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We study a dynamic pricing and capacity sizing problem in a GI/GI/1 queue, where the service provider’s

objective is to obtain the optimal service fee p and service capacity µ so as to maximize the cumulative

expected profit (the service revenue minus the staffing cost and delay penalty). Due to the complex nature

of the queueing dynamics, such a problem has no analytic solution so that previous research often resorts to

heavy-traffic analysis where both the arrival rate and service rate are sent to infinity. In this work we propose

an online learning framework designed for solving this problem which does not require the system’s scale to

increase. Our framework is dubbed Gradient-based Online Learning in Queue (GOLiQ). GOLiQ organizes

the time horizon into successive operational cycles and prescribes an efficient procedure to obtain improved

pricing and staffing policies in each cycle using data collected in previous cycles. Data here include the number

of customer arrivals, waiting times, and the server’s busy times. The ingenuity of this approach lies in its

online nature, which allows the service provider do better by interacting with the environment. Effectiveness

of GOLiQ is substantiated by (i) theoretical results including the algorithm convergence and regret analysis

(with a logarithmic regret bound), and (ii) engineering confirmation via simulation experiments of a variety

of representative GI/GI/1 queues.
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1. Introduction

1.1. Problem Statement and Methodology

We study a service queueing model where the service provider manages congestion and

revenue by dynamically adjusting the price and service capacity. Specifically, we consider

a GI/GI/1 queue, in which the demand for service is λ(p) per unit of time when each

customer is charged by a service fee p; the cost for providing service capacity µ is c(µ);

and a holding cost h0 incurs per job per unit of time. By choosing the appropriate service

fee p and capacity µ, the service provider aims to maximize the net profit, which is the

service fee minus the staffing cost and penalty of congestion, i.e.,

max
µ,p
P(µ,p)≡ pλ(p)− c(µ)−h0E[Q∞(µ,p)], (1)

where Q∞(µ,p) is the steady-state queue length under service rate µ and price p.

Problems in this framework have a long history, see for example Kumar and Randhawa

(2010), Lee and Ward (2014), Lee and Ward (2019), Maglaras and Zeevi (2003), Nair

et al. (2016), Kim and Randhawa (2018) and the references therein. Due to the complex

nature of the queueing dynamics, exact analysis is challenging and often unavailable (com-

putation of the optimal dynamic pricing and staffing rules is not straightforward even for

the Markovian M/M/1 queue (Ata and Shneorson 2006)). Therefore, researchers resort

to heavy-traffic analysis to approximately obtain performance evaluation and optimiza-

tion results. Commonly adopted heavy-traffic regimes require sending the arrival rate and

service capacity (service rate or number of servers) to ∞. Although heavy-traffic analy-

sis provides satisfactory results for large-scale queueing systems, approximation formulas

based on heavy-traffic limits often become inaccurate as the system scale decreases.

In this paper we propose an online learning framework designed for solving Problem

(1). According to our online learning algorithm, the GI/GI/1 queue will be operated in

successive cycles, where in each cycle the service provider’s decisions on the service fee

p and service capacity µ, deemed the best by far, are obtained using the system’s data

collected in previous operational cycles. Data hereby include (i) the number of customers

who join for service, (ii) customers’ waiting times, and (iii) the server’s busy time, all of

which are easy to collect. Newly generated data, which represent the response from the

(random and complex) environment to the present operational decisions, will be used to
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obtain improved pricing and staffing policies in the next cycle. In this way the service

provider can dynamically interact with the environment so that the operational decisions

can evolve and eventually approach the optimal solution.

At the beginning of each cycle k, the service provider’s decisions (pk, µk) will be computed

and enforced throughout the cycle. At the heart of our procedure for computing (pk, µk) is

to obtain a sufficiently accurate estimator Hk−1 for the gradient of the objective function of

(1), using past experience. Specifically, our online algorithm will update (pk, µk) according

to

(µk, pk)← (µk−1, pk−1)+ ηk−1Hk−1,

where ηk is the updating step size for cycle k. We call this algorithm Gradient-based Online

Learning in Queue (GOLiQ).

Besides showing that, under our online learning scheme, the decisions in cycle k, (µk, pk)

will converge to the optimal solutions (µ∗, p∗) as k increases, we quantify the effectiveness

of GOLiQ by computing the regret - the cumulative loss of profit due to the suboptimality

of (µk, pk), namely, the maximum profit under the (unknown) optimal strategy minus the

expected profit earned under the online algorithm over time. When GOLiQ’s hyperparam-

eters are chosen optimally, we show that our regret bound is logarithmic so that the service

provider, with any initial pricing and staffing policy (µ0, p0), will quickly learn the optimal

solutions without losing much profit in the learning process.

1.2. Advantages, Challenges and Contributions

In what follows, we first discusses the general advantages of the online learning approach

by contrasting with heavy-traffic methods; we next explain the key challenges we face in

the development of online learning algorithms for queueing systems.

1.2.1. Online learning vs. heavy-traffic method. First, heavy-traffic solutions are

derived from approximating models which arise as the system scale approaches infinity, so

the fidelity of the solutions is sensitive to the system scale. Unlike heavy-traffic methods,

online learning approaches do not require any asymptotic scaling, so they can treat service

systems at any scale (small or large). Second, heavy-traffic approaches usually require the

knowledge of certain distributional information apriori (e.g., moments and distribution

functions of service times), which serve as critical input parameters for the heavy-traffic
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models. On the other hand, online learning methods require information of this kind to

a lesser extent. Although certain distribution information can help fine-tune parameters

of online algorithms, it is less crucial to algorithm design and implementation. So in this

sense, the dependence on the distributional information is weaker than that of heavy-

traffic analysis. Last, online learning is advantageous when the underlining problem focuses

on performance optimization in the long run. Heavy-traffic analysis gives approximate

solutions that are static, and in a longer time frame, the performance discrepancy (relative

to the true optimal reward) should grow linearly as time increases. But online learning is a

dynamic evolution, and its data-driven nature enables it to constantly produce improved

solutions which will eventually reach optimality. In addition, heavy-traffic solutions require

the establishment of heavy-traffic limit theorems and careful analysis of the dynamics of

the limit processes (e.g., fluid and diffusion). Both steps can be quite sophisticated in

general. See Remarks 11 and EC.1 for more detailed discussions; also see Section 6.3 for

numerical evidence.

1.2.2. Challenges of online learning in queueing systems. Online learning in

queues is by no means an easy extension of online learning in other domains; its theoretical

development has to account for the unique features in queueing systems. A crucial step is

to develop effective ways to control the nonstationary error that arises at the beginning

of every cycle due to the policy update. Towards this, we develop a new regret analysis

framework for the transient queueing performance that not only helps establish desired

regret bounds for the specific online GI/GI/1 algorithm, but may also be used to develop

online learning method for other queueing models (see Section 4). Another challenge we

have to address here is to devise a convenient gradient estimator for the online learning

algorithm (essentially, an estimator for the gradient of E[Q∞(µ,p)]). The estimator should

have a negligible bias to warrant a quick convergence of the algorithm, and at the same

time, its computation (using previous data) should be sufficiently straightforward to ensure

the ease of implementation (The detailed gradient estimator of GOLiQ for the GI/GI/1

system is given in Section 5).

1.2.3. Main Contributions We summarize our contributions below.

• To the best of our knowledge, the present work is the first to develop an online learning

framework for joint pricing and staffing in a queueing systemwith logarithmic regret
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bound in the total number of customers served (Theorem 3). Due to the complex

nature of queueing systems, previous research often resorts to asymptotic heavy-traffic

analysis to approximately solve for desired operational decisions. The ingenuity of

our online learning method lies in the ability to obtain the optimal solutions without

needing the system scale (e.g., arrival rate and service rate) to grow large. The other

appeal of our method is its robustness, especially in its weaker dependence on the

distributions of service and arrival times.

• A critical step in the regret analysis is the treatment of the transient system dynamics,

because when improved operational decisions are obtained and implemented at the

beginning of a new period, the queueing performance will shift away from previously

established steady-state level. Towards this, we develop a new way to treat and bound

the transient queueing performance in the regret analysis of our online learning algo-

rithm (Theorem 1). Bounding the transient error also guarantees convergence of the

SGD iteration (Theorem 2). Comparing to previous literature (e.g., the regret bound

is O(T 2/3) in Huh et al. (2009)), our analysis of the regret due to nonstationarity

gives a much tighter logarithmic bound. In addition, the regret analysis in the present

paper may be extended to other queueing systems which share similar properties to

GI/GI/1.

• Supplementing the theoretical results of our regret bound, we evaluate the practical

effectiveness of our method by conducting comprehensive numerical experiments. Our

simulations draw the following two main conclusions. First, our method is robust in

several dimensions: (i) GOLiQ exhibits convincing performance for GI/GI/1 queues

having representative arrival and service distributions; (ii) GOLiQ remains effective

even when certain theoretical assumptions are relaxed. Furthermore, in order to clearly

highlight the advantages of our online learning approach relative to the previous results

of heavy-traffic limits, we provide a careful performance comparison of these two meth-

ods. We show that GOLiQ is more effective in any one of the following three cases: the

system scale is not too large, staffing cost is high, or service times are more variable.

1.3. Organization of the paper

In Section 2, we review the related literature. In Section 3, we introduce the model assump-

tions and provide an outline of our online learning algorithm. In Section 4, we conduct the
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regret analysis for GOLiQ by separately treating the regret of nonstationarity - the part

of regret arising from the transient system dynamics, and the regret of suboptimality - the

part originating from the errors due to suboptimal pricing and staffing decisions. In Section

5, we give the detailed description of GOLiQ and establish a logarithmic regret bound

by appropriately selecting our algorithm parameters. In Section 6 we conduct numerical

experiments to confirm the effectiveness and robustness of GOLiQ. We conclude in Sec-

tion 7. In the e-companion, we give all technical proofs and provide additional numerical

examples.

2. Related Literature

The present paper is related to the following three streams of literature.

Pricing and capacity sizing in queues. There is a rich literature on pricing and capac-

ity sizing in service systems under different settings. Maglaras and Zeevi (2003) studies

pricing and capacity sizing problem in a processor sharing queue motivated by internet

applications; Kumar and Randhawa (2010) considers a single-server system with nonlinear

delay costs; Nair et al. (2016) studies M/M/1 and M/M/k systems with network effect

among customers; Kim and Randhawa (2018) considers a dynamic pricing problem in a

single-server system. The specific problem (1) we consider here is most closely related to

Lee and Ward (2014), i.e., joint pricing and capacity sizing for the GI/GI/1 queue. Later,

the authors extend their results to the GI/GI/1+G model with customer abandonment in

Lee and Ward (2019). As there is usually no closed-form solution for the optimal strategy

or equilibrium, asymptotic analysis is adopted under large-market assumptions. In detail,

their analysis is rooted in a deterministic static planning problem which requires both the

service capacity and the demand rate to scale to infinity. Most of the papers conclude that

heavy-traffic regime is economically optimal. (There are some exceptions where heavy-

traffic regime is not optimal, for example, Kumar and Randhawa (2010) shows that agent

is forced to decrease its utilization if the delay cost is concave.) Our algorithm is moti-

vated by the pricing and capacity sizing problem for service systems, however, as explained

previously, our methodology is very different from the asymptotic analysis used in these

papers.
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Reinforcement learning for queueing systems. Our paper is also related to a small but

growing literature on reinforcement learning (RL) for queueing systems. Dai and Gluzman

(2021) studies an actor-critic algorithm for queueing networks. Liu et al. (2019) and Shah

et al. (2020) develop RL techniques to treat the unboundedness of the state space of queue-

ing systems. Jia et al. (2021) studies a price-based revenue management problem in an

M/M/c queue with a discrete price space; their methodology draws from the multi-armed

bandit framework (with each price treated as an “arm”). Krishnasamy et al. (2021) devel-

ops bandit methods for scheduling problem in a multi-server queue with unknown service

rates. Our work draws distinction from the above-mentioned literature in two dimensions.

First, we are the first to develop an online learning method for joint pricing and capacity

sizing in queue. In addition, our method applies to settings of continuous decision variables.

Comparing to the more general RL literature, our algorithm design and regret analysis take

advantage of the specific queueing system structure so as to establish tight regret bounds

and more accurate control of the convergence rate. In some sense, the algorithm developed

in the present paper may be viewed as a version of the policy gradient method, a special

class of RL methods (Sutton and Barto 2018), see Remark 2 for detailed discussions.

Stochastic gradient decent algorithms. In general, our algorithm falls into the broad class

of stochastic gradient descent (SGD) methods. There are some early papers on SGD algo-

rithms for steady-state performance of queues (see Fu (1990), Chong and Ramadge (1993),

L’Ecuyer et al. (1994), L’Ecuyer and Glynn (1994) and the references therein). In par-

ticular, these papers have established convergence results of SGD algorithms for capacity

sizing problems with a variety of gradient estimating designs. In this paper, we consider

a more general setting in which the price is also optimized jointly with the service capac-

ity. Besides, in order to establish theoretical bounds for the regret, we conduct a careful

analysis on the convergence rate of the algorithm and provide an explicit guidance for the

optimal choice of algorithm parameters, which is not discussed in this early literature. Our

algorithm design and analysis are also related to the online learning methods in recent

inventory management literature (Burnetas and Smith 2000, Huh et al. 2009, Huh and

Rusmevichientong 2013, Zhang et al. 2020, Yuan et al. 2021). Among these papers, our

work is perhaps most closely related to Huh et al. (2009) where the authors develop an

SGD based learning method for an inventory model with a bounded replenishment lead

time. Still, due to the unique natures of queueing models, we develop a new regret analysis

framework as we shall explain with details in Section 1.2.3.
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3. Problem Setting and Algorithm Outline

In Section 3.1 we describe the queueing model and technical assumptions. In Section 3.2,

we provide a general outline of GOLiQ. Finally, in Section 3.3 we conduct preliminary

analysis of the queueing performance under GOLiQ.

3.1. Model and Assumptions

We study a GI/GI/1 queueing system having customer arrivals according to a renewal

process with generally distributed interarrival times (the first GI), independent and iden-

tically distributed (i.i.d.) service times following a general distribution (the second GI),

and a single server that provides service under the first-in-first-out (FIFO) discipline. Each

customer upon joining the queue is charged by the service provider a fee p > 0. The demand

arrival rate (per time unit) depends on the service fee p and is denoted as λ(p). To maintain

a service rate µ, the service provider continuously incurs a staffing cost at a rate c(µ) per

time unit.

For µ∈ [µ, µ̄] and p∈ [p, p̄], the service provider’s goal is to determine the optimal service

fee p∗ and service capacity µ∗ with the objective of maximizing the steady-state expected

profit (1), or equivalently minimizing the objective function f(µ,p) as follows

min
(µ,p)∈B

f(µ,p)≡ h0E[Q∞(µ,p)] + c(µ)− pλ(p), B ≡ [µ, µ̄]× [p, p̄]. (2)

We shall impose the following assumptions on the above service system throughout the

paper.

Assumption 1. (Demand rate, staffing cost, and uniform stability)

(a) The arrival rate λ(p) is continuously differentiable and non-increasing in p.

(b) The staffing cost c(µ) is continuously differentiable and non-decreasing in µ.

(c) The lower bounds p and µ satisfy that λ(p)<µ so that the system is uniformly stable

for all feasible choices of the pair (µ,p).

Part (c) of Assumption 1 is commonly used in the literature of SGD methods for queueing

models to ensure that the steady-state mean waiting time E[W∞(µ,p)] is differentiable

with respect to model parameters (see Chong and Ramadge (1993), Fu (1990), L’Ecuyer

et al. (1994), L’Ecuyer and Glynn (1994), also see Theorem 3.2 of Glasserman (1992)). In

the our numerical experiments (see Section EC.4.1), we show that our online algorithm

remains effective when this assumption is relaxed.
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We do not require full knowledge of service and inter-arrival time distributions. But in

order to develop explicit bounds for the part of the regret due to the nonstationarity of

the queueing processes, we require both distributions to be light-tailed. Specifically, since

the actual service and interarrival times are subject to our pricing and staffing decisions,

we model the interarrival and service times by two scaled random sequences {Un/λ(p)}

and {Vn/µ}, where U1,U2, . . . and V1, V2, . . . are two independent i.i.d. sequences of random

variables having unit means, i.e., E[Un] = E[Vn] = 1. We make the following assumptions

on Un and Vn.

Assumption 2. (Light-tailed service and interarrival times)

There exists a sufficiently small constant η > 0 such that the moment-generating functions

E[exp(ηVn)]<∞ and E[exp(ηUn)]<∞.

In addition, there exist constants 0< θ < η/2µ̄, 0 < a < (µ− λ(p))/(µ+ λ(p)) and γ > 0

such that

ϕU(−θ)<−(1− a)θ− γ and ϕV (θ)< (1+ a)θ− γ, (3)

where ϕV (θ)≡ logE[exp(θVn)] and ϕU(θ)≡ logE[exp(θUn)] are the cummulant generating

functions of V and U .

Note that ϕ′
U(0) = ϕ′

V (0) = 1 as E[U ] = E[V ] = 1. Suppose ϕU and ϕV are smooth around

0, then we have ϕU(−θ) = −θ + o(θ) and ϕV (θ) = θ + o(θ) by Taylor’s expansion. This

implies that, for any a > 0, we can make θ small enough, such that ϕU(−θ)<−(1− a)θ

and ϕV (θ) < (1 + a)θ. To obtain the bound in (3), we can simply take γ = 1
2
min(−(1−

a)θ− ϕU(−θ), (1 + a)θ− ϕV (θ))> 0. Hence, a sufficient condition that warrants (3) is to

require that ϕU and ϕV be smooth around 0, which is true for many distributions of U

and V considered in common queueing models. Assumption 2 will be used in our proofs

to build an explicit bound for the regret of nonstationarity.

Finally, in order to warrant the convergence of our online learning algorithm, we require

a convex structure for the problem in (2), which is common in the SGD literature; see

Broadie et al. (2011), Kushner and Yin (2003) and the references therein.

Let x∗ ≡ (µ∗, p∗) and x≡ (µ,p). Let ∇f(x) denote the gradient of a function f(x) and

∥ · ∥ denote the Euclidean norm.
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Assumption 3. (Convexity and smoothness)

There exist finite positive constants K0 ≤ 1 and K1 >K0 such that for all x∈B,

(a) (x−x∗)T∇f(x)≥K0∥x−x∗∥2;

(b) ∥∇f(x)∥ ≤K1∥x−x∗∥.

Remark 1. Our simulation experiments show that our algorithm works effectively for

some representative GI/GI/1 queues with conditions in Assumption 3 relaxed; see Section

6 and Section EC.4 in the e-Companion. In addition, we later provide some sufficient

conditions for Assumption 3 in the special case of M/GI/1 queues in Section EC.5.

3.2. Outline of GOLiQ

In general, an SGD algorithm for a minimization problem minx f(x) over a compact set B

relies on updating the decision variable via the recursion

xk+1 =ΠB(xk− ηkHk), k≥ 1.

where ηk is the step size, Hk is a random estimator for ∇f(xk), xk is the decision variable

by step k, and the projection operator ΠB restricts the updated decision in B. For problem

(2), we let xk ≡ (µk, pk) represent the service capacity and price at step k, We define

Bk ≡E[∥E[Hk−∇f(xk)|Fk]∥2]1/2 and Vk ≡E[∥Hk∥2], (4)

where Fk is the σ-algebra including all events in the first k− 1 iterations. Intuitively, Bk

measures the bias of the gradient estimator Hk and Vk measures its variability. As we

shall see later, Bk and Vk play important roles in designing the algorithm and establishing

desired regret bounds.

The standard SGD algorithm iterates in discrete step k. In our setting, however, the

queueing system and objective function f(µ,p) are defined in continuous time (in partic-

ular, Q∞(µ,p) is the steady-state queue length observed in continuous time). To facilitate

the regret analysis, we first transform the objective function into an expression of cus-

tomer waiting times that are observed in discrete time. By Little’s law, we can rewrite the

objective function f(µ,p) as, for all (µ,p)∈B,

f(µ,p) = h0λ(p)

(
E[W∞(µ,p)] +

1

µ

)
+ c(µ)− pλ(p), (5)
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whereW∞(µ,p) is the steady-state waiting time under (µ,p). In each cycle k, our algorithm

adopts the average of Dk observed customer waiting times to estimate E[W∞(µ,p)], where

Dk denotes the number of customers that enter service in cycle k (we refer to Dk as the

cycle length or sample size of cycle k). But any finite Dk will introduce a bias to our

gradient estimateHk. To mitigate the bias due to the transient performance of the queueing

process, we shall let the cycle length Dk be increasing in k (in this way the transient bias

will vanish eventually). We give the outline of the algorithm below.

Outline of GOLiQ:

0. Input: {Dk} and {ηk} for k= 1,2, ..,L, initial policy x1 = (µ1, p1).

For k= 1,2, ...,L,

1. In the kth cycle, operate the GI/GI/1 queue under policy xk = (µk, pk) until Dk

customers enter service.

2. Collect and use the data (e.g., customer delays) to build an estimator Hk for

∇f(µk, pk).

3. Update xk+1 =ΠB(xk− ηkHk).

Remark 2 (Exploration vs. exploitation). The online nature of this algorithm

makes it possible to obtain improved decisions by learning from past experience, which is

in the spirit of the essential ideas of reinforcement learning where an agent (hereby the

service provider) aims to tradeoff between exploration (Step 1) and exploitation (Steps 2

and 3). Effectiveness of the algorithms lies in properly choosing the algorithm parameters

and devising an efficient gradient estimator Hk. For example, if Dk is too small, we are

unable to generate sufficient data (we do not have much to exploit in order for devising

a better policy); if Dk is too large, we incur a higher profit loss due to suboptimality of

the policy in use (we do not explore enough for seeking potentially better policies). In

particular, GOLiQ may be viewed as a special case of the policy gradient (PG) algorithm

(the general idea of PG is to estimate the policy parameters using the gradient of the value

function learned via continuous interaction with the system, see for example Sutton and

Barto (2018)). To put this into perspective, the policy in the present paper is specified by a

pair of parameters (µ,p), and in each iteration, we update the policy parameters using an

estimated policy gradient Hk learned from data of the queueing model. In the subsequent

sections, we give detailed regret analysis that can be used to establish optimal algorithm

parameters (Section 4) and develop an efficient gradient estimator (Section 5).
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3.3. System Dynamics under GOLiQ

We explain explicitly the dynamic of the queueing system under GOLiQ, with the system

starting empty. We first define notations for relevant performance functions. For k ≥ 1,

let Tk be the length of cycle k in the units of time, and let Dk be the total number of

customers who enter service in cycle k. For n= 1,2, ...,Dk, let W
k
n be the waiting time of

the nth customer that enters service in cycle k. We define W k
0 ≡W k−1

Dk−1
. We use the two

i.i.d. random sequences V k
n and Uk

n to construct the service and inter-arrival times in cycle

k, n= 1,2, ...,Dk. In particular, V k
n corresponds to the service time of the customer n− 1,

and Uk
n corresponds to the inter-arrival time between customers n− 1 and n in cycle k.

Let λk ≡ λ(pk). Last, we use Qk to denote the number of existing customers (those who

arrive in previous cycles) at the beginning of cycle in k, with Q1 = 0. We will have Qk ≥ 1

for k ≥ 2, as we shall explain soon, according to our updating procedure. The detailed

dynamics of the queueing system in cycle k is summarized as follows:

• Updating the control policy. In cycle k, we adopt the pricing and staffing policy

(pk, µk). The service time of customer n− 1 in cycle k is Sk
n = V k

n /µk for n= 1, ...,Dk.

Cycle k ends as soon as a total number of Dk (of which the value is to be determined

later) customers have entered service. So, customer Dk will receive service in cycle

k+1 (with service time Sk+1
1 ) and the queue leftover consists of at least one customer,

i.e., Qk+1 ≥ 1 for a new cycle k+ 1, which begins under a new policy (pk+1, µk+1) as

follows:

—Service rate. The service rate is updated to µk+1 immediately as the new cycle

begins, so that all existing customers will undergo service times with rate µk+1.

—Service fee. The price remains pk at the beginning of cycle k+1 and evolves to

pk+1 immediately after the first new customer arrives in the new cycle; we charge

this customer with pk (because its interarrival time is modulated by pk) and all

subsequent customers in cycle k+1 with pk+1.

• Leftovers from previous cycles. For k ≥ 2, at the beginning of cycle k, there are

Qk− 1 customers waiting in queue indexed by n from 1 to Qk− 1. The customer who

just enters service is indexed by 0. We update the price from pk−1 to pk right after

the first new customer (indexed by Qk) arrives in a new cycle. As a consequence, the

prices charged to customers 1,2, ...,Qk are not yet updated to pk. Denote by pkn and

λk
n ≡ λ(pkn) as the price and arrival rate for customer n in cycle k, respectively, for
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1≤ n≤Qk. The corresponding interarrival time is τ kn = Uk
n/λ

k
n. In case Qk−1 >Dk−1,

some queueing leftover are customers from earlier cycles. So here pkn ∈ {p1, p2, ..., pk−1}.
In addition, in case Qk >Dk, part of Qk will continue to remain in cycle k+1 and we

will have, for example, pk+1
1 = pkDk+1.

• New arrivals. We denote interarrival times for new customers in cycle k by τ kn =

Uk
n/λk for n = Qk + 1, ...,Dk if Dk ≥ Qk + 1. (As will soon become clear, the case

Dk ≤ Qk is a rare event with a negligible probability under appropriate algorithm

settings, see Remark 3.)

• Customer delay. Customers’ waiting times in cycle k are characterized by the recur-

sions

W k
n =


(
W k

n−1+
V k
n

µk
− Uk

n

λk
n

)+
for 1≤ n≤Qk ∧Dk;(

W k
n−1+

V k
n

µk
− Uk

n

λk

)+
for (Qk +1)∧ (Dk +1)≤ n≤Dk.

, W k
0 =W k−1

Dk−1
,

(6)

where x+ ≡max{x,0}.
• Server’s busy time. The age of the server’s busy time observed by customer n upon

arrival, which is the length of time the server has been busy since the last idleness, is

given by the recursions

Xk
n =


(
Xk

n−1+
Uk
n

λk
n

)
1{Wk

n>0} for 1≤ n≤Qk ∧Dk;(
Xk

n−1+
Uk
n

λk

)
1{Wk

n>0} for (Qk +1)∧ (Dk +1)≤ n≤Dk.
, Xk

0 =Xk−1
Dk−1

,

(7)

where the indicator 1A is 1 if A occurs and is 0 otherwise.

We provide explanations for (6) and (7). First, recursion (6) simply follows from Lindley’s

equation. Next, recursion (7) follows from the fact that, for customer n, if the queue is

empty upon its arrival, the observed busy time is simply 0 by definition; otherwise, the

server must have been busy since the arrival of the previous customer and therefore, the

observed busy time by customer n should extend that of customer n− 1 by an additional

inter-arrival time. As we shall see later, both the delay and busy time observed by customers

will be important ingredients (i.e., data) for building the gradient estimator of the online

learning algorithm.

Remark 3 (Clearance of the leftover Qk). As explained above, Qk is random and

unbounded, while in our algorithm design, the cycle length Dk is deterministic. So it is
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Figure 1 On the timing of the update of pk and µk under GOLiQ.

indeed possible the remaining queue content may not be all cleared in cycle k (i.e., Dk <

Qk). We will see later in the regret analysis that our choice ofDk leads to a small probability

of uncleared leftovers and thus the impact of the rare event {Dk <Qk} is negligible.

In Figure 1, we further illustrate how the service price and service rate are updated by

showing the ordering of all relative events as a new cycle begins. We emphasize that (i)

the service rate µk−1 is updated to µk immediately when a new cycle k begins, which is

triggered as soon as the last one of Dk−1 customers enters service; and (ii) the service price

pk−1 is updated to pk only after the first external arrival occurs in the new cycle k (we

honor our previous prices for all customers who arrive in the previous cycle).

We end this section by providing a uniform boundedness result for all relevant queueing

functions. This result below will be used in the next sections to establish desired regret

bounds. The proof follows from a stochastic ordering approach and is given in Section

EC.1.1.

Lemma 1. (Uniform boundedness of relevant queueing functions)

Under Assumptions 1 and 2, there exists a finite positive constant M > 0 such that for any
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sequences (µk, pk) ∈ B and Dk ≥ 1, we have, for all k ≥ 1, 1≤ n≤Dk and 1≤m≤ 4, and

η > 0 as defined in Assumption 2,

E[(W k
n )

m], E[(Xk
n)

m], E[(Qk)
m], E[exp(ηW k

n )] and E[exp(ηQk)]

are all bounded by M .

4. Regret Analysis

The online learning approach described in Section 3.2 is a data-driven method, it should

contunue to generate improved solutions that will eventually converge to the true optimal

solution as the server’s experience accumulates (by serving more and more customers).

The performance of GOLiQ is measured by the so-called regret, which can be interpreted

as the cost to pay, over the time or the number of samples, for the algorithm to learn the

optimal policy. In this section, we give a formal definition of the regret and conduct the

regret analysis for our online learning algorithm.

The expected net cost of the queueing system incurred in cycle k is

ρk =E

[
Qk∧Dk∑
n=1

(h0(W
k
n +Sk

n)− pkn)+
Dk∑

n=Qk+1

(h0(W
k
n +Sk

n)− pk)+ c(µk)Tk

]
, (8)

where the summation
∑Dk

n=Qk+1 · is 0 in case Dk <Qk +1. The total regret accumulated in

the first L cycles is

R(L)≡
L∑

k=1

Rk, where Rk ≡ ρk− f(µ∗, p∗)E[Tk] (9)

is regret in cycle k (the expected system cost in cycle k minus the optimal cost).

Remark 4. Following Huh et al. (2009) and Jia et al. (2021), our regret defined in (9)

is computed by accumulating the difference between the steady-state maximum profit

under (µ∗, p∗) and the expected profit earned under GOLiQ. However, one may find such

a definition to be somewhat too demanding; it appears to be more reasonable if we were

to benchmark with the nonstationary dynamics under (µ∗, p∗), rather than the steady-

state performance. Nevertheless, our numerical studies confirm that the nuance of the two

aforementioned regret definitions is negligible. See Section EC.4.5.
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Separation of regret. To treat the total regret defined in (9), we separate it into two

parts: regret of nonstationarity which quantifies the error due to the system’s transient

performance, and regret of suboptimality which accounts for the suboptimality error due

to the present policy. In detail, we write

Rk = (ρk−E[f(µk, pk)Tk])︸ ︷︷ ︸
≡R1,k

+E[Tk(f(µk, pk)− f(µ∗, p∗))]︸ ︷︷ ︸
≡R2,k

, (10)

so that

R(L) =
L∑

k=1

R1,k +
L∑

k=1

R2,k ≡R1(L)+R2(L). (11)

Intuitively, R1,k measures the performance error due to transient queueing dynamics (regret

of nonstationarity), while R2,k accounts for the suboptimality error of control parameters

(µk, pk) (regret of suboptimality).

In what follows, we will analyze the two terms R1(L) and R2(L) separately. To treat

R1(L), we develop in Section 4.1 a new framework to analyze the transient queueing

behavior using the coupling technique (Theorem 1). The development of the theoretical

bound for R2(L) is given in Section 4.2 (Theorem 2). Results in these sections provide

convenient conditions that facilitate the convergence and regret bound analysis of our

GOLiQ algorithm for GI/GI/1 queues (which is to be given in Section 5). The roadmap

of the theoretical analysis is depicted in Figure 2.

4.1. Regret of Nonstationarity

In this part, we analyze the transient queueing dynamics, base on which we develop a

theoretical upper bound for R1(L). As we shall see later in Section 5, this analysis is also

essential to bounding the bias Bk and variance Vk of the gradient estimators for GOLiQ.

A crude O(L) bound. Roughly speaking, since the parameters µ,p and functions λ(·),

c(·) are all bounded, the regret R1(L) is in the same order as the transient bias of the

waiting time process, i.e.,

R1(L)≈
L∑

k=1

O

(
Dk∑
n=1

(E[Wn(µk, pk)]−E[W∞(µk, pk)])

)
.

Here we use W∞(µ,p) to denote the steady-state waiting time of the GI/GI/1 queue

with parameter (µ,p)∈B. Under the uniform stability condition (Assumption 1), it is not
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Uniform Convergence
to stationary
(Lemma 2)

Smoothness of transient
distribution (Lemma 3)

Smoothness of stationary
distribution (Lemma 4)

General Framework

Regret of
nonstationary
(Theorem 1)

Regret of suboptimality
(Theorem 2)

Conditions for regret

bound

Design of gradient
estimator

(Lemma 5)

Parameter

Optimization

A logarithmic regret for
Algorithm 1
(Theorem 3)

Algorithm 1

Figure 2 Roadmap of regret analysis and algorithm design

difficult to show that there exist positive constants γ > 0 and K > 0, independent of k and

(µk, pk) such that ∣∣E[W k
n ]−E[W∞(µk, pk)]

∣∣≤ e−γnK.

Then, as a direct consequence, we have

Dk∑
n=1

(E[Wn(µk, pk)]−E[W∞(µk, pk)])≤
K

1− e−γ
⇒ R1(L) =O(L).

An analogue of the above O(L) bound is given by Huh et al. (2009) (Lemma 11) in an

inventory model.

An improved o(L) bound. In the rest of this subsection, we will conduct a more

delicate analysis on the transient performance of the queueing system, and our analysis

will render a (tighter) sub-linear bound R1(L) = o(L) (of which the exact order depends

on the concrete algorithm, as we shall see later).

Theorem 1. (Regret of nonstationarity) Suppose that Assumptions 1 and 2 hold. In

addition, assume that the following conditions are satisfied for some constant K2 > 0 and

0<α≤ 1:

(a) ⌈6 log(k)/min(γ, η)⌉ ≤Dk ≤K2k
2−α;

(b) E[∥xk−xk+1∥2]≤K2k
−2α,



Chen, Liu and Hong: Gradient-based online learning in queue
18 Article submitted to Operations Research; manuscript no. (Please, provide the mansucript number!)

where the constants η and γ are defined in Assumption 2. Then, there exists a positive

constant K > 0 such that

R1,k ≤K · k−α log(k), k≥ 2 and R1(L)≤K
L∑

k=1

k−α log(k), L≥ 2. (12)

Remark 5. As will become clear later in Section 5, we obtain a bound R1(L) =O(log(L)2)

for Algorithm 1 by validating Condition (b) in Theorem 1 with α = 1, which is much

tighter than the crude O(L) bound. This O(log(L)2) bound for R1(L) is critical to achieving

an overall logarithmic regret bound in the total number of served customers. An explicit

expression of constant K is given in (EC.3).

4.1.1. Roadmap of the proof of Theorem 1 Our point of departure in prov-

ing Theorem 1 is to decompose R1,k into three terms. We shall split each cycle into a

warm-up period consisting the first d̃k = ⌈5 log(k)/min(γ, η)⌉<Dk customers and the near-

stationary period consisting of all remaining customers, where γ, η > 0 are as defined in

Assumption 2. The three parts are: transient error in the near-stationary period (I1), tran-

sient error in the warm-up period (I2) and the remaining error (I3). The detailed separation

is given below

R1,k = ρk−E[f(µk, pk)Tk]

=E

[
Qk∧Dk∑
n=1

(h0(W
k
n +Sk

n)− pkn)+
Dk∑

n=Qk+1

(h0(W
k
n +Sk

n)− pk)+ c(µk)Tk− f(µk, pk)Tk

]

= h0E

 Dk∑
n=d̃k+1

(
W k

n −w(µk, pk)
)

︸ ︷︷ ︸
≡I1

+h0E

 d̃k∑
n=1

(
W k

n −w(µk, pk)
)

︸ ︷︷ ︸
≡I2

+E
[
(Dk−λkTk)(h0w(µk, pk)+

h0
µk

− pk)
]
+E

[
Qk∧Dk∑
n=1

(pk− pkn)

]
︸ ︷︷ ︸

≡I3

.

The term w(µ,p) ≡ E[W∞(µ,p)] is a function in (µ,p) and equals to the steady-state

expected waiting time under parameter (µ,p)∈B. To prove R1,k =O(k−α log(k)), it suffices

to show that Ii = O(k−α log(k)) for i = 1,2,3. Below we explain the main ideas of our

treatment to I1, I2 and I3:

• I1: We will first show that, after serving dk ≡ ⌈4 log(k)/min(γ, η)⌉ < d̃k customers,

with a sufficiently high probability, all Qk existing customers have left the system and
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Figure 3 Roadmap of the analysis of the regret of nonstationarity.

{W k
n : n= dk, ...,Dk} follows the dynamic of a GI/GI/1 queue with arrival rate λk and

service rate µk. Then, we show that W k
n , for n≥ dk, will converge exponentially fast to

the steady state (Lemma 2). Hence W k
n is close to W∞(µk, pk) for n≥ d̃k, warranting

a small transient error I1.

• I2: Note that the d̃k customers in the warm-up period include those leftovers from

previous periods, and their arrival rates λk
n are different from λk. To control the impact

of such difference between λk
n and λk, we first establish almost sure Lipschitz continuity

of waiting times (for queues having customer-heterogeneous arrival rates) with respect

to the arrival rate sequence and the initial state (Lemma 3). As a consequence, we

can prove that |E[W k
n − w(µk−1, pk−1)]| = O(k−α) taking advantage of the fact that

the initial state W k
0 =W k−1

Dk−1
is close to the steady-state W∞(µk−1, pk−1). Then, we

show that the steady-state distribution is smooth in the parameter (µ,p) (Lemma 4),

i.e., E[|w(µk−1, pk−1) − w(µk, pk)|] = O(E|µk − µk−1| + E|pk − pk−1|) = O(k−α), which

completes the analysis for I2.

• I3: The term I3 will be under control becauseW
k
Dk

is close to the steady-state (Lemma

2) and Qk is uniformly bounded (Lemma 1).

Also see in Figure 3 for a graphical illustration.

Following the above roadmap, we next give detailed analysis for Ii, i = 1,2,3 by

establishing three lemmas (Lemmas 2–4). We believe that these results are not only

essential to the transient analysis in the present paper, but may also be of independent
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interest for theoretic studies of other queueing models.

Bounding I1. We first establish the rate at which waiting times converge to their steady

state distributions. For two given sequences Vn and Un, we say two GI/GI/1 queues with

the same parameter (µ,p)∈B are synchronously coupled if their waiting timesW 1
n andW 2

n

satisfy

W i
n =

(
W i

n−1+
Vn

µ
− Un

λ(p)

)+

, for i= 1,2, and n≥ 1,

i.e., the two systems share the same sequences of service and interarrival times. The proof

of Lemma 2 is given in Section EC.1.

Lemma 2. (Exponential loss of memory of initial state) Suppose two GI/GI/1

queues with parameter (µ,p) ∈ B are synchronously coupled with initial waiting times W 1
0

and W 2
0 , respectively. Then, for the two positive constants γ and θ defined in Assumption

2 and any m≥ 1, we have, conditional on W 1
0 and W 2

0 ,

E
[
|W 1

n −W 2
n |m | W 1

0 ,W
2
0

]
≤ e−γn(2+ eµθW

1
0 + eµθW

2
0 )|W 1

0 −W 2
0 |m.

In order to bound I1, at the beginning of each cycle k, given (µk, pk), we couple W k
0

with W̄ k
0 that is independently drawn from the steady-state waiting time distribution

W∞(µk, pk). The sequence W̄ k
n is defined as

W̄ k
n =

(
W̄ k

n−1+
V k
n

µk

− U
k
n

λk

)+

, for all 1≤ n≤Dk.

Then, by definition, conditional on (µk, pk), E[W̄ k
n ] = w(µk, pk) for all 1 ≤ n ≤ Dk, and

therefore, ∣∣E[W k
n −w(µk, pk)]

∣∣≤E[|W k
n − W̄ k

n |].

As we will show in the proof of Corollary 1, {W k
n : n= dk +1, ...,Dk} is coupled with W̄ k

n

except on a set of negligible set, with dk ≡ ⌈4 log(k)/min(γ, η)⌉< d̃k. As a result, we can

use Lemma 2 to construct a bound on E[|W k
n − W̄ k

n |] for n= d̃k +1, ...,Dk.

Corollary 1 Under the conditions of Theorem 1, there exists a constant A≥ 1 independent

of k and (µk, pk), such that for all k≥ 1 and n≥ dk ≡ ⌈4 log(k+1)/min(γ, η)⌉,

E[|W k
n − W̄ k

n |]≤ e−γ(n−dk)A+2Mk−2. (13)

As a direct consequence, we have I1 =O(k−α).
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Bounding I2. We first show that the waiting times Wn of a queueing model having

customer-heterogeneous arrival rates are Lipschitz continuous with respect to the rates

(µn, λn) and the initial state almost surely.

Lemma 3. (Lipschitz continuity) Consider two waiting time sequences Wn and W̃n for

n ≥ 1 with initial values W0 and W̃0 respectively. Let (µn, λn) and (µ̃n, λ̃n) ∈ B be the

corresponding sequences of service and arrival rates, respectively, i.e.,

Wn =

(
Wn−1+

Vn

µn

− Un

λn

)+

and W̃n =

(
W̃n−1+

Vn

µ̃n

− Un

λ̃n

)+

, for n≥ 1.

Suppose there exist two constants cµ, cλ > 0 such that

|µn− µ̃n| ≤ cµ and |λn− λ̃n| ≤ cλ, for all n≥ 1.

Then we have, for all n≥ 1,

|Wn− W̃n| ≤ |W0− W̃0|+
(
cµ
µ

+
cλ
λ

)
max(Xn, X̃n)+

cµ
µ
max(Wn, W̃n),

where Xn and X̃n are the corresponding observed busy periods. In particular, Xn and X̃n

satisfy the recursion (7) defined in Section 3.3 with any given initial values of X0 ≥ 0 and

X̃0 ≥ 0.

As discussed above, controlling I2 also involves bounding the difference between the

mean steady-state waiting times in two consecutive cycles. Hence, we next establish a

uniform high-order smoothness result for the steady-state waiting times with respect to

the model parameter (µ,p).

Lemma 4. (Smoothness in µ and p) Suppose (µi, pi)∈B for i= 1,2. Let W∞(µi, pi) be

the steady-state waiting time of the GI/GI/1 queue under parameter (µi, pi), respectively.

Then, the steady-state waiting times (W∞(µ1, p1),W∞(µ2, p2)) can be coupled such that,

there exists a constant B > 0 independent of (µi, pi) satisfying that, for all 1≤m≤ 4,

E[|W∞(µ1, p1)−W∞(µ2, p2)|m]≤B (|µ1−µ2|m + |p1− p2|m) ,

where a closed-form expression of constant B is given in (EC.2).
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We adopt a “coupling from the past” (CFTP) approach in the proof of Lemma 4 (see

Section EC.1). Roughly speaking, CFTP is a synchronous coupling starting from infinite

past. In the proof of Lemma 4, we shall explicitly explain how to construct the CFTP.

Now we are ready to analyze I2. Essentially, we shall compare E[W k
n ] in the warm-

up period with w(µk−1, pk−1) = E[W∞(µk−1, pk−1)]. For each cycle k, recall that we have

already coupled W k−1
n with a stationary sequence W̄ k−1

n in cycle k−1, we then extend the

sequence W̄ k−1
n to cycle k in the sense that

W̄ k−1
Dk−1+n =

(
W̄ k−1

Dk−1+n−1+
V k
n

µk−1

− Uk
n

λk−1

)+

, for n= 1,2, ...,Dk.

Then, conditional on (µk−1, pk−1), E[W̄ k−1
Dk−1+n] =w(µk−1, pk−1). So we have∣∣E[W k

n −w(µk, pk)]
∣∣≤ ∣∣E[W k

n −w(µk−1, pk−1)]
∣∣+E [|w(µk−1, pk−1)−w(µk, pk)|]

≤E
[
|W k

n − W̄ k−1
Dk−1+n|

]
+E [|w(µk−1, pk−1)−w(µk, pk)|] .

Bounding the first term by Lemma 3 and the second term by Lemma 4 yields the following

bound on I2.

Corollary 2 Under the conditions of Theorem 1, for all k≥ 2 and 1≤ n≤Dk, we have

E[|W k
n −w(µk, pk)|] =O(k−α). (14)

As a direct consequence, |I2|=O(k−α log(k)).

Bounding I3. We complete our analysis on the regret of nonstationarity by showing

that I3 = O(k−α). The proof of Corollary 3 below basically follows from Lemma 1 and

Lemma 2 with some similar argument as used in the proof of Corollary 2.

Corollary 3 Under the conditions of Theorem 1, |I3|=O(k−α).

Finishing the Proof of Theorem 1. Then, Theorem 1 follows immediately from

Corollaries 1 to 3. A complete proof of Theorem 1, including the proofs of Corollaries

1 to 3, is given in Section EC.1.5 of e-companion. In particular, we provide an explicit

expression of the constant K in terms of the model parameters in (EC.3).

Remark 6. We advocate that Theorem 1 may apply to other queueing models (its scope

is beyond the GI/GI/1 queue), as long as one can verify three conditions for the designated

model: (i) uniform boundedness for the rate of convergence to the steady state, i.e., Lemma

2, (ii) path-wise Liptschize continuity, i.e., Lemma 3, and (iii) smoothness of the stationary

distributions in the control variables, i.e., Lemma 4.
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4.2. Regret of Suboptimality

To bound the regret of suboptimality R2(L), we need to control the rate at which xk

converges to x∗. This depends largely on the effectiveness of the estimatorHk for∇f(xk). In
our algorithm, such effectiveness is measured by the bias Bk and variance Vk. The following
result shows that, if Bk and Vk can be appropriately bounded, then, xk will converge to x∗

rapidly and hence R2(L) can be properly bounded.

Theorem 2. (Regret of suboptimality) Suppose Assumptions 3 holds. If there exists a

constant K3 ≥ 1 such that the following conditions hold for all k,

(a)
(
1+ 1

k

)β ≤ 1+ K0

2
ηk,

(b) Bk ≤ K0

8
k−β,

(c) ηkVk ≤K3k
−β,

where 0 < β ≤ 1 is a constant, and ηk → 0 is the step size, then, there exists a constant

C ≥ 8K3/K0 with an explicit expression given in (EC.5), such that for all k≥ 1,

E[∥xk−x∗∥2]≤Ck−β, (15)

and as a consequence,

R2(L)≤CK1

L∑
k=1

(
Dk

λ(p̄)
+M

)
k−β =O

(
L∑

k=1

Dkk
−β

)
. (16)

Remark 7 (Selecting the “optimal” Dk). The above expression (16) indicates a

trade-off in the selection of the parameter Dk. On the one hand, increasing the sample

size Dk reduces the bias Bk for the gradient estimator, and hence leads to a smaller value

of k−β. On the other hand, a larger Dk makes the system operate under a sub-optimal

decision for a longer time. To this end, one may choose an optimal order (in k) for Dk by

minimizing the order of the regret as in (16).

Our proof of Theorem 2 follows an inductive approach as used in Broadie et al. (2011).

Let bk ≡E[∥xk−x∗∥2]. According to the SGD iteration xk+1 =ΠB(xk− ηkHk), we have

E[∥xk+1−x∗∥2|xk]≤E[∥xk−ηkHk−x∗∥2|xk] = ∥xk−x∗∥2−2ηkE[Hk|xk](xk−x∗)+η2kE[∥Hk∥2|xk].

Then, by Assumption 3 and the definition of Bk,Vk by (4), we derive the following recursive

inequality for bk:

bk+1 ≤ (1−K0ηk + ηkBk)bk + ηkBk + η2kVk, k≥ 1,
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and we prove (15) by induction. The full proof is given in Section EC.1.7 of the e-

companion.

In Section 5, we apply Theorem 2 to treat our online learning algorithm (Algorithm

1) by verifying that Conditions (a)–(c) are satisfied. Because in Theorem 2, Conditions

(a)–(c) are stated explicitly in terms of the step size ηk, bias Bk and variance Vk of the

gradient estimator, these conditions may serve as useful building blocks for the design and

analysis of online learning algorithms in other queueing models as well.

5. GOLiQ for the GI/GI/1 Queue

In this section, we provide a concrete GOLiQ algorithm that solves the optimal pricing

and capacity sizing problem (1) for a GI/GI/1 queueing system. We show that the gra-

dient ∇f(µ,p) can be estimated “directly” from past experience (i.e., data of delay and

busy times generated under the present policy). Applying the regret analysis developed in

Section 4, we provide a theoretic upper bound for the overall regret in Theorem 3.

5.1. A Gradient Estimator

Following the algorithm framework outlined in Section 3.2, we now develop a detailed

gradient estimator Hk. Regarding the objective function in (5), it suffices to construct

estimators for the partial derivatives

∂

∂µ
E[W∞(p,µ)] and

∂

∂p
E[W∞(p,µ)]. (17)

Following the infinitesimal perturbation analysis (IPA) approach (see, for example, Glasser-

man (1992)), we next show that the partial derivatives in (17) can be expressed in terms

of the steady-state distributions W∞(p,µ) and X∞(p,µ) of the waiting time process Wn

and observed busy period process Xn, of which the dynamics are characterized by (6)–(7).

Lemma 5. Suppose Assumptions 1 and 2 holds. Then, for any (µ,p)∈B, E[W∞(µ,p)] are

differentiable in µ and p. Besides,

∂

∂p
f(µ,p) =−λ(p)− pλ′(p)+h0λ

′(p)

(
E[W∞(µ,p)] +E[X∞(µ,p)] +

1

µ

)
∂

∂µ
f(µ,p) = c′(µ)−h0

λ(p)

µ

(
E[W∞(µ,p)] +E[X∞(µ,p)] +

1

µ

) (18)
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Proof of Lemma 5 To prove Equation (18), it suffices to work with the partial deriva-

tives of the steady-state expectation E[W∞(µ,p)]. We follow the IPA analysis in Glasserman

(1992) and Chen (2014).

Given (µ,p), we define r(p) = 1/λ(p) and rewrite the recursion (6) as

Wn(µ,p) =

(
Wn−1(µ,p)+

Vn

µ
− r(p)Un

)+

.

Define the derivative process Zn ≡ ∂
∂r
Wn(µ,p), then by chain rule, we have

Zn =
∂

∂r
Wn(µ,p) =

∂

∂r

(
Wn−1(µ,p)+

Vn

µ
− rUn

)+

=


∂
∂r
Wn−1−Un =Zn−1−Un if Wn > 0;

0 if Wn = 0.

and obtain a recursion Zn = (Zn−1−Un)1{Wn>0}. Let Z̃n ≡−Zn/λ(p). Then, it is straight-

forward to see that Z̃n satisfies the recursion given in (7) as the observed busy period Xn,

i.e.,

Z̃n =

(
Z̃n−1+

Un

λ(p)

)
1(Wn > 0).

Under the assumption that the queueing system is stable, the limit Z̃∞ should be equal in

distribution to X∞. Therefore, we formally derive

∂

∂r
E[W∞(µ,p)] =E[Z∞] =−λ(p)E[Z̃∞] =−λ(p)E[X∞(µ,p)]. (19)

The above heuristics can be made rigorous by verifying exchanges of limits using the results

in Glasserman (1992), and we refer the readers to Section EC.1.9 for detailed explanations.

Using (19), we can derive the partial derivative of the steady-state waiting time with

respect to price p as below:

∂

∂p
E[W∞(µ,p)] =

∂

∂r
E[W∞(µ,p)]

∂r(p)

∂p
=−λ(p)E[X∞(µ,p)] · − λ

′(p)

λ(p)2
=E[X∞(µ,p)]

λ′(p)

λ(p)
.

Now we turn to ∂
∂µ
E[W∞(µ,p)]. Let Ẑn ≡ µWn(µ,p), it is easy to check that Ẑn =(

Ẑn−1+Vn−µUn/λ(p)
)+

. Then, following steps similar to those for (19), we have

∂

∂µ
E[Ẑ∞(µ,p)] =−E[X∞(µ,p)].

Therefore,

−E[X∞(µ,p)] =
∂

∂µ
E[Ẑ∞(µ,p)] =

∂

∂µ
E[µW∞(µ,p)] = µ

∂

∂µ
E[W∞(µ,p)] +E[W∞(µ,p)],

and hence, ∂E[W∞(µ,p)]/∂µ=−(E[X∞(µ,p)] +E[W∞(µ,p)])/µ.

Finally, plugging the expressions of the two partial derivatives into ∇f yields (18). □



Chen, Liu and Hong: Gradient-based online learning in queue
26 Article submitted to Operations Research; manuscript no. (Please, provide the mansucript number!)

5.2. GOLiQ: A G/G/1 Version

Utilizing results in Lemma 5, we are ready to design a G/G/1 version of the GOLiQ algo-

rithm, where we estimate the terms E[W∞(µ,p)] and E[X∞(µ,p)]) in the partial derivatives

(18) using the finite-sample averages of W k
n and Xk

n observed in each cycle k. The formal

description of the algorithm is given in Algorithm 1.

Algorithm 1: GOLiQ for GI/GI/1 Queues

Input: number of cycles L;

parameters 0< ξ < 1, Dk, ηk for k= 1,2, ...,L;

initial value x1 = (µ1, p1);

for n= 1,2, ...,Dk do

operate the system under xk = (µk, pk) until Dk customers enter service;

observe (W k
n ,X

k
n) for n= 1,2, ...,Dk;

randomly draw Z ∈ {1,2};

if Z = 1 then

h←−λ(pk)− pkλ′(pk)+h0λ
′(pk)

[
1

⌈Dk(1−ξ)⌉
∑Dk

n>ξDk

(
Xk

n +W k
n

)
+ 1

µk

]
;

Hk← (2h,0);

else

h← c′(µk)−h0 λ(p)µk

[
1

⌈Dk(1−ξ)⌉
∑Dk

n>ξDk

(
Xk

n +W k
n

)
+ 1

µk

]
;

Hk← (0,2h);

end

update: xk+1 =ΠB(xk− ηkHk);

end

Remark 8 (On the queueing leftover). We elaborate more on our treatment of Qk,

the existing queue content at the beginning of cycle k. First, the content of Qk includes

customer arrivals in cycle k− 1 and possibly even earlier cycles. Second, it is also possible

to have Qk > Dk. Nevertheless, these above cases do not affect the implementation of

Algorithm 1 (note that Algorithm 1 gives a gradient estimator using ⌈(1− ξ)Dk⌉ samples

without specifying any of the above events). Of course, the event {Qk >Dk} does play a

role in our theoretic regret analysis, but it is a rare event with a negligible probability (in

fact, we show that the probability will be suppressed to O(k−3), also see Remark 3.
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Selecting the “optimal” hyperparameters. The effectiveness of Algorithm 1 largely

hinges upon carefully selecting the three hyperparameters: (i) the warm-up time ξ ∈ (0,1),
(ii) the learning step size ηk > 0, and (iii) the exploration sample size Dk > 0. Except for ξ

which has no bearing on the theoretical order of the regret, both the other two parameters

Dk and ηk will play critical roles in our regret analysis. We next give the forms of the two

parameters. First, The step size ηk satisfies

ηk = cη/k, with cη ≥ 2/K0, (20)

where K0 is the convexity bound specified in Assumption 3. Next, the sample size Dk

satisfies

Dk = aD + bD log(k), with aD ≥
CD

min(γ, η)ξ
and bD ≥

8

min(γ, η)ξ
, (21)

for any warm-up parameter ξ ∈ (0,1), where γ and η are the constants specified in Assump-

tion 2, and the explicit formula of CD is given in (EC.7).

The above-mentioned forms of ηk and Dk are obtained from our detailed regret analysis

where we show that the structure of (20) and (21) “minimizes” the order of the overall

regret (in the sense of maximizing α and β as in Theorems 1 and 2). Although the theo-

retical bounds of parameters aD, bD and cη are imposed to facilitate our regret analysis,

our numerical experiments show that GOLiQ remains effective even when the theoretical

bounds are relaxed, confirming the robustness of GOLiQ to these hyperparameters; see Sec-

tion EC.2 for details. Next, we show that Algorithm 1 has a regret bound of O((log(ML)
2)

with ML ≡
∑L

k=1Dk being the cumulative number of customers served by cycle L. We do

so by verifying that our choices of Dk and ηk (along with the corresponding Bk and Vk),
will satisfy the conditions in Theorem 1 and Theorem 2.

Theorem 3. (Regret Bound for Algorithm 1)

Suppose Assumptions 1 to 3 hold, and ηk and Dk are selected according to (20) and (21).

Then

(i) There exists a positive constant K3 > 0 such that

Bk ≤
K0

8k
and ηkVk ≤

K3

k
.

(ii) There exists a positive constant K2 > 0 such that

E[∥xk−xk+1∥2]≤K2k
−2. (22)
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(iii) As a consequence of (i) and (ii), the regret for Algorithm 1

R(L)≤Kalg log(ML)
2 =O(log(ML)

2). (23)

Remark 9 (On the logarithmic regret bound (23)). Below we provide some addi-

tional discussions on the regret bound (23):

(i) On the constant Kalg. The explicit expression for the constant Kalg, although com-

plicated, is given by (EC.9). It involves error bound corresponding to the transient

behavior of the queueing system, the bias and variance of the gradient estimator,

moment bounds on the queue length and other model parameters. One can verify that

Kalg is decreasing in the convergence rate coefficient γ and increasing in the moment

bounds of the queue length M .

(ii) On the first logarithmic term. Consider an SGD algorithm in that an unbiased

gradient estimator Hk with a bounded variance can be evaluated using a single data

point (i.e., Bk = 0, Vk = O(1)), it has been proved the scaled error k−1/2(xk − x∗)

converges in distribution to a non-zero random variable (Theorem 2.1 in Chapter 10

of Kushner and Yin (2003)). Hence, the convergence rate for ∥xk − x∗∥2 that any

SGD-based algorithm can achieve is at best O(k−1) (yielding a cumulative regret of

order O(log(k))), which is exactly the rate of convergence established by our online

algorithm (taking β = 1 in Theorem 3). In this sense, GOLiQ is already achieving an

“optimal” convergence rate. We point out that, due to the nonstationary error of the

queueing system, our gradient estimator is obtained using an increasing number of

data points in order to guarantee a reasonably small bias.

(iii) On the second logarithmic term. In order to control the regret of nonstationar-

ity, the queueing system need to be operated in each cycle for a duration of order

O(log(k)). Because the queueing performance converges to its steady state exponen-

tially fast, this inevitably introduces an extra logarithmic term in our regret bound

(which explains the “square” in log(ML)
2). The question that remains open is whether

this O(log(ML)
2) bound is optimal. We conjecture that the answer is yes but admit

that a rigorous treatment of a lower regret bound can be quite challenging. For exam-

ple, establishing a lower regret bound requires a lower bound on the convergence rate

of a GI/GI/1 queue, which by itself is an open question. We leave this question to

future research.
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Remark 10 (Controlling the length of cycle k). We use Dk (the number of cus-

tomers served in cycle k), instead of the clock time Tk, to control and measure the regret

bound. The benefit of using Dk (rather Tk) as the cycle length is that it facilitates the

technical analysis, because Dk is directly related to the number of samples used to estimate

our gradient estimator. In fact, using Dk instead of Tk has no bearing on the order of the

regret bound. To see this, note that the arrival rate is assumed to fall into a compact set

[λ(p̄), λ(p)]. Therefore, since TL is the total units of clock time elapsed after cycle L, we

have ML/λ(p)≤E[TL]≤ML/λ(p̄) for all L.

6. Numerical Experiments

To confirm the practical effectiveness of our online learning method, we conduct numerical

experiments to visualize the algorithm convergence, benchmark the outcomes with known

exact optimal solutions, estimate the true regret and compare it to the theoretical upper

bounds. Our base example is an M/M/1 queue, having Poisson arrivals with rate λ(p),

and exponential service times with rate µ. In our optimization, we consider a commonly

used logistic demand function (Besbes and Zeevi 2015)

λ(p) = nλ0(p), λ0(p) =
exp(a− p)

1+ exp(a− p)
, (24)

where n is the system scale (also referred to as the market size). We also consider the

following convex cost function for the service rate

c(µ) = c0µ
2. (25)

See the top left panel of Figure 4 for λ(p) in (24). In particular, the optimal pricing and

staffing problem in (1) now becomes

max
µ,p

{
pλ(p)− c0µ2−h0

λ(p)/µ

1−λ(p)/µ

}
. (26)

In light of the closed-form steady-state formulas of the M/M/1 queue, we can obtain

the exact values of the optimal solutions (µ∗, p∗) and the corresponding objective value

f(µ∗, p∗), with which we are able to benchmark the solutions from our online optimization

algorithm.

We first consider two one-dimensional online optimization problems in Section 6.1. We

next treat the two-dimensional pricing and staffing problem in Section 6.2. In Section 6.3,
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we compare our results to previously established asymptotic heavy-traffic solutions in Lee

and Ward (2014). Additional numerical experiments are provided in the e-companion: In

Section EC.2 we investigate the robustness of GOLiQ to the hyperparameters. In Section

EC.3 we benchmark the performance of GOLiQ to other online learning methods. Section

EC.4 includes more experiments regarding the relaxation of uniform stability and GOLiQ’s

performance in queues having other inter-arrival and service time distributions.

6.1. One-Dimensional Online Optimizations

Algorithm 1 covers special cases where there is only one decision variable. For example, if

the service capacity µ (service fee p) is an exogenous parameter and the only decision is

the service fee p (service capacity µ), then one can simply fix Z = 1 (Z = 2) throughout the

learning process. The theoretical regret bound (as in Theorem 3) for these one-dimensional

cases remains unchanged.

6.1.1. Online optimal pricing with a fixed service capacity Motivated by rev-

enue management problems in revenue generating service system, our first example focuses

on the one-dimensional optimization of price p with service rate µ= µ0 held fixed. In this

case we can simply omit the term c0µ
2 in (26). Fixing the other model parameters as

a= 4.1, n= 10, h0 = 1 and µ0 = 10, we first obtain the exact optimal price p∗ = 3.531 (top

right panel of Figure 4). According to Algorithm 1 and Theorem 3, we set the step size

ηk = 1/k and cycle length Dk = 10 + 10 log(k). In Figure 4, we give the sample paths of

the gradient Hk and price pk as functions of the number of cycles k, and the mean regret

(estimated by averaging 500 independent sample paths) as a function of the cumulative

number of service completionsML. We observe that although the objective function f(µ,p)

is not convex in p, the pricing decision pk quickly converges to the optimal value p∗, and

the regret grows as a logarithmic function of ML. In particular, a simple linear regression

for the pair
(√

R(ML), log(ML)
)
(bottom right panel) verifies our regret bound given in

Theorem 3.

6.1.2. Online optimal staffing problem with an exogenous arrival rate Moti-

vated by conventional service systems where customers are served based on good wills

(e.g., hospitals), we next solve an online optimal staffing problem, with the objective of

minimizing the combination of the steady-state queue length (or equivalently the delay)
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Figure 4 Online optimal pricing for an M/M/1 queue with fixed service rate, with µ0 = 10, a= 4.1, p0 = 6.5, p∗ =

3.531, ηk = 1/k and Dk = 10+10 log(k): (i) demand function (top left); (ii) revenue function (top right);

(iii) sample path of the gradient (middle left); (iv) sample path of the price (middle right); (v) estimated

regret (bottom left); (vi) square root of regret versus logarithmic of served customers, with c = 0.24,

d= 19.04 (bottom right).

and the staffing cost, with the arrival rate (or equivalently, the price p) held fixed. Namely,

we omit the term pλ(p) in (26). Fixing λ= λ0 = 6.385, h0 = 1, and c0 = 0.1, we obtain the

exact optimal service capacity µ∗ = 8.342 (top right panel of Figure 5). Also by Algorithm

1 and Theorem 3, we set the step size ηk = 0.4k−1 and cycle length Dk = 10+10 log(k) with

initial service rate µ0 = 10. In Figure 5, we again give sample paths of the gradient Hk and

service capacity µk, and estimation of the regret. As the number of cycles k increases, our
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Figure 5 Online optimal staffing for an M/M/1 queue with fixed price with λ0 = 6.385,M = 10, ηk = 0.4k−1 and

Dk = 10+10 log(k): (i) staffing cost (top left); (ii) cost function (top right); (iii) sample path of gradient

(middle left); (iv) sample path of service capacity (middle right); (v) estimated regret (bottom left); (vi)

square root of regret versus logarithmic of served customers, with c= 2.76, d=−8.68 (bottom right).

stage-k staffing decision µk quickly converges to µ∗ (bottom right panel) and the regret

also grows as a logarithmic function of ML (bottom left panel).
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Figure 6 Joint pricing and staffing for an M/M/1 queue with p0 = 7.5, µ0 = 12, ηk = 1/k and Dk = 10+10 log(k):

(i) demand function (top left); (ii) revenue function (top right); (iii) sample path of gradient (middle

left); (iv) sample path of decision parameters (middle right); (v) estimated regret (bottom left); (vi)

square root of regret versus logarithmic of served customers, with c= 0.186, d= 5.17 (bottom right).

6.2. Joint Pricing and Staffing Problem

We next consider a joint staffing and pricing problem having the objective function in

(26), with the logistic demand function in (24) and parameters a= 4.1, n= 10, h0 = 1 and

c0 = 0.1. The optimal price p∗ = 4.02 and service rate µ∗ = 7.10 are given as benchmarks

(top right panel in Figure 6). In Figure 6, we show that µk and pk converge quickly to
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their corresponding optimal target levels µ∗ and p∗ (although the objective f(µ,p) is not

always convex when µ> λ(p)). And similar to the one-dimensional cases, the regret grows

as a logarithmic function of ML (bottom left panel).

6.3. Comparison to Heavy-Traffic Methods

In this subsection, we provide numerical analysis to contrast the performance of GOLiQ

to that of the heavy-traffic approach in Lee and Ward (2014). In Lee and Ward (2014), the

objective is to find the optimal decisions p∗ and µ∗ for the GI/GI/1 optimization problem

(1) with a linear staffing cost c(µ) = cµ. Because this problem is not amenable to analytic

treatments (due to the complex GI/GI/1 queueing dynamics), the authors resort to the

heavy-traffic approximation by constructing a sequence of GI/GI/1 queues indexed by a

scaling factor n, where the nth model has an arrival rate λn(p) ≡ nλ0(p) which grows to

infinity as n increases. The authors propose an asymptotically optimal solution

(p̃(n), µ̃(n)) =

(
p̂∗, nµ̂∗+σ

√
h0n

2c

)
(27)

where σ =
√

Var(Ui)+Var(Vi), and Ui and Vi are defined in Assumption 2, and (p̂∗, µ̂∗)

solves a deterministic static planning problem:

min
p,µ

f0(p,µ) =−pλ0(p)+ cµ. (28)

We remark that the solution in Lee and Ward (2014) requires the precise knowledge of the

second moments of service and arrival times (e.g., the term σ in (27)), but such information

is not needed in GOLiQ.

Experiment settings. We consider an M/GI/1 model with a phase-type service-time

distribution, and a logit demand λ(p) = nλ0(p) in (24) where the base demand rate λ0(p)

has a= 4.1 and the market size n plays the role of the scaling factor. We fix the delay cost

h0 = 1 throughout this experiment. To quantify the regret, we obtain the exact optimal

policy using the Pollaczek-Khinchine formula for the queue-length function

E[Q∞(p,µ)] = ρ+
ρ2

1− ρ
1+ c2s
2

, (29)

where c2s ≡ V ar(Ui)/E[Ui]
2 is the squared coefficient of variation (SCV) for the service

time. We next describe the detailed settings for comparing GOLiQ to heavy-traffic solution
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in Lee and Ward (2014), dubbed LW. In order to benchmark the regret of our GOLiQ to

that of LW, we continue to consider a dynamic environment where the number of cycles k

increases. In the kth cycle,

• the LW policy remains fixed at (p̃(n), µ̃(n)) as in (27) (it does not evolve with k);

• our online learning policy is dynamically updated according to GOLiQ (Algorithm 1).

Because the LW policy is an approximation, it will yield a linear regret as k increases. But

LW’s linear regret should not be too steep when n is large enough. In contrast, although

GOLiQ is guaranteed to generate a sublinear regret, it is expected to have a larger reget

increment at the earlier “exploration” stage, because it is learning without the supervision

of the fluid or diffusion limits (as in the LW approach). Nevertheless, we expect that

GOLiQ will eventually outperform the LW method (exhibiting a lower regret level) when

k is sufficiently large. We next numerically study how soon GOLiQ surpasses LW and the

impact of the following three parameters:

(i) staffing cost c;

(ii) service-time SCV c2s;

(iii) market size n (i.e., system scale).

We intentionally set the initial decision (µ0, p0) of GOLiQ far from the optimal solution

(µ∗, p∗) in the experiment.

Experiment results. In Figure 7, we report results of regret for both GOLiQ and LW.

For the three factors c, c2s and n, we change one at a time (with the other two held fixed).

In Panels (a)-(c), we vary the staffing cost c from 0.5 to 2. In Panels (d)-(f), we vary the

service-time SCV c2s from 0.1 to 10. Here the cases c2s = 0.1, 1, and 10 are achieved by

considering Erlang, exponential, and hyperexponential service-time distributions. In Panels

(g)-(i), we vary the system scale n from 1 to 25. In all of the cases, we use hyper-parameter

ηk = 5k−1 and Dk = 10+10 log(k). Monte-Carlo estimates of the regret curves are obtained

by averaging 100 independent runs.

We can see from Figure 7 that, in all cases, GOLiQ will eventually establish a lower regret

level than the LW policy. Varying these three factors clearly has an significant impact on

how soon GOLiQ outperforms LW. Our findings are summarized below:

• Staffing cost c: Figure 7 shows that GOLiQ intends to outperform LW when c is

relatively large. We provide our explanations below. First, a larger staffing cost c will

induce a smaller µ∗, which leads to a longer waiting queue. On the other hand, note
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Figure 7 Regret comparison to heavy-traffic approximation, with varying (i) staffing cost c (panels (a)–(c)), (ii)

service variability c2s (panels (d)–(f)), and (iii) market size n (panels (g)–(i)). Hyperparameters are

ηk = 5k−1andDk = 10+10 log(k) for all instances. All regret are estimated by averaging 500 independent

simulation runs.

that the LW solution is primarily based on solving the deterministic static problem

(28); and unlike the stochastic revenue optimization problem (1), the objective func-

tion of (28) overlooks the queue-length holding cost. This explains why GOLiQ gains

its advantage over LW as c increases. See Panels (a)-(c) of Figure 7.

• Service SCV c2s: When the service-time SCV is smaller, the LW method intends

to work better, because the basic idea of LW stems from solutions of a fluid model

(where the service times are assumed deterministic). On the other hand, when c2s is

larger, the system becomes more variable so that our learning-based algorithm begins

to excel (because GOLiQ takes into account real-time information dynamically). See

Panels (d)-(f) of Figure 7.
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• Market size n: When n is small, LW loses its advantages because it arises from the

large-scale limit of the GI/GI/1 queue which requires n to be sufficiently large. While

the performance of our GOLiQ is robust to the system scale. See Panels (g)-(i).

• Performance in the long run: GOLiQ is a more effective approach in the long run,

because the LW solution remains static and its error grows linearly as time increases.

Remark 11 (Different philosophies: online learning vs. heavy traffic). We

emphasize that online learning and heavy-traffic analysis are two methodologies developed

based on distinct philosophies. First, when the system size is large, heavy-traffic models

are able to produce high-fidelity solutions, but they require more prior knowledge of the

system as inputs. On the other hand, online learning requires less prior understanding of

the system, because the data-driven nature allows it to dynamically evolve and improve

(whereas heavy-traffic solutions are static). Second, the notions of asymptotic optimality

are different. As an approximate method, heavy-traffic analysis is said to be asymptotically

optimal in the sense that as the system size grows large, its solution will become close to

the true optimal solution. On the other hand, the solution of the online learning method

will converge to the true optimal solution as the server’s experience accumulates (by

serving more and more customers).

6.4. A GI/GI/1 example

So far, our numerical experiments have been focusing on the M/GI/1 examples. In this

section, we test GOLiQ using a GI/GI/1 model. Specifically, we consider an E2/H2/1

queue with Erlang-2 (the E2) interarrival times and Hyper-exponential (the H2) service

times with c2s = 2, where we solve the optimal price with the service rate held fixed (as in

Section 6.1.1).

Because there is no closed-form solution for the performance function of the E2/H2/1

system, we model the queue length process as a quasi-birth-and-death process and adopt

the matrix-geometric method (Latouche and Ramaswami 1999) to numerically solve the

optimal solution p∗. Here we continue to use the logit demand function (24) with M = 10,

a= 4.1, n= 1, h0 = 1 and µ= µ0 = 10. This gives the optimal price p∗ = 3.567 (top right

panel of Figure 8). The algorithm hyperparameters are ηk = 1/k,Dk = 10+ 10 log(k) and

p0 = 6.5 (which are identical to those as in Section 6.1.1). From Figure 8, we observe
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Figure 8 Online optimal pricing for an E2/H2/1 queue with fixed service rate, with µ0 = 10, a= 4.1, p0 = 6.5, p∗ =

3.567, ηk = 1/k and Dk = 10+10 log(k): (i) demand function (top left); (ii) revenue function (top right);

(iii) sample path of the gradient (middle left); (iv) sample path of the price (middle right); (v) estimated

regret (bottom left); (vi) square root of regret versus logarithmic of served customers, with c = 0.43,

d= 15.79 (bottom right).

that, although the objective function remains a non-convex function, GOLiQ continues to

perform well with fast convergence.

An additional LN/LN/1 example with log-normal interarrival times and service times

is given in Section EC.4.3.
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7. Conclusion

In this paper we develop an online learning framework designed for dynamic pricing and

staffing in queueing systems. The ingenuity of this approach lies in its online nature, which

allows the service provider to continuously obtain improved pricing and staffing policies

by interacting with the environment. The environment here is interpreted as everything

beyond the service provider’s knowledge, which is the composition of the random external

demand process and the complex internal queueing dynamics. The proposed algorithm

organizes the time horizon into successive operational cycles, and prescribes an efficient

way to update the service provider’s policy in each cycle using data collected in previous

cycles. Data include the number of customer arrivals, waiting times, and the server’s busy

times.

A key appeal of the online learning approach is its insensitivity to the scale of the

queueing system, as opposed to the heavy-traffic analysis, which requires the system to be

in large scale (with the arrival and service rate both approaching infinity). Effectiveness

of our online learning algorithm is substantiated by (i) theoretical results including the

algorithm convergence and regret analysis, and (ii) engineering confirmation via simulation

experiments of a variety of representative GI/GI/1 queues. Theoretical analysis of the

regret bound in the present paper may shed lights on the design of efficient online learning

algorithms (e.g., bounding gradient estimation error and controlling proper learning rate)

for more general queueing systems.

There are several venues for future research. One natural extension would be to develop

new regret analyses that do not require the uniform stability condition. Another interesting

and promising direction is to develop an online learning method without assuming the

knowledge of the arrival rate function λ(p), where the learner (hereby the service provider),

during the interactions with the environment, will have to resolve the tension between

obtaining an accurate estimation of the demand function and optimizing returns over

time. A third dimension is to extend the methodology to more general model settings

(e.g., queues having customer abandonment and multiple servers), which will make the

framework more practical for service systems such as call centers and healthcare. In this

regard, results in the present paper may serve as useful foundations; in particular, Theorems

1 and 2 will help construct desired regret bounds as long as their associated conditions

can be verified. Doing so usually requires two main steps in a new queueing model: (i)
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proving a new ergodicity (or rate of convergence to stationarity) result that can be used to

bound the regret of nonstationarity; (ii) designing a new gradient estimator which is easily

computed from data (here a good gradient estimator should have small bias and variance

subject to conditions in Theorem 2).
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