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A B S T R A C T

Online retailing has been booming over the past several years as people grow increasingly comfortable with it
and accustomed to its ease and speed. A major drawback of online retailing is the lack of consumer–product
interaction before a purchase is finalized, which often leads to consumer dissatisfaction due to mismatched
expectation of the received product. In response, retailers usually promise that online orders may be returned
or exchanged free of extra charges, which can be processed either online (e.g., by mail) or onsite i.e., in-store
dropoff. In this work, we study the implications of both online and onsite exchange policies in the setting of a
queueing model that offers omnichannel services. Taking into account customers’ behavioral responses to these
policies, we aim to inform the retailer of the one that generates a higher system revenue. Our results reveal that
the online exchange policy is a double-edged sword: On the one hand, it helps eliminate the inconvenience cost
for exchange customers to revisit the store; on the other hand, it can trigger more feedback orders and render
a higher system congestion level, which in turn, deters future customers from placing orders. Specifically, we
discover that online exchange becomes an inferior policy relative to in-store exchange when the market size
is large.
1. Introduction

Online retailing has been booming in recent years due to the preva-
lence of smartphones and access to the Internet. Top online shopping
categories include fashion, entertainment, electronics, food, etc. The
main advantage of online shopping is its convenience, because con-
sumers no longer need to travel to the physical store. Besides, it brings
additional benefits during the Covid-19 pandemic by largely reducing
the risk of infection (it avoids close contacts to other consumers in a
physical store). Indeed, many retailers are offering both online and in-
person shopping (i.e., multichannel or omnichannel retailing), see [1–
4].

However, some things are unique to an in-person experience such
as physically checking and testing a product to ensure its quality.
For perfumes and cosmetics, stores offer the opportunity to test the
products to make sure they are right for the consumers; it is also nice
to try on clothing at the store in order to personally choose the best
style and fit. Hence, a major drawback of online shopping, despite
its many benefits, is the lack of consumer–product interaction before
a purchase is finalized, which may lead to consumer dissatisfaction
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due to mismatched expectation of the received products. To ensure the
high competitiveness of online shopping, omnichannel retailers usually
promise that online orders, if not meeting customers’ expectations, may
be returned or exchanged free of extra charges [5–7].

In practice, two policies have been widely used for product ex-
change and return: (i) by mail (online) and (ii) in-store dropoff (onsite).
For example, Best Buy allows orders purchased online to be returned or
exchanged either by mail or in-store [8]; Old Navy only accepts returns
and exchanges in store [9]; while eBay requires that customers ship
the product to the seller by mail [10]. In this paper, we are motivated
to study an omnichannel retailing system that offers both online and
in-person shopping. Because online shopping induces feedback orders
(consumers demanding return/exchange when receiving products that
do not meet their expectations), we investigate the impact of the two
aforementioned policies on the treatment of these feedback orders.
Hereby we only study product exchange and do not consider product re-
turn. We hope to answer the following questions: (1) How do different
exchange policies shape customers’ behavior and experience? (2) From
the service provider’s perspective, which exchange policy can generate
a higher revenue?
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We develop a new queueing economics model in which the service
facility is able to process orders received in two channels: online and
onsite. All arriving orders are buffered in a common queue and pro-
cessed by a single server according to the first-come first-served (FCFS)
service discipline. An online order, upon completion, may or may not
meet the expectation of its corresponding customer, and if not, will be
fed back to the service facility for a remake (i.e., a product exchange
occurs). Exchange orders are treated equally as new orders (they join
the same queue and are processed under FCFS). Moreover, customers
are delay sensitive and strategic; they make two-step decisions. Each
arriving customer will first decide whether to place an order (i.e., join
the service system), and if yes, she will next select the ‘‘right’’ channel
to place an order (online or onsite). The onsite channel guarantees
the service (or product) to be well suited to a customer but incurs
an inconvenience cost; while the online channel spares the above-
mentioned inconvenience cost but may generate excessive delay in the
future in case customers revisit the service system for exchange.

Our contributions are summarized below.

• Equilibrium strategy. We study two omnichannel retailing queue
models that are distinct solely in the product exchange policies:
one allows only online exchange (dubbed the online exchange
model) and the other allows only onsite exchange (dubbed the
onsite exchange model). In both models, we derive customers’ joint
order-placing and channel-selecting equilibrium strategies.

• Throughput and revenue. Using the equilibrium strategy, we
compute the system throughput in both models with an exoge-
nous service fee (i.e., which is a fixed parameter). We later allow
the service provider to adjust the service fee in order to maximize
his revenue; we compare the optimal revenue under the two
exchange policies.

• Findings and insights. Our results reveal several interesting
and insightful findings. Contrary to the consensus that online
exchange is in general more beneficial, we discover that the
online-exchange model loses its advantage when the system is
highly congested and the service fee is low. In addition, under
the setting of endogenous pricing (where the service provider can
adjust the service fee in order to maximize his revenue), online
exchange is a less profitable policy when the system is highly
congested and the risk of exchange is intermediate. Another
interesting result is that the system throughput is not always
increasing when the risk of exchange decreases. Our conclusions
are drawn from theoretical results, numerical experiments, and
in-depth discussions.

The remainder of the article is organized as follows. In Section 2,
we review the most related literature. Section 3 sets up an omnichan-
nel retailing queueing model. In Section 4, we characterize the joint
equilibria in both online-exchange and onsite-exchange models. In
Section 5, we investigate two extensions of our base model. First, in
Section 5.1 we study the setting of endogenous service price. Next, in
Section 5.2, we consider the case in which customers’ inconvenience
costs is considered to follow (uniform) random distribution. Finally, in
Section 6, we draw conclusions and discuss future research directions.
All proofs are provided in Appendix.

2. Related literature

Three lines of research are most relevant to the present study.
Our paper contributes to the economic analysis of queueing systems,

which is pioneered by Naor [11], who studies an observable queueing
system where customers rationally decide whether to join based on
observed queue information. Edelson and Hilderbrand [12] extend this
problem to the unobservable setting. These two seminal works have
inspired numerous works on the queueing economics with strategic
2

consumers. For comprehensive reviews of the related works, see [13,
14]. Also see recent survey by Economou [15] on the effect of infor-
mation structure on strategic customer behavior and the psychological
principle on them [16] In particular, the present paper is relevant to
queueing-economics models with a two-dimensional customer strat-
egy. Hassin and Roet-Green [17] consider an unobservable queueing
model where arrivals are able to pay for inspecting the queue length
information; and based on this information, they make their joining
decision. Hassin and Roet-Green [18] investigate an order-onsite model
in which customers first decide whether to travel to the store and then
whether to join the queue upon arrival. Sun et al. [19] study an order-
ahead model in which customers first order online and then travel
to the service facility. In addition, the profit optimization via pricing
constitutes a prevalent research topic within online service models,
see [20,21], etc.

Distinct from the above literature, the present work studies a
queueing-economics model having customer feedback (hereby the ex-
change customers). In addition, different from [18,19], in our model
customers are given the option to select the channel (either online or
onsite) for receiving their services.

This work is also related to recent developments on omnichannel
service systems. [22] investigate an omnichannel retailing model that
allows consumers to pay online and pick up in store. Later, they
extend to the setting of a restaurant model [23] and show that the
online order-placing technology can help reduce the delay for both
tech-savvy (who place orders remotely) and conventional (who place
orders in store) customers. Multiclass queueing systems have been
developed to determine the optimal staffing [24] and scheduling [25]
rules for the omnichannel customer contact centers. [26] study how
the level of information in omnichannel service models impacts the
system performance. [27] consider a restaurant model with a food
delivery platform that can serve two streams of customers: tech-savvy
customers and conventional customers. Their findings reveal that the
restaurant’s revenue may decline as more customers join the online
service channel. [28] suggest that the advent of online-to-offline (O2O)
platforms affords traditional retail outlets the opportunity to broaden
their customer base via the integration of online ordering and delivery
services. We also refer readers to a comprehensive review [29]. Our
work is partially inspired by Baron et al. [30] which study a queueing
model with an additional online order-placing option; they show that
this new option improves the system throughput but is detrimental to
both consumers’ individual utilities and the social welfare. In contrast
to the papers above, our work focuses on the design of the product
exchange policy in omnichannel service models rather than studying
the benefit of omnichannel services. In addition, the focus of the present
work is to investigate the omnichannel aspect in the post-service stage,
which is another major distinction from the above literature.

Last, our paper is related to the retailing literature on models with
customer return and exchange. Retailing systems with exchange orders
are often modeled as queues with customer feedback. Guo et al. [31]
investigate the strategic customers’ behavior in queueing model with
feedback. Aziz and Wahid [32] find that non-online shoppers prefer
to shop traditionally than online shopping because they would like
to self-assess the quality of the products. [33] show that effective
return and exchange policies help incentivize customers to revisit the
system for more services. [34] study an online retailing model in
which the customers receiving unsatisfied products make endogenous
exchange/return decisions. They find that, comparing to product ex-
change, product return yields a lower social welfare. [35] study the
pricing and return policy decisions in an omnichannel firm, where
customers are offered two options: buy online and return online and
buy online and return in store. The present paper draws distinctions
from the above literature by studying the design of product-exchange

policies in face of omnichannel services.
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3. Model description

We consider a single-server queueing model having potential ar-
rivals in accordance with a Poisson process with rate 𝛬 (referred
to as potential market size), and independent and identically distributed
(I.I.D.) service times following an exponential distribution with rate 𝜇
(referred to as service capacity). The arrival times and service times are
independent. Customers are delay sensitive and incur a cost 𝐶 per unit
of time in the system. The system offers omnichannel services: each
arriving customer may choose to either place an online order or an
onsite order:

• Onsite orders: Customers placing orders in the onsite channel
incur an inconvenience cost 𝐶ℎ > 0. (Here 𝐶ℎ roughly represents
the inconvenience of traveling to the store, inflexibility of shop-
ping window, risk of getting infected during the pandemic, or a
mixture of all.) On the other hand, we assume that all services
completed onsite will perfectly match with customers’ expectation
(because customers can have sufficient personal interactions with
the products during their visit to the store), so there is no need for
exchange. We first treat 𝐶ℎ as the same constant for all customers
and later extend to the case where 𝐶ℎ is a random variable in
order to capture the heterogeneity in customers’ inconvenience
cost; see Section 5.2.

• Online orders: Orders placed in the online channel will not incur
the inconvenience cost 𝐶ℎ. However, received products may or
may not meet the customers’ expectation, which in turn may
trigger after-sales product exchanges (i.e., feedback orders). A
customer is satisfied with the online service with probability
𝛼 ∈ (0, 1). We assume a customer is able to gain sufficient
knowledge from the first service experience (even if the product
is dissatisfying and an exchange is requested) so that the new
product/service is guaranteed to satisfy the customer’s need. We
hereby refer to 𝛼 as the expectation-meeting probability.

In practice, the online exchange option might also incur a cost
𝐶𝑜 > 0. For example, an exchange customer may have to leave the
package at a drop-off location or post office. Nevertheless, this should
be much smaller than the cost of undergoing the entire service process
at the onsite store. For simplicity, we normalize this cost to 0 for the
online exchange option, and thus, the cost 𝐶ℎ can be regarded as the
additional effort cost a customer has to pay when exchanging online
rather than onsite.

Orders of all types (online and onsite, exchange and new) are
buffered in a common queue and processed under FCFS. All customers
pay a service fee 𝑃 upon placing an order and receive a service reward
𝑉 upon completing service. (In case exchange is needed, the service
reward 𝑉 is received after the exchange is completed.)

Each potential customer makes decisions in two stages: first, she
decides whether to join or to balk; second, if joining, whether to order
online or onsite. We hereby only consider the symmetric equilibrium.
We assume that customers do not have the queue length information
(i.e., number of pending orders) when they make decisions so their
strategy can be described by an order-placing probability 𝑞𝐽 ∈ [0, 1] and
a channel-selecting probability 𝑞𝑜 ∈ [0, 1], i.e., the probability of ordering
online (in-store) is 𝑞𝑜 (1 − 𝑞𝑜). The assumption of unobservable queue
can be justified by the practices of many service systems. For example,
many quick-service restaurants (e.g., Starbucks) allow customers to
place an order via their mobile apps, which reveal no real-time delay
estimation. In addition, their onsite customers are unable to observe
precise delay information as well because the order queue consists
of ‘‘invisible’’ online orders which may either not have arrived or be
waiting somewhere outside the store (e.g., for social distancing during
the pandemic).

Given the two-dimensional strategy (𝑞𝐽 , 𝑞𝑜), the effective external
arrival rate is 𝛬𝑒 = 𝛬𝑞𝐽 . By flow conservation, we write out the effective
internal arrival rate as

𝜆 = 𝛬 [1 + (1 − 𝛼)𝑞 ] = 𝛬𝑞 [1 + (1 − 𝛼)𝑞 ].
3

𝑒 𝑒 𝑜 𝐽 𝑜
Fig. 1. A schematic representation for the omnichannel retailing queue under two
product exchange policies: (a) online exchange, and (b) onsite exchange.

Hence, customers’ steady-state mean sojourn time (i.e., waiting time
plus service time) is

𝑊 (𝑞𝐽 , 𝑞𝑜) =
1

𝜇 − 𝜆𝑒
= 1

𝜇 − 𝛬𝑞𝐽 [1 + (1 − 𝛼)𝑞𝑜]
, for 𝑞𝐽 , 𝑞𝑜 ∈ [0, 1], (1)

provided that the system is stable, that is, 𝜆𝑒 = 𝛬𝑞𝐽 [1 + (1 − 𝛼)𝑞𝑜] < 𝜇.
See Fig. 1 for a schematic illustration of the system’s structure and a
customer’s decision process. All notations are summarized in Table 1.

4. Customers’ equilibrium strategies

In this section, we study customers’ equilibrium strategies in two
models operated under distinct exchange policies: (i) onsite (i.e., in-
store dropoff) and (ii) online (i.e., by-mail). We compare the equilib-
rium performance in the two models.

4.1. Onsite exchange model

In this subsection, we treat the model operated under the onsite-
exchange policy. We append a superscript ‘‘s’’ to all notation to indicate
that only onsite exchange is allowed. For an online customer, let
𝑈 𝑠
1 (𝑈 𝑠

2 ) be the expected utility given that the customer is satisfied
(dissatisfied) with the service. In particular, for 𝑞𝐽 , 𝑞𝑜 ∈ [0, 1], we have

𝑈 𝑠
1 (𝑞𝐽 , 𝑞𝑜) = 𝑉 − 𝑃 − 𝐶𝑊 (𝑞𝐽 , 𝑞𝑜), (2)

𝑈 𝑠
2 (𝑞𝐽 , 𝑞𝑜) = 𝑉 − 𝑃 − 𝐶ℎ − 2𝐶𝑊 (𝑞𝐽 , 𝑞𝑜), (3)

where the second equality holds because the customer has to undergo
the entire queueing process once again. Then the expected utility of an
arbitrary online customer (indicated by a subscript ‘‘o’’) is

𝑈 𝑠
𝑜 (𝑞𝐽 , 𝑞𝑜) = 𝛼𝑈 𝑠

1 (𝑞𝐽 , 𝑞𝑜)+(1−𝛼)𝑈 𝑠
2 (𝑞𝐽 , 𝑞𝑜) = 𝑉 −𝑃 −(1−𝛼)𝐶ℎ−(2−𝛼)𝐶𝑊 (𝑞𝐽 , 𝑞𝑜).

(4)

On the other hand, the expected utility of an onsite customer (indicated
by a subscript ‘‘s’’) is

𝑈 𝑠
𝑠 (𝑞𝐽 , 𝑞𝑜) = 𝑉 − 𝑃 − 𝐶ℎ − 𝐶𝑊 (𝑞𝐽 , 𝑞𝑜). (5)

Remark 1 (Immediate Comfort vs. Future Convenience). While online
service exhibits an immediate advantage by avoiding the cost 𝐶ℎ, it is
possible that customers have to experience an additional delay in case
the product/service is unsatisfying. On the other hand, onsite service
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𝑞

Table 1
Glossary of main notation.

Symbol Definition

𝜇 Service capacity/rate
𝛬 Market size
𝑉 Service reward
𝐶 Delay cost per unit of time
𝑃 Service fee
𝐶ℎ Inconvenience cost of onsite service
𝛼 Expectation-matching probability of online service
𝑞𝐽 , 𝑞𝑜 Order-placing probability & online-channel-selecting probability
𝑊 (𝑞𝐽 , 𝑞𝑜) Customers’ average sojourn time given 𝑞𝐽 and 𝑞𝑜
𝑈 𝑠

𝑜 (𝑞𝐽 , 𝑞𝑜), 𝑈
𝑠
𝑠 (𝑞𝐽 , 𝑞𝑜) Expected utility of online and onsite channel under onsite exchange policy

𝑈 𝑜
𝑜 (𝑞𝐽 , 𝑞𝑜), 𝑈

𝑜
𝑠 (𝑞𝐽 , 𝑞𝑜) Expected utility of online and onsite channel under online exchange policy
𝑈

w
d
o

𝑈

ensures that the service meets a customer’s expectation (thus preclud-
ing additional future delay) at the expense of the cost of 𝐶ℎ. Hence,
a customer’s perspective of online and in-store services is essentially a
matter of how to trade-off between taking a chance to enjoy an immediate
comfort and staying cautious to reduce the risk of future inconvenience.

Lemma 1. Under the onsite exchange policy, for a fixed order-placing
probability 𝑞𝐽 ∈ (0, 1], there exists a mixed strategy 𝑞𝑠𝑜(𝑞𝐽 ) satisfying

𝑠
𝑜(𝑞𝐽 ) =

⎧

⎪

⎪

⎨

⎪

⎪

⎩

0, if 1
𝜂 < 1

𝜇−𝛬𝑞𝐽
,

1
1−𝛼

(

𝜇−𝜂
𝛬𝑞𝐽

− 1
)

, if 1
𝜇−𝛬𝑞𝐽

≤ 1
𝜂 ≤ 1

𝜇−𝛬𝑞𝐽 (2−𝛼)
,

1, if 1
𝜂 > 1

𝜇−𝛬𝑞𝐽 (2−𝛼)
,

(6)

where 𝜂 = (1−𝛼)𝐶
𝛼𝐶ℎ

. In addition, 𝑞𝑠𝑜(𝑞𝐽 ) is weakly decreasing in 𝑞𝐽 .

Please refer to Appendix for the proof.

Remark 2 (Onsite Service Is Popular When Congestion Is High). When 𝑞𝐽
increases, the system becomes more congested (with prolonged delay)
as more potential customers might choose to join for service. Because
there is a chance that online orders may be fed back to endure a second-
round queueing process (incurring a cost 𝐶ℎ), some online customers
(these who are unsatisfied with the product) are more significantly
influenced by the delay increment due to the increase of 𝑞𝐽 , which
drives more customers to pursue onsite service in the first place.

For a given order-placing probability 𝑞𝐽 ∈ [0, 1], let 𝑈 𝑠
𝐽 (𝑞𝐽 , 𝑞𝑜) be the

expected utility of a joining customer. We have

𝑈 𝑠
𝐽 (𝑞𝐽 , 𝑞𝑜) = 𝑞𝑠𝑜(𝑞𝐽 )𝑈

𝑠
𝑜 (𝑞𝐽 , 𝑞

𝑠
𝑜(𝑞𝐽 )) + (1 − 𝑞𝑠𝑜(𝑞𝐽 ))𝑈

𝑠
𝑠 (𝑞𝐽 , 𝑞

𝑠
𝑜(𝑞𝐽 )).

We next characterize the equilibrium strategy by (𝑞𝑠𝐽 , 𝑞
𝑠
𝑜) in the follow-

ing theorem. In all cases with 𝑞𝑠𝐽 = 0, we say that the equilibrium is
(𝑞𝑠𝐽 , 𝑞

𝑠
𝑜) = 𝟎 denoting an empty system with no one willing to join for

service.

Theorem 1 (Equilibrium Strategy Under Onsite Exchange). Under the
onsite exchange policy, we give the equilibrium strategy in three cases
specified by the market size 𝛬.

a. Small market size. If 𝛬 < 𝜇∕(2 − 𝛼), the equilibrium strategy is

(𝑞𝑠𝐽 , 𝑞
𝑠
𝑜) =

⎧

⎪

⎪

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎪

⎪

𝟎, if 1
𝜇 ≥ max

{

𝑉 −𝑃−𝐶ℎ
𝐶 , 𝑉 −𝑃

(2−𝛼)𝐶

}

,
(

𝑞𝑠𝐽 , 0
)

, if max
{

1
𝜇 ,

1
𝜂

}

< 𝑉 −𝑃−𝐶ℎ
𝐶 < 1

𝜇−𝛬 ,

(1, 0), if 1
𝜂 < 1

𝜇−𝛬 ≤ 𝑉 −𝑃−𝐶ℎ
𝐶 ,

(

1, 𝑞𝑠𝑜
)

, if 1
𝜇−𝛬 ≤ 1

𝜂 ≤ min
{

1
𝜇−(2−𝛼)𝛬 ,

(𝑉 −𝑃 )𝛼
𝐶

}

,
(

𝑞𝑠𝐽 , 1
)

, if 1
𝜇 < 𝑉 −𝑃

(2−𝛼)𝐶 < min
{

1
𝜇−(2−𝛼)𝛬 ,

1
𝜂

}

,

(1, 1), if 1
𝜇−(2−𝛼)𝛬 ≤ 𝑉 −𝑃

(2−𝛼)𝐶 & 1
𝜇−(2−𝛼)𝛬 < 1

𝜂 .

(7)
4
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b. Medium market size. If 𝜇∕(2 − 𝛼) ≤ 𝛬 < 𝜇, the equilibrium strategy
is

(𝑞𝑠𝐽 , 𝑞
𝑠
𝑜) =

⎧

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎩

𝟎, if 1
𝜇 ≥ max

{

𝑉 −𝑃−𝐶ℎ
𝐶 , 𝑉 −𝑃

(2−𝛼)𝐶

}

,
(

𝑞𝑠𝐽 , 0
)

, if max
{

1
𝜇 ,

1
𝜂

}

< 𝑉 −𝑃−𝐶ℎ
𝐶 < 1

𝜇−𝛬 ,

(1, 0), if 1
𝜂 < 1

𝜇−𝛬 ≤ 𝑉 −𝑃−𝐶ℎ
𝐶 ,

(

1, 𝑞𝑠𝑜
)

, if 1
𝜇−𝛬 ≤ 1

𝜂 ≤ (𝑉 −𝑃 )𝛼
𝐶 ,

(

𝑞𝑠𝐽 , 1
)

, if 1
𝜇 < 𝑉 −𝑃

(2−𝛼)𝐶 < 1
𝜂 .

(8)

c. Large market size. If 𝛬 ≥ 𝜇, the equilibrium strategy is

(𝑞𝑠𝐽 , 𝑞
𝑠
𝑜) =

⎧

⎪

⎪

⎨

⎪

⎪

⎩

𝟎, if 1
𝜇 ≥ max

{

𝑉 −𝑃−𝐶ℎ
𝐶 , 𝑉 −𝑃

(2−𝛼)𝐶

}

,
(

𝑞𝑠𝐽 , 0
)

, if max
{

1
𝜇 ,

1
𝜂

}

< 𝑉 −𝑃−𝐶ℎ
𝐶 ,

(

𝑞𝑠𝐽 , 1
)

, if 1
𝜇 < 𝑉 −𝑃

(2−𝛼)𝐶 < 1
𝜂 .

(9)

where 𝑞𝑠𝐽 =
𝜇− 𝐶

𝑉 −𝑃−𝐶ℎ
𝛬 , 𝑞𝑠𝑜 = 𝜇−𝛬−𝜂

(1−𝛼)𝛬 , 𝑞
𝑠
𝐽 =

𝜇− (2−𝛼)𝐶
𝑉 −𝑃

(2−𝛼)𝛬 , 𝜂 = (1−𝛼)𝐶
𝛼𝐶ℎ

and
𝑉 = 𝑉 − (1 − 𝛼)𝐶ℎ.

Please refer to Appendix for the proof.
Customers’ strategy depends on the arrival rate and service rate of

the system. As the arrival rate increases in comparison to the service
rate, the queue length increases and thus the waiting time increases.
Therefore, fewer customers choose to order. Despite the complex struc-
ture of the equilibrium strategy, Theorem 1 exhibits the following
trend: As the market size increases, a smaller fraction of arrivals are
willing to join for service, among which, even fewer are willing to place
online orders. For example, the all-join-all-online case (i.e., (𝑞𝐽 , 𝑞𝑜) =
(1, 1)) is possible only when the market size is small (as in Case (a)). We
will conduct numerical experiments in Section 4.3 to gain additional
insights of the equilibrium strategy.

4.2. Online exchange model

In this subsection, we focus on the model that is operated under the
online-exchange policy. We append a superscript ‘‘o’’ to all notation
to indicate that only online exchange is allowed. Consider an online
customer, let 𝑈 𝑜

1 (𝑈 𝑜
2 ) be her expected utility given that the customer

is satisfied (dissatisfied) with the service. For given 𝑞𝐽 , 𝑞𝑜 ∈ [0, 1], we
have

𝑈 𝑜
1 (𝑞𝐽 , 𝑞𝑜) = 𝑉 − 𝑃 − 𝐶𝑊 (𝑞𝐽 , 𝑞𝑜), (10)
𝑜
2 (𝑞𝐽 , 𝑞𝑜) = 𝑉 − 𝑃 − 2𝐶𝑊 (𝑞𝐽 , 𝑞𝑜), (11)

here 𝑊 (𝑞𝐽 , 𝑞𝑜) is the average sojourn time given in (1), and 𝑈 𝑜
2 (𝑞𝐽 , 𝑞𝑜)

iffers from 𝑈 𝑠
2 (𝑞𝐽 , 𝑞𝑜) in (3) by missing the cost 𝐶ℎ. The expected utility

f an online customer is

𝑜
𝑜 (𝑞𝐽 , 𝑞𝑜) = 𝛼𝑈 𝑜

1 (𝑞𝐽 , 𝑞𝑜) + (1 − 𝛼)𝑈 𝑜
2 (𝑞𝐽 , 𝑞𝑜) = 𝑉 − 𝑃 − (2 − 𝛼)𝐶𝑊 (𝑞𝐽 , 𝑞𝑜).

(12)



Omega 125 (2024) 103024K. Sun et al.

T
S
w
i

T
o
s

4

e
b
e

P
m
t

𝑃
t
t
b
c
s
t
s
t
e
o
e

P
p
e

b
H
O
W
p
c
o
a
c
i
j
o
h
s
w
i

i
b
a

4

e
g
t
u

P
W
b

The expected utility of an onsite customer (indicated by a subscript ‘‘s’’)
is

𝑈 𝑜
𝑠 (𝑞𝐽 , 𝑞𝑜) = 𝑉 − 𝑃 − 𝐶ℎ − 𝐶𝑊 (𝑞𝐽 , 𝑞𝑜). (13)

Lemma 2. Under the online exchange policy, for a fixed order-placing
probability 𝑞𝐽 ∈ (0, 1], there exists a mixed strategy 𝑞𝑜𝑜 (𝑞𝐽 ) satisfying

𝑞𝑜𝑜 (𝑞𝐽 ) =

⎧

⎪

⎪

⎨

⎪

⎪

⎩

0, if 1
𝛿 < 1

𝜇−𝛬𝑞𝐽
,

1
1−𝛼

(

𝜇−𝛿
𝛬𝑞𝐽

− 1
)

, if 1
𝜇−𝛬𝑞𝐽

≤ 1
𝛿 ≤ 1

𝜇−𝛬𝑞𝐽 (2−𝛼)
,

1, if 1
𝛿 > 1

𝜇−𝛬𝑞𝐽 (2−𝛼)
,

(14)

where 𝛿 = (1−𝛼)𝐶
𝐶ℎ

. In addition, 𝑞𝑜𝑜 (𝑞𝐽 ) is weakly decreasing in 𝑞𝐽 .

Please refer to Appendix for the proof.
The intuition of Lemma 2 is similar to that of Lemma 1. Paralleling

heorem 1, below we characterize the equilibrium structure by (𝑞𝑜𝐽 , 𝑞
𝑜
𝑜 ).

imilar to the onsite exchange model, we hereby organize all results
ith 𝑞𝑜𝐽 = 0 into one case denoted as (𝑞𝑜𝐽 , 𝑞

𝑜
𝑜 ) = 𝟎, meaning that no one

s willing to join for service.

heorem 2 (Equilibrium Strategy Under Online Exchange). Under the
nline exchange policy, the equilibrium strategy is given below in three cases
pecified by the market size 𝛬.

a. Small market size. If 𝛬 < 𝜇∕(2 − 𝛼), the equilibrium strategy is

(𝑞𝑜𝐽 , 𝑞
𝑜
𝑜 ) =

⎧

⎪

⎪

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎪

⎪

⎩

𝟎, if 1
𝜇 ≥ max

{

𝑉 −𝑃−𝐶ℎ
𝐶 , 𝑉 −𝑃

(2−𝛼)𝐶

}

,
(

𝑞𝑜𝐽 , 0
)

, if max
{

1
𝜇 ,

1
𝛿

}

< 𝑉 −𝑃−𝐶ℎ
𝐶 < 1

𝜇−𝛬 ,

(1, 0), if 1
𝛿 < 1

𝜇−𝛬 ≤ 𝑉 −𝑃−𝐶ℎ
𝐶 ,

(

1, 𝑞𝑜𝑜
)

, if 1
𝜇−𝛬 ≤ 1

𝛿 ≤ min
{

1
𝜇−(2−𝛼)𝛬 ,

(𝑉 −𝑃 )
(2−𝛼)𝐶

}

,
(

𝑞𝑜𝐽 , 1
)

, if 1
𝜇 < 𝑉 −𝑃

(2−𝛼)𝐶 < min
{

1
𝜇−(2−𝛼)𝛬 ,

1
𝛿

}

(1, 1), if 1
𝜇−(2−𝛼)𝛬 ≤ 𝑉 −𝑃

(2−𝛼)𝐶 & 1
𝜇−(2−𝛼)𝛬 < 1

𝛿 .

(15)

b. Medium market size. If 𝜇∕(2 − 𝛼) ≤ 𝛬 < 𝜇, the equilibrium strategy
is

(𝑞𝑜𝐽 , 𝑞
𝑜
𝑜 ) =

⎧

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎩

𝟎, if 1
𝜇 ≥ max

{

𝑉 −𝑃−𝐶ℎ
𝐶 , 𝑉 −𝑃

(2−𝛼)𝐶

}

,
(

𝑞𝑜𝐽 , 0
)

, if max
{

1
𝜇 ,

1
𝛿

}

< 𝑉 −𝑃−𝐶ℎ
𝐶 < 1

𝜇−𝛬 ,

(1, 0), if 1
𝛿 < 1

𝜇−𝛬 ≤ 𝑉 −𝑃−𝐶ℎ
𝐶 ,

(

1, 𝑞𝑜𝑜
)

, if 1
𝜇−𝛬 ≤ 1

𝛿 ≤ (𝑉 −𝑃 )
(2−𝛼)𝐶 ,

(

𝑞𝑜𝐽 , 1
)

, if 1
𝜇 < 𝑉 −𝑃

(2−𝛼)𝐶 < 1
𝛿 .

(16)

c. Large market size. If 𝛬 ≥ 𝜇, the equilibrium strategy is

(𝑞𝑜𝐽 , 𝑞
𝑜
𝑜 ) =

⎧

⎪

⎪

⎨

⎪

⎪

⎩

𝟎, if 1
𝜇 ≥ max

{

𝑉 −𝑃−𝐶ℎ
𝐶 , 𝑉 −𝑃

(2−𝛼)𝐶

}

,
(

𝑞𝑜𝐽 , 0
)

, if max
{

1
𝜇 ,

1
𝛿

}

< 𝑉 −𝑃−𝐶ℎ
𝐶 ,

(

𝑞𝑜𝐽 , 1
)

, if 1
𝜇 < 𝑉 −𝑃

(2−𝛼)𝐶 < 1
𝛿 .

(17)

where 𝑞𝑜𝐽 =
𝜇− 𝐶

𝑉 −𝑃−𝐶ℎ
𝛬 , 𝑞𝑜𝑜 = 𝜇−𝛬−𝛿

(1−𝛼)𝛬 , 𝑞
𝑜
𝐽 =

𝜇− (2−𝛼)𝐶
𝑉 −𝑃

(2−𝛼)𝛬 and 𝛿 = (1−𝛼)𝐶
𝐶ℎ

.

Please refer to Appendix for the proof.

.3. Impact of service fee and expectation-meeting probability

In this subsection, we examine the impact of the service fee 𝑃 and
xpectation-meeting probability 𝛼 on customers’ equilibrium strategy in
oth online-exchange and onsite-exchange models. We first study the
ffect of 𝑃 .

roposition 1 (Impact of 𝑃 ). In both online-exchange and onsite-exchange
odels, the equilibrium order-placing probability 𝑞𝐽 is nonincreasing in 𝑃 ;
he online-service probability 𝑞 is nondecreasing in 𝑃 .
5

𝑜

The monotonicity result in 𝑞𝐽 is evident, because a higher price
discourages all customers from joining the system, regardless of

he exchange policies. To understand the monotonicity in 𝑞𝑜, note
hat the lower congestion (due to a higher 𝑃 ) is able to achieve a
igger reduction in the delay cost for online customers than for onsite
ustomers (because unsatisfied online customers will have to visit the
ervice facility for a second time), thus incentivizing more customers
o select the online service channel. We remark that Proposition 1
erves as a basis to obtain the optimal service fee in order to maximize
he revenue (See Section 5.1 for details). We next give a numerical
xample to visualize results in Proposition 1. Fig. 2 confirms that the
nline-channel-selecting probability is non-decreasing in 𝑃 under both
xchange policies.

roposition 2 (Impact of 𝛼). In both models, the online-channel-selecting
robability 𝑞𝑜 is nondecreasing in the expectation-meeting probability 𝛼; the
quilibrium order-placing probability 𝑞𝐽 is non-monotonic in 𝛼.

Please refer to Appendix for the proof.
A bigger 𝛼 makes the online service channel more trustworthy

ecause fewer customers may have to revisit the store for exchange.
ence, the online-channel-selecting probability increases as 𝛼 increases.
n the other hand, the non-monotonicity of 𝑞𝐽 is less straightforward:
hen 𝛼 is sufficiently small, online customers are unlikely to receive a

roduct that meets their expectations so that all customers (if joining)
hoose the onsite service channel, in which case 𝛼 has no impact
n customers’ order-placing probability 𝑞𝐽 . As 𝛼 increases, customers
re gradually leaning towards the online service channel. But such a
hange increases the overall customer delay (because online service
s the source of product exchange) which impedes customers from
oining the system (so that 𝑞𝐽 is non-increasing), and in Fig. 3, we
bserve a sudden drop of 𝑞𝐽 . When 𝛼 is sufficiently close to 1, the
ighly reliable online service attracts more customers. Such an effect
uccessfully reduces the overall queueing delay (because online service
ithout future feedback has a smaller disutility than onsite service) and

nvites more customers to join the system.
Once again, we provide a numerical example to illustrate our find-

ngs in Proposition 2, see Fig. 3. Similar to results in Fig. 2, customers
egin to switch from the onsite channel to online channel as 𝛼 reaches
critical level.

.4. Performance comparison: onsite exchange vs. online exchange

We next provide a performance comparison of the two product-
xchange models; we aim to inform the service provider of the one that
enerates a higher revenue. In this subsection we restrict our attention
o a fixed service fee 𝑃 , so it suffices to compare the system throughput
nder the two policies: 𝑇𝐻𝑠 = 𝛬𝑞𝑠𝐽 and 𝑇𝐻𝑜 = 𝛬𝑞𝑜𝐽 .

roposition 3 (Throughput Comparison with an Exogenous Service Fee).
e consider the following cases specified by the expectation-meeting proba-
ility 𝛼 and the market size 𝛬.

a. When 𝛼 < 𝛼, the two throughput functions are identical.
b. When 𝛼 > �̄�, the online-exchange throughput is at least as high as the
onsite-exchange throughput.

c. When 𝛼 ∈ [𝛼, �̄�],

– if the market size 𝛬 ≤ 𝛬, the two throughput functions coincide;
– if the market size 𝛬 > 𝛬, the online-exchange throughput is
higher (lower) than the onsite-exchange throughput when price
𝑃 ≥ 𝑃 (𝑃 < 𝑃 ),

where 𝛼 = 𝑉 −𝑃−2𝐶ℎ
𝑉 −𝑃−𝐶ℎ

, �̄� = 1 − 𝐶ℎ
𝑉 −𝑃 , 𝛬 = 𝜇

2−𝛼 − 𝐶
𝑉 −𝑃−(1−𝛼)𝐶ℎ

,
𝑃 = 𝑉 − 𝐶ℎ −

𝛼𝐶ℎ
1−𝛼 .
Please refer to Appendix for the proof.
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Fig. 2. The impact of price 𝑃 on equilibrium strategy of the onsite-exchange model (top panel) and online-exchange model (bottom panel), with 𝑉 = 6, 𝜇 = 0.9, 𝛬 = 0.3, 𝐶 = 2,
ℎ = 1.3, 𝑃 ∈ [0, 3.5].
Fig. 3. The impact of expectation-meeting probability 𝛼 on the equilibrium strategy of the onsite-exchange model (top panel) and online-exchange model (bottom panel), with
= 6, 𝜇 = 0.9, 𝛬 = 0.3, 𝐶 = 2, 𝐶ℎ = 1.3, 𝑃 = 1, 2, 𝛼 ∈ (0, 1).
o
p

emark 3 (Onsite vs. Online). Here are the intuitions. When online
ervice is unreliable (i.e., 𝛼 is sufficiently small), nearly no one will
elect the online channel, so that the specific exchange policy (online or
nsite) has no impact on the system performance. On the other hand, if
nline service is highly reliable (𝛼 is large), almost all customers prefer
o order online regardless which exchange policy is being implemented.
n this case, because online-exchange policy waives the inconvenience
ost for exchanging a product, it attracts more customers to place
6

rders, thus inducing a bigger throughput than the onsite-exchange
olicy.

Finally, we consider the case 𝛼 is intermediate (i.e., 𝛼 ∈ (𝛼, �̄�) for
some 𝛼 < �̄�). If 𝛬 is small (i.e., 𝛬 < 𝛬 for some 𝛬), all potential
customers join the system, inducing the identical system throughput
for the two models. See Fig. 4 for an example. When 𝛬 is large, the
system’s congestion level is highly dependent on the service price 𝑃 : A
smaller 𝑃 leads to a higher system congestion level (a longer waiting
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Fig. 4. Comparison of throughput and consumer surplus in the two exchange models, with 𝑉 = 6, 𝜇 = 0.9, 𝐶 = 2, 𝐶ℎ = 1.3, 0 ≤ 𝛬 ≤ 0.4, 𝑃 = 1, 2, 𝛼 = 0.4, 0.7, 0.8.
Fig. 5. Comparison of equilibrium strategies in the two exchange models, with 𝑉 = 6, 𝜇 = 0.9, 𝐶 = 2, 𝐶ℎ = 1.3, 0 ≤ 𝛬 ≤ 0.4, 𝑃 = 1, 2, 𝛼 = 0.4, 0.7, 0.8.
time), which diverts more customers from online to onsite channel
(see our previous discussion in Proposition 1). This effect is more
pronounced in the onsite-exchange model because online customers
receiving dissatisfying products will have to experience the queueing
process again. Therefore, a lower average delay in the onsite-exchange
model is able to attract more customers to join for service. When the
price 𝑃 is high, more customers choose the online service channel,
and in this case the online-exchange model yields a higher throughput
because it avoids the inconvenience cost 𝐶ℎ completely.

Below we consider a numerical example to visualize results in
Proposition 3. Besides the system throughput, we also consider the
consumer surplus (CS), which is the sum of all customers’ utility gain.
Specifically, the CS under two models are defined as

𝐶𝑆𝑠 = 𝛬𝑞𝑠 [𝑞𝑠𝑈 𝑠+(1−𝑞𝑠)𝑈 𝑠] and 𝐶𝑆𝑜 = 𝛬𝑞𝑜 [𝑞𝑜𝑈 𝑜+(1−𝑞𝑜)𝑈 𝑜], (18)
7

𝐽 𝑜 𝑜 𝑜 𝑠 𝐽 𝑜 𝑜 𝑜 𝑠
where 𝑈 𝑠
𝑜 , 𝑈

𝑠
𝑠 , 𝑈

𝑜
𝑜 , 𝑈

𝑜
𝑠 are defined in Eqs. (4)–(5), (12)–(13) respectively.

In Fig. 4 we plot the throughput and consumer surplus (the sum of
utilities of all consumers) of both online-exchange and onsite-exchange
models as functions of 𝛬, 𝑃 and 𝛼. Observations in Fig. 4 on the
throughput are consistent with findings in Proposition 3. However, an
interesting case for CS is when 𝛼 is intermediate and 𝑃 is small (panel
(b)), where onsite exchange is more effective in both the throughput
and CS when 𝛬 is large (see the shaded area): As 𝛬 increases, the online-
exchange model is the first to reach its throughput saturation point,
yielding a constant throughput and zero customer surplus, whereas the
onsite-exchange model continues to improve its throughput and render
a positive customer surplus. See Fig. 5 for the detailed equilibrium
strategies.

On the customer utility. We next investigate how the market size
impacts the customer utility functions. In Fig. 6, and we plot customer
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Fig. 6. Comparison of customer utility in the two exchange models, with 𝑉 = 6, 𝜇 = 0.9, 𝐶 = 2, 𝐶ℎ = 1.3, 0 ≤ 𝛬 ≤ 0.4, 𝑃 = 1, 2, 𝛼 = 0.4, 0.7, 0.8.
utility under both service channels in two models. First, as the market
size increases, all customer utility functions decrease.

Next, when 𝛼 is sufficiently small (e.g., 𝛼 = 0.4 as in panel (a)), in
both exchange models, customers’ utility function of the onsite channel
are higher than those of the online channel (𝑈 𝑠

𝑠 > 𝑈 𝑠
𝑜 ;𝑈

𝑜
𝑠 > 𝑈 𝑜

𝑜 ), so that
all customers select the onsite service channel. Moreover, the structure
of customer utility functions in the onsite channel are identical under
both models because no exchange will be needed (i.e., 𝑈 𝑠

𝑠 = 𝑈 𝑜
𝑠 ). When

𝛼 is sufficiently large (e.g., 𝛼 = 0.8 as in panel (c)), in both exchange
models, customers’ utility functions of online channel are higher than
those of the onsite channel (𝑖.𝑒., 𝑈 𝑠

𝑜 > 𝑈 𝑠
𝑠 ;𝑈

𝑜
𝑜 > 𝑈 𝑜

𝑠 ), so all customers
select the online channel. Indeed, the online-exchange model prevails
because its high satisfactory probability helps reduce customers’ delay
costs.

The case of the intermediate 𝛼 (e.g., 𝛼 = 0.7 as in panel (b))
reveals some interesting observations: here the ordering of the utility
functions depends on the market size 𝛬 and price 𝑃 . If the market size
is sufficiently small (e.g., 𝛬 < 0.1), all potential customers join the
system and select the online service channel. This is because that the
online channel helps reduce the inconvenience cost. As the market size
increases, customers’ utility will be dependent on the service price 𝑃 :
When the price 𝑃 is high, we observe that 𝑈 𝑠

𝑜 ≥ 𝑈 𝑠
𝑠 and 𝑈 𝑜

𝑜 ≥ 𝑈 𝑜
𝑠 .

A high service fee can help reduce the system’s waiting time, making
the online service channel more appealing. If the price 𝑃 is small,
the system’s waiting time is larger. In the online exchange model, the
online service channel becomes more advantageous because it helps
reduce the inconvenience cost; while in the onsite exchange model,
the onsite service channel is more popular because it can reduce the
additional waiting costs during the exchange process.

5. Extensions

We study two extensions of our base model. First, in Section 5.1
we allow the service fee to be a decision variable which can be used
to further improve the revenue. Next, in Section 5.2 we allow the
inconvenience cost to be a random variable to capture customers’
heterogeneity.

5.1. Endogenous price

Previously we have examined customers’ equilibrium strategy and
8

the system throughput in the two product-exchange models with the
service fee held fixed. This analysis is relevant to many practices
where the service provider is unable to adjust the price of the prod-
uct (e.g., when retail prices are value-based or competition-based;
see, for example, [36]). Nevertheless, pricing is not only feasible but
also crucial in many other practices (e.g., on-demand platforms such
as [37]).

In this subsection, we consider the setting of endogenous price, where
the retailer is allowed to adjust the price 𝑃 to maximize the revenue.
We study the corresponding customer responses and the performance
under the two exchange policies. Denote by 𝛱(𝑃 ) the revenue per unit
time for the retailer under price 𝑃 , the revenue maximization problem
is

max
𝑃≥0

𝛱(𝑃 ) = 𝛬𝑒(𝑃 )𝑃 , (19)

where 𝛬𝑒(𝑃 ) is the effective external arrival rate given 𝑃 .
In the rest of this subsection, we focus on the small-market case

with 𝜇 > (2−𝛼)𝛬 (Case (a) in Theorem 1). We remark that the analysis
for the other two cases are similar and can be conducted following an
identical road map, so we omit them to avoid tediousness.

5.1.1. Onsite exchange model with endogenous service fee
We first consider the onsite-exchange model (we add subscript

‘‘s’’ to the optimal price 𝑃 ∗). To characterize customers’ equilibrium
strategy, we define the following constants which, as we will see soon,
are candidate pricing solutions.

𝑃𝑠 = 𝑉 − 𝐶ℎ −

√

𝐶(𝑉 − 𝐶ℎ)
𝜇

, 𝑃𝑠 = 𝑉 −

√

(2 − 𝛼)𝐶𝑉
𝜇

. (20)

In what follows, we provide results that can be used to obtain the
retailer’s optimal price 𝑃 ∗

𝑠 , where the subscript ‘‘𝑠’’ indicates the onsite
exchange policy. Let 𝑥 ∨ 𝑦 ≡ max(𝑥, 𝑦) and 𝑥 ∧ 𝑦 ≡ min(𝑥, 𝑦). Due to
the complex nature of the problem, a closed-form expression of 𝑃 ∗

𝑠
is difficult. Hence, we provide a partial description by computing the
optimal prices assuming a specific structure of customers’ equilibrium
strategy (𝑞𝑠𝐽 , 𝑞

𝑠
𝑜).

Theorem 3 (Onsite Exchange with Endogenous Pricing). In the onsite-
exchange model, the service provider’s optimal price can be described in the
following three cases specified by customers’ equilibrium strategy (𝑞𝑠𝐽 , 𝑞

𝑠
𝑜).

i. For equilibrium strategy (𝑞𝑠 , 𝑞𝑠) =
(

𝑞𝑠 , 0
)

,
𝐽 𝑜 𝐽
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(i.a) If 𝜇 − 𝐶
𝑉 −𝐶ℎ

< 0, 𝑃 ∗
𝑠 = 𝑉 − 𝐶ℎ −

𝐶
𝜇−𝛬 ;

(i.b) If 𝜇 − 𝐶
𝑉 −𝐶ℎ

≥ 0 and 𝑉 − 𝐶ℎ −
𝐶
𝜇 ≥ 𝑉 − 𝐶ℎ −

𝐶
𝜂 ,

𝑃 ∗
𝑠 =

(

𝑉 − 𝐶ℎ −
𝐶

𝜇 − 𝛬

)

∨ 𝑃𝑠 ∧
(

𝑉 − 𝐶ℎ −
𝐶
𝜂

)

;

(i.c) If 𝜇 − 𝐶
𝑉 −𝐶ℎ

≥ 0 and 𝑉 − 𝐶ℎ −
𝐶
𝜇 < 𝑉 − 𝐶ℎ −

𝐶
𝜂 ,

𝑃 ∗
𝑠 =

(

𝑉 − 𝐶ℎ −
𝐶

𝜇 − 𝛬

)

∨ 𝑃𝑠 ∧
(

𝑉 − 𝐶ℎ −
𝐶
𝜇

)

.

ii. For equilibrium strategy (𝑞𝑠𝐽 , 𝑞
𝑠
𝑜) =

(

1, 𝑞𝑠𝑜
)

,

𝑃 ∗
𝑠 = 𝑉 − 𝐶

𝜂𝛼
;

iii. For equilibrium strategy (𝑞𝑠𝐽 , 𝑞
𝑠
𝑜) =

(

𝑞𝑠𝐽 , 1
)

,

(iii.a) If 𝜇 − (2−𝛼)𝐶
𝑉 −(1−𝛼)𝐶ℎ

< 0,

𝑃 ∗
𝑠 = max

{

𝑉 −
(2 − 𝛼)𝐶

𝜂
, 𝑉 −

(2 − 𝛼)𝐶
𝜇 − (2 − 𝛼)𝛬

}

;

(iii.b) If 𝜇 − (2−𝛼)𝐶
𝑉 −(1−𝛼)𝐶ℎ

≥ 0 and (2−𝛼)𝐶
𝜂 ≤ (2−𝛼)𝐶

𝜇−(2−𝛼)𝛬 ,

𝑃 ∗
𝑠 =

(

𝑉 −
(2 − 𝛼)𝐶

𝜂

)

∨ 𝑃𝑠 ∧
(

𝑉 −
(2 − 𝛼)𝐶

𝜇

)

;

(iii.c) If 𝜇 − (2−𝛼)𝐶
𝑉 −(1−𝛼)𝐶ℎ

≥ 0 and (2−𝛼)𝐶
𝜂 > (2−𝛼)𝐶

𝜇−(2−𝛼)𝛬 ,

𝑃 ∗
𝑠 =

(

𝑉 −
(2 − 𝛼)𝐶

𝜇 − (2 − 𝛼)𝛬

)

∨ 𝑃𝑠 ∧
(

𝑉 −
(2 − 𝛼)𝐶

𝜇

)

.

Please refer to Appendix for the proof.

.1.2. Online exchange model with endogenous service fee
We next study the online exchange model (we add subscript ‘‘o’’

o 𝑃 ∗). To characterize customers’ equilibrium strategy, we define the
ollowing constants which are candidate pricing solutions.

�̃� = 𝑉 − 𝐶ℎ −

√

𝐶(𝑉 − 𝐶ℎ)
𝜇

and 𝑃𝑜 = 𝑉 −

√

(2 − 𝛼)𝐶𝑉
𝜇

. (21)

Similar to Theorem 3, we next provide a partial description of the
ptimal price in accordance with every case of the equilibrium strategy.

heorem 4 (Online Exchange with Endogenous Pricing). In the online-
xchange model, the service provider’s optimal price can be described in the
ollowing three cases specified by customers’ equilibrium strategy (𝑞𝑜𝐽 , 𝑞

𝑜
𝑜 ).

i. For equilibrium strategy (𝑞𝑜𝐽 , 𝑞
𝑜
𝑜 ) =

(

𝑞𝑜𝐽 , 0
)

,

(i.a) if 𝜇 − 𝐶
𝑉 −𝐶ℎ

< 0, 𝑃 ∗
𝑜 = 𝑉 − 𝐶ℎ −

𝐶
𝜇−𝛬 ;

(i.b) if 𝜇 − 𝐶
𝑉 −𝐶ℎ

≥ 0 and 𝑉 − 𝐶ℎ −
𝐶
𝜇 ≥ 𝑉 − 𝐶ℎ −

𝐶
𝛿 ,

𝑃 ∗
𝑜 =

(

𝑉 − 𝐶ℎ −
𝐶

𝜇 − 𝛬

)

∨ 𝑃𝑜 ∧
(

𝑉 − 𝐶ℎ −
𝐶
𝛿

)

;

(i.c) if 𝜇 − 𝐶
𝑉 −𝐶ℎ

≥ 0 and 𝑉 − 𝐶ℎ −
𝐶
𝜇 < 𝑉 − 𝐶ℎ −

𝐶
𝛿 ,

𝑃 ∗
𝑜 =

(

𝑉 − 𝐶ℎ −
𝐶

𝜇 − 𝛬

)

∨ 𝑃𝑜 ∧
(

𝑉 − 𝐶ℎ −
𝐶
𝜇

)

.

ii. For equilibrium strategy (𝑞𝑜𝐽 , 𝑞
𝑜
𝑜 ) =

(

1, 𝑞𝑜𝑜
)

,

𝑃 ∗
𝑜 = 𝑉 −

(2 − 𝛼)𝐶
𝛿

;

iii. For equilibrium strategy (𝑞𝑜𝐽 , 𝑞
𝑜
𝑜 ) =

(

𝑞𝑜𝐽 , 1
)

,

(iii.a) if 𝜇 − (2−𝛼)𝐶
𝑉 < 0,

𝑃 ∗
𝑜 = max

{

𝑉 −
(2 − 𝛼)𝐶

, 𝑉 −
(2 − 𝛼)𝐶

}

;

9

𝛿 𝜇 − (2 − 𝛼)𝛬
(iii.b) If 𝜇 − (2−𝛼)𝐶
𝑉 ≥ 0 and (2−𝛼)𝐶

𝛿 ≤ (2−𝛼)𝐶
𝜇−(2−𝛼)𝛬 ,

𝑃 ∗
𝑜 =

(

𝑉 −
(2 − 𝛼)𝐶

𝛿

)

∨ 𝑃𝑜 ∧
(

𝑉 −
(2 − 𝛼)𝐶

𝜇

)

;

(iii.c) If 𝜇 − (2−𝛼)𝐶
𝑉 ≥ 0 and (2−𝛼)𝐶

𝛿 > (2−𝛼)𝐶
𝜇−(2−𝛼)𝛬 ,

𝑃 ∗
𝑜 =

(

𝑉 −
(2 − 𝛼)𝐶

𝜇 − (2 − 𝛼)𝛬

)

∨ 𝑃𝑜 ∧
(

𝑉 −
(2 − 𝛼)𝐶

𝜇

)

.

Please refer to Appendix for the proof.

5.1.3. Revenue comparison with endogenous service fee
In this subsection, we compare the revenue of the two product-

exchange models when the service provider adopts the optimal price
according to (19). We pay especial attention to the scenarios specified
by the market size 𝛬 and the expectation-meeting probability 𝛼.

Proposition 4 (Revenue Under Endogenous Pricing). The optimal prices in
both product-exchange models are non-increasing in 𝛬. To compare the op-
timal revenue, we consider three cases specified by the expectation-meeting
probability 𝛼.

a. When 𝛼 < 𝛼1, revenue of the two models are identical.
b. When 𝛼 > �̄�1, the online-exchange model generates a higher revenue
than the onsite-exchange model.

c. When 𝛼 ∈ [𝛼1, �̄�1], the online-exchange model yields a higher (lower)
revenue than the onsite-exchange model when the market size is lower
(higher) than 𝛬′,

where 𝛼1 is uniquely solved by 𝐶2
ℎ𝜇 = (2 − 𝛼)(1 − 𝛼)2𝐶(𝑉 − 𝐶ℎ), and

�̄�1 =
√

𝜇𝐶(𝑉 −𝐶ℎ)
𝜇𝐶ℎ+

√

𝜇𝐶(𝑉 −𝐶ℎ)
and 𝛬′ = 𝜇

2−𝛼 − 𝜇𝐶
𝛼𝜇𝐶ℎ+

√

𝜇𝐶(𝑉 −𝐶ℎ)
.

Please refer to Appendix for the proof.
We visualize our findings by considering an example to numerically

compare the optimal revenue and its corresponding price under two
policies. In Fig. 7, we plot the optimal revenue 𝛱∗

𝑠 and 𝛱∗
𝑜 (bottom

panels) and the optimal price 𝑃 ∗
𝑠 and 𝑃 ∗

𝑜 (top panels) for 0 ≤ 𝛬 ≤ 0.4
ith 𝛼 = 0.4, 0.7, 0.8.

Fig. 7 gives the following implications.

i. When online service is highly unreliable (e.g., 𝛼 = 0.4), all joining
customers choose the onsite service channel, which yields no
feedback orders at all. Hence, the specific exchange policy plays
no role, and the two revenue curves coincide.

ii. On the other hand, when online service is sufficiently reliable
(e.g., 𝛼 = 0.8), all joining customers choose the online service
channel. Because the online-exchange model induces a lower total
cost for joining customers (it spares the cost 𝐶ℎ), more customers
are willing to join. This gives the service provider an opportunity
to achieve higher revenue by increasing the service fee.

iii. The most sophisticated is the middle ground case with an in-
termediate 𝛼, see the middle plots in Fig. 7. In this case, the
online-exchange model yields a higher (lower) revenue when the
mark size 𝛬 is small (large). To gain insights into this behavior,
note that increasing 𝛬 will divert a bigger customer flow from
the online channel to onsite channel (see our previous discussion
following Proposition 1). Although this happens to both models,
this effect is more significant in the onsite-exchange model due to
the extra inconvenience cost. This behavior effectively mitigates
the system congestion which in turn allows more customers to
join the system, hence a higher revenue.

When the service fee is endogenous (under the setting of the present
ection), the performance ranking of the two models remains nearly
nchanged when 𝛼 is small (see panel (a) in Figs. 4 and 7). When 𝛼 is
arge, optimal pricing allows the online-exchange model to establish a
igger advantage (see panel (c) in Figs. 7), because the service provider
ay increase the price to fetch off more consumer surplus. When 𝛼 is
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Fig. 7. Comparison of the revenue and price in the two product-exchange models, with 𝑉 = 6, 𝜇 = 0.9, 𝐶 = 2, 𝐶ℎ = 1.3.
𝐶

𝑝

𝑝

edium, we know that, according to Fig. 4, online exchange gives a
igher (lower) revenue when the price 𝑃 is high (low). Because the
ptimal price 𝑃 ∗ decreases in 𝛬, online exchange ought to outperform

onsite exchange when 𝛬 is small (i.e., 𝑃 ∗ is high), but its dominance on
the revenue should be overturned as the market size 𝛬 (optimal price
𝑃 ∗) becomes sufficiently large (low); also see Remark 3.

Finally, we study the impact of the expectation-meeting probability
𝛼 on the optimal revenue in the two models. We do so via a numerical
example, see Fig. 8. Consistent with our earlier findings under the
setting of a fixed 𝑃 , Fig. 8 confirms that the revenue is not always
increasing in 𝛼 (see Fig. 3 for example). Indeed, when 𝛼 is medium,
increasing 𝛼 will drive more customers to join the online service chan-
nel (𝑞𝑜 increases in 𝛼) and thus prolong the overall customer waiting
time (because product exchange is generated from online service only)
which impedes customers from joining the system and yields a lower
revenue. This explains why all revenue curves have a little ‘‘dip’’. But
as 𝛼 continues to grow, all joining customers will eventually choose the
online channel, and because the online-exchange policy eliminates the
inconvenience cost 𝐶ℎ, the effective arrival rate increases so that the
service provider is able to harvest higher revenue.

5.2. Heterogeneous inconvenience cost

Our analysis in previous sections assumes a constant inconvenience
cost for exchange customers. However, such an inconvenience cost
may vary from customer to customer in practice, we now consider an
extension to include a heterogeneous inconvenience cost. Specifically,
we now assume that 𝐶ℎ is a random variable which is uniformly
distributed in [0, 𝐶𝐻 ] for some 𝐶𝐻 > 0.

5.2.1. Onsite exchange model
Because the inconvenience cost is now a heterogeneous factor, the

utility function will depend on the specific customer’s inconvenience
cost. As we will see later, the equilibrium strategy will exhibit threshold
structure in the value of 𝐶ℎ. In the onsite exchange model, given an
inconvenience cost 𝐶ℎ ∈ [0, 𝐶𝐻 ], the expected utilities of an online
customer and an onsite customer are

𝑈 𝑠(𝑝 , 𝑝 ;𝐶 ) = 𝑉 − 𝑃 − (1 − 𝛼)𝐶 − (2 − 𝛼)𝐶𝑊 (𝑝 , 𝑝 ), (22)
10

𝑜 𝑠 𝑜 ℎ ℎ 𝑠 𝑜
𝑈 𝑠
𝑠 (𝑝𝑠, 𝑝𝑜;𝐶ℎ) = 𝑉 − 𝑃 − 𝐶ℎ − 𝐶𝑊 (𝑝𝑠, 𝑝𝑜), (23)

where 𝑝𝑠 and 𝑝𝑜 are the fractions of customers who order onsite and
online, with 𝑝𝑠 + 𝑝𝑜 ≤ 1, and 𝑊 (𝑝𝑠, 𝑝𝑜) = 1

𝜇−𝛬𝑝𝑠−(2−𝛼)𝛬𝑝𝑜
denotes

the customers’ expected waiting time under 𝑝𝑠 and 𝑝𝑜. Because both
utility functions (22) and (23) are decreasing in 𝐶ℎ, for any given
(𝑝𝑠, 𝑝𝑜), there exists unique solutions to equations 𝑈 𝑠

𝑜 (𝑝𝑠, 𝑝𝑜;𝐶ℎ) = 0
and 𝑈 𝑠

𝑠 (𝑝𝑠, 𝑝𝑜;𝐶ℎ) = 0, which we refer to as �̂�ℎ and 𝐶ℎ respectively. In
addition, there exists a unique solution to the equation 𝑈 𝑠

𝑜 (𝑝𝑠, 𝑝𝑜;𝐶ℎ) =
𝑈 𝑠
𝑠 (𝑝𝑠, 𝑝𝑜;𝐶ℎ), which we denote as �̄�ℎ. Specifically, we have

ℎ̃ = 𝑉 − 𝑃 − 𝐶𝑊 (𝑝𝑠, 𝑝𝑜), �̂�ℎ =
𝑉 − 𝑃 − (2 − 𝛼)𝐶𝑊 (𝑝𝑠, 𝑝𝑜)

1 − 𝛼
,

�̄�ℎ =
(1 − 𝛼)𝐶𝑊 (𝑝𝑠, 𝑝𝑜)

𝛼
.

We next give customers equilibrium using the above-introduced con-
stants.

Theorem 5 (Onsite Exchange Model with Heterogeneous Inconvenience
Cost). Under the onsite exchange policy, we give the equilibrium strategy
as follows.

(𝑝𝑒𝑠, 𝑝
𝑒
𝑜) =

⎧

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎩

(1, 0), if 𝛼𝐶𝐻
(1−𝛼)𝐶

< 𝑊 (1, 0) ≤ 𝑉 −𝑃−𝐶𝐻
𝐶

,
(

𝑝1𝑠 , 1 − 𝑝1𝑠
)

, if 𝑊 (𝑝1𝑠 , 1 − 𝑝1𝑠 ) ≤ min
{

𝛼(𝑉 −𝑃 )
𝐶

, 𝛼𝐶𝐻
(1−𝛼)𝐶

, (𝑉 −𝑃 )−(1−𝛼)𝐶𝐻
(2−𝛼)𝐶

}

,

(𝑝2𝑠 , 𝑝
2
𝑜 ), if (𝑉 −𝑃 )−(1−𝛼)𝐶𝐻

(2−𝛼)𝐶
< 𝑊 (𝑝2𝑠 , 𝑝

2
𝑜 ) ≤

𝛼(𝑉 −𝑃 )
𝐶

,
(

𝑝3𝑠 , 0
)

, if 𝑊 (𝑝3𝑠 , 0) > max
{

𝛼(𝑉 −𝑃 )
𝐶

, 𝑉 −𝑃−𝐶𝐻
𝐶

}

.

(24)

where 𝑝1𝑠 , 𝑝3𝑠 , 𝑝2𝑠 and 𝑝2𝑜 solve equations 𝛼𝑝1𝑠𝐶𝐻 = (1 − 𝛼)𝐶𝑊 (𝑝1𝑠 , 1 − 𝑝1𝑠 ),
3
𝑠𝐶𝐻 = 𝑉 − 𝑃 − 𝐶𝑊 (𝑝3𝑠 , 0), 𝛼𝑝2𝑠𝐶𝐻 = (1 − 𝛼)𝐶𝑊 (𝑝2𝑠 , 𝑝

2
𝑜), and

2
𝑜𝐶𝐻 =

𝑉 − 𝑃 − (2 − 𝛼)𝐶𝑊 (𝑝2𝑠 , 𝑝
2
𝑜)

1 − 𝛼
−

(1 − 𝛼)𝐶𝑊 (𝑝2𝑠 , 𝑝
2
𝑜)

𝛼
.

Please refer to Appendix for the proof.

5.2.2. Online exchange model
In the online exchange model, given an inconvenience cost 𝐶ℎ ∈

[0, 𝐶 ], the expected utilities of an online customer and an onsite
𝐻
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Fig. 8. Comparison of the optimal price and revenue in the two product-exchange models, with 𝑉 = 6; 𝜇 = 0.9; 𝐶 = 2; 𝐶ℎ = 1.3.
customer are

𝑈 𝑜
𝑜 (𝑝𝑠, 𝑝𝑜) = 𝑉 − 𝑃 − (2 − 𝛼)𝐶𝑊 (𝑝𝑠, 𝑝𝑜), (25)

𝑈 𝑜
𝑠 (𝑝𝑠, 𝑝𝑜;𝐶ℎ) = 𝑉 − 𝑃 − 𝐶ℎ − 𝐶𝑊 (𝑝𝑠, 𝑝𝑜). (26)

Note that in (25) we omit the argument 𝐶ℎ because the utility function
is independent of 𝐶ℎ. For a given (𝑝𝑠, 𝑝𝑜), the utility function in (26) is
decreasing in 𝐶ℎ. Hence, there exists a unique solution to the equation
𝑈 𝑜
𝑠 (𝑝𝑠, 𝑝𝑜;𝐶ℎ) = 0, which we refer to as 𝐶ℎ. In addition, there exists a

unique solution to the equation 𝑈 𝑜
𝑜 (𝑝𝑠, 𝑝𝑜) = 𝑈 𝑜

𝑠 (𝑝𝑠, 𝑝𝑜;𝐶ℎ), in which we
denote as 𝐶 ′

ℎ. Specifically, we have

𝐶ℎ = 𝑉 − 𝑃 − 𝐶𝑊 (𝑝𝑠, 𝑝𝑜), 𝐶 ′
ℎ = (1 − 𝛼)𝐶𝑊 (𝑝𝑠, 𝑝𝑜).

Theorem 6 (Onsite Exchange Model with Heterogeneous Inconvenience
Cost). Under the onsite exchange policy, we give the equilibrium strategy
as follows.

(𝑝𝑒𝑠, 𝑝
𝑒
𝑜) =

⎧

⎪

⎪

⎨

⎪

⎪

⎩

(1, 0), if 𝐶𝐻
(1−𝛼)𝐶 < 𝑊 (1, 0) ≤ 𝑉 −𝑃−𝐶𝐻

𝐶 ,
(

𝑝1𝑠 , 1 − 𝑝1𝑠
)

, if 𝑊 (𝑝1𝑠 , 1 − 𝑝1𝑠 ) ≤ min
{

𝑉 −𝑃
(2−𝛼)𝐶 ,

𝐶𝐻
(1−𝛼)𝐶

}

,
(

𝑝3𝑠 , 0
)

, if 𝑊 (𝑝3𝑠 , 0) > max
{

𝑉 −𝑃
(2−𝛼)𝐶 ,

𝑉 −𝑃−𝐶𝐻
𝐶

}

.

(27)

where 𝑝1𝑠 and 𝑝3𝑠 solve equations 𝑝1𝑠𝐶𝐻 = (1 − 𝛼)𝐶𝑊 (𝑝𝑠1, 1 − 𝑝1𝑠 ) and
𝑝3𝑠𝐶𝐻 = 𝑉 − 𝑃 − 𝐶𝑊 (𝑝3𝑠 , 0).

Please refer to Appendix for the proof.

6. Conclusion

Motivated by the rapid growth of online retailing, we study an
omnichannel service queueing model. The omnichannel aspect of the
model allows customers to either place an online order (e.g., on a
computer or mobile app), or place an onsite order by physically visiting
the service facility. Although the online service channel has many
appeals, it gives rise to undesired feedback orders requesting return
and exchanges; on the other hand, the physical travel to a service
facility can be inconvenience and costly, but it gives customers suffi-
cient opportunities to interact with the product, thus can largely avert
feedback orders. In this paper, we consider two practical exchange
policies: online exchange (e.g., by mail), and onsite exchange (e.g., in-
store dropoff). We carefully examine how these two exchange policies
11
Fig. 9. An omnichannel retailing queue with product exchange and return.

shape customers’ behavior; we aim to inform the service provider of the
optimal exchange policy with the objective of maximizing the system’s
total revenue. We study two settings: the service fee is exogenous (not
a decision variable), and the service fee is endogenous (part of the
service provider’s decision). Our results show that the online exchange
policy is a double-edged sword: On the one hand, it helps eliminate the
inconvenience cost for exchange customers to revisit the store; on the
other hand, it can trigger more feedback orders and render a higher
system congestion level, which in turn, deters future customers from
placing orders. Specifically, we discovery that online exchange becomes
an inferior policy (relative to onsite exchange) when the market size is
large.

Limitations and future directions. There are several venues for future
research. First, it will be interesting to consider the more general
setting where online exchange also incurs an inconvenience cost 𝐶𝑜 and
carefully study how 𝐶𝑜 compares to 𝐶ℎ. A second future direction is to
consider endogenous product-exchange behavior, that is, a customer
receiving a dissatisfying product from the online service channel may
or may not pursue a product exchange. We envision that this exten-
sion will largely complicate the analysis of the customer equilibrium
strategy which will now become a three-dimensional vector because
customers make decisions in three steps (the two-dimensional decision
in the present setting is already quite involved so this future work
will require some serious efforts). Another potential generalization is
to consider the case which allows customers to request for returning
the product for a complete refund when they are unsatisfied with the
product, see Fig. 9.



Omega 125 (2024) 103024K. Sun et al.

&

D

D

A

C
C
s
t

A

P
s
a

𝛥

F
a

𝛥

P
t

CRediT authorship contribution statement

Ke Sun: Conceptualization, Formal analysis, Methodology, Visual-
ization, Original draft. Yunan Liu: Conceptualization, Writing – review

editing. Xiang Li: Supervision, Writing – review & editing.

eclaration of competing interest

There is NO conflict of interest.

ata availability

No data was used for the research described in the article.

cknowledgments

This work was supported by Beijing Natural Science Foundation,
hina (No. 9244031), and National Natural Science Foundation of
hina (No. 71931001), and the Funds for First-class Discipline Con-
truction, China (XK1802-5) and the Fundamental Research Funds for
he Central Universities, China (ZY2338).

ppendix. Proofs

roofs of Lemma 1. According to the customer utilities in the two
ervice channels (4)–(5), we define the difference of these two functions
s
𝑠(𝑞𝐽 , 𝑞𝑜) ≡ 𝑈 𝑠

𝑜 (𝑞𝐽 , 𝑞𝑜) −𝑈 𝑠
𝑠 (𝑞𝐽 , 𝑞𝑜) = 𝛼𝐶ℎ −

(1 − 𝛼)𝐶
𝜇 − 𝛬𝑞𝐽 [1 + (1 − 𝛼)𝑞𝑜]

. (A.1)

or a given 𝑞𝐽 , 𝛥𝑠(𝑞𝐽 , 𝑞𝑜) is decreasing in 𝑞𝑜 ∈ [0, 1], and its maximum
nd minimum values are
↑(𝑞𝐽 ) ≡ max

𝑞𝑜
𝛥𝑠(𝑞𝐽 , 𝑞𝑜) = 𝛥𝑠(𝑞𝐽 , 0) = 𝛼𝐶ℎ − (1 − 𝛼) 𝐶

𝜇 − 𝛬𝑞𝐽
,

𝛥↓(𝑞𝐽 ) ≡ min
𝑞𝑜

𝛥𝑠(𝑞𝐽 , 𝑞𝑜) = 𝛥𝑠(𝑞𝐽 , 1) = 𝛼𝐶ℎ − (1 − 𝛼) 𝐶
𝜇 − 𝛬𝑞𝐽 [2 − 𝛼]

.

Let 𝜂 ≡ (1−𝛼)𝐶
𝛼𝐶ℎ

, we consider three cases specified by 𝜂:

(1) When 1
𝜂 < 1

𝜇−𝛬𝑞𝐽
, we have 𝛥↑(𝑞𝐽 ) < 0 so that 𝛥𝑠(𝑞𝐽 , 𝑞𝑜) < 0 for all

𝑞𝑜 ∈ [0, 1]. Hence, the best response of a joining customer is to
order onsite, yielding the equilibrium 𝑞𝑠𝑜(𝑞𝐽 ) = 0.

(2) When 1
𝜇−𝛬𝑞𝐽

≤ 1
𝜂 ≤ 1

𝜇−𝛬𝑞𝐽 (2−𝛼)
, there exists a unique solution 𝑞∗𝑜 to

the equation 𝛥𝑠(𝑞𝐽 , 𝑞∗𝑜 ) = 0. In addition, we have 𝛥𝑠(𝑞𝐽 , 𝑞𝑜) > 0 for
𝑞𝑜 ∈ [0, 𝑞∗𝑜 ) and 𝛥𝑠(𝑞𝐽 , 𝑞𝑜) < 0 for 𝑞𝑜 ∈ (𝑞∗𝑜 , 1]. So the equilibrium
order-selecting probability 𝑞𝑠𝑜(𝑞𝐽 ) = 𝑞∗𝑜 = 1

1−𝛼

(

𝜇−𝜂
𝛬𝑞𝐽

− 1
)

.

(3) When 1
𝜂 > 1

𝜇−𝛬𝑞𝐽 (2−𝛼)
, we have 𝛥↓(𝑞𝐽 ) > 0 so that 𝛥𝑠(𝑞𝐽 , 𝑞𝑜) > 0 for

all 𝑞𝑜 ∈ [0, 1]. Hence, the best response for a joining customer is
to order online, yielding the equilibrium 𝑞𝑠𝑜(𝑞𝐽 ) = 1.

To show that the equilibrium channel-selecting probability 𝑞𝑠𝑜(𝑞𝐽 )
is weakly decreasing in 𝑞𝐽 , we pick two probabilities 𝑞1𝐽 < 𝑞2𝐽 and
denote the corresponding equilibrium channel-selecting probabilities as
𝑞𝑠,1𝑜 (𝑞1𝐽 ) and 𝑞𝑠,2𝑜 (𝑞2𝐽 ), respectively. Hence, we have that 𝑥1 ≡ 1

𝜇−𝛬𝑞1𝐽
<

1
𝜇−𝛬𝑞2𝐽

≡ 𝑥2 and 𝑦1 ≡ 1
𝜇−(2−𝛼)𝛬𝑞1𝐽

< 1
𝜇−(2−𝛼)𝛬𝑞2𝐽

≡ 𝑦2. In addition, we

also have that 𝑧1 ≡ 1
1−𝛼

(

𝜇−𝜂
𝛬𝑞1𝐽

− 1
)

> 1
1−𝛼

(

𝜇−𝜂
𝛬𝑞2𝐽

− 1
)

≡ 𝑧2. We next
separately treat the following two cases:

(1) When 𝑥1 < 𝑥2 ≤ 𝑦1 < 𝑦2: According to the equilibrium results
in Eq. (6), if 1

𝜂 ≤ 𝑥2, then 𝑞𝑠,1𝑜 (𝑞1𝐽 ) ≥ 𝑞𝑠,2𝑜 (𝑞2𝐽 ) = 0; if 𝑥2 < 1
𝜂 < 𝑦1,

𝑞𝑠,1𝑜 (𝑞1𝐽 ) = 𝑧1 > 𝑧2 = 𝑞𝑠,2𝑜 (𝑞2𝐽 ); if 1
𝜂 ≥ 𝑦1, 𝑞

𝑠,1
𝑜 (𝑞1𝐽 ) = 1 ≥ 𝑞𝑠,2𝑜 (𝑞2𝐽 ).

(2) When 𝑥1 < 𝑦1 < 𝑥2 < 𝑦2: If 1
𝜂 ≤ 𝑥2, then 𝑞𝑠,1𝑜 (𝑞1𝐽 ) ≥ 𝑞𝑠,2𝑜 (𝑞2𝐽 ) = 0; If

1 > 𝑥 , 𝑞𝑠,1(𝑞1 ) = 1 ≥ 𝑞𝑠,2(𝑞2 ).
12

𝜂 2 𝑜 𝐽 𝑜 𝐽
In summary, we have 𝑞𝑠,1𝑜 (𝑞1𝐽 ) ≥ 𝑞𝑠,2𝑜 (𝑞2𝐽 ). □

roof of Theorem 1. In Case (𝑎) (i.e., the market size 𝛬 < 𝜇∕(2 − 𝛼)),
here are three sub-cases:

(a.i) If 𝑞𝑠𝑜 = 0, recall that the first case in Lemma 1 requires that 1
𝜂 <

1
𝜇−𝛬𝑞𝐽

, thus the order-placing probability satisfies the condition

𝑞𝐽 >
𝜇 − 𝜂
𝛬

. (A.2)

Subsequently, a joining customer’s expected utility satisfies
𝑈 𝑠
𝐽 (𝑞𝐽 , 0) = 𝑈 𝑠

𝑠 (𝑞𝐽 , 0) = 𝑉 − 𝑃 − 𝐶ℎ − 𝐶
𝜇−𝛬𝑞𝐽

, where 𝑈 𝑠
𝐽 (𝑞𝐽 , 0)

is decreasing in 𝑞𝐽 ∈ [0, 1].

(1) When 𝑉 −𝑃−𝐶ℎ
𝐶 ≤ 1

𝜇 , then 𝑈 𝑠
𝐽 (𝑞𝐽 , 0) ≤ 0 for all 𝑞𝐽 ∈ [0, 1],

so the best response of all arriving customers is to balk,
which is an equilibrium if 𝑞𝐽 = 0 > 𝜇−𝜂

𝛬 , or equivalently,
1
𝜇 > 1

𝜂 .
(2) When 1

𝜇 < 𝑉 −𝑃−𝐶ℎ
𝐶 < 1

𝜇−𝛬 , there exists a unique solution
𝑞𝑠𝐽 to the equation 𝑈 𝑠

𝐽 (𝑞𝐽 , 0) = 0, which is an equilibrium

if 𝑞𝑠𝐽 =
𝜇− 𝐶

𝑉 −𝑃−𝐶ℎ
𝛬 > 𝜇−𝜂

𝛬 or equivalently, 𝑉 −𝑃−𝐶ℎ
𝐶 > 1

𝜂 .
(3) When 𝑉 −𝑃−𝐶ℎ

𝐶 ≥ 1
𝜇−𝛬 , then 𝑈 𝑠

𝐽 (𝑞𝐽 , 0) ≥ 0 for all 𝑞𝐽 ∈ [0, 1],
so that joining becomes the best response for all cus-
tomers which is an equilibrium if 1 > 𝜇−𝜂

𝛬 or equivalently,
1
𝜂 < 1

𝜇−𝛬 .

(a.ii) If 𝑞𝑠𝑜 ∈ (0, 1), then customers’ order-placing probability satisfies
the condition
𝜇 − 𝜂

𝛬(2 − 𝛼)
≤ 𝑞𝐽 ≤ 𝜇 − 𝜂

𝛬
. (A.3)

The expected utility of a joining customer is 𝑈 𝑠
𝐽 (𝑞𝐽 , 𝑞𝑜) = 𝑞𝑜𝑈 𝑠

𝑜 +
(1 − 𝑞𝑜)𝑈 𝑠

𝑠 = 𝑉 − 𝑃 − 𝐶ℎ
1−𝛼 , which is independent of 𝑞𝐽 .

(1) When 𝑉 −𝑃
𝐶ℎ

< 1
1−𝛼 or equivalently, (𝑉 −𝑃 )𝛼

𝐶 < 1
𝜂 , we have

𝑈 𝑠
𝐽 (𝑞𝐽 , 𝑞𝑜) < 0 for all 𝑞𝐽 ∈ [0, 1], so the best response of a

customer is balking which contradicts to condition (A.3).
Thus, the equilibrium does not exist.

(2) When 𝑉 −𝑃
𝐶ℎ

≥ 1
1−𝛼 or equivalently, (𝑉 −𝑃 )𝛼

𝐶 ≥ 1
𝜂 , we have

𝑈 𝑠
𝐽 (𝑞𝐽 , 𝑞𝑜) ≥ 0 for all 𝑞𝐽 ∈ [0, 1], so that 𝑞𝐽 = 1 is an

equilibrium if 𝜇−𝜂
𝛬(2−𝛼) ≤ 1 ≤ 𝜇−𝜂

𝛬 or equivalently, 1
𝜂 ≤

1
𝜇−(2−𝛼)𝛬 and 1

𝜇−𝛬 ≤ 1
𝜂 , which corresponds to the fourth

case in Eq. (7).

(a.iii) If 𝑞𝑠𝑜 = 1, then customers’ order-placing probability satisfies the
condition

𝑞𝐽 <
𝜇 − 𝜂

(2 − 𝛼)𝛬
. (A.4)

The expected utility of a joining customer is 𝑈 𝑠
𝐽 (𝑞𝐽 , 𝑞𝑜) =

𝑈 𝑠
𝑜 (𝑞𝐽 , 𝑞𝑜) = 𝑉 −𝑃 − (2−𝛼)𝐶

𝜇−𝛬𝑞𝐽 (2−𝛼)
. Because 𝑈 𝑠

𝐽 (𝑞𝐽 , 𝑞𝑜) is decreasing
in 𝑞𝐽 , we have the following results:

(1) When 𝑉 −𝑃
(2−𝛼)𝐶 ≤ 1

𝜇 , we have 𝑈 𝑠
𝐽 (𝑞𝐽 , 𝑞𝑜) ≤ 0 for all 𝑞𝐽 ∈ [0, 1],

so the best response is to balk, which gives 𝑞𝐽 = 0 <
𝜇−𝜂

(2−𝛼)𝛬 , or equivalently, 1
𝜇 < 1

𝜂 .
(2) When 1

𝜇 < 𝑉 −𝑃
(2−𝛼)𝐶 < 1

𝜇−(2−𝛼)𝛬 , there exists a unique solu-
tion 𝑞𝑠𝐽 to equation 𝑈 𝑠

𝐽 (𝑞𝐽 , 𝑞𝑜) = 0 and it is an equilibrium

if 𝑞𝑠𝐽 =
𝜇− (2−𝛼)𝐶

𝑉 −𝑃
(2−𝛼)𝛬 < 𝜇−𝜂

(2−𝛼)𝛬 , or equivalently, 𝑉 −𝑃
(2−𝛼)𝐶 < 1

𝜂 .
(3) When 𝑉 −𝑃

(2−𝛼)𝐶 ≥ 1
𝜇−(2−𝛼)𝛬 , we have 𝑈 𝑠

𝐽 (𝑞𝐽 , 𝑞𝑜) ≥ 0 for all
𝑞𝐽 ∈ [0, 1], the best response is to place an order, which
gives 𝑞𝐽 = 1 < 𝜇−𝜂

(2−𝛼)𝛬 , or equivalently, 1
𝜇−(2−𝛼)𝛬 < 1

𝜂 .

We then summarize all the equilibria with 𝑞𝑠 = 0 to the 𝟎 case.
𝐽
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In Case (𝑏) (i.e., the market size 𝜇∕(2 − 𝛼) ≤ 𝛬 < 𝜇), there are three
sub-cases:

(b.i) If 𝑞𝑠𝑜 = 0, similar to Case (𝑎), the order-placing probability
satisfies Condition (A.2). A joining customer’s expected utility
is 𝑈 𝑠

𝐽 (𝑞𝐽 , 𝑞𝑜) = 𝑈 𝑠
𝑠 (𝑞𝐽 , 𝑞𝑜) = 𝑉 −𝑃−𝐶ℎ−

𝐶
𝜇−𝛬𝑞𝐽

, where 𝑈 𝑠
𝐽 (𝑞𝐽 , 𝑞𝑜) is

decreasing in 𝑞𝐽 ∈ [0, 1]. Again, there are three cases specified
by the value of 𝑞𝐽 . Because the discussions are very similar to
Case (a.i), we omit them here.

(b.ii) If 𝑞𝑠𝑜 ∈ (0, 1), then customers’ order-placing probability satisfies
Condition (A.3). The expected utility of a joining customer is
𝑈 𝑠
𝐽 (𝑞𝐽 , 𝑞𝑜) = 𝑞𝑜𝑈 𝑠

𝑜+(1−𝑞𝑜)𝑈
𝑠
𝑠 = 𝑉 −𝑃− 𝐶ℎ

1−𝛼 , which is independent
of 𝑞𝐽 .

(1) When 𝑉 −𝑃
𝐶ℎ

< 1
1−𝛼 , we have 𝑈 𝑠

𝐽 (𝑞𝐽 , 𝑞𝑜) < 0 for all 𝑞𝐽 ∈
[0, 1], so the equilibrium joining probability is 𝑞𝐽 = 0,
contradicting to Condition (A.3). Thus, the equilibrium
does not exist.

(2) When 𝑉 −𝑃
𝐶ℎ

≥ 1
1−𝛼 ⇔ (𝑉 −𝑃 )𝛼

𝐶 ≥ 1
𝜂 , we have 𝑈 𝑠

𝐽 (𝑞𝐽 , 𝑞𝑜) ≥ 0
for all 𝑞𝐽 ∈ [0, 1], so 𝑞𝐽 = 1 is an equilibrium if 𝜇−𝜂

𝛬(2−𝛼) ≤
1 ≤ 𝜇−𝜂

𝛬 , or equivalently, 1
𝜂 ≤ 1

𝜇−(2−𝛼)𝛬 and 1
𝜇−𝛬 ≤ 1

𝜂 , while
the first inequality contradicts the condition in Case (𝑏).
Thus, the equilibrium does not exist.

(b.iii) If 𝑞𝑠𝑜 = 1, then customers’ order-placing probability satis-
fies Condition (A.4). A joining customer’s expected utility is
𝑈 𝑠
𝐽 (𝑞𝐽 , 𝑞𝑜) = 𝑈 𝑠

𝑜 (𝑞𝐽 , 𝑞𝑜) = 𝑉 − 𝑃 − (2−𝛼)𝐶
𝜇−𝛬𝑞𝐽 (2−𝛼)

. Because 𝑈 𝑠
𝐽 (𝑞𝐽 , 𝑞𝑜)

is decreasing in 𝑞𝐽 , we have the following results:

(1) When 𝑉 −𝑃
(2−𝛼)𝐶 ≤ 1

𝜇 , we have 𝑈 𝑠
𝐽 (𝑞𝐽 , 𝑞𝑜) ≤ 0 for 𝑞𝐽 ∈ [0, 1],

so the best response is balking, implying 𝑞𝐽 = 0 < 𝜇−𝜂
(2−𝛼)𝛬 ,

or equivalently, 1
𝜇 < 1

𝜂 .
(2) When 𝑉 −𝑃

(2−𝛼)𝐶 > 1
𝜇 , there exists a unique solution 𝑞𝑠𝐽 to

equation 𝑈 𝑠
𝐽 (𝑞𝐽 , 𝑞𝑜) = 0 and 𝑞𝑠𝐽 =

𝜇− (2−𝛼)𝐶
𝑉 −𝑃

(2−𝛼)𝛬 < 𝜇−𝜂
(2−𝛼)𝛬 , or

equivalently, 𝑉 −𝑃
(2−𝛼)𝐶 < 1

𝜂 .

In Case (𝑐) (i.e., the market size 𝛬 ≥ 𝜇), there are three sub-cases:

(c.i) If 𝑞𝑠𝑜 = 0, the order-placing probability satisfies the condi-
tion (A.2). A joining customer’s expected utility is 𝑈 𝑠

𝐽 (𝑞𝐽 , 𝑞𝑜) =
𝑈 𝑠
𝑠 (𝑞𝐽 , 𝑞𝑜) = 𝑉 − 𝑃 − 𝐶ℎ −

𝐶
𝜇−𝛬𝑞𝐽

, where 𝑈 𝑠
𝐽 (𝑞𝐽 , 𝑞𝑜) is decreasing

in 𝑞𝐽 ∈ [0, 1].

(1) When 𝑉 −𝑃−𝐶ℎ
𝐶 ≤ 1

𝜇 , we have 𝑈 𝑠
𝐽 (𝑞𝐽 , 𝑞𝑜) ≤ 0 for all 𝑞𝐽 ∈

[0, 1], so the best response of all arriving customers is
balking, indicating 𝑞𝐽 = 0 > 𝜇−𝜂

𝛬 , or equivalently, 1
𝜇 > 1

𝜂 .
(2) When 𝑉 −𝑃−𝐶ℎ

𝐶 > 1
𝜇 , there exists a unique solution 𝑞𝑠𝐽 to

𝑈 𝑠
𝐽 (𝑞𝐽 , 𝑞𝑜) = 0, which is an equilibrium if 𝑞𝑠𝐽 =

𝜇− 𝐶
𝑉 −𝑃−𝐶ℎ
𝛬 >

𝜇−𝜂
𝛬 , or equivalently, 𝑉 −𝑃−𝐶ℎ

𝐶 > 1
𝜂 .

(c.ii) If 𝑞𝑠𝑜 ∈ (0, 1), then customers’ order-placing probability satisfies
Condition (A.3). The expected utility of a joining customer is
𝑈 𝑠
𝐽 (𝑞𝐽 , 𝑞𝑜) = 𝑞𝑜𝑈 𝑠

𝑜+(1−𝑞𝑜)𝑈
𝑠
𝑠 = 𝑉 −𝑃− 𝐶ℎ

1−𝛼 , which is independent
of 𝑞𝐽 .

(1) When 𝑉 −𝑃
𝐶ℎ

< 1
1−𝛼 , then 𝑈 𝑠

𝐽 (𝑞𝐽 , 𝑞𝑜) < 0 for all 𝑞𝐽 , so the
equilibrium joining probability is 𝑞𝑠𝐽 = 0, contradicting
Condition (A.3). Thus, the equilibrium does not exist.

(2) When 𝑉 −𝑃
𝐶ℎ

≥ 1
1−𝛼 , then 𝑈 𝑠

𝐽 (𝑞𝐽 , 𝑞𝑜) ≥ 0 for all 𝑞𝐽 , so
𝑞𝐽 = 1 is an equilibrium if 𝜇−𝜂

𝛬(2−𝛼) ≤ 1 ≤ 𝜇−𝜂
𝛬 , or

equivalently, 1
𝜂 ≤ 1

𝜇−(2−𝛼)𝛬 and 1
𝜇−𝛬 ≤ 1

𝜂 , while the two
inequalities contradict to the condition in Case (c). Hence,
the equilibrium does not exist.
13
(c.iii) If 𝑞𝑠𝑜 = 1, then customers’ order-placing probability satisfies
Condition (A.4). The expected utility of a joining customer is
𝑈 𝑠
𝐽 (𝑞𝐽 , 𝑞𝑜) = 𝑈 𝑠

𝑜 (𝑞𝐽 , 𝑞𝑜) = 𝑉 − 𝑃 − (2−𝛼)𝐶
𝜇−𝛬𝑞𝐽 (2−𝛼)

. Hence, there are
two cases specified by the value of 𝑞𝐽 . Because the discussions
are similar to (b.iii), we omit them here. □

Proof of Lemma 2. Using the customer utilities via the two service
channels (12)–(13), we define the difference of these two functions as

𝛥𝑜(𝑞𝐽 , 𝑞𝑜) ≡ 𝑈 𝑜
𝑜 (𝑞𝐽 , 𝑞𝑜) − 𝑈 𝑜

𝑠 (𝑞𝐽 , 𝑞𝑜) = 𝐶ℎ −
(1 − 𝛼)𝐶

𝜇 − 𝛬𝑞𝐽 [1 + (1 − 𝛼)𝑞𝑜]
. (A.5)

or a given 𝑞𝐽 , the difference 𝛥𝑜(𝑞𝐽 , 𝑞𝑜) is decreasing in 𝑞𝑜 ∈ [0, 1], and
ts maximum and minimum values are
↑↑(𝑞𝐽 ) ≡ max

𝑞𝑜
𝛥𝑜(𝑞𝐽 , 𝑞𝑜) = 𝛥𝑜(𝑞𝐽 , 0) = 𝐶ℎ −

(1 − 𝛼)𝐶
𝜇 − 𝛬𝑞𝐽

,

𝛥↓↓(𝑞𝐽 ) ≡ min
𝑞𝑜

𝛥𝑜(𝑞𝐽 , 𝑞𝑜) = 𝛥𝑜(𝑞𝐽 , 1) = 𝐶ℎ −
(1 − 𝛼)𝐶

𝜇 − 𝛬𝑞𝐽 (2 − 𝛼)
.

efine 𝛿 = (1−𝛼)𝐶
𝐶ℎ

, then we consider three cases:

(1) When 1
𝛿 < 1

𝜇−𝛬𝑞𝐽
, that is, 𝛥↑↑(𝑞𝐽 ) < 0 and then 𝛥𝑜(𝑞𝐽 , 𝑞𝑜) < 0 for

all 𝑞𝑜 ∈ [0, 1], thus the best response of a joining customer is to
order onsite, which gives the equilibrium 𝑞𝑜𝑜 (𝑞𝐽 ) = 0;

(2) When 1
𝜇−𝛬𝑞𝐽

≤ 1
𝛿 ≤ 1

𝜇−𝛬𝑞𝐽 (2−𝛼)
, there exists a unique solution

𝑞∗𝑜 to 𝛥𝑜(𝑞𝐽 , 𝑞∗𝑜 ) = 0, such that 𝛥𝑜(𝑞𝐽 , 𝑞𝑜) > 0 for 𝑞𝑜 ∈ [0, 𝑞∗𝑜 ) and
𝛥𝑜(𝑞𝐽 , 𝑞𝑜) < 0 for 𝑞𝑜 ∈ (𝑞∗𝑜 , 1]. So the equilibrium order-selecting
probability 𝑞𝑜𝑜 (𝑞𝐽 ) = 𝑞∗𝑜 = 1

1−𝛼

(

𝜇−𝛿
𝛬𝑞𝐽

− 1
)

;

(3) When 1
𝛿 > 1

𝜇−𝛬𝑞𝐽 (2−𝛼)
, that is, 𝛥↓↓(𝑞𝐽 ) > 0 and then 𝛥𝑜(𝑞𝐽 , 𝑞𝑜) > 0

for all 𝑞𝑜 ∈ [0, 1], thus the best response of a joining customer is
to order online, which gives the equilibrium 𝑞𝑜𝑜 (𝑞𝐽 ) = 1.

To prove the weakly decreasing property of 𝑞𝑜𝑜 in 𝑞𝐽 , we can pick
two probabilities 𝑞1𝐽 < 𝑞2𝐽 and similar to the proof of Lemma 1, we find
hat 𝑞𝑜𝑜 (𝑞

1
𝐽 ) ≥ 𝑞𝑜𝑜 (𝑞

2
𝐽 ) always holds. □

roof of Theorem 2. For Case (𝑎), the market size 𝛬 < 𝜇∕(2−𝛼), there
re three sub-cases:

(a.i) If 𝑞𝑜𝑜 = 0, recall the result in the first branch of Lemma 2, there
must exists 1

𝛿 < 1
𝜇−𝛬𝑞𝐽

, which requires that the order-placing
probability satisfies the condition

𝑞𝐽 >
𝜇 − 𝛿
𝛬

. (A.6)

Customers’ expected utility of joining is 𝑈 𝑜
𝐽 (𝑞𝐽 , 𝑞𝑜) = 𝑈 𝑜

𝑠 (𝑞𝐽 , 𝑞𝑜) =
𝑉 −𝑃 −𝐶ℎ−

𝐶
𝜇−𝛬𝑞𝐽

, where 𝑈 𝑜
𝐽 (𝑞𝐽 , 𝑞𝑜) is decreasing in 𝑞𝐽 ∈ [0, 1].

Hence, three cases are discussed as follows:
(1) When 𝑉 −𝑃−𝐶ℎ

𝐶 ≤ 1
𝜇 , then 𝑈 𝑜

𝐽 (𝑞𝐽 , 𝑞𝑜) ≤ 0 for all 𝑞𝐽 ∈ [0, 1],
so the best response of all arriving customers is to balk, with
the equilibrium 𝑞𝐽 = 0 > 𝜇−𝛿

𝛬 , or equivalently, 1
𝜇 > 1

𝛿 . (2)
When 1

𝜇 < 𝑉 −𝑃−𝐶ℎ
𝐶 < 1

𝜇−𝛬 , there exists a unique solution
𝑞𝑜𝐽 to 𝑈 𝑜

𝐽 (𝑞𝐽 , 𝑞𝑜) = 0, which is an equilibrium if and only if

𝑞𝑜𝐽 =
𝜇− 𝐶

𝑉 −𝑃−𝐶ℎ
𝛬 > 𝜇−𝛿

𝛬 , or equivalently, 𝑉 −𝑃−𝐶ℎ
𝐶 > 1

𝛿 . (3) When
𝑉 −𝑃−𝐶ℎ

𝐶 ≥ 1
𝜇−𝛬 , then 𝑈 𝑜

𝐽 (𝑞𝐽 , 𝑞𝑜) ≥ 0 for all 𝑞𝐽 ∈ [0, 1], so
that joining is the best response for all customers and it is an
equilibrium if and only if 1 > 𝜇−𝛿

𝛬 , or equivalently, 1
𝛿 < 1

𝜇−𝛬 .
(a.ii) If 𝑞𝑜𝑜 ∈ (0, 1), then customer’s probability of joining satisfies the

condition
𝜇 − 𝛿

𝛬(2 − 𝛼)
≤ 𝑞𝐽 ≤ 𝜇 − 𝛿

𝛬
. (A.7)

The expected utility of a joining customer is 𝑈 𝑜
𝐽 (𝑞𝐽 , 𝑞𝑜) = 𝑞𝑜𝑈 𝑜

𝑜
(𝑞𝐽 , 𝑞𝑜) + (1 − 𝑞𝑜)𝑈 𝑜

𝑠 (𝑞𝐽 , 𝑞𝑜) = 𝑉 − 𝑃 − 2−𝛼
1−𝛼𝐶ℎ, which is inde-

pendent in 𝑞𝐽 . There are two cases: (1) When 𝑉 −𝑃
𝐶ℎ

< 2−𝛼
1−𝛼 ,

then 𝑈 𝑜
𝐽 (𝑞𝐽 , 𝑞𝑜) < 0 for all 𝑞𝐽 ∈ [0, 1], so the best response

of a customer is to balk, which contradicts to condition (A.7).
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Thus, the equilibrium does not exist. (2) When 𝑉 −𝑃
𝐶ℎ

≥ 2−𝛼
1−𝛼 , or

equivalently, 1
𝛿 ≤ 𝑉 −𝑃

(2−𝛼)𝐶 , then 𝑈 𝑜
𝐽 (𝑞𝐽 , 𝑞𝑜) ≥ 0 for all 𝑞𝐽 ∈ [0, 1],

so 𝑞𝐽 = 1 is an equilibrium if and only if 𝜇−𝛿
𝛬(2−𝛼) ≤ 1 ≤ 𝜇−𝛿

𝛬 , or
equivalently, 1

𝛿 ≤ 1
𝜇−(2−𝛼)𝛬 and 1

𝛿 ≥ 1
𝜇−𝛬 , which corresponds the

fourth case in Eq. (15).
(a.iii) If 𝑞𝑜𝑜 = 1, then the customer’s probability of joining satisfies the

condition

𝑞𝐽 <
𝜇 − 𝛿

(2 − 𝛼)𝛬
. (A.8)

The expected utility of joining is 𝑈 𝑜
𝐽 (𝑞𝐽 , 𝑞𝑜) = 𝑈 𝑜

𝑜 (𝑞𝐽 , 1) = 𝑉 −
𝑃 − (2−𝛼)𝐶

𝜇−𝛬𝑞𝐽 (2−𝛼)
. Using the fact that 𝑈 𝑜

𝐽 (𝑞𝐽 , 𝑞𝑜) is decreasing in 𝑞𝐽 .
We discuss the following results:
(1) When 𝑉 −𝑃

(2−𝛼)𝐶 ≤ 1
𝜇 , we have 𝑈 𝑜

𝐽 (𝑞𝐽 , 𝑞𝑜) ≤ 0 for 𝑞𝐽 ∈ [0, 1],
so the best response is to balk, which gives the equilibrium
𝑞𝐽 = 0 < 𝜇−𝛿

(2−𝛼)𝛬 , or equivalently, 1
𝜇 < 1

𝛿 . (2) When 1
𝜇 <

𝑉 −𝑃
(2−𝛼)𝐶 < 1

𝜇−(2−𝛼)𝛬 , there exists a unique solution 𝑞𝑜𝐽 to equation

𝑈𝐽 (𝑞𝐽 , 𝑞𝑜) = 0 and 𝑞𝑜𝐽 =
𝜇− (2−𝛼)𝐶

𝑉 −𝑃
(2−𝛼)𝛬 < 𝜇−𝛿

(2−𝛼)𝛬 , or equivalently,
𝑉 −𝑃
(2−𝛼)𝐶 < 1

𝛿 . (3) When 𝑉 −𝑃
(2−𝛼)𝐶 ≥ 1

𝜇−(2−𝛼)𝛬 , the best response
is to place an order with 𝑞𝑜𝐽 = 1 < 𝜇−𝛿

(2−𝛼)𝛬 , or equivalently,
1
𝛿 > 1

𝜇−(2−𝛼)𝛬 .

For Case (𝑏), the market size 𝜇∕(2 − 𝛼) ≤ 𝛬 < 𝜇, there are three
sub-cases:

(b.i) If 𝑞𝑜𝑜 = 0, similar to Case (𝑎), the order-placing probability
satisfies the condition (A.6). Customers’ expected utility of
joining is where 𝑈 𝑜

𝐽 (𝑞𝐽 , 𝑞𝑜) is decreasing in 𝑞𝐽 . Hence, there are
three cases about the value of 𝑞𝐽 can be discussed, which are
the same as Case (a.i).

(b.ii) If 𝑞𝑜𝑜 ∈ (0, 1), then customers’ order-placing probability satisfies
the condition (A.7). The expected utility of a joining customer
is 𝑈 𝑜

𝐽 (𝑞𝐽 , 𝑞𝑜) = 𝑞𝑜𝑈 𝑜
𝑜 + (1 − 𝑞𝑜)𝑈 𝑜

𝑠 = 𝑉 − 𝑃 − (2−𝛼)𝐶ℎ
1−𝛼 , which

is independent of 𝑞𝐽 . Hence, two sub-cases are discussed as
follows: (1) When 𝑉 −𝑃

𝐶ℎ
< 2−𝛼

1−𝛼 , then 𝑈 𝑜
𝐽 (𝑞𝐽 , 𝑞𝑜) < 0 for all 𝑞𝐽 ∈

[0, 1], so the equilibrium joining probability is 𝑞𝐽 = 0, which
contradicts to condition (A.7). Thus, the equilibrium does not
exist. (2) When 𝑉 −𝑃

𝐶ℎ
≥ 2−𝛼

1−𝛼 , or equivalently, 1
𝛿 ≤ 𝑉 −𝑃

(2−𝛼)𝐶 , then
𝑈 𝑜
𝐽 (𝑞𝐽 , 𝑞𝑜) ≥ 0 for all 𝑞𝐽 ∈ [0, 1], so 𝑞𝐽 = 1 is an equilibrium if

and only if 𝜇−𝛿
𝛬(2−𝛼) ≤ 1 ≤ 𝜇−𝛿

𝛬 , or equivalently, 1
𝛿 ≤ 1

𝜇−(2−𝛼)𝛬 and
1
𝛿 ≥ 1

𝜇−𝛬 , while the first inequality contradicts to the condition
in Case (𝑏).

(b.iii) If 𝑞𝑜𝑜 = 1, then customers’ order-placing probability satisfies the
condition (A.8). The expected utility of joining is 𝑈 𝑜

𝐽 (𝑞𝐽 , 𝑞𝑜) =
𝑈 𝑜
𝑜 (𝑞𝐽 , 1) = 𝑉 − 𝑃 − (2−𝛼)𝐶

𝜇−𝛬𝑞𝐽 (2−𝛼)
. Using the fact that 𝑈 𝑜

𝐽 (𝑞𝐽 , 𝑞𝑜) is
decreasing in 𝑞𝐽 , we have the following results:
(1) When 𝑉 −𝑃

(2−𝛼)𝐶 ≤ 1
𝜇 , we have 𝑈 𝑜

𝐽 (𝑞𝐽 , 𝑞𝑜) ≤ 0 for 𝑞𝐽 ∈ [0, 1],
so the best response is to balk, which gives 𝑞𝐽 = 0 < 𝜇−𝛿

(2−𝛼)𝛬 , or
equivalently, 1

𝜇 < 1
𝛿 . (2) When 𝑉 −𝑃

(2−𝛼)𝐶 > 1
𝜇 , there exists a unique

solution 𝑞𝑜𝐽 to equation 𝑈𝐽 (𝑞𝐽 , 𝑞𝑜) = 0 and 𝑞𝑜𝐽 =
𝜇− (2−𝛼)𝐶

𝑉 −𝑃
(2−𝛼)𝛬 <

𝜇−𝛿
(2−𝛼)𝛬 , or equivalently, 𝑉 −𝑃

(2−𝛼)𝐶 < 1
𝛿 .

For Case (𝑐), the market size 𝛬 ≥ 𝜇, there are three sub-cases:

(c.i) If 𝑞𝑜𝑜 = 0, the order-placing probability satisfies the condi-
tion (A.6). Customers’ expected utility of joining is where
𝑈 𝑜
𝐽 (𝑞𝐽 , 𝑞𝑜) is decreasing in 𝑞𝐽 ∈ [0, 1]. Hence, two sub-cases are

discussed as follows: (1) When 𝑉 −𝑃−𝐶ℎ
𝐶 ≤ 1

𝜇 , then 𝑈 𝑜
𝐽 (𝑞𝐽 , 𝑞𝑜) ≤ 0

for all 𝑞𝐽 ∈ [0, 1], so the best response of all arriving customers
is to balk, with 𝑞𝐽 = 0 > 𝜇−𝛿

𝛬 , or equivalently, 1
𝜇 > 1

𝛿 . (2) When
𝑉 −𝑃−𝐶ℎ > 1 , there exists a unique solution 𝑞𝑜 to 𝑈 𝑜 (𝑞 , 𝑞 ) = 0,
14

𝐶 𝜇 𝐽 𝐽 𝐽 𝑜
which is an equilibrium if and only if 𝑞𝑜𝐽 =
𝜇− 𝐶

𝑉 −𝑃−𝐶ℎ
𝛬 > 𝜇−𝛿

𝛬 , or
equivalently, 𝑉 −𝑃−𝐶ℎ

𝐶 > 1
𝛿 .

(c.ii) If 𝑞𝑜𝑜 ∈ (0, 1), then customers’ order-placing probability satisfies
the condition (A.7). The expected utility of a joining customer
is 𝑈 𝑜

𝐽 (𝑞𝐽 , 𝑞𝑜) = 𝑉 − 𝑃 − (2−𝛼)𝐶ℎ
1−𝛼 , which is independent of 𝑞𝐽 .

Hence, two cases are discussed as follows: (1) When 𝑉 −𝑃
𝐶ℎ

<
2−𝛼
1−𝛼 , then 𝑈 𝑜

𝐽 (𝑞𝐽 , 𝑞𝑜) < 0 for all 𝑞𝐽 , so the equilibrium joining
probability is 𝑞𝑜𝐽 = 0, which contradicts condition (A.7). Thus,
the equilibrium does not exist. (2) When 𝑉 −𝑃

𝐶ℎ
≥ 2−𝛼

1−𝛼 , then
𝑈 𝑜
𝐽 (𝑞𝐽 , 𝑞𝑜) ≥ 0 for all 𝑞𝐽 , so 𝑞𝐽 = 1 is an equilibrium if and only

if 𝜇−𝛿
𝛬(2−𝛼) ≤ 1 ≤ 𝜇−𝛿

𝛬 , or equivalently, 1
𝛿 ≤ 1

𝜇−(2−𝛼)𝛬 and 1
𝛿 ≥ 1

𝜇−𝛬 ,
while the two inequalities contradict to the condition in Case
(𝑐). The equilibrium does not exist.

(c.iii) If 𝑞𝑜𝑜 = 1, then customers’ order-placing probability satisfies the
condition (A.8). The expected utility of joining is 𝑈 𝑜

𝐽 (𝑞𝐽 , 𝑞𝑜) =
𝑉 − 𝑃 − (2−𝛼)𝐶

𝜇−𝛬𝑞𝐽 (2−𝛼)
. Hence, there are two cases about the value

of 𝑞𝐽 can be discussed, which are the same as (b.iii). □

Proof of Proposition 1. We use the equilibrium strategy in Theorem 1
to verify the impact of price 𝑃 .

We first consider the onsite exchange model. The expected utility of
a joining customer is

𝑈 𝑠
𝐽 (𝑞

𝑠
𝐽 , 𝑞

𝑠
𝑜) = 𝑞𝑠𝑜𝑈

𝑠
𝑜 + (1 − 𝑞𝑠𝑜)𝑈

𝑠
𝑠 = 𝑉 − 𝑃 − (1 − 𝛼𝑞𝑠𝑜)𝐶ℎ − [1 + (1 − 𝛼)𝑞𝑠𝑜]𝐶𝑊 (𝑞𝑠𝐽 , 𝑞

𝑠
𝑜),

which is decreasing in 𝑃 . For any 𝑞𝑠𝑜 , the equilibrium order-placing
probability has the following piecewise structure, that is,

𝑞𝑠𝐽 =

⎧

⎪

⎪

⎨

⎪

⎪

⎩

0, if 𝑃 ≥ 𝑉 − [1 + (1 − 𝛼)𝑞𝑠𝑜]𝐶𝑊 (0, 𝑞𝑠𝑜),

𝑞∗𝐽 , if 𝑉 − [1 + (1 − 𝛼)𝑞𝑠𝑜]𝐶𝑊 (1, 𝑞𝑠𝑜) < 𝑃 < 𝑉 − [1 + (1 − 𝛼)𝑞𝑠𝑜]𝐶𝑊 (0, 𝑞𝑠𝑜),

1, if 𝑃 ≤ 𝑉 − [1 + (1 − 𝛼)𝑞𝑠𝑜]𝐶𝑊 (1, 𝑞𝑠𝑜),

where 𝑉 = 𝑉 − (1 − 𝛼𝑞𝑠𝑜)𝐶ℎ and 𝑞∗𝐽 uniquely solves by 𝑈 𝑠
𝐽 (𝑞

𝑠
𝐽 , 𝑞

𝑠
𝑜) = 0.

The joining probability 𝑞𝑠𝐽 is a constant when 𝑃 is sufficiently large
(i.e., 𝑃 ≥ 𝑉 − [1 + (1 − 𝛼)𝑞𝑠𝑜]𝐶𝑊 (0, 𝑞𝑠𝑜)) or sufficiently small (i.e., 𝑃 ≤
̄ − [1 + (1 − 𝛼)𝑞𝑠𝑜]𝐶𝑊 (1, 𝑞𝑠𝑜)). Otherwise, it is nonincreasing in 𝑃 (with
𝑞𝑠𝐽 = 𝑞∗𝐽 ). To see this, consider three cases: (1) if 𝑞𝑠𝑜 = 0, 𝑞∗𝐽 , as the
solution to the equation 𝑉 − 𝑃 − 𝐶ℎ − 𝐶

𝜇−𝛬𝑞𝐽
= 0, decreases in 𝑃 ; (2)

if 𝑞𝑠𝑜 = 1, 𝑞∗𝐽 is the solution to the equation 𝑉 − 𝑃 − (2−𝛼)𝐶
𝜇−𝛬𝑞𝐽 (2−𝛼)

= 0,
which again is decreasing in 𝑃 ; (3) if 𝑞𝑠𝑜 ∈ (0, 1), the joining utility is
𝑈 𝑠
𝐽 (𝑞

𝑠
𝐽 , 𝑞

𝑠
𝑜) = 𝑉 − 𝑃 − 𝐶ℎ

1−𝛼 (which is decreasing in 𝑃 ), so that 𝑞∗𝐽 is also
decreasing in 𝑃 . Similarly, it can be showed that the expected utility
in the online exchange model of a joining customer is also decreasing in
𝑃 .

In addition, invoking results in Lemmas 1 and 2, we have that 𝑞𝑠𝑜
and 𝑞𝑜𝑜 are nonincreasing in 𝑞𝑠𝐽 and 𝑞𝑜𝐽 respectively, which implies that
the channel-selecting probability is nondecreasing in 𝑃 . □

roof of Proposition 2. We first work with the onsite-exchange model.
irst, we prove the monotonicity of the channel-selecting probability 𝑞𝑠𝑜
ith respect to the expectation-meeting probability 𝛼.

According to Lemma 1, the channel-selecting probability satisfies

𝑠
𝑜(𝑞𝐽 ) =

⎧

⎪

⎪

⎨

⎪

⎪

⎩

0, if 𝛬 > 𝜇−𝜂
𝑞𝐽

,
1

1−𝛼

(

𝜇−𝜂
𝛬𝑞𝐽

− 1
)

, if 𝜇−𝜂
(2−𝛼)𝑞𝐽

≤ 𝛬 ≤ 𝜇−𝜂
𝑞𝐽

,

1, if 𝛬 < 𝜇−𝜂
(2−𝛼)𝑞𝐽

,

(A.9)

where 𝜂 = (1−𝛼)𝐶
𝛼𝐶ℎ

. To show that 𝑞𝑠𝑜 is nondecreasing in 𝛼, we pick
wo values 𝛼1 < 𝛼2 and denote the corresponding channel-selecting

probabilities as 𝑞𝑠,1𝑜 (𝛼1) and 𝑞𝑠,2𝑜 (𝛼2). Define 𝜂1 ≡ (1−𝛼1)𝐶
𝛼1𝐶ℎ

, 𝜂2 ≡ (1−𝛼2)𝐶
𝛼2𝐶ℎ

,
1 ≡ 𝜇−𝜂1

𝑞𝐽
< 𝜇−𝜂2

𝑞𝐽
≡ 𝑦2, 𝑥1 ≡ 𝜇−𝜂1

(2−𝛼1)𝑞𝐽
< 𝜇−𝜂2

(2−𝛼2)𝑞𝐽
≡ 𝑥2, and 𝑧1 ≡

1
1−𝛼1

(

𝜇−𝜂1
𝛬𝑞𝐽

− 1
)

< 1
1−𝛼2

(

𝜇−𝜂2
𝛬𝑞𝐽

− 1
)

≡ 𝑧2. We then discuss the following
two cases:
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(1) If 𝑥1 < 𝑥2 ≤ 𝑦1 < 𝑦2. Recall the equilibrium results in Eq. (A.9),
when 𝛬 ≤ 𝑥2, then 𝑞𝑠,2𝑜 (𝛼2) = 1 ≥ 𝑞𝑠,1𝑜 (𝛼1); when 𝑥2 < 𝛬 < 𝑦1,
𝑞𝑠,1𝑜 (𝛼1) = 𝑧1 < 𝑧2 = 𝑞𝑠,2𝑜 (𝛼2); when 𝛬 ≥ 𝑦1, 𝑞𝑠,2𝑜 (𝛼2) ≥ 𝑞𝑠,1𝑜 (𝛼1) = 0.

(2) If 𝑥1 < 𝑦1 < 𝑥2 < 𝑦2. When 𝛬 ≤ 𝑥2, then 𝑞𝑠,2𝑜 (𝛼2) = 1 ≥ 𝑞𝑠,1𝑜 (𝛼1);
when 𝛬 > 𝑥2, 𝑞𝑠,2𝑜 (𝛼2) ≥ 𝑞𝑠,1𝑜 (𝛼1) = 0.

In summary, we have 𝑞𝑠,1𝑜 (𝛼1) ≤ 𝑞𝑠,2𝑜 (𝛼2) for 𝛼1 < 𝛼2.
We now show that 𝑞𝑠𝐽 is not monotonic in 𝛼. We first consider the

small-market case. According to Theorem 1, we have that

(𝑞𝑠𝐽 , 𝑞
𝑠
𝑜) =

⎧

⎪

⎨

⎪

⎩

(

𝑞𝑠𝐽 , 0
)

, if max
{

1
𝜇
, 1
𝜂

}

≤ 𝑉 −𝑃−𝐶ℎ

𝐶
≤ 1

𝜇−𝛬
(Condition 1),

(

𝑞𝑠𝐽 , 1
)

, if 1
𝜇
≤ 𝑉 −𝑃

(2−𝛼)𝐶
≤ min

{

1
𝜇−(2−𝛼)𝛬

, 1
𝜂

}

(Condition 2).

(A.10)

where 1∕𝜂 = 𝛼𝐶ℎ
(1−𝛼)𝐶 is increasing in 𝛼. In addition, there exists a

unique cutoff threshold 𝛼 such that Condition 1 (Condition 2) holds
when 𝛼 < 𝛼 (𝛼 ≥ 𝛼), where 𝛼 satisfies 1

𝜂 = 𝑉 −𝑃−𝐶ℎ
𝐶 . We next

compare the values 𝑞𝑠𝐽 and 𝑞𝑠𝐽 . Note that 𝑞𝑠𝐽 is independent of 𝛼. By
aking the first-order derivative of 𝑞𝑠𝐽 with respect to 𝛼, we obtain that
𝜕𝑞𝑠𝐽
𝜕𝛼 = −𝑓 ′(𝛼)(2−𝛼)𝛬+(𝜇−𝑓 (𝛼))𝛬

(2−𝛼)2𝛬2 > 0, where 𝑓 (𝛼) ≡ (2−𝛼)𝐶
𝑉 −𝑃−(1−𝛼)𝐶ℎ

> 0 and
𝑓 ′(𝛼) = −𝐶(𝑉 −𝑃−(1−𝛼)𝐶ℎ)−(2−𝛼)𝐶𝐶ℎ

(𝑉 −𝑃−(1−𝛼)𝐶ℎ)2
< 0, which indicates that customers’

rder-placing probability 𝑞𝑠𝐽 is increasing in 𝛼. In summary, we have
hat

𝐽 =

{

𝑞𝑠𝐽 , if 𝛼 < 𝛼,
𝑞𝑠𝐽 (𝛼), if 𝛼 ≥ 𝛼.

ecause 𝑞𝑠𝐽 is independent of 𝛼 and 𝑞𝑠𝐽 (𝛼) < 𝑞𝑠𝐽 and 𝑞𝑠𝐽 is increasing in 𝛼,
e have 𝑞𝑠𝐽 (𝛼) > 𝛼. In summary, the order-placing probability 𝑞𝑠𝐽 drops
t 𝛼 and then increases in 𝛼 afterwards, concluding the non-monotonic
elationship in 𝛼. (Also see Fig. 7 for a visual illustration.)

The proofs for the other two cases can be done by following an
dentical road map. When the market size is medium, we mimic (A.10)
y writing

𝑞𝑠𝐽 , 𝑞
𝑠
𝑜) =

⎧

⎪

⎨

⎪

⎩

(

𝑞𝑠𝐽 , 0
)

, if max
{

1
𝜇 ,

1
𝜂

}

≤ 𝑉 −𝑃−𝐶ℎ
𝐶 ≤ 1

𝜇−𝛬 (Condition 3),
(

𝑞𝑠𝐽 , 1
)

, if 1
𝜇 ≤ 𝑉 −𝑃

(2−𝛼)𝐶 ≤ 1
𝜂 (Condition 4),

in place of Conditions 1 and 2 in (A.10). And when the market size is
large, we can write

(𝑞𝑠𝐽 , 𝑞
𝑠
𝑜) =

⎧

⎪

⎨

⎪

⎩

(

𝑞𝑠𝐽 , 0
)

, if max
{

1
𝜇 ,

1
𝜂

}

≤ 𝑉 −𝑃−𝐶ℎ
𝐶 (Condition 5),

(

𝑞𝑠𝐽 , 1
)

, if 1
𝜇 ≤ 𝑉 −𝑃

(2−𝛼)𝐶 ≤ 1
𝜂 (Condition 6).

The rest of the analysis is similar to the small-market case: We can
show that there also exists a cut off value 𝛼 which solves the equation
1
𝜂 = 𝑉 −𝑃−𝐶ℎ

𝐶 . Customers order-placing probability drops at 𝛼 and then
increases in 𝛼 afterwards, exhibiting the non-monotonic structure in 𝛼.

The corresponding results for the online-exchange model can be
stablished similarly. □

roof of Proposition 3. In both exchange models, the utility difference
etween the online and onsite service channels are given in Eqs. (A.1)
nd (A.5), both of which are increasing in 𝛼 and 𝛥𝑜(𝑞𝐽 , 𝑞𝑜) > 𝛥𝑠(𝑞𝐽 , 𝑞𝑜)
or any fixed (𝑞𝐽 , 𝑞𝑜). In addition, 𝛥𝑠(𝑞𝐽 , 𝑞𝑜)|𝛼=0 < 0 and 𝛥𝑠(𝑞𝐽 , 𝑞𝑜)|𝛼=1 >
. Therefore, there exist two thresholds �̄� and 𝛼 (0 < 𝛼 < �̄� < 1), where
̄ solves the equation 𝛥𝑠(𝑞𝐽 , 𝑞𝑜) = 0 and 𝛼 solves 𝛥𝑜(𝑞𝐽 , 𝑞𝑜) = 0. We
onsider three cases:

(1) When 𝛼 < 𝛼, we have 𝛥𝑠(𝑞𝐽 , 𝑞𝑜) < 𝛥𝑜(𝑞𝐽 , 𝑞𝑜) < 0, which shows that
ordering onsite achieves a higher utility so all joining customers
choose the onsite service channel (𝑞𝑠𝑜 = 𝑞𝑜𝑜 = 0). Hence, customers’
utilities in these two models are identical, i.e., 𝑈 𝑠

𝐽 (𝑞𝐽 , 0) = 𝑉 −𝑃 −
𝐶𝑊 (𝑞𝐽 , 0) = 𝑈 𝑜

𝐽 (𝑞𝐽 , 0) (the specific exchange policy has no impact
on system performance). To be specific, 𝛼 solves the equation
15
𝛥𝑜(𝑞𝐽 , 0) = 0 and the corresponding order-placing probability 𝑞𝐽
satisfies 𝑈 𝑜

𝐽 (𝑞𝐽 , 0) = 𝑈 𝑜
𝑜 (𝑞𝐽 , 0) = 𝑈 𝑜

𝑠 (𝑞𝐽 , 0) = 𝑉 − 𝑃 − 𝐶ℎ − (2 −
𝛼)𝐶𝑊 (𝑞𝐽 , 0) = 0, which yields 𝛼 = 𝑉 −𝑃−2𝐶ℎ

𝑉 −𝑃−𝐶ℎ
.

(2) When 𝛼 > �̄�, we have 𝛥𝑜(𝑞𝐽 , 𝑞𝑜) > 𝛥𝑠(𝑞𝐽 , 𝑞𝑜) > 0, which implies
that customers’ utility of selecting the online channel is always
higher than that of the onsite channel, so all joining customers
choose the online channel (𝑞𝑠𝑜 = 𝑞𝑜𝑜 = 1). Customers’ utility in the
two models satisfy: 𝑈 𝑠

𝐽 (𝑞𝐽 , 1) = 𝑉 − 𝑃 − (2 − 𝛼)𝐶𝑊 (𝑞𝐽 , 1) − (1 −
𝛼)𝐶ℎ ≥ 𝑉 −𝑃 −(2−𝛼)𝐶𝑊 (𝑞𝐽 , 1) = 𝑈 𝑜

𝐽 (𝑞𝐽 , 1). Therefore, the online
exchange model attracts more customers and generate higher
system throughput. Specifically, �̄� satisfies 𝛥𝑠(𝑞𝐽 , 1) = 0 and
the order-placing probability 𝑞𝐽 solves the equation 𝑈 𝑠

𝐽 (𝑞𝐽 , 1) =
𝑈 𝑠
𝑜 (𝑞𝐽 , 1) = 𝑈 𝑠

𝑠 (𝑞𝐽 , 1) = 𝑉 − 𝑃 − 𝐶ℎ − 𝐶𝑊 (𝑞𝐽 , 1), and this solves
�̄� = 1 − 𝐶ℎ

𝑉 −𝑃 .
(3) When 𝛼 ≤ 𝛼 ≤ �̄�, the customers’ channel-selecting probability

highly depends on the market size 𝛬.

(3a) We first consider the case that the market size 𝛬 is suffi-
ciently small, which ensures that 𝑈 𝑠

𝐽 (1, 𝑞𝑜) ≥ 0 and 𝑈 𝑜
𝐽 (1, 𝑞𝑜)

≥ 0. While we have that 𝑈 𝑠
𝐽 (1, 𝑞𝑜) ≥ 0 ⇔ 𝑉 − 𝑃 + (𝛼𝑞𝑜 −

1)𝐶ℎ ≥ [1 − 𝑞𝑜 + (2 − 𝛼)𝑞𝑜]𝐶𝑊 (1, 𝑞𝑜) and 𝑈 𝑠
𝐽 (1, 𝑞𝑜) ≥ 0 ⇔

𝑉 −𝑃 + (𝑞𝑜 −1)𝐶ℎ ≥ [1 − 𝑞𝑜 + (2− 𝛼)𝑞𝑜]𝐶𝑊 (1, 𝑞𝑜). Hence, the
maximum market size satisfying the conditions 𝑈 𝑠

𝐽 (1, 𝑞𝑜) ≥ 0
and 𝑈 𝑜

𝐽 (1, 𝑞𝑜) ≥ 0 can be solved from the equation 𝑈 𝑠
𝐽 (1, 𝑞𝑜) =

0, which yields 𝛬(𝑞𝑜) =
𝜇− (𝑞𝑜(2−𝛼)+1−𝑞𝑜)𝐶

𝑉 −𝑃−(1−𝛼𝑞𝑜)𝐶ℎ
1+(1−𝛼)𝑞𝑜

. In addition, because
𝑈 𝑠
𝐽 (1, 𝑞𝑜) is decreasing in 𝑞𝑜, the maximum value of 𝛬 which

satisfies the condition (𝑈 𝑠
𝐽 (1, 𝑞𝑜) = 0) is 𝛬 = 𝛬(1) = 𝜇

2−𝛼 −
𝐶

𝑉 −𝑃−(1−𝛼)𝐶ℎ
. When the market size 𝛬 ≤ 𝛬, all customers

place orders in both exchange models (𝑞𝑠𝐽 = 𝑞𝑜𝐽 = 1),
resulting in identical system throughput.

(3b) When the market size is large with 𝛬 > 𝛬, according
to Proposition 1, the channel-selecting probability 𝑞𝑜𝑜 and
𝑞𝑠𝑜 are nondecreasing in price 𝑃 . Therefore, there exists a
threshold 𝑃 for the price such that, when 𝑃 ≥ 𝑃 , 𝛥𝑜(𝑞𝐽 , 𝑞𝑜) >
𝛥𝑠(𝑞𝐽 , 𝑞𝑜) > 0, and 𝑃 solves by 𝑈 𝑠

𝑠 (𝑞𝐽 , 1) = 0 and 𝛥𝑠(𝑞𝐽 , 1) =
0, and this gives 𝑃 = 𝑉 − 𝐶ℎ − 𝛼𝐶ℎ

1−𝛼 . Then all joining
customers select the online channel (𝑞𝑠𝑜 = 𝑞𝑜𝑜 = 1). This
indicates that the online-exchange model outperforms the
onsite-exchange model (analogous to case (1)). When 𝑃 <
𝑃 , the utility difference satisfies 𝛥𝑜(𝑞𝐽 , 𝑞𝑜) > 0 > 𝛥𝑠(𝑞𝐽 , 𝑞𝑜).
Therefore, customers in the onsite-exchange model begin to
switch to the onsite channel (𝑞𝑠𝑜 < 1), which enables the
online channel selecting probability in the onsite-exchange
model is lower than it in the online-exchange model. Hence,
the corresponding joining probability 𝑞𝐽 (and the system
throughput) in the onsite-exchange model is higher, since
we have proved the weakly decreasing property between 𝑞𝐽
and 𝑞𝑜. In addition, the corresponding joining probability 𝑞𝐽
solves 𝛥𝑠(𝑞𝐽 , 𝑞𝑜) = 0. □

Proofs of Theorems 3 and 4. We first consider the onsite-exchange
model. According to customers’ equilibrium strategy in Theorem 1, we
have 𝑞𝑠𝐽 = 0 if 1

𝜇 = 𝑉 −𝑃−𝐶ℎ
𝜇 , 𝑞𝑠𝐽 = 1 if 1

𝜇−𝛬 = 𝑉 −𝑃−𝐶ℎ
𝐶 ; and 𝑞𝑠𝐽 = 0 if

1
𝜇 = 𝑉 −𝑃

(2−𝛼)𝐶 , 𝑞𝑠𝐽 = 1 if 1
𝜇−(2−𝛼)𝛬 = 𝑉 −𝑃

(2−𝛼)𝐶 . To facilitate the derivation of the
optimal pricing strategy, we regroup the results in Theorem 1 we can
present the equilibrium strategies in the following simplified format:

(𝑞𝑠𝐽 , 𝑞
𝑠
𝑜) =

⎧

⎪

⎪

⎨

⎪

⎪

⎩

(

𝑞𝑠𝐽 , 0
)

, if max
{

1
𝜇 ,

1
𝜂

}

≤ 𝑉 −𝑃−𝐶ℎ
𝐶 ≤ 1

𝜇−𝛬 ,
(

1, 𝑞𝑠𝑜
)

, if 1
𝜇−𝛬 ≤ 1

𝜂 ≤ min
{

1
𝜇−(2−𝛼)𝛬 ,

(𝑉 −𝑃 )𝛼
𝐶

}

,
(

𝑞𝑠𝐽 , 1
)

, if 1
𝜇 ≤ 𝑉 −𝑃

(2−𝛼)𝐶 ≤ min
{

1
𝜇−(2−𝛼)𝛬 ,

1
𝜂

}

.

(A.11)

We remark that (A.11) is equivalent to the 6-branch structure as
narrated in Theorem 1. We then discuss the following cases:
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Case (1) (𝑞𝑠𝐽 , 𝑞
𝑠
𝑜) =

(

𝑞𝑠𝐽 , 0
)

, the revenue-maximization problem is

max
𝑃≥0

𝛱𝑠 = 𝛬𝑞𝑠𝐽𝑃 =
(

𝜇 − 𝐶
𝑉 − 𝑃 − 𝐶ℎ

)

𝑃 (A.12)

𝑠.𝑡. max
{

1
𝜇
, 1
𝜂

}

≤
𝑉 − 𝑃 − 𝐶ℎ

𝐶
≤ 1

𝜇 − 𝛬
.

Taking the first- and second-order derivatives of 𝛱𝑠 with
respect to 𝑃 yields

𝜕𝛱𝑠
𝜕𝑃

= 𝜇 −
𝐶(𝑉 − 𝐶ℎ)

(𝑉 − 𝑃 − 𝐶ℎ)2
and

𝜕2𝛱𝑠

𝜕𝑃 2
= −

2𝐶(𝑉 − 𝐶ℎ)
(𝑉 − 𝑃 − 𝐶ℎ)3

< 0.

When 𝜇 − 𝐶
𝑉 −𝐶ℎ

< 0, we have 𝜕𝛱𝑠
𝜕𝑃 < 0; otherwise, setting

𝜕𝛱𝑠
𝜕𝑃 = 0 gives the maximum point 𝑃𝑠 = 𝑉 − 𝐶ℎ −

√

𝐶(𝑉 −𝐶ℎ)
𝜇 .

The corresponding constraint of problem (A.12) is equivalent
to 𝑉 −𝐶ℎ −

𝐶
𝜇−𝛬 ≤ 𝑃 ≤ min

{

𝑉 − 𝐶ℎ −
𝐶
𝜇 , 𝑉 − 𝐶ℎ −

𝐶
𝜂

}

, so the
optimal price 𝑃 ∗

𝑠 can be derived as follows:

(1a) If 𝜇 − 𝐶
𝑉 −𝐶ℎ

< 0, the function 𝛱𝑠 decreases in 𝑃 and
𝑃 ∗
𝑠 = 𝑉 − 𝐶ℎ −

𝐶
𝜇−𝛬 ;

(1b) If 𝜇 − 𝐶
𝑉 −𝐶ℎ

≥ 0 and 𝑉 −𝐶ℎ −
𝐶
𝜇 ≥ 𝑉 −𝐶ℎ −

𝐶
𝜂 , there are

three cases: (1b-i) when 𝑃𝑠 ≤ 𝑉 −𝐶ℎ−
𝐶

𝜇−𝛬 , the function
𝛱𝑠 decreases in 𝑃 , so 𝑃 ∗

𝑠 = 𝑉 − 𝐶ℎ − 𝐶
𝜇−𝛬 ; (1b-ii) when

𝑉 − 𝐶ℎ − 𝐶
𝜇−𝛬 < 𝑃𝑠 < 𝑉 − 𝐶ℎ − 𝐶

𝜂 , the function 𝛱𝑠 is
concave in 𝑃 , then 𝑃 ∗

𝑠 = 𝑃𝑠; (1b-iii) when 𝑃𝑠 ≥ 𝑉 −𝐶ℎ −
𝐶
𝜂 , the function 𝛱𝑠 increases in 𝑃 , then 𝑃 ∗

𝑠 = 𝑉 −𝐶ℎ−
𝐶
𝜂 .

(1c) If 𝜇 − 𝐶
𝑉 −𝐶ℎ

≥ 0 and 𝑉 −𝐶ℎ −
𝐶
𝜇 < 𝑉 −𝐶ℎ −

𝐶
𝜂 , there are

three cases: (1c-i) when 𝑃𝑠 ≤ 𝑉 −𝐶ℎ −
𝐶

𝜇−𝛬 , the function
𝛱𝑠 decreases in 𝑃 , so 𝑃 ∗

𝑠 = 𝑉 − 𝐶ℎ − 𝐶
𝜇−𝛬 ; (1c-ii) when

𝑉 − 𝐶ℎ − 𝐶
𝜇−𝛬 < 𝑃𝑠 < 𝑉 − 𝐶ℎ − 𝐶

𝜇 , the function 𝛱𝑠 is
concave in 𝑃 , then 𝑃 ∗

𝑠 = 𝑃𝑠; (1c-iii) when 𝑃𝑠 ≥ 𝑉 −𝐶ℎ −
𝐶
𝜇 , the function 𝛱𝑠 increases in 𝑃 then 𝑃 ∗

𝑠 = 𝑉 −𝐶ℎ−
𝐶
𝜇 .

Case (2) (𝑞𝑠𝐽 , 𝑞
𝑠
𝑜) =

(

1, 𝑞𝑠𝑜
)

, the revenue maximization problem is

max
𝑃≥0

𝛱𝑠 = 𝛬𝑞𝑠𝐽𝑃 = 𝛬𝑃 , (A.13)

𝑠.𝑡. 1
𝜇 − 𝛬

≤ 1
𝜂
≤ min

{

1
𝜇 − (2 − 𝛼)𝛬

,
(𝑉 − 𝑃 )𝛼

𝐶

}

,

The revenue function 𝛱𝑠 is increasing in 𝑃 and the constraint
of problem (A.13) reduces to 𝑃 ≤ 𝑉 − 𝐶

𝜂𝛼 , which concludes that
𝑃 ∗
𝑠 = 𝑉 − 𝐶

𝜂𝛼 .
Case (3) (𝑞𝑠𝐽 , 𝑞

𝑠
𝑜) =

(

𝑞𝑠𝐽 , 1
)

, the revenue-maximization problem is

max
𝑃≥0

𝛱𝑠 = 𝛬𝑞𝑠𝐽𝑃 =
𝜇 − (2−𝛼)𝐶

𝑉 −𝑃
(2 − 𝛼)

𝑃 , (A.14)

𝑠.𝑡. 1
𝜇

≤ 𝑉 − 𝑃
(2 − 𝛼)𝐶

≤ min
{

1
𝜇 − (2 − 𝛼)𝛬

, 1
𝜂

}

.

Taking the first- and second-order derivatives of 𝛱𝑠 with
respect to 𝑃 yields

𝜕𝛱𝑠
𝜕𝑃

= 1
2 − 𝛼

(

𝜇 −
(2 − 𝛼)𝐶𝑉
(𝑉 − 𝑃 )2

)

and
𝜕2𝛱𝑠

𝜕𝑃 2
= − 2𝐶𝑉

(𝑉 − 𝑃 )3
< 0.

When 𝜇 − (2−𝛼)𝐶
𝑉 −(1−𝛼)𝐶ℎ

< 0, we have 𝜕𝛱𝑠
𝜕𝑃 < 0 and the revenue

decreases in 𝑃 ; otherwise, setting 𝜕𝛱𝑠
𝜕𝑃 = 0 gives the maximum

point 𝑃𝑠 = 𝑉 −
√

(2−𝛼)𝐶𝑉
𝜇 , and the constraint of problem (A.14)

becomes max
{

𝑉 − (2−𝛼)𝐶
𝜂 , 𝑉 − (2−𝛼)𝐶

𝜇−(2−𝛼)𝛬

}

≤ 𝑃 ≤ 𝑉 − (2−𝛼)𝐶
𝜇 .

The optimal price 𝑃 ∗
𝑠 are derived as follows:

(3a) If 𝜇 − (2−𝛼)𝐶
𝑉 −(1−𝛼)𝐶ℎ

< 0, and the function 𝛱𝑠 decreases in
𝑃 , and 𝑃 ∗

𝑠 is the lower bound of the price. This implies
that 𝑃 ∗ = max

{

𝑉 − (2−𝛼)𝐶 , 𝑉 − (2−𝛼)𝐶
}

.
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𝑠 𝜂 𝜇−(2−𝛼)𝛬
(3b) If 𝜇 − (2−𝛼)𝐶
𝑉 −(1−𝛼)𝐶ℎ

≥ 0 and (2−𝛼)𝐶
𝜂 ≤ (2−𝛼)𝐶

𝜇−(2−𝛼)𝛬 , there exist
three cases: (3b-i) when 𝑃𝑠 ≤ 𝑉 − (2−𝛼)𝐶

𝜂 , the function
𝛱𝑠 is decreasing in 𝑃 , 𝑃 ∗

𝑠 = 𝑉 − (2−𝛼)𝐶
𝜂 ; (3b-ii) when 𝑉 −

(2−𝛼)𝐶
𝜂 < 𝑃𝑠 < 𝑉 − (2−𝛼)𝐶

𝜇 , the function 𝛱𝑠 is concave in 𝑃 ,
thus 𝑃 ∗

𝑠 = 𝑃𝑠; (3b-iii) when 𝑃𝑠 ≥ 𝑉 − (2−𝛼)𝐶
𝜇 , the function

𝛱𝑠 is increasing in 𝑃 , thus we have 𝑃 ∗
𝑠 = 𝑉 − (2−𝛼)𝐶

𝜇 ;
(3c) If 𝜇 − (2−𝛼)𝐶

𝑉 −(1−𝛼)𝐶ℎ
≥ 0 and (2−𝛼)𝐶

𝜂 > (2−𝛼)𝐶
𝜇−(2−𝛼)𝛬 , there exist

three cases: (3c-i) when 𝑃𝑠 ≤ 𝑉 − (2−𝛼)𝐶
𝜇−(2−𝛼)𝛬 , the function

𝛱𝑠 is decreasing in 𝑃 , then 𝑃 ∗
𝑠 = 𝑉 − (2−𝛼)𝐶

𝜇−(2−𝛼)𝛬 ; (3c-ii)
when 𝑉 − (2−𝛼)𝐶

𝜇−(2−𝛼)𝛬 < 𝑃𝑠 < 𝑉 − (2−𝛼)𝐶
𝜇 , the function 𝛱𝑠

is concave in 𝑃 , thus we have 𝑃 ∗
𝑠 = 𝑃𝑠; (3c-iii) when

𝑃𝑠 ≥ 𝑉 − (2−𝛼)𝐶
𝜇 , the function 𝛱𝑠 is increasing in 𝑃 , we

have 𝑃 ∗
𝑠 = 𝑉 − (2−𝛼)𝐶

𝜇 .

The proof of Theorem 4 is similar and is omitted here. □

Proof of Proposition 4. First, the system congestion increases in the
market size 𝛬, leading to decreased customer utility (𝑈 𝑠

𝐽 (𝑞𝐽 , 𝑞𝑜) and
𝑈 𝑜
𝐽 (𝑞𝐽 , 𝑞𝑜)). Hence, the service provider needs to lower the service fee to
ttract consumers. Similar to the proof of Proposition 3, in the case of
ndogenous price, there also exist two thresholds for the expectation-
eeting probability 𝛼 of which the form are resemble those under

he exogeneous price case (i.e., 𝛼 and �̄�). Specifically, we now have
𝛼1 =

𝑉 −𝑃 ∗
𝑜 −2𝐶ℎ

𝑉 −𝑃 ∗
𝑜 −𝐶ℎ

and �̄�1 = 1− 𝐶ℎ
𝑉 −𝑃 ∗

𝑠
, where 𝑃 ∗

𝑜 is the optimal price in the
online-exchange model with 𝑞𝑠𝑜 = 𝑞𝑜𝑜 = 1 and 𝑃 ∗

𝑠 is the optimal price
n the onsite-exchange model with 𝑞𝑠𝑜 = 𝑞𝑜𝑜 = 0. We next consider three

cases:

(1) When 𝛼 < 𝛼1, all joining customers order onsite (i.e., 𝑞𝑠𝑜 = 𝑞𝑜𝑜 = 0),
leading to identical customer utility, behavior, system throughput
and optimal revenue in the two exchange models. To be specific,
𝑃 ∗
𝑜 maximizes the revenue function 𝛬𝑞𝑜𝐽𝑃 , where 𝑞𝑜𝐽 satisfies 𝑉 −

𝑃 − 𝐶ℎ − (2 − 𝛼)𝐶𝑊 (𝑞𝑜𝐽 , 0) = 0 (recall the proof in Proposition 3),
and this gives 𝑃 ∗

𝑜 = 𝑉 − 𝐶ℎ −
√

𝐶(𝑉 −𝐶ℎ)
𝜇 and then 𝛼1 solves the

equation 𝐶2
ℎ𝜇 = (2 − 𝛼)(1 − 𝛼)2𝐶(𝑉 − 𝐶ℎ).

(2) When 𝛼 > �̄�1, all joining customers order online (i.e., 𝑞𝑠𝑜 = 𝑞𝑜𝑜 =
1), and the online-exchange model outperforms onsite-exchange
model by giving a higher system throughput. To be specific, 𝑃 ∗

𝑠
maximizes the revenue function 𝛬𝑞𝑠𝐽𝑃 , where 𝑞𝑠𝐽 satisfies 𝑉 −𝑃 −
𝐶ℎ − 𝐶𝑊 (𝑞𝑠𝐽 , 1) = 0 (recall the proof in Proposition 3), and this
gives 𝑃 ∗

𝑠 = 𝑉 − 𝐶ℎ −
√

𝐶(𝑉 −𝐶ℎ)
𝜇 and then �̄�1 =

√

𝜇𝐶(𝑉 −𝐶ℎ)
𝜇𝐶ℎ+

√

𝜇𝐶(𝑉 −𝐶ℎ)

(3) When 𝛼1 ≤ 𝛼 ≤ �̄�1, customers’ channel-selection probability
depends on the market size:

(3a) When the market size is sufficiently small, the utilities in
the two models satisfy 𝑈 𝑠

𝐽 (𝑞
𝑠
𝐽 , 𝑞

𝑠
𝑜) > 0 and 𝑈 𝑜

𝐽 (𝑞
𝑜
𝐽 , 𝑞

𝑜
𝑜 ) > 0,

and then all customers join the system with 𝑞𝑠𝐽 = 𝑞𝑜𝐽 = 1.
Similar to the proof of Proposition 3, the maximum market
size satisfying the conditions 𝑈 𝑠

𝐽 (1, 𝑞𝑜) ≥ 0 and 𝑈 𝑜
𝐽 (1, 𝑞𝑜) ≥ 0

can be solved by the equation 𝑈 𝑠
𝐽 (1, 𝑞𝑜) = 0, which yields

𝛬(𝑞𝑜) =
𝜇− (𝑞𝑜(2−𝛼)+1−𝑞𝑜)𝐶

𝑉 −𝑃∗𝑠 −(1−𝛼𝑞𝑜 )𝐶ℎ
1+(1−𝛼)𝑞𝑜

. And the lower bound of the market
size is 𝛬′ = 𝛬(1) = 𝜇

2−𝛼 − 𝜇𝐶
𝛼𝜇𝐶ℎ+

√

𝜇𝐶(𝑉 −𝐶ℎ)
. Because in the

online-exchange model, customers can harvest more surplus
by sparing the inconvenience cost 𝐶ℎ, the service provider
is able to achieve a higher revenue with a raised price.

(3b) As the market size increases (𝛬 > 𝛬′), the utility difference
satisfies 𝛥𝑜(𝑞𝐽 , 𝑞𝑜) > 0 > 𝛥𝑠(𝑞𝐽 , 𝑞𝑜). Therefore, customers
in the onsite-exchange model begin to switch to the on-
site channel (𝑞𝑠𝑜 < 1), which enables 𝑞𝑠𝑜 < 𝑞𝑜𝑜 . Hence,
the corresponding joining probability 𝑞𝐽 (and the system
throughput) in the onsite-exchange model is higher and
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then the onsite-exchange model begins to achieve a higher
revenue. □

Proof of Theorem 5. Note that, the utility functions are decreasing
in 𝐶ℎ. In addition, we have 𝑈 𝑠

𝑜 (𝑝𝑠, 𝑝𝑜) < 𝑈 𝑠
𝑠 (𝑝𝑠, 𝑝𝑜) when 𝐶ℎ = 0. we

consider two cases:

(1) When 𝐶ℎ ≤ �̂�ℎ, we require the condition to hold:

𝑊 (𝑝𝑠, 𝑝𝑜) =
1

𝜇 − 𝛬𝑝𝑠 − (2 − 𝛼)𝛬𝑝𝑜
≤ 𝛼(𝑉 − 𝑃 )

𝐶
. (A.15)

(1a) If 𝐶𝐻 < �̄�ℎ ⇔ 𝑊 (𝑝𝑠, 𝑝𝑜) >
𝛼𝐶𝐻

(1−𝛼)𝐶 , all customers place onsite
orders since 𝑈 𝑠

𝑠 (𝑝𝑠, 𝑝𝑜) ≥ 𝑈 𝑠
𝑜 (𝑝𝑠, 𝑝𝑜) and 𝑈 𝑠

𝑠 (𝑝𝑠, 𝑝𝑜) ≥ 0, and
(𝑝𝑠, 𝑝𝑜) = (1, 0) is an equilibrium if and only if 𝛼𝐶𝐻

(1−𝛼)𝐶 <
𝑊 (1, 0) = 1

𝜇−𝛬 ≤ 𝛼(𝑉 −𝑃 )
𝐶 .

(1b) If �̄�ℎ ≤ 𝐶𝐻 ≤ �̂�ℎ, which is equivalent to conditions
𝑊 (𝑝𝑠, 𝑝𝑜) ≤

𝛼𝐶𝐻
(1−𝛼)𝐶 and 𝑊 (𝑝𝑠, 𝑝𝑜) ≤

(𝑉 −𝑃 )−(1−𝛼)𝐶𝐻
(2−𝛼)𝐶 . Customers

having 𝐶ℎ ∈ [0, �̄�ℎ) will opt to the onsite service since
𝑈 𝑠
𝑠 (𝑝𝑠, 𝑝𝑜) ≥ 𝑈 𝑠

𝑜 (𝑝𝑠, 𝑝𝑜) and 𝑈 𝑠
𝑠 (𝑝𝑠, 𝑝𝑜) ≥ 0, while customers

with 𝐶ℎ ∈ [�̄�ℎ, 𝐶𝐻 ] will place an online order because
𝑈 𝑠
𝑠 (𝑝𝑠, 𝑝𝑜) < 𝑈 𝑠

𝑜 (𝑝𝑠, 𝑝𝑜) and 𝑈 𝑠
𝑜 (𝑝𝑠, 𝑝𝑜) ≥ 0. Hence, 𝑝𝑠 = �̄�ℎ∕𝐶𝐻

and 𝑝𝑜 = 1 − 𝑝𝑠, and 𝑝1𝑠 satisfies 𝑝1𝑠𝐶𝐻 = (1 − 𝛼)𝐶𝑊 (𝑝1𝑠 , 1 −
𝑝1𝑠 )∕𝛼, and (𝑝𝑠, 𝑝𝑜) = (𝑝1𝑠 , 1− 𝑝1𝑠 ) is an equilibrium if and only
if

𝑊 (𝑝1𝑠 , 1−𝑝1𝑠 ) ≤ min
{

𝛼(𝑉 − 𝑃 )
𝐶

,
𝛼𝐶𝐻

(1 − 𝛼)𝐶
,
(𝑉 − 𝑃 ) − (1 − 𝛼)𝐶𝐻

(2 − 𝛼)𝐶

}

.

(1c) If 𝐶𝐻 > �̂�ℎ ⇔ 𝑊 (𝑝𝑠, 𝑝𝑜) > (𝑉 −𝑃 )−(1−𝛼)𝐶𝐻
(2−𝛼)𝐶 , customers with

𝐶ℎ ∈ [0, �̄�ℎ) will opt to order onsite since 𝑈 𝑠
𝑠 (𝑝𝑠, 𝑝𝑜) ≥

𝑈 𝑠
𝑜 (𝑝𝑠, 𝑝𝑜) and 𝑈 𝑠

𝑠 (𝑝𝑠, 𝑝𝑜) ≥ 0, and customers with 𝐶ℎ ∈
[�̄�ℎ, �̂�ℎ) will place online orders since 𝑈 𝑠

𝑠 (𝑝𝑠, 𝑝𝑜) < 𝑈 𝑠
𝑜 (𝑝𝑠, 𝑝𝑜)

and 𝑈 𝑠
𝑜 (𝑝𝑠, 𝑝𝑜) ≥ 0; otherwise, they balk since both 𝑈 𝑠

𝑠 (𝑝𝑠, 𝑝𝑜)
and 𝑈 𝑠

𝑜 (𝑝𝑠, 𝑝𝑜) are negative. Hence, 𝑝𝑠 = �̄�ℎ∕𝐶𝐻 and 𝑝𝑜 =
(�̂�ℎ − �̄�ℎ)∕𝐶𝐻 , and (𝑝𝑠, 𝑝𝑜) = (𝑝2𝑠 , 𝑝

2
𝑜) is an equilibrium if an

only if (𝑉 −𝑃 )−(1−𝛼)𝐶𝐻
(2−𝛼)𝐶 < 𝑊 (𝑝2𝑠 , 𝑝

2
𝑜) ≤

𝛼(𝑉 −𝑃 )
𝐶 .

(2) When 𝐶ℎ > �̂�ℎ, we require the following condition to hold:

𝑊 (𝑝𝑠, 𝑝𝑜) =
1

𝜇 − 𝛬𝑝𝑠 − (2 − 𝛼)𝛬𝑝𝑜
>

𝛼(𝑉 − 𝑃 )
𝐶

. (A.16)

(2a) If 𝐶𝐻 ≤ 𝐶ℎ ⇔ 𝑊 (𝑝𝑠, 𝑝𝑜) ≤ 𝑉 −𝑃−𝐶𝐻
𝐶 , all customers will

choose onsite services since 𝑈 𝑠
𝑠 (𝑝𝑠, 𝑝𝑜) ≥ 𝑈 𝑠

𝑜 (𝑝𝑠, 𝑝𝑜) and
𝑈 𝑠
𝑠 (𝑝𝑠, 𝑝𝑜) ≥ 0, and (𝑝𝑠, 𝑝𝑜) = (1, 0) is an equilibrium if and

only if 𝛼(𝑉 −𝑃 )
𝐶 < 𝑊 (1, 0) ≤ 𝑉 −𝑃−𝐶𝐻

𝐶 .
(2b) If 𝐶𝐻 > 𝐶ℎ ⇔ 𝑊 (𝑝𝑠, 𝑝𝑜) > 𝑉 −𝑃−𝐶𝐻

𝐶 , customers with 𝐶ℎ ∈
[0, 𝐶ℎ) will place onsite orders because 𝑈 𝑠

𝑠 (𝑝𝑠, 𝑝𝑜) ≥ 𝑈 𝑠
𝑜 (𝑝𝑠, 𝑝𝑜)

and 𝑈 𝑠
𝑠 (𝑝𝑠, 𝑝𝑜) ≥ 0, and customers with 𝐶ℎ ∈ [𝐶ℎ, 𝐶𝐻 ] balk

since both 𝑈 𝑠
𝑠 (𝑝𝑠, 𝑝𝑜) and 𝑈 𝑠

𝑜 (𝑝𝑠, 𝑝𝑜) are negative. Hence, 𝑝𝑠 =
𝐶ℎ∕𝐶𝐻 and 𝑝𝑜 = 0, and (𝑝𝑠, 𝑝𝑜) = (𝑝3𝑠 , 0) is an equilibrium if
and only if 𝑊 (𝑝3𝑠 , 1 − 𝑝3𝑠 ) > max

{

𝛼(𝑉 −𝑃 )
𝐶 , 𝑉 −𝑃−𝐶𝐻

𝐶

}

.

The above cases correspond to the equilibrium in (24). □

roof of Theorem 6. When 𝐶ℎ = 0, we have 𝑈 𝑜
𝑜 (𝑝𝑠, 𝑝𝑜) < 𝑈 𝑜

𝑠 (𝑝𝑠, 𝑝𝑜),
e consider two cases:

(1) When 𝑈 𝑜
𝑜 (𝑝𝑠, 𝑝𝑜) ≥ 0, we need the following condition to hold:

𝑉 − 𝑃 − (2 − 𝛼)𝐶𝑊 (𝑝𝑠, 𝑝𝑜) ≥ 0 ⇔ 𝑊 (𝑝𝑠, 𝑝𝑜) ≤
𝑉 − 𝑃
(2 − 𝛼)𝐶

. (A.17)

(1a) If 𝐶𝐻 < 𝐶 ′
ℎ ⇔ 𝑊 (𝑝𝑠, 𝑝𝑜) > 𝐶𝐻

(1−𝛼)𝐶 , all customers will
choose onsite services because 𝑈 𝑜

𝑠 (𝑝𝑠, 𝑝𝑜) ≥ 𝑈 𝑜
𝑜 (𝑝𝑠, 𝑝𝑜) and

𝑈 𝑜
𝑠 (𝑝𝑠, 𝑝𝑜) ≥ 0, so that (𝑝𝑠, 𝑝𝑜) = (1, 0) is an equilibrium if

and only if 𝐶𝐻
(1−𝛼)𝐶 < 𝑊 (1, 0) ≤ 𝑉 −𝑃

(2−𝛼)𝐶 .
(1b) If 𝐶𝐻 ≥ 𝐶 ′

ℎ ⇔ 𝑊 (𝑝𝑠, 𝑝𝑜) ≤ 𝐶𝐻
(1−𝛼)𝐶 , customers with 𝐶ℎ ∈

[0, 𝐶 ′ ) will place onsite orders because 𝑈 𝑜(𝑝 , 𝑝 ) ≥ 𝑈 𝑜(𝑝 , 𝑝 )
17

ℎ 𝑠 𝑠 𝑜 𝑜 𝑠 𝑜
and 𝑈 𝑜
𝑠 (𝑝𝑠, 𝑝𝑜) ≥ 0, and customers with 𝐶ℎ ∈ [𝐶 ′

ℎ, 𝐶𝐻 ]
will place online orders since 𝑈 𝑜

𝑠 (𝑝𝑠, 𝑝𝑜) < 𝑈 𝑜
𝑜 (𝑝𝑠, 𝑝𝑜) and

𝑈 𝑜
𝑜 (𝑝𝑠, 𝑝𝑜) ≥ 0. Hence, 𝑝1𝑠 = 𝐶 ′

ℎ∕𝐶𝐻 and 𝑝1𝑜 = 1 − 𝑝1𝑠 , with
𝑝1𝑠 satisfying the equation 𝑝1𝑠𝐶𝐻 = (1 − 𝛼)𝐶𝑊 (𝑝𝑠1, 1 − 𝑝1𝑠 ), so
that (𝑝𝑠, 𝑝𝑜) = (𝑝𝑠1, 1 − 𝑝1𝑠 ) is an equilibrium if and only if
𝑊 (𝑝1𝑠 , 1 − 𝑝1𝑠 ) ≤ min

{

𝑉 −𝑃
(2−𝛼)𝐶 ,

𝐶𝐻
(1−𝛼)𝐶

}

.

(2) When 𝑈 𝑜
𝑜 (𝑝𝑠, 𝑝𝑜) < 0, we require that

𝑉 −𝑃−(2−𝛼)𝐶𝑊 (𝑞𝐽 , 𝑞𝑜) < 0, or equivalently, 𝑊 (𝑞𝐽 , 𝑞𝑜) >
𝑉 − 𝑃
(2 − 𝛼)𝐶

.

(A.18)

(2a) If 𝐶𝐻 ≤ 𝐶ℎ ⇔ 𝑊 (𝑝𝑠, 𝑝𝑜) ≤ 𝑉 −𝑃−𝐶𝐻
𝐶 , all customers will

choose onsite services since 𝑈 𝑜
𝑠 (𝑝𝑠, 𝑝𝑜) ≥ 𝑈 𝑜

𝑜 (𝑝𝑠, 𝑝𝑜) and
𝑈 𝑜
𝑠 (𝑝𝑠, 𝑝𝑜) ≥ 0, so that (𝑝𝑠, 𝑝𝑜) = (1, 0) is an equilibrium if

and only if 𝑉 −𝑃
(2−𝛼)𝐶 < 𝑊 (1, 0) ≤ 𝑉 −𝑃−𝐶𝐻

𝐶 .
(2b) If 𝐶𝐻 > 𝐶ℎ ⇔ 𝑊 (𝑝𝑠, 𝑝𝑜) > 𝑉 −𝑃−𝐶𝐻

𝐶 , customers with 𝐶ℎ ∈
[0, 𝐶ℎ) will place onsite orders and with 𝐶ℎ ∈ [𝐶ℎ, 𝐶𝐻 ] balk.
Hence, 𝑝3𝑠 = 𝐶ℎ∕𝐶𝐻 and 𝑝3𝑜 = 0, so that (𝑝𝑠, 𝑝𝑜) = (𝑝3𝑠 , 0) is an
equilibrium if and only if 𝑊 (𝑝3𝑠 , 0) > max

{

𝑉 −𝑃
(2−𝛼)𝐶 ,

𝑉 −𝑃−𝐶𝐻
𝐶

}

.

The above cases correspond to the equilibrium in (27). □
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