 1, · · · , L̄}. Therefore, for a given ρ , the

maximum profit is achieved at the optimal entertainment capacity

L∗
1 = min{L > 0 : 8ne(L+1)(ρ) − 8ne(L)(ρ) < K/P }.

Next, we further establish the impact of system offered load ρ

in case (ii). For L > 0, define

1L(ρ) ≡ 51
ρ(L) − 50

ρ = P (8ne(L)(ρ) − 8n0e
(ρ)) − K L,

where we have appended a subscript ρ to both 51(L) and 50 in

order to highlight the dependence on ρ . Taking the first-order and

second-order derivatives with respect with ρ , we have that, for all

ρ > 0,

∂8n(ρ)

∂ρ
= µ

(1− ρ)(1+ ρ + · · · + ρn−1 − nρn)

(1− ρn+1)2
> 0,

∂82
n(ρ)

∂ρ2
= (1− ρ)ρn−1(n + 1)×

[(ρ − ρn+1) + · · · + (ρn − ρn+1)] + [(ρ − 1) + · · · + (ρn − 1)]

(1− ρn+1)3
<0.

In addition, we know that
∂82

n(ρ)

∂ρ2 is decreasing in n because the

numerator [(ρ −ρn+1)+· · ·+ (ρn −ρn+1)]+ [(ρ −1)+· · ·+ (ρn −

1)]ρn−1(n+ 1) < 0 and decreasing in n, and (1−ρ)/(1−ρn+1)3 >

0 increases in n. Therefore, ∂82
ne(L)

(ρ)/∂ρ2 ≤ ∂82

n0e
(ρ)/∂ρ2 < 0

due to ne(L) ≥ n0e for any L ≥ 0, which further implies that 1L(ρ)

is concave in ρ . In addition, we focus on the two cases with ρ → 0

and ρ → ∞.

(ii.a) When the system load is sufficiently small, the optimal enter-

tainment capacity L∗
1 = 0, because lim

ρ→0
51

ρ(L) = −K L < 0 =

limρ→0 50
ρ .

(ii.b) When the system load is sufficiently large, the optimal enter-

tainment capacity L∗
1 = 0, because lim

ρ→∞
51

ρ(L) = µP − K L <

µP = limρ→∞ 50
ρ .

Due to the fact that 1L(ρ) is concave in ρ , there exists two thresh-

olds on the system load (market size), a lower bound ρ
1
(31) and

an upper bound ρ̄1 (3̄1) that are the two roots of equation (13),

such that 1L(ρ) > 0 when ρ ∈ (ρ
1
, ρ̄1). In this case there exists a

unique L∗
1 > 0 that guarantees that 51(L∗

1) > 50 .

Finally, we establish the monotonicity of the optimal entertain-

ment capacity L∗
1(3) in case (ii). A continuous version of L∗

1(3)

can be determined by the first-order condition
∂51

ρ (L)

∂L
= 0 with

ρ ∈ (ρ
1
, ρ̄1), which is equivalent to

∂8ne(L)(ρ)

∂ne(L)
·
∂ne(L)

∂L
=

K

P
⇔

∂8ne(L)(ρ)

∂ne(L)
=

K

P
·

∂L

∂ne(L)
. (3)

In addition, we have proved that
∂82

n(ρ)

∂ρ2 is decreasing in n, which

indicates that
∂8ne (L)(ρ)

∂ne(L)
is concave in ρ . With the system load ρ

7
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increases, for a given ne(L),
∂8ne (L)(ρ)

∂ne(L)
is first increasing and then

decreasing. Furthermore,

∂28n(ρ)

∂n2
=

µ(ρ − 1)(logρ)2ρn+1(1+ ρn+1)

(1− ρn+1)3
< 0,

for all ρ > 0,

which means that
∂8ne (L)(ρ)

∂ne(L)
is decreasing in ne(L). Note that the

right-hand side of (3) is a constant, so customers’ joining thresh-

old must be first nondecreasing and then nonincreasing in 3.

The same property holds for the optimal entertainment capacity

L∗
1(3) (because these two quantities have a nondecreasing rela-

tionship). 2

Proof of Theorem 4.1. Similar to the proof of Theorem 3.1, we de-

fine

12(L) ≡ 52(L) − 52(L − 1)

= P (8ne(L) − 8ne(L−1))

− K (E[L ∧ N(L)] − E[L − 1∧ N(L − 1)]), (4)

which induces that

52(L) − 52(L − 1) ≤ 0

⇔ K ≥
P (8ne(L)(ρ) − 8ne(L−1)(ρ))

E[L ∧ N(L)] − E[L − 1∧ N(L − 1)]
≥ K̄ .

When K ≥ K̂ = maxρ,L

{
P (8ne (L)(ρ)−8ne (L−1)(ρ))

E[L∧N(L)]−E[L−1∧N(L−1)]

}
, 52(L) decreases

in L so that L∗
2(3) = 0. When K < K̂ , we consider the following

two cases:

To show that the optimal entertainment level L∗
2 = 0 when the

workload is large, note that for any give L ≥ 0, we have

lim
ρ→∞

52(L) = µP − K lim
ρ→∞

E[L ∧ N(L)]

= µP − K [L ∧ ne(L)] ≤ µP = lim
ρ→∞

50,

where the second equality holds by (i) the dominated conver-

gence theorem (which justifies the interchange of the limit and

the expectation) and (ii) the fact that the queue length distribu-

tion reduces to a point mass at ne(L) as ρ → ∞. Hence, when the

system load is sufficiently large, the optimal entertainment level L

must be 0.

To show that the optimal entertainment level L∗
2 = 0 when

the workload ρ is sufficiently small, we show that 52(L) is non-

increasing in L when ρ is sufficiently small, that is, 12(L) ≤ 0.

First, we show that N(L) is stochastically larger than N(L − 1), i.e.,

N(L) ≥s.t. N(L −1). This can be directly verified because (i) ne(L) ≥

ne(L − 1), and (ii) πn(L) =
ρn(1−ρ)

1−ρne (L)+1 ≤
ρn(1−ρ)

1−ρne (L−1)+1 = πn(L − 1) for

all n = 0,1, . . . ,ne(L − 1), so that P (N(L) > n) ≥ P (N(L − 1) > n).

Next, N(L) ≥st N(L − 1) implies L ∧ N(L) ≥s.t. (L − 1) ∧ N(L − 1),

which further induces that E[L ∧ N(L)] ≥ E[(L − 1) ∧ N(L − 1)].

Finally, the desired result follows because the first term in (4) ap-

proaches 0 when ρ is sufficiently small since

∂8ne(L)

∂ρ
= µ

1− (ne(L) + 1)ρne(L) + ne(L)ρ
ne(L)+1

(1 − ρne(L))2
,

which induces that
∂8ne (L)

∂ρ |ρ→0 =
∂8ne (L−1)

∂ρ |ρ→0 = µ.

Since we have proved that 51(L) is concave in ρ and 52(L) ≥

51(L), thus there exist two thresholds ρ
2
and ρ

2
satisfying ρ

2
≤

ρ̄2 , so that L∗
2(3) = 0 if ρ ∈ [0,ρ

2
) ∪ (ρ̄2,∞) and L∗

2(3) > 0 oth-

erwise. 2

Proof of Proposition 4.2. The throughput formula easily follows

from the steady-state distributions. Next, for a given L, it is evident

that π̂0(L) > π0(L) =
(1−ρ)

1−ρne (L)+1 for any pL < 1, which indicates

that 5̂(L) = µ(1 − π̂0(L))P − K L ≤ µ(1 − π0(L))P − K L = 51(L).

This means that the optimal profit under heterogeneous delay cost

is less than that under homogeneous cost. In addition, for a given

L, we must have 15̂(L) ≡ 5̂(L)−50 < 51(L)−50 ≡ 151(L). Re-

call from Theorem 3.1, that when the market size 3 is sufficiently

small or large, Type-1 WAE is ineffective with L∗
1 = 0, indicating

that 15̂(L) < 151(L) ≤ 0, which in turn implies that L̂∗ = 0 as

well for the case of heterogeneous cost when 3 is sufficiently

small or large. 2
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